
Alibaba Cloud

FunctionFlow
Flow Definition Language

Document Version: 20211230

Alibaba Cloud

FunctionFlow
Flow Definition Language

Document Version: 20211230

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

Funct ionFlow Flow Definit ion Language·Legal discl
aimer

> Document Version: 20211230 I

Document conventions
St yle Descript ion Example

 Danger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:

Resetting will result in the loss of user
configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ings > Net work > Set net work
t ype .

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

Funct ionFlow Flow Definit ion Language·Document
convent ions

> Document Version: 20211230 I

Table of Contents
1.Overview

2.Inputs and outputs

3.Task steps

4.Wait steps

5.Pass steps

6.Choice steps

7.Parallel steps

8.Foreach steps

9.Succeed steps

10.Fail steps

05

07

15

20

22

23

26

28

31

33

Funct ionFlow Flow Definit ion Language·Table of C
ont ent s

> Document Version: 20211230 I

This topic describes the basics of Flow Definit ion Language (FDL) and related examples.

Basics
FDL is used to describe and define business logic. When a flow is executed, the Serverless workflow
service executes steps in sequence based on the flow definit ion. In FDL, a flow usually contains several
steps. These steps can be simple atomic steps, such as task , succeed , fail , wait , and
 pass steps, or complex control steps, such as choice , parallel , and foreach steps. These

steps can be combined to build complex business logic. For example, a branch of a parallel step may be
a series of serial steps. Errors may occur in the execution of steps, but FDL provides the retry and
 catch capabilit ies.

Steps in FDL are similar to functions in programming languages, and a combination of steps is similar to
function calls. Data is passed between steps through input and output. Local variables are used to
store data of steps. If a step contains another step, the outer step is called a parent step, and the
included step is called a child step.

When you define a flow, you can perform the following operations:

Build the basic structure of the placeholder planning flow with pass steps.

Call functions of the Function Compute service with task steps.

Suspend the flow for a period of t ime with wait steps.

Define different execution paths with choice steps.

Terminate a flow in advance with succeed or fail steps.

Execute mult iple branches in parallel with parallel steps.

Process array data in parallel with foreach steps.

A flow contains the following attributes:

version: Required. The flow version. Only v1 is supported.

type: Required. The flow type.

steps: Required. Mult iple serial steps in a flow. When a step is executed successfully, the next step
starts. To stop a flow in advance, you can use the end attribute or execute a succeed or fail step.

inputMappings: Optional. The input mappings. The $input referenced in the input mappings is the
 Input parameter in a StartExecution API request.

outputMappings: Optional. The output mappings. The $local referenced in the output mappings
is a JSON object that records the execution result of each serial step.

Not e If no output mappings are specified, $local is used as the final flow output.

t imeoutSeconds: Optional. The t imeout period of a flow. If the flow execution duration exceeds the
specified t imeout period, the flow t imes out.

Examples
The following sample flow consists of a task step that calls a function of Function Compute:

1.Overview

Funct ionFlow Flow Definit ion Language·Overview

> Document Version: 20211230 5

version: v1
type: flow
steps:
 - type: task
 name: hello
 resourceArn: acs:fc:{region}:{accountID}:services/fnf_test/functions/hello

The following sample flow consists of two steps (step1 and step4), in which step1
contains two child steps (step2 and step3).

version: v1
type: flow
steps:
 - type: parallel
 name: step1
 branches:
 - steps:
 - type: pass
 name: step2
 - steps:
 - type: pass
 name: step3
 - type: pass
 name: step4

References
For more information about FDL features, see the following topics:

Inputs and outputs

Task steps

Wait steps

Pass steps

Choice steps

Parallel steps

Foreach steps

Succeed steps

Fail steps

Flow Definit ion Language·Overview Funct ionFlow

6 > Document Version: 20211230

https://www.alibabacloud.com/help/doc-detail/122493.htm#concept-2184142
https://www.alibabacloud.com/help/doc-detail/122494.htm#concept-2184143
https://www.alibabacloud.com/help/doc-detail/122495.htm#concept-2184144
https://www.alibabacloud.com/help/doc-detail/122496.htm#concept-2184145
https://www.alibabacloud.com/help/doc-detail/122497.htm#concept-2184146
https://www.alibabacloud.com/help/doc-detail/122498.htm#concept-2184147
https://www.alibabacloud.com/help/doc-detail/122499.htm#concept-2184148
https://www.alibabacloud.com/help/doc-detail/122500.htm#concept-2184149
https://www.alibabacloud.com/help/doc-detail/122501.htm#concept-2184150

This topic describes the basics of inputs and outputs.

Flows and steps
Typically, data needs to be passed between flows and steps, and between mult iple steps of a flow.
Steps of the Flow Definit ion Language (FDL) are similar to functions in functional programming
languages. These steps accept inputs and produce outputs, and the outputs are stored in the local
variable of the parent step (caller). The inputs and outputs must be JSON object structures, and the
types of local variables vary with steps. For example, a task step uses the returned result of calling a
function of Function Compute as the local variable, whereas a parallel step uses the outputs (arrays) of
all branches as the local variable. The total size of inputs, outputs, and local variable in a step cannot
exceed 32 KiB. Otherwise, the flow execution fails.

If a step contains another step, the outer step is called a parent step, and the included step is called a
child step. The parent step of the outermost step is the flow. If the parent steps of two steps are the
same, the two steps are of the same level.

Each flow and step contain inputs, outputs, and a local variable. Their mappings are listed in the
following content:

The inputMappings of a step maps the input and local variable of the parent step to the inputs of
child steps.

The outputMappings of a step maps the input and local variable of the current step to the output
of the current step.

The inputMappings of a flow maps the input of a flow execution to the input of the flow.

The outputMappings of a flow maps the input and local variable of the flow to the output of the
flow.

The local variable of a parent step contains a union set of the outputs of all its child steps. If the
outputs contain repeated key values, the result of a later step overwrites that of an earlier step. In
most cases, you can use the default mappings without specifying the input and output mappings.

When no input mappings are specified, the input of a child step is the combination of the input and
local variable of its parent step (if the local variable and the input have the same key value, the local
variable will overwrite the input).

When no output mappings are specified, the local variable is used as the output in all steps except
parallel steps and foreach steps.

If you want to better control the input and output, you need to understand detailed mapping rules.

The following figure shows the input and output mappings of the example flow. In the flow, step1 is
the parent step of step2 and step3, and step1 and step4 are the outermost steps.

2.Inputs and outputs

Funct ionFlow Flow Definit ion Language·Input s and
out put s

> Document Version: 20211230 7

version: v1
type: flow
steps:
 - type: parallel
 name: step1
 branches:
 - steps:
 - type: pass
 name: step2
 - steps:
 - type: pass
 name: step3
 - type: pass
 name: step4

The following code can be used to describe mappings can be described, so that they can be easier to
understand:

Flow Definit ion Language·Input s and
out put s

Funct ionFlow

8 > Document Version: 20211230

func flow(input0 Input) (output0 Output) {
 local0 := {}
 input1 := buildInput(step1InputMappings, input0, local0)
 output1 := step1(input1)
 save(local0, output1)
 input4 := buildInput(step4InputMappings, input0, local0)
 output4 := step4(input4)
 save(local0, output4)
 return buildOutput(flowOutputMappings, input0, local0)
}
func step1(input1 Input) (output1 Output) {
 local10 := {}
 input2 := buildInput(step2InputMappings, input1, local10)
 output2 := step2(input2)
 save(local10, output2)
 local11 := {}
 input3 := buildInput(step3InputMappings, input1, local11)
 output3 := step3(input3)
 save(local11, output3)
 return buildOutput(step1OutputMappings, [local10, local11])
}
func step2(input2 Input) (output2 Output) {
}
func step3(input3 Input) (output3 Output) {
}
func step4(input4 Input) (output4 Output) {
}

In this example, the flow consists of two child steps: step1 and step4 . step1 is a parallel step
that contains step2 and step3 .

1. When the system starts to execute the flow, it converts the StartExecution input into the flow
input (input0) based on the input mappings of the flow.

2. When the flow execution starts, the local0 is empty.

3. The system prepares the input1 input for step1 based on the input mappings (step1InputMapp
ings) of step1 . The mapping sources are the input0 input and the local0 local variable
of the flow .

4. The system calls step1 to load input1 . step1 returns output1 .

When the system starts to execute step1 , its local10 is empty. step1 is a parallel step,
so each branch corresponds to a local variable, avoiding concurrent access.

The system prepares the input2 input for step2 based on the input mappings of step2 (
step2InputMappings). The mapping sources are the input1 input and the local10 local
variable of step1 .

The system calls step2 to load input2 . step2 returns output2 .

The system saves the output of step2 to the local10 local variable of step1 .

Similarly, the system calls step3 and saves the result to the local11 local variable of step
1 .

Funct ionFlow Flow Definit ion Language·Input s and
out put s

> Document Version: 20211230 9

5. The system saves the output of step1 to the local0 local variable of the flow .

6. Similarly, the system prepares the input4 input for step4 based on the input mappings of step
4 . The mapping sources are the input0 input and the local0 local variable of the flow .

Not e At this point, the local0 local variable may contain the output of step1 .
This achieves data transfer between step1 and step4 .

7. The system calls step4 to load input4 . step4 returns output4 .

8. The system saves the output of step4 to the local0 local variable of the flow .

9. Finally, the system converts local0 into the flow output based on the output mappings of the
flow.

Types
Both input and output mappings are arrays composed of target and source . The source
defines the parameter source and is set to different values for different mappings. For example,
 $input.key indicates that the parameter source is the value of $.key in input . The target

defines the names of target parameters. If the value of source starts with $, the value is
specified in JSON path format (you can use JSONPath Online Evaluator to debug the JSON path), and the
system parses the source into a specific value based on the path. Otherwise, the value is considered a
constant.

Source

The source can be set to a constant, such as a value of the number , string , boolean , a
rray , object , or null type.

The source in the following example uses constants of different types. The information following
the example shows the output.

Flow Definit ion Language·Input s and
out put s

Funct ionFlow

10 > Document Version: 20211230

https://jsonpath.com

outputMappings:
 - target: int_key
 source: 1
 - target: bool_key
 source: true
 - target: string_key
 source: abc
 - target: float_key
 source: 1.234
 - target: null_key
 source: null
 - target: array1
 source: [1, 2, 3]
 - target: array2
 source:
 - 1
 - 2
 - 3
 - target: object1
 source: {a: b}
 - target: object2
 source:
 a:

{
 "array1": [1, 2, 3],
 "array2": [1, 2, 3],
 "bool_key": true,
 "float_key": 1.234,
 "int_key": 1,
 "null_key": null,
 "object1": {
 "a": "b"
 },
 "object2": {
 "a": "b"
 },
 "string_key": "abc"
}

Target

The target can only be a constant of the string type.

Input mappings
Input mappings convert the input ($input) of a parent step, the local variable ($local) of a
parent step, or constants into the input of child steps. If no input mappings are specified, the input and
local variable of the parent step are combined and used as the input of child steps. If the input and
local variable of the parent step have the same name, the new input uses the name and value in the
local variable.

Funct ionFlow Flow Definit ion Language·Input s and
out put s

> Document Version: 20211230 11

inputMappings:
 - target: key1
 source: $input.key1
 - target: key2
 source: $local.key2
 - target: key3
 source: literal

Input $input Local variable
 $local Input mapping Child step input

{
"key1":"value1"
}

{
"key2":"value2"
}

inputMappings:
 - target: key1
 source:
$input.key1
 - target: key2
 source:
$local.key2
 - target: key3
 source:
literal

{
"key1":"value1"
"key2":"value2"
"key3":"literal"
}

{
"key1":"value1"
}

{
"key2":"value2"
} None

{
"key1":"value1"
"key2":"value2"
}

{
"key1":"value1"
}

{
"key1":"value2"
} None

{
"key1":"value2"
}

Output mappings
Output mappings convert the input ($input) of the current step, the local variable ($local) of
the current step, or constants into the output of this step. If no output mappings are specified, choice
steps and foreach steps use their local variables as outputs, whereas task steps uses task execution
results as outputs. The local variables of parallel and foreach steps are arrays. Therefore, you must
define output mappings to convert the arrays into JSON objects. By default , their local variables are not
output. For more information, see the step descript ion.

Flow Definit ion Language·Input s and
out put s

Funct ionFlow

12 > Document Version: 20211230

outputMappings:
 - target: key1
 source: $input.key1
 - target: key2
 source: $local.key2
 - target: key3
 source: literal

Input $input Local variable
 $local Output mapping Step output

{
"key1":"value1"
}

{
"key2":"value2"
}

outputMappings:
 - target: key1
 source:
$input.key1
 - target: key2
 source:
$local.key2
 - target: key3
 source:
literal

{
"key1":"value1"
"key2":"value2"
"key3":"literal"
}

{
"key1":"value1"
}

[
 {

"key2":"value2.1"
 },
 {

"key2":"value2.2"
 }
]

outputMappings:
 - target: key1
 source:
$input.key1
 - target: key2
 source:
$local[*].key2
 - target: key3
 source:
literal

{

"key1":"value1",
 "key2":
["value2.1","valu
e2.2"],

"key3":"literal"
}

{
"key1":"value1"
}

{
"key2":"value2"
} None

{
"key2":"value2"
}

Save outputs to local variables of the parent steps
Child step outputs ($output) will be saved to local variables of the parent steps. If they contain the
same name, the name and value in the outputs will overwrite the corresponding name and value in the
local variables.

Funct ionFlow Flow Definit ion Language·Input s and
out put s

> Document Version: 20211230 13

Output $output Local variable of the parent step
 $local

Local variable of the parent step
after modification

{
"key1":"value1"
}

{
"key2":"value2"
}

 {
 "key1":"value1"
 },
 {
 "key2":"value2"
 }

{
"key1":"value11"
}

 {
 "key1":"value1"
 },
 {
 "key2":"value2"
 }

 {
 "key1":"value11"
 },
 {
 "key2":"value2"
 }

Flow Definit ion Language·Input s and
out put s

Funct ionFlow

14 > Document Version: 20211230

This topic describes task steps and examples.

Attributes
A task step defines the function invocation information of Function Compute. When a task step is
executed, the corresponding function is invoked.

A task step contains the following attributes:

 type : the step type. The value task indicates that the step is a task step.

 name : the name of the step.

 resourceArn : the resource identifier, which can be a function, MNS queue, or Serverless workflow
flow. Example: acs:fc:cn-shanghai:18807708****3420:services/fnf_test/functions/hello . For
more information, see Service Integration.

(Optional)pattern: the execution mode of an integration service. Different integration services
support different execution modes. Default value: requestResponse . Valid values:

 requestResponse : The system waits until the task execution ends after a task is submitted and
then continues the step.

 sync : The system waits until the task execution ends after a task is asynchronously submitted,
and then continues the step after the system receives the task execution result .

 waitForCallback : The system suspends the step after a task is asynchronously submitted (such
as invoking a function), and waits until the system receives a callback request or t imeout
notificat ion of the task.

(Optional) timeoutSeconds : the t imeout period of the task. If the task execution duration exceeds
the specified t imeout period, the task step t imes out.

(Optional) end : specifies whether to proceed with the subsequent steps after the current step
ends.

(Optional) inputMappings : the input mappings. The input of the task step will be used as the event
of a function invocation. For more information, see InvokeFunction.

(Optional) outputMappings : the output mappings. $local is the result of a function invocation
and must be in JSON format.

Not e If no output mappings are specified, $local is used as the output of this step by
default .

(Optional) errorMappings : the error mappings. This attribute parameter is valid only when an error
occurs during step execution and the catch parameter is specified. You can use the $local.caus
e and $local.error values to map error information to the output and pass it to the next step.

Not e The $local.error and $local.code values are reserved for the system. The s
ource f ield in errorMappings must be set to these two values. For more information, see
Examples. In addit ion, the errorMappings parameter is optional. If it is not specified, error
information cannot be obtained in the next step after an error occurs.

3.Task steps

Funct ionFlow Flow Definit ion Language·Task st ep
s

> Document Version: 20211230 15

https://www.alibabacloud.com/help/doc-detail/149828.htm#concept-2184152
https://www.alibabacloud.com/help/doc-detail/191156.htm#doc-api-FC-InvokeFunction

 retry : the group of retry policies. Each retry policy has the following attributes:

 errors : the one or more errors. For more information, see Error definit ions.

 intervalSeconds : the init ial interval between retries. The maximum value is 86,400 seconds.
Default value: 1 second.

 maxIntervalSeconds : the maximum time interval for retries. Both the maximum value and
default value are 86,400 seconds.

 maxAttempts : the maximum number of retries. Default value: 3.

 multiplier : the value by which a retry interval is mult iplied to make the next retry interval.
Default value: 2.

 catch : the group of catch policies. Each catch policy has the following attributes:

 errors : the one or more errors. For more information, see the following table.

 goto : the name of the dest ination step.

Not e The dest ination step must be a step parallel to the current task step.

Error definit ions

Function execution
status

HTTP status code
of a Function
Compute
response

Function Compute
response

Serverless
workflow step
failure (f or ret ry
and cat ch)

Retry

Not executed 429
 ResourceExhau
sted

 FC.ResourceEx
hausted Yes

Not executed 4xx but not 429

 ServiceNotFou
nd ,
 FunctionNotFo
und , or
 InvalidArgume
nt

 FC.ServiceNot
Found ,
 FC.FunctionNo
tFound , or
 FC.InvalidArg
ument

No

Uncertain 500
 InternalServe
rError

 FC.InternalSe
rverError Yes

Not executed 503
 ResourceThrot
tled

 FC.ResourceTh
rottled Yes

Execution
successful, with
an error code
returned

200
A custom error,
including
 errorType

 errorType Determined based
on business

Execution failed,
with an error code
returned

200 No errorType FC.Unknown Yes

Flow Definit ion Language·Task st ep
s

Funct ionFlow

16 > Document Version: 20211230

Execution
successful, with a
non-JSON object
returned

200 No errorType FC.InvalidOut
put No

Function execution
status

HTTP status code
of a Function
Compute
response

Function Compute
response

Serverless
workflow step
failure (f or ret ry
and cat ch)

Retry

Ot her errors :

 FnF.ALL : captures all failures for retrying or goto use cases.

Examples
Simple task steps

The following sample flow contains a task step.

If the input is {"name": "function flow"} , the output is {"hello": "function flow"} .

If no input is specified for the flow or the flow input does not contain the name key, the task
step execution fails, which causes a flow failure.

Define the flow.

version: v1
type: flow
steps:
 - type: task
 name: hello
 resourceArn: acs:fc:{region}:{accountID}:services/fnf_test/functions/hello

Parameters of resourceArn :

 {region} : Replace it with the actual region, such as cn-shanghai .

 {accountID} : Replace it with your account ID. You can view the account ID by clicking the
profile picture on the Flows page of the Serverless Workflow console, as shown in the following
figure.

Funct ionFlow Flow Definit ion Language·Task st ep
s

> Document Version: 20211230 17

https://fnf.console.aliyun.com

Define the function.

import json
class MyError(Exception):
 pass
def handle(event, context):
 evt = json.loads(event)
 if "name" in evt:
 return {
 "hello": evt["name"]
 }
 else:
 raise MyError("My unhandled exception")

Retry

The following example shows how to retry a task upon MyError . If no input is specified for the
flow or the flow input does not contain the name key, Serverless workflow fails to retry tasks
mult iple t imes based on retry policies.

It waits 3 seconds after the first error occurs, and then invokes the function again.

It waits 6 seconds (intervalSeconds x multiplier) after the second error occurs, and then
invokes the function again.

It waits 12 seconds (intervalSeconds x multiplier x multiplier) after the third error occurs,
and then invokes the function again.

If an error st ill occurs after three retries, the number of retries exceeds maxAttempts . Therefore,
the task step fails and the flow fails.

version: v1
type: flow
steps:
 - type: task
 name: hello
 resourceArn: acs:fc:{region}:{accountID}:services/fnf_test/functions/hello
 retry:
 - errors:
 - MyError
 intervalSeconds: 3
 maxAttempts: 3
 multiplier: 2

Catch errors

The following example shows how to catch MyError and then go to the final step. The error
is caught, so the flow is successful.

Flow Definit ion Language·Task st ep
s

Funct ionFlow

18 > Document Version: 20211230

version: v1
type: flow
steps:
 - type: task
 name: hello
 resourceArn: acs:fc:{region}:{accountID}:services/fnf_test/functions/hello
 catch:
 - errors:
 - MyError
 goto: final
 - type: pass
 name: pass1
 - type: pass
 name: final

Catch errors with error mappings specified

The following example shows how to catch MyError and then go to the final step. Error
information can be obtained and processed in the final step because error mappings are
specified. The flow is successful. You can also specify in the errorMappings to map the inputs and
constants of this step to the outputs.

version: v1
type: flow
steps:
 - type: task
 name: hello
 resourceArn: acs:fc:{region}:{accountID}:services/fnf_test/functions/hello
 errorMappings:
 - target: errMsg
 source: $local.cause # This value is reserved for the system and can be used dire
ctly when an error occurs in this step.
 - target: errCode
 source: $local.error # This value is reserved for the system and can be used dire
ctly when an error occurs in this step.
 catch:
 - errors:
 - MyError
 goto: final
 - type: pass
 name: pass1
 - type: pass
 name: final

In the event of the final step, you can see the following content in EventDetail :

"EventDetail": "{\"input\":{},\"local\":{\"errorCode\":\"MyError\",\"errorMsg\":\"some me
ssage\"}}",

Funct ionFlow Flow Definit ion Language·Task st ep
s

> Document Version: 20211230 19

This topic describes wait steps and related examples.

Overview
A wait step pauses a flow execution for a period of t ime before proceeding. You can select a relat ive
t ime or use a t imestamp to specify an absolute end t ime.

A wait step contains the following attributes:

type: Required. The step type. The value wait indicates that the step is a wait step.

name: Required. The step name.

duration: Optional. The relat ive t ime to wait in seconds. It can be a constant or a parameter in the
input. For example, 10 indicates wait ing for 10 seconds, and $.sleep indicates that the wait
t ime is obtained from the input sleep key. You must specify either duration or timestamp .

t imestamp: Optional. The absolute t ime to wait in RFC3339 format. It can be a constant or a
parameter in the input. For example, 2019-05-02T15:04:05Z indicates wait ing until 15:04:05 on
May 2, 2019 UTC. If the t ime is earlier than the current t ime, the wait step ends.

end: Optional. Specifies whether to proceed with the subsequent steps after the current step ends.

inputMappings: Optional. The input mappings.

outputMappings: Optional. The output mappings. A wait step does not generate data, and its $loc
al is empty.

Not e The maximum wait t ime is limited to two days.

Examples
Wait t ime of 20 seconds

version: v1
type: flow
steps:
 - type: wait
 name: wait20s
 duration: 20

Wait t ime determined by the input

version: v1
type: flow
steps:
 - type: wait
 name: custom_wait
 duration: $.wait

Absolute wait t ime

4.Wait steps

Flow Definit ion Language·Wait st ep
s

Funct ionFlow

20 > Document Version: 20211230

https://tools.ietf.org/html/rfc3339#section-5.8

version: v1
type: flow
steps:
 - type: wait
 name: wait20s
 timestamp: 2019-05-02T15:04:05Z

Absolute wait t ime determined by the input

version: v1
type: flow
steps:
 - type: wait
 name: custom_wait
 timestamp: $.wait_timestamp

Funct ionFlow Flow Definit ion Language·Wait st ep
s

> Document Version: 20211230 21

This topic describes pass steps and related examples.

Overview
A pass step can be used to output constants or convert inputs into the desired outputs. For example,
when you define a flow, if you have not created functions of Function Compute for task steps, you can
first plan and debug the flow logic by using control steps and pass steps, and then gradually replace
the pass steps with task steps.

A pass step contains the following attributes:

type: Required. The step type. The value pass indicates that the step is a pass step.

name: Required. The step name.

end: Optional. Specifies whether to proceed with the subsequent steps after the current step ends.

inputMappings: Optional. The input mappings.

outputMappings: Optional. The output mappings. This step does not generate data, and its $local
 is empty.

Examples
The following example defines a pass step that outputs an array of uppercase letters.

version: v1
type: flow
steps:
 - type: pass
 name: toUpperCase
 outputMappings:
 - target: names
 source: ["A", "B", "C"]

5.Pass steps

Flow Definit ion Language·Pass st ep
s

Funct ionFlow

22 > Document Version: 20211230

This topic describes the basics and examples of choice steps, and related condit ional expressions.

Overview
Choice steps allow execution of different steps in a flow, similar to switch-case in programming
languages. A choice step contains mult iple choices and a default . Each choice contains a condit ional
expression, several steps, and goto instruct ions. The default contains only several steps and goto
instruct ions. When the flow proceeds to a choice step, the system evaluates whether the condit ional
expressions return True in the defined sequence.

If True is returned, the steps and then goto instruct ions defined in the corresponding choice are
executed.

If no choice returns True , the steps and goto instruct ions defined in the default are executed.

If no default is defined, the choice step ends.

A choice step contains the following attributes:

type: Required. The step type. The value choice indicates that the step is a choice step.

name: Required. The step name.

choices: Required. Mult iple choices of the array type. Each element corresponds to a choice.

condit ion: Required. The condit ional expression. Condit ional expressions reference step inputs
based on JSON paths ($.key).

steps: Optional. The mult iple serial steps defined for a choice.

goto: Optional. The name of the target step, which must be parallel to the current choice step.

default: Required. The default .

steps: Optional. The mult iple serial steps defined for the default .

goto: Optional. The name of the target step, which must be parallel to the current choice step.

end: Optional. Specifies whether to proceed with the subsequent steps after the current step ends.

inputMappings: Optional. The input mappings.

outputMappings: Optional. The output mappings. The $local of this step indicates the execution
result of the choice branch.

Not e If no output mappings are specified, $local is used as the output of this step by
default .

Examples
The following sample flow defines a choice step.

If the value of status in the input is ready , the pass1 , pass3 , and final steps of the
first choice are executed in sequence.

If the value of status in the input is failed , the goto instruct ions of the second choice are
executed, the choice step ends, and the final step is executed.

If the value of status in the input is neither ready nor failed , the default is executed. In
other words, the pass2 and final steps are executed.

6.Choice steps

Funct ionFlow Flow Definit ion Language·Choice st e
ps

> Document Version: 20211230 23

version: v1
type: flow
steps:
 - type: choice
 name: mychoice
 choices:
 - condition: $.status == "ready"
 # choice with steps
 steps:
 - type: pass
 name: pass1
 - condition: $.status == "failed"
 # choice with goto
 goto: final
 default:
 # choice with both steps and goto
 steps:
 - type: pass
 name: pass2
 goto: final
 - type: pass
 name: pass3
 - type: pass
 name: final

Conditional expressions
A condit ional expression consists of the following operations and variables:

Comparison operations: > >= < <= == != . They are applicable to strings and numbers.

Logical operations: || && .

String constants: A string constant is enclosed in double quotation marks (") or grave accents (`), for
example, "foobar" or `foobar̀ .

Numeric constants: 1 12.5 .

Boolean constants: true or false .

Prefix: ! - .

Contain: in , which is used to determine whether an array contains a value or whether an object
contains a key value.

The following example shows the execution results of steps for different condit ional expressions.

Flow Definit ion Language·Choice st e
ps

Funct ionFlow

24 > Document Version: 20211230

{
 "a": 1,
 "b": {
 "b1": true,
 "b2": "ready"
 },
 "c": [1, 2, 3],
 "d": 1,
 "e": 1,
 "f": {
 "f1": false,
 "f2": "inprogress"
 }
}

Conditional expression Result

 $.a==1 true

 $.a==2 false

 $.a>0 true

 0<$.a true

 $.a>=1 true

 $.a!=2 true

 $.b.b1 true

 $.b.b1==true true

 $.b.b1==false false

 $.b.b2=="ready" true

 $.b.b2==`ready` true

 $.b.b2=="inprogress" false

 $.a==1 && $.b.b1 true

 $.a==1 || $.b.b1 true

 $.a==2 && $.b.b1 false

 $.a==2 || $.b.b1 true

 $.c[0]==1 true

 $.c[0]==$.a true

Funct ionFlow Flow Definit ion Language·Choice st e
ps

> Document Version: 20211230 25

This topic describes parallel steps and related examples.

Overview
A parallel step is used to execute mult iple child steps in parallel. A parallel step defines mult iple
branches, each of which contains a series of serial steps.

Each branch of a parallel step corresponds to a local variable. When a parallel step is executed, serial
steps in all branches are executed concurrently. These serial steps change the local variables
corresponding to their branches. After all branches are executed, output mappings can be used to
convert the local variable arrays of branches into the output of the parallel step.

Not e The maximum number of branches in a parallel step is 100.

A parallel step contains the following attributes:

type: Required. The step type. The value parallel indicates that the step is a parallel step.

name: Required. The step name.

branches: Required. Mult iple branches of the array type. Each element corresponds to a branch.

steps: Required. The mult iple serial steps defined for a branch.

end: Optional. Specifies whether to proceed with the subsequent steps after the current step ends.

inputMappings: Optional. The input mappings.

outputMappings: Optional. The output mappings. In this step, the $local is an array. Each
element in the array is a JSON object that records the execution result of each branch.

Not e If no output mappings are specified, this step has no output by default .

Examples
The following sample flow defines a parallel step. This parallel step contains two branches, and each
branch contains a pass step.

7.Parallel steps

Flow Definit ion Language·Parallel st
eps

Funct ionFlow

26 > Document Version: 20211230

version: v1
type: flow
steps:
 - type: parallel
 name: myparallel
 branches:
 - steps:
 - type: pass
 name: pass1
 outputMappings:
 - target: result
 source: pass1
 - steps:
 - type: pass
 name: pass2
 outputMappings:
 - target: result
 source: pass2
 outputMappings:
 - target: result
 source: $local[*].result

The following information is the output of pass1 :

{
 "result": "pass1"
}

The following information is the output of pass2 :

{
 "result": "pass2"
}

The following information is the output of myparallel :

{
 "result": ["pass1", "pass2"]
}

Funct ionFlow Flow Definit ion Language·Parallel st
eps

> Document Version: 20211230 27

This topic describes foreach steps and related examples.

Overview
A foreach step traverses parameters of an array type in the input, and executes the serial steps for
each element in the array in parallel. Foreach steps are similar to foreach in programming languages.
The difference is that iterat ions of foreach steps are executed in parallel.

Each iterat ion of a foreach step corresponds to a local variable. In a foreach step, serial steps of each
element in the input parameters are executed in parallel. These serial steps change the local variables
corresponding to their iterat ions. After all iterat ions are executed, output mappings can be used to
convert the local variable arrays of iterat ions into the output of the foreach step.

Not e The maximum number of serial steps that can be concurrently executed in a foreach
step is 100.

A foreach step contains the following attributes:

type: Required. The step type. The value foreach indicates that the step is a foreach step.

name: Required. The step name.

iterat ionMapping: Required. The iterat ive mapping.

collect ion: Required. The input parameter that serves as a collect ion for a foreach step.

item: Required. The name of the current element that is incorporated into the iterat ion input.

index: Optional. The name of the current posit ion that is incorporated into the iterat ion input.

steps: Required. The serial steps.

end: Optional. Specifies whether to proceed with the subsequent steps after the current step ends.

inputMappings: Optional. The input mappings.

outputMappings: Optional. The output mappings. In this step, the $local is an array. Each
element in the array is a JSON object that records the result of each iterat ion.

Not e If no output mappings are specified, this step has no output by default .

Examples
The following sample flow defines a foreach step that contains a task step.

8.Foreach steps

Flow Definit ion Language·Foreach st
eps

Funct ionFlow

28 > Document Version: 20211230

version: v1
type: flow
steps:
 - type: foreach
 name: myforeach
 iterationMapping:
 collection: $.names
 item: name
 steps:
 - type: task
 name: toUpperCase
 resourceArn: acs:fc:{region}:{account}:services/fnf_test/functions/toUpperCase
 outputMappings:
 - target: names
 source: $local[*].name

The following information is the flow input. No input mapping is specified for the myforeach step.
Therefore, its input is the same as the flow input.

{
 "names": ["a", "b", "c"]
}

No input mapping is defined for toUpperCase . Therefore, its input is the same as the input of the
parent step. According to iterationMapping , the system inputs the current elements (a , b ,
and c in sequence) as values and the name as the key upon each iterat ion

{
 "name": "a",
 "names":["a","b","c"]
}
{
 "name": "b",
 "names":["a","b","c"]
}
{
 "name": "c",
 "names":["a","b","c"]
}

 toUpperCase is executed three t imes, with the following outputs in sequence:

{
 "name": "A"
}
{
 "name": "B"
}
{
 "name": "C"
}

The local variable of myforeach is an array, with the following values:

Funct ionFlow Flow Definit ion Language·Foreach st
eps

> Document Version: 20211230 29

[
 {
 "name": "A"
 },
 {
 "name": "B"
 },
 {
 "name": "C"
 }
]

The following information is the output of myforeach . No output or result mappings are defined
for the flow. Therefore, the output is the final flow output.

{
 "names": ["A", "B", "C"]
}

Flow Definit ion Language·Foreach st
eps

Funct ionFlow

30 > Document Version: 20211230

This topic describes succeed steps and related examples.

Overview
A succeed step ends a series of serial steps in advance, similar to return in programming languages.
Flow Definit ion Language (FDL) steps are serial steps. In general, a next step is executed after a
previous step is completed. However, after a succeed step is executed, subsequent steps are not
executed. Succeed steps are usually used together with choice steps. When the condit ions of a choice
step are met, the flow goes to a succeed step, and no other steps are executed.

A succeed step contains the following attributes:

type: Required. The step type. The value succeed indicates that the step is a succeed step.

name: Required. The step name.

inputMappings: Optional. The input mappings.

outputMappings: Optional. The output mappings.

Examples
The following sample flow ends in advance by using a succeed step.

If the value of status in the input is ready , the pass1 and final steps of the first choice
are executed in sequence. The final step is a succeed step. Therefore, after it is executed, the
handle_failure step will not be executed.

If the value of status in the input is failed , the goto instruct ions of the second choice are
executed, the choice step ends, and the handle_failure step is executed.

If the input does not contain status or the value of status is neither ready nor failed ,
the default choice is executed, that is, the pass2 and handle_failure steps are executed.

9.Succeed steps

Funct ionFlow Flow Definit ion Language·Succeed s
t eps

> Document Version: 20211230 31

version: v1
type: flow
steps:
 - type: choice
 name: mychoice
 choices:
 - condition: $.status == "ready"
 # choice with steps
 steps:
 - type: pass
 name: pass1
 - condition: $.status == "failed"
 # choice with goto
 goto: handle_failure
 default:
 # choice with both steps and goto
 steps:
 - type: pass
 name: pass2
 goto: handle_failure
 - type: succeed
 name: final
 - type: pass
 name: handle_failure

Flow Definit ion Language·Succeed s
t eps

Funct ionFlow

32 > Document Version: 20211230

This topic describes fail steps and related examples.

Overview
A fail step ends a series of steps in advance, similar to raise and throw in programming
languages. After a fail step is executed in a flow, steps following the fail step will not be executed and
the parent step of the fail step also fails. This continues until the flow execution fails.

A fail step contains the following attributes:

type: Required. The step type. The value fail indicates that the step is a fail step.

name: Required. The step name.

error: Optional. The error type.

cause: Optional. The cause of the error.

inputMappings: Optional. The input mappings.

outputMappings: Optional. The output mappings.

Examples
The following sample flow ends in advance by using a fail step.

If the value of status in the input is ready , the pass1 and final steps of the first choice
are executed in sequence.

If the value of status in the input is failed , the goto instruct ions of the second choice are
executed, the choice step ends, and the handle_failure step is executed. The handle_failure
step is a fail step. Therefore, after it is executed, the final step will not be executed.

If the input does not contain status or the value of status is neither ready nor failed ,
the default choice is executed, that is, the pass2 and handle_failure steps are executed.

10.Fail steps

Funct ionFlow Flow Definit ion Language·Fail st eps

> Document Version: 20211230 33

version: v1
type: flow
steps:
 - type: choice
 name: mychoice
 choices:
 - condition: $.status == "ready"
 # choice with steps
 steps:
 - type: pass
 name: pass1
 goto: final
 - condition: $.status == "failed"
 goto: handle_failure
 default:
 # no need to use goto
 steps:
 - type: pass
 name: pass2
 - type: fail
 name: handle_failure
 error: StatusIsNotReady
 cause: status is not ready
 - type: pass
 name: final

Flow Definit ion Language·Fail st eps Funct ionFlow

34 > Document Version: 20211230

	1.Overview
	2.Inputs and outputs
	3.Task steps
	4.Wait steps
	5.Pass steps
	6.Choice steps
	7.Parallel steps
	8.Foreach steps
	9.Succeed steps
	10.Fail steps

