Alibaba Cloud

FunctionFlow

Flow Definition Language

Document Version: 20211230

(-] Alibaba Cloud

FunctionFlow

Flow Definition Language-Legal discl
aimer

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be deemed
as your total acceptance of this legal disclaimer.

1.

You shall download and obt ain this document from the Alibaba Cloud website or other Alibaba Cloud-
aut horized channels, and use this document for your own legal business activities only. The content of
this document is considered confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided to any third party for
use wit hout the prior written consent of Alibaba Cloud.

. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminated by

any organization, company or individual in any form or by any means without the prior written consent of
Alibaba Cloud.

. The content of this document may be changed because of product version upgrade, adjustment, or

other reasons. Alibaba Cloud reserves the right to modify the content of this document without notice
and an updated version of this document will be released through Alibaba Cloud-aut horized channels
from time to time. You should pay attention to the version changes of this document as they occur and
download and obt ain the most up-to-date version of this document from Alibaba Cloud-aut horized
channels.

. This document serves only as a reference guide for your use of Alibaba Cloud products and services.

Alibaba Cloud provides this document based onthe "status quo", "being defective", and "existing
functions" of its products and services. Alibaba Cloud makes every effort to provide relevant operational
guidance based on existing technologies. However, Alibaba Cloud hereby makes a clear statement that
it in no way guarantees the accuracy, integrity, applicability, and reliability of the content of this
document, either explicitly or implicitly. Alibaba Cloud shall not take legal responsibility for any errors or
lost profits incurred by any organization, company, or individual arising from download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, take responsibility for any indirect,
consequential, punitive, contingent, special, or punitive damages, including lost profits arising from t he
use or trust inthis document (evenif Alibaba Cloud has been notified of the possibility of such a loss).

. By law, allthe contents in Alibaba Cloud documents, including but not limited to pictures, architecture

design, page layout, and text description, are intellectual property of Alibaba Cloud and/or its
affiliates. This intellect ual property includes, but is not limited to, trademark rights, patent rights,
copyrights, and trade secrets. No part of this document shall be used, modified, reproduced, publicly
transmitted, changed, disseminated, distributed, or published wit hout the prior written consent of
Alibaba Cloud and/or its affiliates. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for marketing, advertising, promotion, or ot her purposes wit hout the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited to, "Alibaba Cloud",
"Aliyun", "HiChina", and other brands of Alibaba Cloud and/or its affiliates, which appear separately or in
combination, as well as the auxiliary signs and patterns of the preceding brands, or anyt hing similar to
the company names, trade names, trademarks, product or service names, domain names, patterns,
logos, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates.

. Please directly contact Alibaba Cloud for any errors of this document.

> Document Version: 20211230

FunctionFlow

Flow Definition Language-Document
conventions

Document conventions

Style

/\ Danger

warning

) Notice

@ Note

Bold

Courier font

Italic

(1 or [alb]

{} or {a|b}

Description

A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

A note indicates supplemental
instructions, best practices, tips, and
other content.

Closing angle brackets are used to
indicate a multi-level menu cascade.

Bold formatting is used for buttons ,
menus, page names, and other Ul
elements.

Courier font is used for commands

ltalic formatting is used for parameters
and variables.

This format is used for an optional value,
where only one item can be selected.

This format is used for a required value,
where only one item can be selected.

Example

& Danger:

Resetting will result in the loss of user
configuration data.

warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

p Notice:

If the weight is set to 0, the server no
longer receives new requests.

@ Note:

You can use Ctrl + A to select all files.

Click Settings> Network> Set network
type.

Click OK.

Runthe cd /d C:/window command to
enter the Windows system folder.

bae log list --instanceid

Instance_ID

ipconfig [-all|-t]

switch {active|stand}

> Document Version: 20211230

FunctionFlow Flow Definition Language-Table of C

ontents
Table of Contents
TOVEIVIEW smmrsssiee st st e 05
2.Inputs and outputs Bt e e e 07
3.Task steps S e e e e e e s 15
4. Wait steps S e 20
5.Pass steps B S S s s s na s 22
6.Choice steps o e e s e e 23
7.Parallel steps B =it o e e e s L 26
8.Foreach steps S e e 28
9.5uUcceed Steps T e 31
10.Fail steps st e 33

> Document Version: 20211230

FunctionFlow Flow Definition Language- Overview

1.0verview

T his topic describes the basics of Flow Definition Language (FDL) and related examples.

Basics

FDL is used to describe and define business logic. When a flow is executed, the Serverless workf low
service executes steps in sequence based on the flow definition. In FDL, a flow usually contains several
steps. These steps can be simple atomic steps, suchas task , succeed , fail , wait ,and

pass Steps, or complex control steps, suchas choice , parallel ,and foreach Steps.These
steps can be combined to build complex business logic. For example, a branch of a parallel step may be
a series of serial steps. Errors may occur in the execution of steps, but FDL providesthe retry and

catch capabilities.

Steps in FDL are similar to functions in programming languages, and a combination of steps is similar to
function calls. Data is passed between steps through input and output. Local variables are used to
store data of steps. If a step contains another step, the outer step is called a parent step, and the
included step is called a child step.

When you define a flow, you can perform the following operations:

e Build the basic structure of the placeholder planning flow with pass steps.
e (Callfunctions of the Function Compute service with task steps.

e Suspend the flow for a period of time with wait steps.

e Define different execution paths with choice steps.

e Terminate aflow in advance with succeed oOr fail steps.

e Execute multiple branches in parallel with paraliel steps.

e Process array data in parallel with foreach steps.
A flow contains the following attributes:

e version: Required. The flow version. Only v1 is supported.
e type: Required. The flow type.

e steps: Required. Multiple serial steps in a flow. When a step is executed successfully, the next step
starts. To stop a flow in advance, you can use the end attribute or execute a succeed orfail step.

e inputMappings: Optional. The input mappings. The sinput referenced in the input mappings is the
Input parameterina startExecution APIrequest.

e outputMappings: Optional. The output mappings. The si1ocal referenced in the output mappings
is a JSON object that records the execution result of each serial step.

@ Note If no output mappings are specified, $iocal is used asthe final flow output.

e timeoutSeconds: Optional. The timeout period of a flow. If the flow execution duration exceeds the
specified timeout period, the flow times out.

Examples

e The following sample flow consists of atask step that calls a function of Function Compute:

> Document Version: 20211230 5

Flow Definition Language- Overview FunctionFlow

version: vl
type: flow
steps:
- type: task
name: hello
resourceArn: acs:fc:{region}:{accountID}:services/fnf_test/functions/hello

e The following sample flow consists of two steps (stepl and step4), inwhich stepl
contains two child steps (step2 and step3).

version: vl
type: flow
steps:
- type: parallel

name: stepl

branches:
- steps:
- type: pass
name: step2
- steps:
- type: pass

name: step3
- type: pass
name: stepé

References
For more information about FDL features, see the following topics:

e Inputs and outputs
e Tasksteps

e Wait steps

® Pass steps

e Choice steps

e Parallel steps

e Foreach steps

e Succeed steps

e Fail steps

6 > Document Version: 20211230

https://www.alibabacloud.com/help/doc-detail/122493.htm#concept-2184142
https://www.alibabacloud.com/help/doc-detail/122494.htm#concept-2184143
https://www.alibabacloud.com/help/doc-detail/122495.htm#concept-2184144
https://www.alibabacloud.com/help/doc-detail/122496.htm#concept-2184145
https://www.alibabacloud.com/help/doc-detail/122497.htm#concept-2184146
https://www.alibabacloud.com/help/doc-detail/122498.htm#concept-2184147
https://www.alibabacloud.com/help/doc-detail/122499.htm#concept-2184148
https://www.alibabacloud.com/help/doc-detail/122500.htm#concept-2184149
https://www.alibabacloud.com/help/doc-detail/122501.htm#concept-2184150

Flow Definition Language- Inputs and
outputs

FunctionFlow

2.Inputs and outputs

This topic describes the basics of inputs and outputs.

Flows and steps

Typically, data needs to be passed between flows and steps, and between multiple steps of a flow.
Steps of the Flow Definition Language (FDL) are similar to functions in functional programming
languages. These steps accept inputs and produce out puts, and the outputs are stored in the local
variable of the parent step (caller). The inputs and outputs must be JSON object structures, and the
types of local variables vary with steps. For example, a task step uses the returned result of calling a
function of Function Compute as the local variable, whereas a parallel step uses the outputs (arrays) of
all branches as the local variable. The total size of inputs, outputs, and local variable in a step cannot
exceed 32 KiB. Otherwise, the flow execution fails.

If a step contains another step, the outer step is called a parent step, and the included step is called a
child step. The parent step of the outermost step is the flow. If the parent steps of two steps are the
same, the two steps are of the same level.

Each flow and step contain inputs, outputs, and a local variable. Their mappings are listed in the

following content:

® The inputMappings Of astep mapsthe input and local variable of the parent step to the inputs of
child steps.

® The outputMappings Of astep mapsthe input and local variable of the current step to the output
of the current step.

e The inputMappings Of aflow mapsthe input of aflow executionto the input of the flow.

e The outputMappings Of aflow maps the input and local variable of the flow to the output of the
flow.

The local variable of a parent step contains a union set of the outputs of allits child steps. If the

outputs contain repeated key values, the result of a later step overwrites that of an earlier step. In
most cases, you can use the default mappings without specifying the input and out put mappings.

e When no input mappings are specified, the input of a child step is the combination of the input and
local variable of its parent step (if the local variable and the input have the same key value, the local
variable will overwrite the input).

e When no output mappings are specified, the local variable is used as the output in all steps except
parallel steps and foreach steps.

If you want to better control the input and output, you need to understand detailed mapping rules.

The following figure shows the input and output mappings of the example flow. In the flow, step1is
the parent step of step2 and step3, and step1 and step4 are the outermost steps.

> Document Version: 20211230 7

Flow Definition Language-Inputs and
outputs

FunctionFlow

version: vl
type: flow
steps:
- type: parallel

name: stepl

branches:
- Steps:
- type: pass
name: step2
= steps:
- type: pass

name: step3
- type: pass

name: step4

Execution
Inputo

Red: Input Mappings
Blue: Output Mappings

Black: Save Output Exacution |

Outputo

Execution
Locall

o

The following code can be used to describe mappings can be described, so that they can be easierto

understand:

> Document Version: 20211230

Flow Definition Language- Inputs and

FunctionFlow

outputs

func flow (inputO Input) (output0 Output) {

}

locall := {}

inputl := buildInput (steplInputMappings, input0, local0)
outputl := stepl (inputl)

save (localO, outputl)

input4 := buildInput (step4InputMappings, input0, localO)
outputd := step4 (inputd)

save (localO, outputd)

return buildOutput (flowOutputMappings, input0, localO)

func stepl (inputl Input) (outputl Output) {

}

locall0 := {}

input2 := buildInput (step2InputMappings, inputl, locallO)
output2 := step2 (input?2)

save (locallQ, output2)

localll := {}

input3 := buildInput (step3InputMappings, inputl, localll)
output3 := step3 (input3)

save (localll, output3)

return buildOutput (steplOutputMappings, [locallO, locallll])

func step2 (input2 Input) (output2 Output) {

}

func step3 (input3 Input) (output3 Output) {

}

func step4 (input4 Input) (outputd Output) {

}

In this example, the flow consists of two child steps: stepl and step4 . stepl isa parallelstep
that contains step2 and step3

1.

When the system starts to execute the flow, it convertsthe startkxecution input into the flow
input (inputo) based onthe input mappings of the flow.

. Whenthe flow executionstarts,the 1ocal0 isempty.

. The system preparesthe input1 input forstepl based on the input mappings (steplInputMapp

ings)of stepl .The mapping sources arethe inputo input andthe 1ocalo localvariable
of the fiow

. Thesystemcalls stepl toload inputl . stepl retumns outputl

o Whenthe systemstartsto execute stepl ,itS 1locall0 isempty. stepl isa parallelstep,
so each branch corresponds to a local variable, avoiding concurrent access.

o The systempreparesthe input2 input forstep2 based onthe input mappings of step2 (
step2InputMappings). The mapping sources arethe input1l input andthe 1oca110 local
variable of step1

o Thesystemcalls step2 toload input2 . step2 returns output2
o The systemsaves the output of step2 tothe 1ocal10 localvariable of step1

o Similarly, the systemecalls step3 and savesthe result tothe 1ocal11 localvariable of step
1

> Document Version: 20211230

Flow Definition Language-Inputs and

FunctionFlow
outputs

5. The systemsaves the output of stepl tothe 1ocal0 localvariable of the fiow

6. Similarly, the system preparesthe input4 input forstep4 based onthe input mappings of step
4 .The mapping sources arethe inputo input andthe 1oca1lo localvariable of the fiow

@ Note At this point,the 1ocal0 localvariable may containthe output of stepi
This achieves data transfer between stepl and step4

7. The systemecalls steps toload input4 . stepd returns outputs
8. The systemsaves the output of stepsa tothe 1ocailo localvariable of the filow

9. Finally, the systemconverts 1oca10 into the flow output based onthe output mappings of the
flow.

Types

Both input and output mappings are arrays composed of target and source .The source
defines the parameter source and is set to different values for different mappings. For example,
sinput.key indicates that the parametersource isthe value of $.key in input .The target
defines the names of target parameters. If the value of source startswith s ,thevalueis
specified in JSON path format (you can use JSONPath Online Evaluator to debug the JSON path), and the

system parses the source into a specific value based on the path. Otherwise, the value is considered a
constant.

e Source

The source canbe setto aconstant,suchasavalue of the number , string , boolean , a
rray , object ,0r null type.

The source in the following example uses constants of different types. The information following
the example shows the output.

10 > Document Version: 20211230

https://jsonpath.com

FunctionFlow

Flow Definition Language-Inputs and
outputs

outputMappings:

- target:
source:
- target:
source:
- target:
source:
- target:
source:
- target:
source:
- target:
source:
- target:
source:
=1
= 2
= 3
- target:
source:
- target:
source:

a:

"arrayl":

"array2":

"bool key":

int key

1

bool key
true
string key
abc

float key
1.234
null key
null
arrayl
[1, 2, 3]

array?2

objectl
{a: b}
object2

(1, 2, 31,
[1I 2’ 3]’

true,

"float key": 1.234,

"int key":
"null key"
"objectl":
"a" < 'lb"
} r
"object2":
"a" g "b"

b

ll
: null,

{

"string key": "abc"

e Target

The target can only be a constant of the string type.

Input mappings

Input mappings convert the input (sinput) of a parent step, the local variable ($1ocal)of a
parent step, or constants into the input of child steps. If no input mappings are specified, the input and
local variable of the parent step are combined and used as the input of child steps. If the input and
local variable of the parent step have the same name, the new input uses the name and value inthe

local variable.

> Document Version: 20211230

11

Flow Definition Language-Inputs and
outputs

FunctionFlow

inputMappings:
- target: keyl
source: $input.keyl
- target: key2
source: $local.key?2
- target: key3

source: literal

Local variable
Input i t i i i
nput $inpu S Input mapping Child step input

inputMappings:
- target: keyl

source: :
Sinput.keyl
{ { "keyl":"valuel"
- target: key2
"keyl":"valuel" "key2":"value2" "key2":"value2"
source:
} } "key3":"literal"

Slocal.key2
- target: key3

}

source:
literal

{
{ {

"keyl":"valuel"
"keyl":"valuel" "key2":"value2"
)) None "key2":"value2"

}
{ { {
"keyl":"valuel" "keyl":"value2" "keyl":"value2"

} } None }

Output mappings

Output mappings convert the input (sinput) of the current step, the local variable ($1oca1) of
the current step, or constants into the out put of this step. If no output mappings are specified, choice
steps and foreach steps use their local variables as outputs, whereas task steps uses task execution
results as outputs. The local variables of parallel and foreach steps are arrays. Therefore, you must
define output mappings to convert the arrays into JSON objects. By default, their local variables are not
output. For more information, see the step description.

12 > Document Version: 20211230

FunctionFlow

Flow Definition Language-Inputs and

outputs

outputMappings:
- target: keyl

source: S$input.keyl

- target: key2

source: $local.key?2

- target: key3

source: literal

Input $input

{

"keyl":"valuel"

}

{

"keyl":"valuel"

}

{

"keyl":"valuel"

}

Local variable
Slocal

{

"key2":"value2"

}

"key2":"valuez.1"
}I
{

"key2":"value2.2"
}

{
"key2":"value2"

}

Output mapping

outputMappings:
- target: keyl
source:
Sinput.keyl
- target: key2
source:
Slocal.key2
- target: key3
source:

literal

outputMappings:
- target: keyl
source:
Sinput.keyl
- target: key2
source:
Slocal[*] .key2
- target: key3
source:

literal

None

Step output

{
"keyl":"valuel"
"key2":"value2"
"key3":"literal"
}

"keyl":"valuel”,

"key2":
["value2.1","valu
e2.2"1,

"key3":"literal"
}

{
"key2":"value2"

}

Save outputs to local variables of the parent steps

Child step outputs ($output) will be saved to local variables of the parent steps. If they contain the
same name, the name and value in the outputs will overwrite the corresponding name and value in the
local variables.

> Document Version: 20211230 13

Flow Definition Language-Inputs and
outputs

FunctionFlow

Local variable of the parent step Local variable of the parent step

Qutput Soutput e .
o P $local after modification

{

"keyl":"valuel"

}

{
"key2":"value2"

}

"keyl":"valuel"

"key2":"value2"

"keyl":"valuel" "keyl":"valuell"
}! }/
{ {

"key2":"value2" "key2":"value2"

{
"keyl":"valuell"

}

14 > Document Version: 20211230

Flow Definition Language-Task step
s

FunctionFlow

3.Task steps

This topic describes task steps and examples.

Attributes

A task step defines the function invocation information of Function Compute. When a task step is
executed, the corresponding function is invoked.

A task step contains the following attributes:

e type :thesteptype.The value taskindicatesthat the stepis ataskstep.

® name :the name of the step.

e resourceArn : the resource identifier, which can be a function, MNS queue, or Serverless workflow
flow. Example: acs:fc:cn-shanghai:18807708****3420:services/fnf test/functions/hello .For
more information, see Service Integration.

e (Optional)pattern: the execution mode of an integration service. Different integration services
support different execution modes. Default value: requestResponse .Valid values:

0 requestResponse : The systemwaits until the task execution ends after a taskis submitted and
then continues the step.

o sync :The systemwaits until the task execution ends after a task is asynchronously submitted,
and then continues the step after the system receives the task execution result.

o waitForCallback : The system suspendsthe step afterataskis asynchronously submitted (such

as invoking a function), and waits until the system receives a callback request or timeout
notification of the task.

e (Optional) timeoutSeconds : the timeout period of the task. If the task execution duration exceeds
the specified timeout period, the task step times out.

e (Optional) ena : specifies whetherto proceed with the subsequent steps after the current step
ends.

e (Optional) inputMappings :the input mappings. The input of the task step will be used as the event
of afunction invocation. For more information, see InvokeFunction.

e (Optional) outputMappings :the output mappings. $local isthe result of a functioninvocation
and must be in JSON format.

@ Note If no output mappings are specified, si1ocal is used asthe output of this step by
default.

e (Optional) errorMappings :the error mappings. This attribute parameter is valid only when an error
occurs during step execution and the catch parameteris specified. You can use the $local.caus
e and slocal.error Valuesto map errorinformationto the output and pass it to the next step.

@ Note The slocal.error and Slocal.code values are reserved forthe system.The s
ource field in errorMappings must be set to these two values. For more information, see
Examples. In addition, the errorMappings parameteris optional. If it is not specified, error
information cannot be obtained in the next step after an error occurs.

> Document Version: 20211230 15

https://www.alibabacloud.com/help/doc-detail/149828.htm#concept-2184152
https://www.alibabacloud.com/help/doc-detail/191156.htm#doc-api-FC-InvokeFunction

Flow Definition Language-Task step

S

FunctionFlow

retry :the group of retry policies. Each retry policy has the following attributes:

o errors

o intervalSeconds

Default value: 1 second.

o maxIntervalSeconds

default value are 86,400 seconds.

o maxAttempts

: the one or more errors. For more information, see Error definitions.

: the maximum number of retries. Def ault value: 3.

: the initial interval between retries. The maximum value is 86,400 seconds.

: the maximumtime interval for retries. Both the maximum value and

o multiplier :thevalue by which aretryintervalis multiplied to make the next retry interval.
Default value: 2.

catch :the group of catch policies. Each catch policy has the following attributes:

o errors

[e]

® Note

Error definitions

Function execution
status

Not executed

Not executed

Uncertain

Not executed

Execution
successful, with
an error code
returned

Execution failed,
with an error code
returned

HTTP status code
of a Function
Compute
response

429

4xx but not 429

500

503

200

200

goto :the name of the destination step.

Function Compute
response

ResourceExhau
sted

ServiceNotFou
nd ,

FunctionNotFo
und , Or

InvalidArgume
nt

InternalServe

rError

ResourceThrot
tled

A custom error,
including
errorType

No errorType

Serverless
workflow step
failure (for retry
and catch)

FC.ResourceEx
hausted

FC.ServiceNot
Found ,

FC.FunctionNo
tFound , Or

FC.InvalidArg

ument

FC.InternalSe

rverError

FC.ResourceTh
rottled

errorType

FC.Unknown

: the one or more errors. For more information, see the following table.

The destination step must be a step parallel to the current task step.

Retry

Yes

No

Yes

Yes

Determined based
on business

Yes

16

> Document Version: 20211230

Flow Definition Language-Task step

FunctionFlow .
HTTP status code Serverless
Function execution of a Function Function Compute workflow step Ret
status Compute response failure (for retry v
response and catch)
Execution
successful, with a FC.InvalidOut
. 200 No errorType No
non-JSON object put

returned

Other errors:

e rnr.aLL : captures all failures for retrying or goto use cases.

Examples

e Simple task steps
The following sample flow contains a task step.
o Iftheinputis {"name": "function flow"} ,theoutputis {"hello": "function flow"}

o If no input is specified forthe flow orthe flow input does not containthe name key, the task
step execution fails, which causes a flow failure.

o Define the flow.

version: vl
type: flow
steps:
- type: task
name: hello
resourceArn: acs:fc:{region}:{accountID}:services/fnf_test/functions/hello

Parameters of resourcearn

m (region} :Replace it withthe actualregion, suchas cn-shanghai

m {accountID} : Replace it with youraccount ID. You can view the account ID by clicking the
profile picture on the Flows page of the Serverless Workflow console, as shown in the following

E (-] Alibaba Cloud china (Shanghai) ~ Q Expenses Tickets ICP Enterprise Support Official Site A" 8 ® &N n
m
Serverless Workflow Flows & 1188 3420 pnaliyun.com
Flows Flows @ Securtty Control
Application Center ® Security Information Management
Create flow Please enter the name of the flow Q
8 AccessKey Management
Name Created time Modified time © Member Credits ‘ Check In
Nov 9, 2020, 17:32:49 Nov 9, 2020, 17:32:49

Nov 6, 2020, 18:01:41 Nov 6, 2020, 18:01:41 Enterprise Alias

029 Oct 29, 2020, 09:50:36 Nov 6, 2020, 09:41:03
Switch Identity

> Document Version: 20211230 17

https://fnf.console.aliyun.com

:low Definition Language-Task step FunctionFlow

o Define the function.

import json
class MyError (Exception) :
pass
def handle (event, context):
evt = json.loads (event)
if "name" in evt:
return {

"hello": evt["name"]

}

else:
raise MyError ("My unhandled exception")

® Retry
The following example shows how to retry ataskupon wMyerror .If no input is specified forthe
flow orthe flow input does not containthe name key, Serverless workflow fails to retry tasks
multiple times based on retry policies.

o It waits 3 seconds after the first error occurs, and then invokes the function again.

o It waits 6 seconds (intervalSeconds x multiplier)afterthe second erroroccurs, and then
invokes the function again.

o It waits 12 seconds (intervalSeconds x multiplier x multiplier)afterthe third erroroccurs,
and then invokes the function again.

o If anerror still occurs after three retries, the number of retries exceeds maxattempts .Therefore,
the task step fails and the flow fails.

version: vl
type: flow
steps:
- type: task
name: hello
resourceArn: acs:fc:{region}:{accountID}:services/fnf_test/functions/hello
retry:
- errors:
- MyError
intervalSeconds: 3
maxAttempts: 3
multiplier: 2

e Catcherrors

The following example shows how to catch wmyError andthengotothe final step.The error
is caught, so the flow is successful.

18 > Document Version: 20211230

Flow Definition Language-Task step
s

FunctionFlow

version: vl
type: flow
steps:

- type: task
name: hello
resourceArn: acs:fc:{region}:{accountID}:services/fnf_test/functions/hello
catch:

- errors:
- MyError
goto: final

- type: pass
name: passl

- type: pass

name: final

e Catch errors with error mappings specified

The following example shows how to catch wmyError andthengotothe final step.Error
information can be obtained and processed inthe rfinal step because error mappings are
specified. The flow is successful. You can also specify inthe errorMappings to map the inputs and
constants of this step to the outputs.

version: vl
type: flow
steps:
- type: task
name: hello
resourceArn: acs:fc:{region}:{accountID}:services/fnf_test/functions/hello
errorMappings:
- target: errMsg
source: $local.cause # This value is reserved for the system and can be used dire
ctly when an error occurs in this step.
- target: errCode
source: $local.error # This value is reserved for the system and can be used dire
ctly when an error occurs in this step.
catch:
- errors:
- MyError
goto: final
- type: pass
name: passl
- type: pass

name: final

Inthe event of thefinalstep, you can see the following content in EventDetail

"EventDetail™: "{\"input\":{},\"local\":{\"errorCode\":\"MyError\", \"errorMsg\":\"some me

ssage\"}}",

> Document Version: 20211230 19

Flow Definition Language-Wait step

S

FunctionFlow

4 Wait steps

This topic describes wait steps and related examples.

Overview

A wait step pauses a flow execution for a period of time before proceeding. You can select a relative
time or use a timestamp to specify an absolute end time.

A wait step contains the following attributes:

type: Required. The step type. The value wait indicates that the step is a wait step.
name: Required. The step name.

duration: Optional. The relative time to wait in seconds. It can be a constant or a parameter in the
input. For example, 10 indicates waiting for 10 seconds, and s.sleep indicatesthat the wait
time is obtained fromthe input siecep key. You must specify either duration Or timestamp

timestamp: Optional. The absolute time to wait in RFC3339 format. It can be a constant or a
parameterin the input. For example, 2019-05-02T15:04:05z indicates waiting until 15:04:05 on
May 2, 2019 UTC. If the time is earlier than the current time, the wait step ends.

end: Optional. Specifies whether to proceed with the subsequent steps after the current step ends.
inputMappings: Optional. The input mappings.

outputMappings: Optional. The output mappings. A wait step does not generate data, and its sloc
al isempty.

@ Note The maximum wait time is limited to two days.

Examples

Wait time of 20 seconds

version: vl
type: flow
steps:
- type: wait
name: wait20s

duration: 20

Wait time determined by the input

version: vl
type: flow
steps:
- type: wait
name: custom wait

duration: $.wait

e Absolute wait time

20

> Document Version: 20211230

https://tools.ietf.org/html/rfc3339#section-5.8

FunctionFlow

Flow Definition Language-Wait step
s

version: vl
type: flow
steps:
- type: wait
name: wait20s
timestamp: 2019-05-02T15:04:05Z

e Absolute wait time determined by the input

version: vl
type: flow
steps:
- type: wait
name: custom wait

timestamp: $.wait timestamp

> Document Version: 20211230

21

Flow Definition Language-Pass step

S

FunctionFlow

5.Pass steps

This topic describes pass steps and related examples.

Overview

A pass step can be used to output constants or convert inputs into the desired outputs. For example,
when you define a flow, if you have not created functions of Function Compute fortask steps, you can
first plan and debug the flow logic by using control steps and pass steps, and then gradually replace

the pass steps with task steps.

A pass step contains the following attributes:

type: Required. The step type. The value pass indicates that the step is a pass step.

name: Required. The step name.
end: Optional. Specifies whether to proceed with the subsequent steps after the current step ends.

inputMappings: Optional. The input mappings.

outputMappings: Optional. The output mappings. This step does not generate data, and its $1local

is empty.

Examples

The following example defines a pass step that outputs an array of uppercase letters.

version: vl
type: flow
steps:
- type: pass
name: toUpperCase
outputMappings:
- target: names

source: ["A", "B",

"C"]

22

> Document Version: 20211230

Flow Definition Language- Choice ste
o

FunctionFlow

6.Choice steps

This topic describes the basics and examples of choice steps, and related conditional expressions.

Overview

Choice steps allow execution of different stepsin a flow, similarto switch-case in programming
languages. A choice step contains multiple choices and a default. Each choice contains a conditional
expression, several steps, and goto instructions. The default contains only several steps and goto
instructions. When the flow proceeds to a choice step, the system evaluates whet her the conditional
expressions return True inthe defined sequence.

e if True isreturned,the stepsand then goto instructions defined inthe corresponding choice are
executed.

e [f no choice returns True ,the steps and goto instructions defined in the default are executed.

e [f no default is defined, the choice step ends.

A choice step contains the following attributes:

e type: Required. The step type. The value choice indicates that the step is a choice step.
e name: Required. The step name.
e choices: Required. Multiple choices of the array type. Each element corresponds to a choice.

o condition: Required. The conditional expression. Conditional expressions reference step inputs
based on JSON paths ($.key).

o steps: Optional. The multiple serial steps defined for a choice.
o goto: Optional. The name of the target step, which must be parallel to the current choice step.

e default: Required. The default.
o steps: Optional. The multiple serial steps defined for the default.

o goto: Optional. The name of the target step, which must be parallel to the current choice step.

e end: Optional. Specifies whether to proceed with the subsequent steps after the current step ends.

e inputMappings: Optional. The input mappings.

e outputMappings: Optional. The output mappings. The s1ocal of this step indicates the execution
result of the choice branch.

@ Note If no output mappings are specified, $iocal isused asthe output of this step by
default.

Examples
The following sample flow defines a choice step.

e [f thevalue of status intheinputis ready ,the passl , pass3 ,and final stepsof the
first choice are executed in sequence.

e [f thevalue of status intheinputis failed ,the goto instructions of the second choice are
executed, the choice step ends, and the final step is executed.

e If thevalue of status intheinputisneither ready nor failed ,the default is executed. In
otherwords, the pass2 and final steps are executed.

> Document Version: 20211230 23

Flow Definition Language- Choice ste
ps

FunctionFlow

version: vl
type: flow
steps:
- type: choice
name: mychoice
choices:
- condition: $.status == "ready"
choice with steps
steps:
- type: pass
name: passl
- condition: $.status == "failed"
choice with goto
goto: final
default:
choice with both steps and goto
steps:
- type: pass
name: pass2
goto: final
- type: pass
name: pass3
- type: pass

name: final

Conditional expressions
A conditional expression consists of the following operations and variables:
e Comparison operations: > >= < <= == 1= .They are applicable to strings and numbers.

e Logical operations: || &&

e String constants: A string constant is enclosed in double quotation marks (") or grave accents (°), for
example, "foobar" or ‘foobar .

e Numeric constants: 1 12.5
e Booleanconstants: true oOr false
e Prefix: ! =

e (Contain: in ,whichis used to determine whether an array contains a value or whether an object
contains a key value.

The following example shows the execution results of steps for different conditional expressions.

24 > Document Version: 20211230

Flow Definition Language- Choice ste
ps

FunctionFlow

"a": 1,
llb": {
"b1l": true,
llbz " . "readyll
}l
"c": [1, 2, 31,
"d": 1,
llell: 1,
"f": {
"fl": false,
"f2": "inprogress"
}

}

Conditional expression Result
S.a== true
$.a==2 false
$.a>0 true
0<$.a true
S.a>=1 true
S.al=2 true
$.b.bl true
$.b.bl==true true
$.b.bl==false false
S.b.b2=="ready" true
$.b.b2=="ready" true
$.b.b2=="inprogress" false
$.a==1 && $.b.bl true
S.a==1 || $.b.bl true
$.a==2 && $.b.bl false
S.a==2 || $.b.bl true
$.cl0]== true
$.c[0]==$.a true

> Document Version: 20211230 25

Flow Definition Language-Parallel st
eps

FunctionFlow

7.Parallel steps

This topic describes parallel steps and related examples.

Overview

A parallel step is used to execute multiple child steps in parallel. A parallel step defines multiple
branches, each of which contains a series of serial steps.

Each branch of a parallel step corresponds to a local variable. When a parallel step is executed, serial
steps in all branches are executed concurrently. These serial steps change the local variables
corresponding to their branches. After all branches are executed, output mappings can be used to
convert the local variable arrays of branches into the output of the parallel step.

@ Note The maximum number of branches in a parallel step is 100.

A parallel step contains the following attributes:

e type: Required. The step type. The value parallel indicates that the step is a parallel step.

e name: Required. The step name.

e branches: Required. Multiple branches of the array type. Each element corresponds to a branch.
o steps: Required. The multiple serial steps defined for a branch.

e end: Optional. Specifies whether to proceed with the subsequent steps after the current step ends.

e inputMappings: Optional. The input mappings.

e outputMappings: Optional. The output mappings. Inthis step,the s$ioca1l is an array. Each
element in the array is a JSON object that records the execution result of each branch.

@ Note If no output mappings are specified, this step has no output by default.

Examples

The following sample flow defines a parallel step. This parallel step contains two branches, and each
branch contains a pass step.

26 > Document Version: 20211230

FunctionFlow

Flow Definition Language-Parallel st
eps

version: vl
type: flow
steps:
- type: parallel
name: myparallel
branches:
- Steps:
- type: pass
name: passl
outputMappings:
- target: result
source: passl
- steps:
- type: pass
name: pass2
outputMappings:
- target: result
source: pass2
outputMappings:
- target: result

source: $local[*].result

e The following information is the out put of

"result": "passl"

e The following information is the output of

"result": "pass2"

e The following information is the output of

"result": ["passl", "pass2"]

passl

pass2

myparallel

> Document Version: 20211230

27

Flow Definition Language- Foreach st
eps

FunctionFlow

8.Foreach steps

This topic describes foreach steps and related examples.

Overview

A foreach step traverses parameters of an array type in the input, and executes the serial steps for
each element in the array in parallel. Foreach steps are similarto foreach in programming languages.
The difference is that iterations of foreach steps are executed in parallel.

Each iteration of aforeach step corresponds to a local variable. In a foreach step, serial steps of each
element in the input parameters are executed in parallel. These serial steps change the local variables
corresponding to their iterations. After all iterations are executed, output mappings can be used to
convert the local variable arrays of iterations into the output of the foreach step.

@ Note The maximum number of serial steps that can be concurrently executed in a foreach
step is 100.

A foreach step contains the following attributes:

e type: Required. The step type. The value foreach indicates that the step is a foreach step.
e name: Required. The step name.
e iterationMapping: Required. The iterative mapping.
o collection: Required. The input parameter that serves as a collection for a foreach step.
o item: Required. The name of the current element that is incorporated into the iteration input.

o index: Optional. The name of the current position that is incorporated into the iteration input.

e steps: Required. The serial steps.

e end: Optional. Specifies whether to proceed with the subsequent steps after the current step ends.

e inputMappings: Optional. The input mappings.

e outputMappings: Optional. The output mappings. In this step, the s$ioca1l s an array. Each
element in the array is a JSON object that records the result of each iteration.

@ Note If no out put mappings are specified, this step has no output by default.

Examples

The following sample flow defines a foreach step that contains a task step.

28 > Document Version: 20211230

Flow Definition Language- Foreach st
eps

FunctionFlow

version: vl
type: flow
steps:
- type: foreach
name: myforeach
iterationMapping:
collection: $.names
item: name
steps:
- type: task
name: toUpperCase
resourceArn: acs:fc:{region}:{account}:services/fnf_test/functions/toUpperCase
outputMappings:
- target: names

source: $local[*].name

e The following information is the flow input. No input mapping is specified forthe myforeach step.
Therefore, its input is the same as the flow input.

{

"names" : [uau, "b", nan

e No input mapping is defined for touppercase .Therefore, its input is the same as the input of the
parent step. Accordingto iterationMapping ,the systeminputsthe current elements(a , b ,
and ¢ insequence)asvalues andthe name asthe key upon each iteration

"name": "a",
"names": ["a", "b","c"]
}
{
"name": "b",
"names": ["a", "b","c"]
}
{
"name": "c",
"names":["a","b","c"]

® toUpperCase Iisexecuted three times, with the following outputs in sequence:

"name": "A"
}
{

"name": "B"
}
{

"name": "C"

e The local variable of myforeach is an array, with the following values:

> Document Version: 20211230 29

Flow Definition Language- Foreach st

eps

FunctionFlow

"name": "A"
}r
{

"name": "B"
by
{

"name": "C"

]

e The following information is the output of
forthe flow. Therefore, the output is the final flow output.

{

"names" : [nAvv,

myforeach .NO output orresult mappings are defined

30

> Document Version: 20211230

Flow Definition Language-Succeed s
teps

FunctionFlow

9.Succeed steps

This topic describes succeed steps and related examples.

Overview

A succeed step ends a series of serial steps in advance, similarto return in programming languages.
Flow Definition Language (FDL) steps are serial steps. In general, a next step is executed aftera
previous step is completed. However, after a succeed step is executed, subsequent steps are not
executed. Succeed steps are usually used together with choice steps. When the conditions of a choice
step are met, the flow goes to a succeed step, and no other steps are executed.

A succeed step contains the following attributes:

e type: Required. The step type. The value succeed indicates that the step is a succeed step.
e name: Required. The step name.

e inputMappings: Optional. The input mappings.

e outputMappings: Optional. The out put mappings.

Examples
The following sample flow ends in advance by using a succeed step.

o [f thevalue of status intheinputis ready ,the passi and final stepsof the first choice
are executed in sequence. The final stepis asucceed step. Therefore, afterit is executed, the
handle failure Step will not be executed.

e [f thevalue of status intheinputis failed ,the goto instructions of the second choice are
executed, the choice step ends, and the handle failure step is executed.

e [f the input does not contain status orthevalue of status isneither ready nor failed ,
the default choice is executed, that is,the pass2 and nandle failure steps are executed.

> Document Version: 20211230 31

Flow Definition Language-Succeed s
teps

FunctionFlow

version: vl
type: flow
steps:
- type: choice
name: mychoice
choices:
- condition: $.status == "ready"
choice with steps
steps:
- type: pass
name: passl

- condition: $.status == "failed"

choice with goto

goto: handle failure

default:
choice with both steps and goto
steps:
- type: pass

name: pass2
goto: handle failure
- type: succeed
name: final
- type: pass
name: handle failure

32

> Document Version: 20211230

FunctionFlow Flow Definition Language- Fail steps

10.Fail steps

This topic describes fail steps and related examples.

Overview

A fail step ends a series of steps in advance, similarto raise and throw in programming
languages. After a fail step is executed in a flow, steps following the fail step will not be executed and
the parent step of the fail step also fails. This continues until the flow execution fails.

A fail step contains the following attributes:

e type: Required. The step type. The value fail indicates that the step is a fail step.
e name: Required. The step name.

e error: Optional. The error type.

e cause: Optional. The cause of the error.

e inputMappings: Optional. The input mappings.

e outputMappings: Optional. The out put mappings.

Examples

The following sample flow ends in advance by using a fail step.

o [f thevalue of status intheinputis ready ,the passi and final stepsof the first choice
are executed in sequence.

o If thevalue of status intheinputis failed ,the goto instructions of the second choice are
executed, the choice step ends, and the handle failure stepisexecuted.The handle failure
step is afail step. Therefore, afterit is executed, the fina1 step will not be executed.

e [f the input does not contain status orthevalue of status isneither ready nor failed ,
the default choice is executed, that is,the pass2 and nandle failure steps are executed.

> Document Version: 20211230 33

Flow Definition Language-Fail steps

FunctionFlow

version: vl
type: flow
steps:
- type: choice
name: mychoice
choices:
- condition: $.status == "ready"
choice with steps
steps:
- type: pass
name: passl
goto: final
- condition: S$.status == "failed"
goto: handle failure
default:
no need to use goto
steps:
- type: pass
name: pass2
- type: fail
name: handle failure
error: StatusIsNotReady
cause: status is not ready
- type: pass

name: final

34

> Document Version: 20211230

	1.Overview
	2.Inputs and outputs
	3.Task steps
	4.Wait steps
	5.Pass steps
	6.Choice steps
	7.Parallel steps
	8.Foreach steps
	9.Succeed steps
	10.Fail steps

