
Alibaba Cloud

ApsaraDB for RDS
AliSQL Kernel

Document Version: 20201014

Alibaba Cloud

ApsaraDB for RDS
AliSQL Kernel

Document Version: 20201014

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and condit ions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be
deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba
Cloud-authorized channels, and use this document for your own legal business act ivit ies only. T he
content of this document is considered confident ial informat ion of Alibaba Cloud. You shall
st rict ly abide by the confident iality obligat ions. No part of this document shall be disclosed or
provided to any third party for use without the prior writ ten consent of Alibaba Cloud.

2. No part of this document shall be excerpted, t ranslated, reproduced, t ransmit ted, or
disseminated by any organizat ion, company or individual in any form or by any means without the
prior writ ten consent of Alibaba Cloud.

3. T he content of this document may be changed because of product version upgrade, adjustment,
or other reasons. Alibaba Cloud reserves the right to modify the content of this document
without not ice and an updated version of this document will be released through Alibaba Cloud-
authorized channels from t ime to t ime. You should pay at tent ion to the version changes of this
document as they occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. T his document serves only as a reference guide for your use of Alibaba Cloud products and
services. Alibaba Cloud provides this document based on the "status quo", "being defect ive", and
"exist ing funct ions" of its products and services. Alibaba Cloud makes every effort to provide
relevant operat ional guidance based on exist ing technologies. However, Alibaba Cloud hereby
makes a clear statement that it in no way guarantees the accuracy, integrity, applicability, and
reliability of the content of this document, either explicit ly or implicit ly. Alibaba Cloud shall not
take legal responsibility for any errors or lost profits incurred by any organizat ion, company, or
individual arising from download, use, or t rust in this document. Alibaba Cloud shall not , under
any circumstances, take responsibility for any indirect , consequent ial, punit ive, cont ingent ,
special, or punit ive damages, including lost profits arising from the use or t rust in this document
(even if Alibaba Cloud has been not ified of the possibility of such a loss).

5. By law, all the contents in Alibaba Cloud documents, including but not limited to pictures,
architecture design, page layout , and text descript ion, are intellectual property of Alibaba Cloud
and/or its affiliates. T his intellectual property includes, but is not limited to, t rademark rights,
patent rights, copyrights, and t rade secrets. No part of this document shall be used, modified,
reproduced, publicly t ransmit ted, changed, disseminated, dist ributed, or published without the
prior writ ten consent of Alibaba Cloud and/or its affiliates. T he names owned by Alibaba Cloud
shall not be used, published, or reproduced for market ing, advert ising, promot ion, or other
purposes without the prior writ ten consent of Alibaba Cloud. T he names owned by Alibaba Cloud
include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combinat ion, as well as the auxiliary
signs and patterns of the preceding brands, or anything similar to the company names, t rade
names, t rademarks, product or service names, domain names, patterns, logos, marks, signs, or
special descript ions that third part ies ident ify as Alibaba Cloud and/or its affiliates.

6. Please direct ly contact Alibaba Cloud for any errors of this document.

ApsaraDB for RDS AliSQL Kernel · Legal disclaimer

> Document Version:20201014 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that
the user must understand.

 Notice:

If the weight is set to 0, the server
no longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set network
type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

ApsaraDB for RDS AliSQL Kernel · Document convent ions

> Document Version:20201014 I

Table of Contents
1.Features of AliSQL

2.Release notes of minor AliSQL versions

3.X-Engine

3.1. X-Engine overview

3.2. Usage notes

3.3. Convert the storage engine from InnoDB, TokuDB, or MyRocks to X-Engine …

3.4. Benefits of X-Engine

4.Feature

4.1. Thread Pool

4.2. Statement outline

4.3. Sequence Engine

4.4. Returning

5.Performance

5.1. Fast query cache

5.2. Binlog in Redo

5.3. Statement Queue

5.4. Inventory Hint

6.Stability

6.1. Faster DDL

6.2. Statement concurrency control

6.3. Performance Agent

6.4. Purge Large File Asynchronously

6.5. Performance Insight

7.Security

7.1. Data Protect

7.2. Recycle bin

06

12

30

30

36

45

48

54

54

57

64

68

71

71

77

79

85

90

90

93

97

105

106

113

113

114

ApsaraDB for RDS AliSQL Kernel · T able of Contents

> Document Version:20201014 I

8.Best practices

8.1. Convert the storage engine of DRDS from InnoDB to X-Engine …

8.2. DingTalk secures App Store top rank with X-Engine

8.3. Storage engine that processes trillions of Taobao orders

8.4. Best practices for X-Engine testing

8.5. Use DMS to archive data to X-Engine

119

119

121

123

125

130

AliSQL Kernel · T able of Contents ApsaraDB for RDS

II > Document Version:20201014

This topic provides an overview of the features that are provided by AliSQL. It also provides a
comparison between MySQL versions with AliSQL and other MySQL versions.

Introduction to AliSQL
AliSQL is an independent MySQL branch that is developed by Alibaba Cloud. AliSQL provides all of
the features that are available in the MySQL Community edition. AliSQL also provides some
similar features that you can find in the MySQL Enterprise edition. These similar features include
enterprise-grade backup and restoration, thread pool, and parallel query. In addition, AliSQL
provides Oracle-compatible features, such as Sequence engine. ApsaraDB RDS for MySQL with
AliSQL provides all the basic features of MySQL and a wide range of advanced features such as
enterprise-grade security, backup and restoration, monitoring, performance optimization, and
read-only instance.

MySQL versions supported

Categ
ory Feature Description MySQL

8.0
MySQL
5.7

MySQL
5.6

Functi
onality

Thread Pool

The thread pool feature separates
threads from sessions. If a large
number of sessions are created on
your RDS instance, you can run a small
number of threads to complete the
tasks in active sessions.

Suppo
rted

Suppo
rted

Suppo
rted

Statement
outline

The statement outline feature allows
you to stably run query plans by using
optimizer and index hints. You can
install the DBMS_OUTLN package to
use this feature.

Suppo
rted

Suppo
rted

Not
suppo
rted

Sequence Engine
The Sequence engine simplifies the
generation of sequence values on
your RDS instance.

Suppo
rted

Not
suppo
rted

Suppo
rted

Returning

This returning feature allows data
manipulation language (DML)
statements to return result sets. You
can install the DBMS_TRANS package
to use this feature.

Suppo
rted

Not
suppo
rted

Not
suppo
rted

Fast query cache

The fast query cache is a query cache
that is developed by Alibaba Cloud
based on the native MySQL query
cache. The fast query cache uses a
new design and a new implementation
mechanism to increase the query
performance of your RDS instance.

Not
suppo
rted

Suppo
rted

Not
suppo
rted

1.Features of AliSQL

ApsaraDB for RDS AliSQL Kernel · Features of AliSQL

> Document Version:20201014 6

https://www.alibabacloud.com/help/doc-detail/130306.htm#concept-1697903
https://www.alibabacloud.com/help/doc-detail/130028.htm#concept-1664234
https://www.alibabacloud.com/help/doc-detail/130307.htm#concept-1697905
https://www.alibabacloud.com/help/doc-detail/144126.htm#task-2315489
https://www.alibabacloud.com/help/doc-detail/160482.htm#concept-2460422

Perfor
mance

Binlog in Redo

The Binlog in Redo feature
synchronously writes binary logs to
the redo log file when a transaction is
committed. This reduces operations
on disks and improves the
performance of your RDS instance.

Suppo
rted

Not
suppo
rted

Not
suppo
rted

Statement
Queue

The statement queue feature allows
statements to queue in the same
bucket. These statements may be
executed on the same resources. For
example, these statements are
executed on the same row of a table.
This feature reduces overheads from
possible conflicts.

Suppo
rted

Suppo
rted

Not
suppo
rted

Inventory Hint

The inventory hint feature can work
with the returning and statement
queue features to rapidly commit and
roll back transactions. This allows you
to increase the throughput of your
application.

Suppo
rted

Suppo
rted

Suppo
rted

Stabili
ty

Faster DDL

The faster DDL feature provides an
optimized buffer pool management
mechanism. This mechanism reduces
the impact of data definition language
(DDL) operations on the performance
of your RDS instance. This mechanism
also increases the number of
concurrent DDL operations that are
allowed.

Suppo
rted

Suppo
rted

Suppo
rted

Statement
concurrency
control

The concurrency control (CCL) feature
allows you to control the concurrency
of statements based on syntax rules.
You can install the DBMS_CCL package
to use this feature.

Suppo
rted

Suppo
rted

Not
suppo
rted

Performance
Agent

The performance agent feature is
provided as a plug-in of MySQL. You
can use this feature to calculate and
analyze the performance metrics of
your RDS instance.

Suppo
rted

Suppo
rted

Suppo
rted

Purge Large File
Asynchronously

The Purge Large File Asynchronously
feature allows you to asynchronously
delete files from your RDS instance.
This ensures the stability of your RDS
instance.

Suppo
rted

Suppo
rted

Suppo
rted

Categ
ory Feature Description MySQL

8.0
MySQL
5.7

MySQL
5.6

AliSQL Kernel · Features of AliSQL ApsaraDB for RDS

7 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/172749.htm#task-2554699
https://www.alibabacloud.com/help/doc-detail/144127.htm#task-2315487
https://www.alibabacloud.com/help/doc-detail/149304.htm#concept-2381921
https://www.alibabacloud.com/help/doc-detail/173324.htm#task-2558080
https://www.alibabacloud.com/help/doc-detail/129926.htm#concept-1663731
https://www.alibabacloud.com/help/doc-detail/155118.htm#concept-2426207
https://www.alibabacloud.com/help/doc-detail/134095.htm#task-1942041

Performance
Insight

The performance insight feature
supports load monitoring, association
analysis, and performance
optimization at the instance level. You
can evaluate loads on your RDS
instance and resolve performance
issues. This allows you to improve the
stability of your RDS instance.

Suppo
rted

Suppo
rted

Not
suppo
rted

Securi
ty

Data Protect

The data protection feature controls
the permissions on delete operations.
This allows you to protect your data
from being accidentally deleted.

Suppo
rted

Suppo
rted

Suppo
rted

Recycle bin

The recycle bin feature allows you to
temporarily store deleted tables. It
also allows you to specify a retention
period within which you can retrieve
the deleted tables. You can install the
DBMS_RECYCLE package to use this
feature.

Suppo
rted

Not
suppo
rted

Not
suppo
rted

Categ
ory Feature Description MySQL

8.0
MySQL
5.7

MySQL
5.6

Features

Category Feature
MySQL
Community
edition

MySQL
Enterprise
edition

MySQL 5.7
and MySQL
8.0 with
AliSQL

ApsaraDB
RDS for
MySQL

Enterprise-
grade value-
added
services

24/7 support Not
supported Supported Supported Supported

Emergency
troubleshooti
ng

Not
supported Supported Supported Supported

Expert
support

Not
supported Supported Supported Supported

MySQL
Database
Server

Supported Supported Supported Supported

MySQL
Document
Store

Supported Supported Supported
for MySQL 8.0

Supported
for MySQL 8.0

MySQL
Connectors Supported Supported

Supported
for versions
released to
the public

Supported
for versions
released to
the public

ApsaraDB for RDS AliSQL Kernel · Features of AliSQL

> Document Version:20201014 8

https://www.alibabacloud.com/help/doc-detail/132200.htm#task-1909611
https://www.alibabacloud.com/help/doc-detail/166588.htm#task-2495204
https://www.alibabacloud.com/help/doc-detail/130152.htm#concept-1680887
https://www.alibabacloud.com/zh/services/list
https://www.alibabacloud.com/zh/services/list
https://www.alibabacloud.com/zh/services/list
https://www.alibabacloud.com/help/doc-detail/26117.htm#concept-wzp-ncf-vdb

MySQL
Features

MySQL
Replication Supported Supported Supported Supported

MySQL
Router Supported Supported

MaxScale
supported for
MySQL 8.0

Single-tenant
database
proxies
supported

MySQL
Partitioning Supported Supported Supported Supported

Storage
Engine

InnoDB

MyISAM

NDB

InnoDB

MyISAM

NDB

InnoDB

X-Engine

InnoDB

X-Engine

Oracle
Compatibility

Sequence
Engine

Not
supported

Not
supported

Supported
for MySQL 8.0

Supported
for MySQL 8.0

MySQL
Enterprise
Monitor

Enterprise
Dashboard

Not
supported Supported Under

development
Enhanced
Monitor

Query
Analyzer

Not
supported Supported Under

development
Performance
Insight

Replication
Monitor

Not
supported Supported Under

development Supported

Enhanced OS
Metrics

Not
supported

Not
supported

Not
supported

Enhanced
Monitor

MySQL
Enterprise
Backup

Hot backup
for InnoDB

Not
supported Supported Supported Supported

Full,
Incremental,
Partial,
Optimistic
Backups

Not
supported Supported Supported

Database-
and table-
level backup
supported

Full, Partial,
Selective, Hot
Selective
restore

Not
supported Supported Supported

Database-
and table-
level
restoration
supported

Point-In-
Time-
Recovery

Not
supported Supported Supported Supported

Category Feature
MySQL
Community
edition

MySQL
Enterprise
edition

MySQL 5.7
and MySQL
8.0 with
AliSQL

ApsaraDB
RDS for
MySQL

AliSQL Kernel · Features of AliSQL ApsaraDB for RDS

9 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/148660.htm#concept-2377809
https://www.alibabacloud.com/help/doc-detail/130307.htm#concept-1697905
https://www.alibabacloud.com/help/doc-detail/102074.htm#concept-sp4-jgl-jgb
https://www.alibabacloud.com/help/doc-detail/96123.htm#task-msp-gz1-mfb
https://www.alibabacloud.com/help/doc-detail/102074.htm#concept-sp4-jgl-jgb
https://www.alibabacloud.com/help/doc-detail/102074.htm#concept-sp4-jgl-jgb
https://www.alibabacloud.com/help/doc-detail/98818.htm#concept-l1m-xgn-ydb
https://www.alibabacloud.com/help/doc-detail/103175.htm#concept-ocr-swk-ngb
https://www.alibabacloud.com/help/doc-detail/103175.htm#concept-ocr-swk-ngb
https://www.alibabacloud.com/help/doc-detail/96147.htm#concept-vrh-qp4-ydb

Cross-Region
Backup

Not
supported

Not
supported

Not
supported

Cross-region
backup
supported

Recycle bin Not
supported

Not
supported

Supported
for MySQL 8.0

Supported
for MySQL 8.0

Flashback Not
supported

Not
supported Supported Supported

MySQL
Enterprise
Security

Enterprise
TDE

Local key
replacement
supported

Supported

BYOK-based
TDE and key
rotation
supported

BYOK-based
TDE and key
rotation
supported

Enterprise
Disk Data
Encryption at
Rest

Not
supported

Not
supported

Not
supported

BYOK-based
disk
encryption
supported

Enterprise
Encryption SSL Supported SSL SSL

Enterprise
Audit

Not
supported Supported SQL Explorer

supported
SQL Explorer
supported

SM4
encryption
algorithm

Not
supported

Not
supported Supported Supported

MySQL
Enterprise
Scalability

Thread Pool Not
supported Supported Supported

for MySQL 8.0
Supported
for MySQL 8.0

Enterprise
Readonly
Request
Extention

Not
supported

Not
supported Supported

Read-only
instances
supported

MySQL
Enterprise
Reliability

SQL Outline Not
supported

Not
supported Supported Supported

Hot Massive
Update

Not
supported

Not
supported Supported Supported

Hot SQL Limit Not
supported

Not
supported Supported Supported

Hot SQL
Firewall

Not
supported

Not
supported Supported Supported

Category Feature
MySQL
Community
edition

MySQL
Enterprise
edition

MySQL 5.7
and MySQL
8.0 with
AliSQL

ApsaraDB
RDS for
MySQL

ApsaraDB for RDS AliSQL Kernel · Features of AliSQL

> Document Version:20201014 10

https://www.alibabacloud.com/help/doc-detail/120824.htm#concept-405443
https://www.alibabacloud.com/help/doc-detail/130152.htm#concept-1680887
https://www.alibabacloud.com/help/doc-detail/96147.htm#concept-vrh-qp4-ydb
https://www.alibabacloud.com/help/doc-detail/96121.htm#concept-jrp-dw4-ydb
https://www.alibabacloud.com/help/doc-detail/96121.htm#concept-jrp-dw4-ydb
https://www.alibabacloud.com/help/doc-detail/96120.htm#concept-ack-rv4-ydb
https://www.alibabacloud.com/help/doc-detail/96123.htm#task-msp-gz1-mfb
https://www.alibabacloud.com/help/doc-detail/130306.htm#concept-1697903
https://www.alibabacloud.com/help/doc-detail/26136.htm#concept-cst-z45-vdb
https://www.alibabacloud.com/help/doc-detail/130028.htm#concept-1664234
https://www.alibabacloud.com/help/doc-detail/96059.htm#concept-gnx-vgj-wdb11
https://www.alibabacloud.com/help/doc-detail/129926.htm#concept-1663731
https://www.alibabacloud.com/help/doc-detail/26103.htm#concept-rvl-gy5-tdb

MySQL
Enterprise
High-
Availability

Enterprise
Automatic
Failover
Switch

Not
supported

Not
supported

Third-party
high-
availability
mechanism
required

Supported
for the RDS
High-
availability
Edition

Multi-Source
Replication Supported Supported Supported

Highly
available
read-only
instances
supported

Category Feature
MySQL
Community
edition

MySQL
Enterprise
edition

MySQL 5.7
and MySQL
8.0 with
AliSQL

ApsaraDB
RDS for
MySQL

AliSQL Kernel · Features of AliSQL ApsaraDB for RDS

11 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/26104.htm#concept-c3s-4y5-tdb
https://www.alibabacloud.com/help/doc-detail/26136.htm#concept-cst-z45-vdb

This topic describes the release notes of minor AliSQL versions.

ApsaraDB RDS for MySQL 8.0
20200831

New features:

An option is added to disable parallel scan for the COUNT (*) function.

Start global transaction identifiers (GTIDs) and end GTIDs are introduced to the mysqlbinlog
plug-in.
Various log sequence numbers (LSNs) in the redo log are supported.

innodb_lsn: the LSN of each record in the redo log.
innodb_log_checkpoint_lsn: the LSN of the last checkpoint.
innodb_log_write_lsn: the LSN of each record that is written into the redo log.
innodb_log_ready_for_write_lsn: the LSN of the last record that is written into the log
buffer.
innodb_log_flush_lsn: the LSN of each record that is flushed from the redo log to the disk.
innodb_log_dirty_pages_added_up_to_lsn: the LSN of each record that logs a page as
dirty.
innodb_log_oldest_lsn: the LSN of each record that logs an update to a page.

Performance optimization:
The concurrency control (CCL) mechanism is optimized to better determine how transactions
can wait and concurrently run.
The CCL mechanism is optimized to better prioritize the stored procedures that are to run.

Bugs fixed:
The bug that prevents the recursively called interpreter from checking the memory size is
fixed.
The bug that prevents you from modifying table definitions when transparent data
encryption (TDE) is enabled is fixed.
The bug that causes the event scheduler to leak memory is fixed.

20200630

New features:
The faster DDL feature is introduced to provide an optimized buffer pool management
mechanism. This mechanism reduces the impact of data definition language (DDL)
operations and increases the number of concurrent DDL operations that are allowed. For
more information, see Faster DDL.
The maximum number of connections that are allowed is increased to 500,000.

Performance optimization:
Thread pools are optimized.

2.Release notes of minor AliSQL
versions

ApsaraDB for RDS AliSQL Kernel · Release notes of minor AliSQL versions

> Document Version:20201014 12

https://www.alibabacloud.com/help/doc-detail/173324.htm#task-2558080

The memory allocation mechanism is optimized. You can specify the maximum number of
memory resources that are allowed for Performance Schema based on the instance type.
SQL log files are no longer detected.
TDE is optimized to cache the keys that are provided by Alibaba Cloud Key Management
Service (KMS).
The status of threads that are managed by the CCL mechanism is modified. For more
information, see Statement concurrency control.

Bugs fixed:
The bug that causes the system to consider a semicolon (;) to be a part of the command
used to create an outline is fixed.
The bug that causes the server to unexpectedly exit in the event of table modifications is
fixed.
The bug that causes earlier versions to disallow the memory and array keywords supported
in later versions is fixed.
The bug that causes the system to incorrectly count the number of waits when commands
are read from a client is fixed.
The bug that causes failures in minor engine version updates is fixed.

20200430

New features:
The Binlog in Redo feature is introduced. This feature writes binary logs into redo log files
before the binary logs are written to the disk. This reduces I/O consumption and improves
database performance. For more information, see Binlog in Redo.
The data protection feature is introduced. This feature supports the customization of
security policies that are used to manage the permissions on DROP and TRUNCATE
statements. This allows you to avoid data losses that are caused by the unintentional
execution of these statements. For more information, see Data Protect.
The code for row caching in the X-Engine storage engine is restructured.
The XA_RECOVER_ADMIN permission is provided.

Performance optimization:
The code that is used to scan data when operations are performed on a temporary InnoDB
table is optimized. This allows the system to scan only dirty pages instead of the entire
buffer pool.
The global parameter opt_readonly_trans_implicit_commit is renamed as
rds_disable_explicit_trans. This ensures compatibility with MySQL 5.6.
The SQL Explorer (SQL Audit) feature is optimized, so it does not log upgrades to RDS
instances.
Memory resources that are consumed by DDL operations on X-Engine tables are reduced.

Bugs fixed:
The bug that causes the sizes of X-Engine tables stored on the disk to be inconsistent with
the statistical information in the INFORMATION_SCHEMA schema is fixed.
The bug that causes the system to initialize X-Engine logs when the error log file is re-
opened is fixed.

AliSQL Kernel · Release notes of minor AliSQL versions ApsaraDB for RDS

13 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/129926.htm#concept-1663731
https://www.alibabacloud.com/help/doc-detail/172749.htm#task-2554699
https://www.alibabacloud.com/help/doc-detail/166588.htm#task-2495204

20200331

New feature:

The TRUNCATE TABLE statement is supported. After you execute this statement on a table,
this statement moves the table to the recycle bin. Then, this statement creates a table by
using the schema of the table that you truncate. For more information, see Recycle bin.

Performance optimization:
The output of Transmission Control Protocol (TCP) errors is disabled by default.
The performance of thread pools with the default configuration is improved.

Bugs fixed:
The bug that databases and tables become invalid because the names of partitioned tables
are separated with a pound key and a letter p (#p) is fixed.

The bug that causes the statements managed by the CCL mechanism to be case-sensitive is
fixed.

Changes incorporated: Changes in MySQL 8.0.17 and MySQL 8.0.18 are incorporated. For more
information, see Changes in MySQL 8.0.17 and Changes in MySQL 8.0.18.

20200229

New features:
The performance agent feature is introduced. For more information, see Performance Agent.
This feature is provided as a MySQL plug-in. It allows you to collect and analyze the
performance metrics of an RDS instance.
Network round-trip time is introduced to the semi-synchronous mode. This allows you to
better understand the performance of an RDS instance.

Performance optimization:
Statement-level CCL is allowed on read-only RDS instances.
Outlines are supported for secondary RDS instances.
The database proxy feature is enhanced to optimize short-lived connections.
The time that is required to execute a PAUSE statement is reduced in various CPU
architectures.
A memory table is introduced to present the running status of thread pools.

Bugs fixed:
The bug that causes the system to forbid the ppoll function and replace the ppoll function
with the poll function in Linux kernels earlier than version 4.9 is fixed.
The bug that causes errors when the system invokes the wrap_sm4_encrypt function is
fixed.
The bug that causes the system to lock global variables when SQL logs are rotated is fixed.
The bug that causes errors in restoration inconsistency checks is fixed.
The bug that causes incorrect time values in the io_statistics table is fixed.
The bug that causes the system to unexpectedly exit when invalid compression algorithms
are invoked is fixed.
The bug that causes user columns in MySQL 8.0 and MySQL 5.6 to be incompatible is fixed.

ApsaraDB for RDS AliSQL Kernel · Release notes of minor AliSQL versions

> Document Version:20201014 14

https://www.alibabacloud.com/help/doc-detail/130152.htm#concept-1680887
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-17.html
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-18.html
https://www.alibabacloud.com/help/doc-detail/155118.htm#concept-2426207

20200110

New feature:

Three hints are introduced. These hints can be used in SELECT, UPDATE, INSERT, and DELETE
statements to commit and roll back transactions at high speeds. This allows you to increase
the throughput of your application. For more information, see Inventory Hint.

Performance optimization:
The CCL mechanism is optimized. When an RDS instance is started, CCL queue structures are
initialized before CCL rules.
The file deletion mechanism is optimized. When you asynchronously delete small files, links
to the small files are canceled.
The performance of thread pools is optimized. For more information, see Thread Pool.
Restoration inconsistency checks are disabled by default.
The permissions that are required to configure variables are changed.

The user role that is authorized to configure the following variables is changed to
standard user:

auto_increment_increment
auto_increment_offset
bulk_insert_buffer_size
binlog_rows_query_log_events

The user role that is authorized to configure the following variables is changed to
superuser or system variable administrator:

binlog_format
binlog_row_image
binlog_direct
sql_log_off
sql_log_bin

20191225

New feature:

The recycle bin feature is introduced. All of the tables that you delete are moved to the
recycle bin. You can specify a retention period within which you can retrieve the deleted
tables from the recycle bin. For more information, see Recycle bin.

Performance optimization:
The data proxy feature is enhanced to optimize short-lived connections.
A dedicated thread is used to serve the maintain user. This allows you to avoid high
availability (HA) failures.
The locking mechanism is optimized. If an error occurs when binary logs are flushed by using
redo logs, ApsaraDB for RDS can explicitly release the lock that is triggered by file
synchronization.
The deletion of unnecessary TCP error logs is supported.
Thread pools are enabled by default.

Bugs fixed:

AliSQL Kernel · Release notes of minor AliSQL versions ApsaraDB for RDS

15 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/149304.htm#concept-2381921
https://www.alibabacloud.com/help/doc-detail/130306.htm#concept-1697903
https://www.alibabacloud.com/help/doc-detail/130152.htm#concept-1680887

The bug that causes errors in updates to slow query logs is fixed.
The bug that causes an incorrect lock scope is fixed.
The bug that causes errors in core dumps when the system invokes the select function for
TDE is fixed.

20191115

New feature:

The Statement Queue feature is introduced. This feature allows statements to queue in the
same bucket. These statements may be executed on the same resources. For example, these
statements are executed on the same row of a table. This reduces overheads from possible
conflicts. For more information, see Statement Queue.

20191101

New features:
The SM4 encryption algorithm is supported for TDE. For more information, see Configure TDE
for an ApsaraDB RDS for MySQL instance.
Data protection for secondary RDS instances is supported. Only the accounts with the SUPER
or REPLICATION_SLAVE_ADMIN role have the permissions to insert, delete, and modify data
in the slave_master_info, slave_relay_log_info, and slave_worker_info tables.
A mechanism is introduced to increase the priorities of auto-increment keys. If a table does
not have a primary key or it does not have a unique key without a null value, the auto-
increment key without a null value has the highest priority.
A mechanism is introduced to prevent the automatic conversion of tables from the MEMORY
to MyISAM storage engines. These tables include system tables. These tables also include
tables that are invoked by threads in the initializing state.
A mechanism is introduced to flush binary log files to the disk before redo log files.
A mechanism is introduced to stop the creation of temporary tables on an RDS instance
when the RDS instance is locked.
The X-Engine storage engine is provided to store transactions based on a log-structured
merge (LSM) tree.

Performance optimization:
The thread pool feature is optimized to reduce mutexes. For more information, see Thread
Pool.
The performance insight feature is optimized to monitor thread pools. For more information,
see Performance Insight.
Parameter adjustment:

 primary_fast_lookup : a session parameter. Default value: true.

 thread_pool_enabled : a global parameter. Default value: true.

20191015

New features:
The TDE feature is introduced to support real-time I/O encryption and decryption on data
files. Data is encrypted before it is written to the disk and decrypted before it is read from
the disk to the memory. For more information, see Configure TDE for an ApsaraDB RDS for
MySQL instance.

ApsaraDB for RDS AliSQL Kernel · Release notes of minor AliSQL versions

> Document Version:20201014 16

https://www.alibabacloud.com/help/doc-detail/144127.htm#task-2315487
https://www.alibabacloud.com/help/doc-detail/96121.htm#task-jrp-dw4-ydb
https://www.alibabacloud.com/help/doc-detail/130306.htm#concept-1697903
https://www.alibabacloud.com/help/doc-detail/132200.htm#task-1909611
https://www.alibabacloud.com/help/doc-detail/96121.htm#task-jrp-dw4-ydb

The returning feature is introduced. This feature allows data manipulation language (DML)
statements to return result sets. In addition, the DBMS_TRANS package is provided for you
to use this feature. For more information, see Returning.
The forced conversion from the MyISAM or MEMORY storage engine to the InnoDB storage
engine is supported. If the global variable force_mysiam_to_innodb or
force_memory_to_innodb is set to ON, a table is converted from the MyISAM or MEMORY
storage engine to the InnoDB storage engine when the table is created or modified.
A mechanism is introduced to forbid standard accounts from performing primary/secondary
switchovers. Only privileged accounts have the permissions to perform primary/secondary
switchovers.
A performance proxy plug-in is provided. This plug-in obtains performance data and saves
the data as TXT files to your computer. These files are deleted in a circular manner. Only the
latest second-level files are retained.
A configurable timeout period is introduced for mutexes in InnoDB: This timeout period can
be changed by setting the global variable innodb_fatal_semaphore_wait_threshold. The
default value of the global variable is 600.
Index hint errors can be ignored by setting the global variable ignore_index_hint_error. The
default value of the global variable is false.
The SSL encryption feature can be disabled. For more information, see Configure SSL
encryption on an ApsaraDB RDS for MySQL instance.
The output of TCP errors is supported. TCP errors in read, read-wait, and write-wait events
are returned with their error codes by using end_connection events. In addition, logs with
information about the errors are generated.

Bugs fixed:
The bug that prevents a Linux operating system from merging local asynchronous I/O (AIO)
requests before linear Read Ahead is triggered is fixed.
The bug that prevents the proper collection of table and index statistics is fixed.
The bug that prevents the system direct access to the primary key index of a table with a
primary key is fixed.

20190915

Bug fixed:

The bug that causes memory leaks when the Cmd_set_current_connection process runs is fixed.

20190816

New features:
The thread pool feature is introduced to separate threads from sessions. If a large number
of sessions exist, the system can run a small number of threads to complete the tasks in
active sessions. For more information, see Thread Pool.
The CCL mechanism is introduced. This mechanism allows you to specify the maximum
number of concurrent requests that are allowed. This enables the system to handle traffic
bursts, process statements that consume excessive resources, and adapt to changes of SQL
models. This also ensures the continuity and stability of your database service. For more
information, see Statement concurrency control.
The statement outline feature is introduced to support optimizer hints and index hints.
These hints are used to stabilize the execution of query plans on an RDS instance. For more
information, see Statement outline.

AliSQL Kernel · Release notes of minor AliSQL versions ApsaraDB for RDS

17 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/144126.htm#task-2315489
https://www.alibabacloud.com/help/doc-detail/96120.htm#concept-ack-rv4-ydb
https://www.alibabacloud.com/help/doc-detail/130306.htm#concept-1697903
https://www.alibabacloud.com/help/doc-detail/129926.htm#concept-1663731
https://www.alibabacloud.com/help/doc-detail/130028.htm#concept-1664234

The Sequence engine is introduced to simplify the acquisition of sequence values. For more
information, see Sequence Engine.
The Purge Large File Asynchronously feature is introduced to asynchronously delete files.
Before you delete a tablespace, the system renames the files in the tablespace as
temporary files. Then, a background thread is started to asynchronously delete the
temporary files. For more information, see Purge Large File Asynchronously.
The performance insight feature is introduced to support load monitoring, association
analysis, and performance optimization at the instance level. This feature allows you to
evaluate the loads of an RDS instance. This feature also allows you to locate performance
issues to ensure the stability of your database service. For more information, see
Performance Insight.
An optimized instance locking mechanism is introduced. You can delete tables from an RDS
instance by using DROP or TRUNCATE statements even if the RDS instance is locked.

Bugs fixed:
The bug that causes the system to incorrectly calculate file sizes is fixed.
The bug that allows irrelevant processes to reuse released memory resources is fixed.
The bug that causes a host to exit unexpectedly when the available cache size on the host
is 0 is fixed.
The bug that causes conflicts between implicit primary keys and CTS statements is fixed.
The bug that causes the system to incorrectly log slow queries is fixed.

20190601

Performance optimization:
Metadata locking on logging tables is reduced.
The code for termination options is restructured.

Bugs fixed:
The bug that prevents the SQL Explorer (SQL Audit) feature from logging precompiled
statements is fixed.
The bug that prevents the system from filtering out error logs in logging tables with invalid
names is fixed.

ApsaraDB RDS for MySQL 5.7 on RDS Basic or High-availability Edition
20200831

New features:
Changes incorporated: Changes in MySQL 5.7.30 are incorporated. For more information, visit
GitHub.
An optimized CCL mechanism is introduced to better determine how transactions can wait
and concurrently run.
Start GTIDs and end GTIDs are introduced to the mysqlbinlog plug-in.

ApsaraDB for RDS AliSQL Kernel · Release notes of minor AliSQL versions

> Document Version:20201014 18

https://www.alibabacloud.com/help/doc-detail/130307.htm#concept-1697905
https://www.alibabacloud.com/help/doc-detail/134095.htm#task-1942041
https://www.alibabacloud.com/help/doc-detail/132200.htm#task-1909611
https://github.com/mysql/mysql-server

Various LSNs in the redo log are supported.
innodb_lsn: the LSN of each record in the redo log.
innodb_log_write_lsn: the LSN of each record that is written into the redo log.
innodb_log_checkpoint_lsn: the LSN of the last checkpoint.
innodb_log_flushed_lsn: the LSN of each record that is flushed from the redo log to the
disk.
innodb_log_Pages_flushed: the LSN of each record that logs an update to a page.

Performance optimization:

The CCL mechanism is optimized to better prioritize the stored procedures that are to run.

Bug fixed:

Some major bugs that cause the server to unexpectedly stop when you shut down the server
is fixed.

20200630

New features:
Three hints are introduced to the inventory hint feature. These hints are used in SELECT,
UPDATE, INSERT, and DELETE statements to commit and roll back transactions at high
speeds. This allows you to increase the throughput of your application. For more
information, see Inventory Hint.
The CCL mechanism is introduced. This mechanism allows you to specify the maximum
number of concurrent requests that are allowed. This enables the system to handle traffic
bursts, process statements that consume excessive resources, and adapt to changes of SQL
models. This also ensures the continuity and stability of your database service. For more
information, see Statement concurrency control.
The Statement Queue feature is introduced. This feature allows statements to queue in the
same bucket. These statements may be executed on the same resources. For example,
these statements are executed on the same row of a table. This reduces overheads from
possible conflicts. For more information, see Statement Queue.
The statement outline feature is introduced to support optimizer hints and index hints.
These hints are used to stabilize the execution of query plans on an RDS instance. For more
information, see Statement outline.
The faster DDL feature is introduced to provide an optimized buffer pool management
mechanism. This mechanism reduces the impact of DDL operations and increases the
number of concurrent DDL operations that are allowed. For more information, see Faster
DDL.
The maximum number of connections that are allowed is increased to 500,000.

Performance optimization:

The call dbms_admin.show_native_procedure(); command is provided to display all of the
procedures on an RDS instance.
A new function is provided to delete orphan tables.
Thread pools are optimized.
Query caching is optimized.
The memory allocation mechanism is optimized. You can specify the maximum number of
memory resources that are allowed for Performance Schema based on the instance type.

AliSQL Kernel · Release notes of minor AliSQL versions ApsaraDB for RDS

19 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/149304.htm#concept-2381921
https://www.alibabacloud.com/help/doc-detail/129926.htm#concept-1663731
https://www.alibabacloud.com/help/doc-detail/144127.htm#task-2315487
https://www.alibabacloud.com/help/doc-detail/130028.htm#concept-1664234
https://www.alibabacloud.com/help/doc-detail/173324.htm#task-2558080

Bug fixed:

The bug that causes an audit update thread to enter an infinite loop is fixed.

20200430

New feature:

The data protection feature is introduced. This feature supports the customization of security
policies that are used to manage the permissions on DROP and TRUNCATE statements. This
allows you to avoid data losses that are caused by the unintentional execution of these
statements. For more information, see Data Protect.

Performance optimization:

Read-write locks are no longer supported in the query cache. The default hash function is
changed from LF_hash to murmur3 hash.

Bugs fixed:

Two bugs that occur after the system hits the query cache during the execution of
transactions at the REPEATABLE_READ isolation level are fixed.

20200331

New features:
The fast query cache is introduced. It is developed by Alibaba Cloud based on the native
MySQL query cache. It uses a new design and implementation mechanism to improve query
performance. For more information, see Fast query cache.
Two metadata locks are introduced from Percona Server 5.7: LOCK TABLES FOR BACKUP
(LTFB) and LOCK BINLOG FOR BACKUP (LBFB).

Performance optimization:
Thread pools are optimized to ensure compatibility with earlier MySQL versions.
The output of TCP errors is disabled by default.
The performance of thread pools with the default configuration is improved.

Bugs fixed:
The bug that causes the system to delete temporary files when you delete large files is
fixed.
The bug that causes dump threads in thread pools to time out is fixed.
The bug that causes the system to incorrectly count the value of the IPK field in the
procedure context is fixed.
The bug that causes rds_change_user to incur pfs thread leakage and release is fixed.

Changes incorporated: Changes in MySQL 5.7.28 are incorporated. For more information, visit
GitHub.

20200229

New features:
The performance agent feature is introduced. For more information, see Performance Agent.
This feature is provided as a MySQL plug-in. It allows you to collect and analyze the
performance metrics of an RDS instance.
Network round-trip time is introduced to the semi-synchronous mode. This allows you to
better understand the performance of an RDS instance.

ApsaraDB for RDS AliSQL Kernel · Release notes of minor AliSQL versions

> Document Version:20201014 20

https://www.alibabacloud.com/help/doc-detail/166588.htm#task-2495204
https://www.alibabacloud.com/help/doc-detail/160482.htm#concept-2460422
https://github.com/mysql/mysql-server
https://www.alibabacloud.com/help/doc-detail/155118.htm#concept-2426207

Performance optimization:
The time that is required to execute a PAUSE statement is reduced in various CPU
architectures.
The database proxy feature is enhanced to optimize short-lived connections.
A memory table is introduced to present the running status of thread pools.

Bugs fixed:
The bug that causes DDL redo logs that are not secure is fixed.
The bug that causes incorrect time values in the io_statistics table is fixed.
The bug that causes the server to unexpectedly exit in the event of table modifications is
fixed.
The bugs in MySQL test cases are fixed.

20200110

Performance optimization:

The file deletion mechanism is optimized. When you asynchronously delete small files, links to
the small files are canceled.
The performance of thread pools is optimized. For more information, see Thread Pool.
The default value of the thread_pool_enabled parameter is changed to OFF.

20191225

New feature:

The management of internal accounts is supported. This allows you to manage user
permissions and protect your data.

Performance optimization:
The data proxy feature is enhanced to optimize short-lived connections.
A dedicated thread is used to serve the maintain user. This allows you to avoid HA failures.
The deletion of unnecessary TCP error logs is supported.
Thread pools are optimized.

Bugs fixed:
The bug that causes the mysqld process to unexpectedly exit when the read/write splitting
function is enabled is fixed.
The bug that causes errors in core dumps when the system uses a keyring is fixed.

20191115

Bug fixed:

The bug that causes the system to display variables in SQL logs that are generated from
primary/secondary switchovers is fixed.

20191101

New features:
The SM4 encryption algorithm is supported for TDE. For more information, see Configure TDE
for an ApsaraDB RDS for MySQL instance.

AliSQL Kernel · Release notes of minor AliSQL versions ApsaraDB for RDS

21 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/130306.htm#concept-1697903
https://www.alibabacloud.com/help/doc-detail/96121.htm#task-jrp-dw4-ydb

A mechanism is introduced to allow the system to access the primary index of a table with a
primary key.
A mechanism is introduced to prevent the automatic conversion of tables from the MEMORY
to MyISAM storage engines. These tables include system tables. These tables also include
tables that are invoked by threads in the initializing state.

Performance optimization:
The thread pool feature is optimized to reduce mutexes. For more information, see Thread
Pool.
An SQL log caching mechanism is introduced to increase SQL logging performance.
The performance insight feature is optimized to monitor thread pools. For more information,
see Performance Insight.
The thread pool feature is enabled by default. For more information, see Thread Pool.

Bugs fixed:
The bug that prevents the release of locks on user tables when these tables are being
managed or maintained is fixed.
More TCP errors are added.

20191015

New features:
The rotation of slow query logs is supported. Every CSV slow query log file is assigned a
unique name and a new file. This prevents data losses during the collection of slow query
logs. You can run the show variables like '%rotate_log_table%'; command to check whether
the rotation of slow query logs is enabled.
A performance proxy plug-in is provided. This plug-in obtains performance data and saves
the data as TXT files to your computer. These files are deleted in a circular manner. Only the
latest second-level files are retained.
The forced conversion from the MEMORY to InnoDB storage engines is supported. If the
global variable rds_force_memory_to_innodb is set to ON, a table is converted from the
MEMORY to InnoDB storage engines when the table is created or modified.
The keyring-rds plug-in is introduced to TDE. This plug-in allows ApsaraDB for RDS to
communicate with the administration system or Alibaba Cloud Key Management Service
(KMS).
The output of TCP errors is supported. TCP errors in read, read-wait, and write-wait events
are returned with their error codes by using end_connection events. In addition, logs with
information about the errors are generated.

Bug fixed:

The bug that causes Error 1290 in DDL operations is fixed.

20190925

Parameter adjustment:

The default value of the system variable auto_generate_certs is changed from true to false.
The global read-only variable auto_detact_certs is introduced. Valid values: true and false.
Default value: false. This variable is supported only when code is compiled by using OpenSSL
on the server. This variable specifies whether the server automatically searches for SSL

ApsaraDB for RDS AliSQL Kernel · Release notes of minor AliSQL versions

> Document Version:20201014 22

https://www.alibabacloud.com/help/doc-detail/130306.htm#concept-1697903
https://www.alibabacloud.com/help/doc-detail/132200.htm#task-1909611
https://www.alibabacloud.com/help/doc-detail/130306.htm#concept-1697903

certificate and key files in the data directory.

20190915

New feature:

The thread pool feature is introduced to separate threads from sessions. If a large number of
sessions exist, the system can run a small number of threads to complete the tasks in active
sessions. For more information, see Thread Pool.

20190815

New features:
The Purge Large File Asynchronously feature is introduced to asynchronously delete files.
Before you delete a tablespace, the system renames the files in the tablespace as
temporary files. Then, a background thread is started to asynchronously delete the
temporary files. For more information, see Purge Large File Asynchronously.
The performance insight feature is introduced to support load monitoring, association
analysis, and performance optimization at the instance level. This feature allows you to
evaluate the loads of an RDS instance. This feature also allows you to locate performance
issues to ensure the stability of your database service. For more information, see
Performance Insight.
An optimized instance locking mechanism is introduced. You can delete tables from an RDS
instance by using DROP or TRUNCATE statements even if the RDS instance is locked.

Bugs fixed:

The bug that allows you to set the rds_prepare_begin_id option in the set rds_current_conne

ction command is fixed.

The bug that prevents the system from updating information about locked accounts is fixed.
The bug that allows you to use actual as a keyword in table names is fixed.
The bug that causes the overflow of timestamps in slow query logs is fixed.

20190510

New feature: Temporary tables can be created in transactions.

20190319

New feature: Thread IDs can be configured in handshake packets.

20190131

The upgrade to MySQL 5.7.25 is supported.
JeMalloc that is used for memory management is disabled.
The bug that causes the system to incorrectly calculate the value of the internal variable
net_lenth_size is fixed.

20181226

New feature: Dynamic modifications to the system variable binlog-row-event-max-size are
supported. This allows you to expedite the replication of tables that do not have a primary
key.
Bug fixed: The bug that prevents the proxy instance of an RDS instance from applying for
memory resources is fixed.

20181010

AliSQL Kernel · Release notes of minor AliSQL versions ApsaraDB for RDS

23 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/130306.htm#concept-1697903
https://www.alibabacloud.com/help/doc-detail/134095.htm#task-1942041
https://www.alibabacloud.com/help/doc-detail/132200.htm#task-1909611

Implicit primary keys are supported.
The replication of tables that do not have a primary key between primary and secondary RDS
instances is accelerated.
Native AIO is provided to improve I/O performance.

20180431

New features:

The RDS High-availability Edition is supported.
The SQL Audit feature is supported. For more information, see SQL audit.
The protection for RDS instances on which snapshot backups are being created is enhanced.

ApsaraDB RDS for MySQL 5.7 on RDS Enterprise Edition
20191128

New feature:

The read/write splitting function is introduced.

Bugs fixed:
The bug that causes the system to incorrectly calculate the value of the
Second_Behind_Master metric for a follower is fixed.
The bug that causes dead locks during the re-execution of table-level parallel replication
transactions is fixed.
XA-related bugs are fixed.

20191016

New features:
The upgrade from the RDS High-availability Edition to the RDS Enterprise Edition is
supported for RDS instances that use local SSDs.
The GTID function that is provided by the MySQL Community edition is supported. This
function is disabled by default.
All of the Alibaba Cloud-proprietary AliSQL features and functions that are released in the
RDS Basic and High-availability Editions before the minor version 20190915 are incorporated.

Bug fixed:

The bug that causes the system to disable binary logs for reset secondary RDS instances is
fixed.

20190909

New features:
The execution of large transactions is accelerated. This applies when the synchronous
mode is used to replicate data between primary and secondary RDS instances that run the
RDS Enterprise Edition.
Binary logs can be dumped from a leader or a follower.
The creation of read-only RDS instances is supported.
The InnoDB storage engine is used for system tables by default.

Bugs fixed:

ApsaraDB for RDS AliSQL Kernel · Release notes of minor AliSQL versions

> Document Version:20201014 24

https://www.alibabacloud.com/help/doc-detail/26197.htm#concept-njf-cr4-ydb

The bug that invalidates the commands that are run by a follower to delete logs is fixed.
The bug that causes slave threads to unexpectedly exit when the
slave_sql_verify_checksum parameter is set to OFF and the binlog_checksum parameter is
set to crc32 is fixed.

20190709

New features:

The RDS Enterprise Edition is supported.
The disabling of the semi-sync plug-in is supported.
Table-level parallel replication and write set-level parallel replication are supported.
The pk_access module is introduced to expedite queries that are run based on primary keys.
Thread pools are supported.
All of the Alibaba Cloud-proprietary AliSQL features and functions that are released for MySQL
5.7 in the RDS Basic and High-availability Editions before the minor version 20190510 are
incorporated.

ApsaraDB RDS for MySQL 5.6
20200831

New features:

Various LSNs in the redo log are supported.

innodb_lsn: the LSN of each record in the redo log.
innodb_log_write_lsn: the LSN of each record that is written into the redo log.
innodb_log_checkpoint_lsn: the LSN of the last checkpoint.
innodb_log_flushed_lsn: the LSN of each record that is flushed from the redo log to the disk.
innodb_log_Pages_flushed: the LSN of each record that logs an update to a page.

Bugs fixed:
The bug that causes incorrect SHOW_HA_ROWS enumeration types is fixed.
The bug that causes the system to incorrectly count the value of the IPK field in the
procedure context is fixed.
The bug that causes the server to unexpectedly exit when you query data from the
INFORMATION_SCHEMA schema is fixed.
The bug that causes an audit update thread to enter an infinite loop is fixed.
The bug that prevents secondary RDS instances from reporting data replication latencies is
fixed.

20200630

New features:
The performance agent feature is introduced. For more information, see Performance Agent.
This feature is provided as a MySQL plug-in. It allows you to collect and analyze the
performance metrics of an RDS instance.
The maximum number of connections that are allowed is increased to 500,000.

AliSQL Kernel · Release notes of minor AliSQL versions ApsaraDB for RDS

25 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/155118.htm#concept-2426207

The faster DDL feature is introduced to provide an optimized buffer pool management
mechanism. This mechanism reduces the impact of DDL operations and increases the
number of concurrent DDL operations that are allowed. For more information, see Faster
DDL.

Performance optimization:
The global parameter max_execution_time is introduced. If the execution duration of an SQL
statement exceeds the value of this parameter, the execution is paused.
Thread pools are optimized.

Bug fixed:

The bug that causes the system to incorrectly count the number of waits when commands are
read from a client is fixed.

20200430

The data protection feature is introduced. This feature supports the customization of security
policies that are used to manage the permissions on DROP and TRUNCATE statements. This
allows you to avoid data losses that are caused by the unintentional execution of these
statements. For more information, see Data Protect.
The mdl_info table is provided to store information about metadata locks.
The bug that causes conflicts when the thread pool and ic_reduce features are both enabled
is fixed.

20200331

Performance optimization:

The performance of thread pools with the default configuration is improved.
The output of TCP errors is disabled by default.

20200229

New feature:

The read/write splitting function is supported for database proxies.

Performance optimization:
Thread pools are optimized.
The time that is required to execute a PAUSE statement is reduced in various CPU
architectures.

Bug fixed:

The bug that causes the system to partially commit XA transactions is fixed.

20200110

New feature:

The thread pool feature is introduced to separate threads from sessions. If a large number of
sessions exist, the system can run a small number of threads to complete the tasks in active
sessions. For more information, see Thread Pool.

Performance optimization:

The file deletion mechanism is optimized. When you asynchronously delete small files, links to
the small files are canceled.

ApsaraDB for RDS AliSQL Kernel · Release notes of minor AliSQL versions

> Document Version:20201014 26

https://www.alibabacloud.com/help/doc-detail/173324.htm#task-2558080
https://www.alibabacloud.com/help/doc-detail/166588.htm#task-2495204
https://www.alibabacloud.com/help/doc-detail/130306.htm#concept-1697903

Bugs fixed:
The bug that causes the system to incorrectly calculate the sleep time of the page cleaner
is fixed.

The bug that causes the SELECT @@global.gtid_executed statement to incur a failover
failure is fixed.
The bug that causes the IF CLIENT KILLED AFTER ROLLBACK TO SAVEPOINT PREVIOUS STMTS
COMMITTED error is fixed.

20191212

Performance optimization:

The deletion of unnecessary TCP error logs is supported.

20191115

Bug fixed:

The bug that causes the overflow of timestamps in slow query logs is fixed.

20191101

Bugs fixed:

The bug that causes the system to rotate slow query logs when you update common logs is
fixed.
Some display-related bugs are fixed.

20191015

New features:
The rotation of slow query logs is supported. Every CSV slow query log file is assigned a
unique name and a new file. This prevents data losses during the collection of slow query
logs. You can run the show variables like '%rotate_log_table%'; command to check whether
the rotation of slow query logs is enabled.
A new SM4 encryption algorithm is introduced to replace the original SM4 encryption
algorithm.
The Purge Large File Asynchronously feature is introduced to asynchronously delete files.
Before you delete a tablespace, the system renames the files in the tablespace as
temporary files. Then, a background thread is started to asynchronously delete the
temporary files. For more information, see Purge Large File Asynchronously.
The output of TCP errors is supported. TCP errors in read, read-wait, and write-wait events
are returned with their error codes by using end_connection events. In addition, logs with
information about the errors are generated.
An SQL log caching mechanism is introduced to increase SQL logging performance.

Bugs fixed:
The bug that prevents responses to the pstack command when a large number of
connections are established is fixed. This is implemented by disabling the pstack command.

The bug that causes conflicts between implicit primary keys and CREATE TABLE AS SELECT

statements is fixed.
The bug that prevents the system from deleting the temporary files that are created from
binary log files is fixed.

AliSQL Kernel · Release notes of minor AliSQL versions ApsaraDB for RDS

27 > Document Version:20201014

https://bugs.mysql.com/bug.php?id=79596
https://www.alibabacloud.com/help/doc-detail/134095.htm#task-1942041

20190815

An optimized instance locking mechanism is introduced. You can delete tables from an RDS
instance by using DROP or TRUNCATE statements even if the RDS instance is locked.

20190130

Bugs that compromise database stability are fixed.

20181010

The rocksdb_ddl_commit_in_the_middle parameter is introduced to MyRocks. If this parameter is
set to on, some DDL statements call the COMMIT operation when they are executed.

201806** (ApsaraDB RDS for MySQL 5.6.16)

New feature: Microsecond-level time precision is supported for slow query logs.

20180426 (ApsaraDB RDS for MySQL 5.6.16)

Invisible indexes are supported. For more information, see AliSQL 5.6.32 Release Notes (2017-
07-16).
The bug that causes the system to apply threads on secondary RDS instances is fixed.
The bug that compromises database performance when updates to partitioned tables are
applied on secondary RDS instances is fixed.
The bug that causes TokuDB to rebuild tables on which ALTER TABLE COMMENT statements
are executed is fixed. For more information, see AliSQL 5.6.32 Release Note (2018-05-01).
The bug that triggers deadlocks when SHOW SLAVE STATUS or SHOW STATUS statements are
executed is fixed.

20171205 (ApsaraDB RDS for MySQL 5.6.16)

The bug that triggers deadlocks when OPTIMIZE TABLE and ONLINE ALTER TABLE statements
are executed at the same time is fixed.
The bug that triggers conflicts between sequences and implicit primary keys is fixed.
The bug that prevents the proper execution of SHOW CREATE SEQUENCE statements is fixed.
The bug that causes the system to incorrectly collect statistics on TokuDB tables is fixed.
The bug that triggers deadlocks when OPTIMIZE statements are executed in parallel on tables
is fixed.
The bug that causes the system to incorrectly record character sets in QUERY_LOG_EVENT is
fixed.
The bug that prevents an RDS instance from stopping due to signal processing issues is fixed.
For more information, see AliSQL 5.6.32 Release Notes (2017-10-10).
The bug that is caused by the execution of RESET MASTER statements is fixed.
The bug that causes secondary RDS instances to be in a constant waiting state is fixed.
The bug that prevents the system from updating the status of primary and secondary RDS
instances after primary/secondary switchovers is fixed in the RDS Enterprise Edition.
The bug that causes the database process to unexpectedly exit due to the execution of SHOW
CREATE TABLE statements is fixed.

20170927 (ApsaraDB RDS for MySQL 5.6.16)

The bug that causes the system to query tables from TokuDB based on incorrect indexes is fixed.

20170901 (ApsaraDB RDS for MySQL 5.6.16)

ApsaraDB for RDS AliSQL Kernel · Release notes of minor AliSQL versions

> Document Version:20201014 28

https://github.com/alibaba/AliSQL/wiki/Changes-in-AliSQL-5.6.32-(2017-07-16)#1-invisible-indexes
https://github.com/alibaba/AliSQL/wiki/Changes-in-AliSQL-5.6.32-(2018-05-01)#1-alter-tokudb-table-comment-rebuild-whole-engine-data
https://github.com/alibaba/AliSQL/wiki/Changes-in-AliSQL-5.6.32-%25282017-10-10%2529#1-the-ack-receiver-thread-didnt-handle-signal-correctly

New features:
The upgrade of SSL encryption to TLS 1.2 is supported. For more information, see AliSQL
5.6.32 Release Notes (2017-10-10).
Sequences are supported.

Bug fixed: The bug that causes the system to return an incorrect result set for the NOT IN
operator is fixed.

20170530 (ApsaraDB RDS for MySQL 5.6.16)

New feature: The privileged account of an RDS instance is granted the permissions to close the
connections that are established by all of the standard accounts created on the RDS instance.

20170221 (ApsaraDB RDS for MySQL 5.6.16)

New feature: The read/write splitting function is supported.For more information, see
Read/write splitting overview.

ApsaraDB RDS for MySQL 5.5
20181212

The bug that causes the gettimeofday(2) function to return an incorrect time value is fixed. The
returned time value is used to calculate the timeout period. If the returned time value is
incorrect, some operations never time out.

AliSQL Kernel · Release notes of minor AliSQL versions ApsaraDB for RDS

29 > Document Version:20201014

https://github.com/alibaba/AliSQL/wiki/Changes-in-AliSQL-5.6.32-(2017-10-10)#2-upgrade-ssl-tlsv12
https://www.alibabacloud.com/help/doc-detail/51073.htm#concept-ptl-fl4-wdb

X-Engine is an online transaction processing (OLTP) database storage engine that is developed
by the Database Products Business Unit of Alibaba Cloud to suit the needs of PolarDB. This
storage engine now is widely used in a number of business systems of Alibaba Group to reduce
costs. These include the transaction history database and DingTalk chat history database. In
addition, X-Engine is a crucial database technology that empowers Alibaba Group to withstand
bursts of traffic that may surge by hundreds of times than usual during Double 11, a shopping
festival in China.

Background information
X-Engine aims to cope with the challenges faced by the internal businesses of Alibaba Group.
Alibaba Group has been deploying MySQL databases on a large scale since 2010. However, the
explosive growth of data volume year by year still imposes the following challenges on these
databases:

To process highly concurrent transactions.
To store large amounts of data.

You can increase the processing and storage capabilities by adding servers on which you can
create more databases. However, this is not an efficient approach. Alibaba Cloud has been
devoted to leveraging technical means to maximize performance with minimal resources.

The performance of the conventional database architecture has been carefully studied. Michael
Stonebreaker, a leader in the database field and a winner of the Turing Award, wrote a paper
on this topic: OLTP Through the Looking Glass, and What We Found There .In the paper, he
pointed out that conventional general-purpose relational databases spend less than 10% of
their time efficiently processing data. The remaining 90% of their time is wasted on other work,
such as waiting for locked resources to be released, managing buffers, and synchronizing logs.

This is caused by significant changes to the hardware systems that we depend on in recent
years. These include multi-core and many-core CPUs, new processor architectures such as the
cache-only memory architecture (COMA) and the non-uniform memory access (NUMA), various
heterogeneous computing devices such as GPUs and field-programmable gate arrays (FPGAs).
However, the database software built on these hardware systems has not changed much. Such
software includes the mechanism that fixes page sizes based on B-tree indexing, the
mechanism that processes transactions and restores data by using the recovery and isolation
exploiting semantics (ARIES) algorithms, and the concurrency control mechanism based on
independent lock managers. These software mechanisms are designed based on slow disks and
therefore cannot achieve the potential performance of the preceding hardware systems.

Alibaba Cloud has developed X-Engine to suit the needs of the hardware systems used today.

Architecture
With the pluggable storage engine of MySQL, X-Engine can be seamlessly integrated with
MySQL and benefit from the tiered storage architecture.

3.X-Engine
3.1. X-Engine overview

ApsaraDB for RDS AliSQL Kernel · X-Engine

> Document Version:20201014 30

X-Engine is designed to store large amounts of data, increase the capability of processing
concurrent transactions, and reduce storage costs. In most scenarios with large amounts of
data, the data is not evenly accessed. Frequently accessed data (hot data) actually accounts for
a small proportion. X-Engine divides data into multiple levels based on access frequency. In
addition, X-Engine determines storage structures and writes the data to appropriate storage
devices based on the access characteristics of each level of data.

X-Engine uses the log-structured merge-tree (LSM tree) architecture that is redesigned for
tiered storage.

X-Engine stores hot data and updated data in the memory by leveraging a number of memory
database technologies to expedite the execution of transactions. These technologies include
lock-free data structures and append-only data structures.
X-Engine uses a transaction processing pipeline mechanism to run transaction processing
stages in parallel, which greatly increases the throughput.
Less frequently accessed data (cold data) is gradually deleted or merged into persistent
storage levels, and stored in the hierarchical system with abundant storage devices, such as
NVMs, SSDs, and HDDs.
A lot of improvements are made to compactions that impose a significant impact on
performance.

The data storage granularity is refined based on the fact that data update hotspots are
concentrated. This ensures that data is reused as much as possible in the compaction
process.
The hierarchy of the LSM tree is refined to reduce I/O and computing costs and to minimize
the storage space usage incurred by compactions.

More fine-grained access control and caching mechanisms are used to optimize read
performance.

Note The architecture and optimization technologies of X-Engine are summarized into
a paper titled X-Engine: An Optimized Storage Engine for Large-scale E-Commerce
Transaction Processing .This paper was presented at the 2019 SIGMOD Conference, the top
conference in the database field. This was the first time that a company from mainland
China published technological achievements in OLTP database kernels at a top international
conference.

Highlights
FPGA hardware is used to accelerate compactions and further maximize the performance of
your database system. This marks the first time that hardware acceleration is applied to the
storage engine of an OLTP database. The achievement has been summarized into a paper
titled FPGA-Accelerated Compactions for LSM-based Key Value Store .This paper has been
accepted by the 18th USENIX Conference on File and Storage Technologies (FAST'20).
The data reuse technology is used to reduce the costs of compactions and reduces
performance jitter caused by data deletion from the cache.
Queued multi-transaction processing and pipeline processing are used to reduce the thread
context switching overheads and calculate the task ratio in each stage. This makes the entire
pipeline work evenly and increases transaction processing performance by more than 10 times
compared with other similar storage engines such as RocksDB.
Copy-on-write is used to prevent data pages from being updated when they are read. This

AliSQL Kernel · X-Engine ApsaraDB for RDS

31 > Document Version:20201014

https://www.usenix.org/conference/fast20

allows read-only data pages to be encoded and compressed and reduces the storage space
usage by 50% to 90% compared with conventional storage engines, such as InnoDB.
Bloom filter is used to quickly determine whether the target data exists, succinct range filter
(SuRF) is used to determine whether the range data exists, and row cache is used to cache hot
data rows to accelerate read operations.

Basic logic of LSM
The essence of LSM is that all write operations append data to the memory. Each time the
written data is accumulated to a certain amount, the data is frozen as a level and then flushed
to persistent storage. All rows of the written data are sorted based on primary keys, regardless
of whether the data is stored in the memory or persistent storage. In the memory, data is stored
in a sorted in-memory data structure, such as a skip list or B-tree. In persistent storage, data is
stored in a read-only, fully sorted persistent storage structure.

To make a common storage engine support transaction processing in common storage systems,
you must introduce a temporal factor, based on which we can build an independent view for
each transaction. These views are not affected in the event of concurrent transactions. For
example, the storage engine sorts the transactions, assigns them sequence numbers (SNs) that
increase monotonically and globally, and logs the SN of each transaction. This allows the
storage engine to determine visibility among independent transactions.

If data is continuously written to the LSM storage structure and none of other actions is
performed, the LSM storage structure will eventually become the structure shown in the
following figure.

This structure is writer-friendly, because the written data simply has to be appended to the
latest memory table. To implement crash recovery, you only need to record the data to redo
logs. New data does not overwrite old data, and therefore appended records form a natural
multi-SN structure.

However, when more persistence levels of data are accumulated and frozen, query performance
decreases. The multi-SN records generated for different transaction commits with the same
primary key are distributed across different levels, as are those with different keys. In this case,
read operations need to search all the levels of data and merge the found data to obtain the
final results.

Compactions are introduced to LSM to resolve this problem. Compactions in LSM have two
objectives:

Control the hierarchy of LSM

In most cases, the data volume increases by a multiple number of times as the LSM level
decreases. This is to improve read performance.

Data access in a storage system is localized, and a large proportion of access traffic is
concentrated on a small portion of data. This is the basic prerequisite for effective operations
in the cache system. In the LSM storage structure, you can store hot data at a high LSM level
on high-speed storage devices, such as NVMs and DRAMs, and cold data at a low level on low-
speed storage devices that cost less. This is the basis of hot and cold data separation in X-
Engine.

Merge data

ApsaraDB for RDS AliSQL Kernel · X-Engine

> Document Version:20201014 32

Compactions continuously merge data at adjacent LSM levels and write the merged data to
the lower LSM levels. During the compaction process, the system reads the to-be-merged
data from two or more adjacent levels and then sort the data based on keys. If multiple
records with the same key have different SNs, the system retains only the record with the
latest SN (which is greater than the earliest SN of the current transaction that is being
executed), discards the records with earlier SNs, and writes the record with the latest SN to a
new level. This process is resource-consuming.

In addition to the separation of hot and cold data, compactions also require considerations on
other factors such as the data update frequency. Queries for a large number of multi-SN
records waste more I/O and CPU resources. Therefore, records that have the same key but
different SNs must be preferably merged to reduce the number of SNs per record. Alibaba
Cloud designs a proprietary compaction scheduling mechanism for X-Engine.

A highly optimized LSM
In X-Engine, lock-free skip lists are used in the memory tables, which expedites the execution of
highly concurrent read and write queries. A proper data structure must be planned at each LSM
level to ensure efficient organization of data at persistent levels.

Data structuring

In X-Engine, each level is divided into fixed-sized extents. An extent stores the data with a
continuous key range at the level. A set of meta indexes are created for the extents at each
level. All of these indexes together with all of the active and immutable memory tables form a
metadata tree. The metadata tree has a structure similar to the structure of the B-tree, and
its root nodes are metadata snapshots. The metadata tree helps quickly locate extents.

Except for the active memory tables to which data is being written, all structures in X-Engine
are read-only and cannot be modified. When a point in time is specified, for example, when
the log sequence number (LSN) is 1000, the structure referenced by metadata snapshot 1 in
the preceding figure contains the snapshots of all the data logged at the moment associated
with the LSN 1000. This is also why this structure is called a snapshot.

The metadata structure itself does not change after it is generated. All read operations start
from this snapshot structure. This is the basis on which X-Engine implements snapshot-level
isolation. All operations such as compactions and memory table freezes are implemented
using copy-on-write. Specifically, the result of each modification is written into a new extent.
Then, a new meta index structure is generated. Finally, a new metadata snapshot is
generated.

For example, each compaction generates a new metadata snapshot, as shown in the
following figure.

In this example, metadata snapshot 2 is slightly different from metadata snapshot 1. Only
some leaf nodes and index nodes that have changed are modified.

Note This data structuring technology is similar to that presented in the paper titled
B-trees, Shadowing, and Clones, which will help you understand this process.

AliSQL Kernel · X-Engine ApsaraDB for RDS

33 > Document Version:20201014

https://liw.fi/larch/ohad-btrees-shadowing-clones.pdf

Transaction processing

With its lightweight write mechanism, LSM has significant advantages in write operations.
However, transaction processing is not as simple as writing updated data to a system. A
complex process is required to ensure atomicity, consistency, isolation, and durability (ACID).
X-Engine divides the entire transaction processing process into two phases:

i. The read and write phase

In the read and write phase, X-Engine checks for write-write conflicts and read-write
conflicts in the transaction and determines whether the transaction can be executed,
rolled back, or locked. If no transaction conflicts are detected, all the modified data is
written to the transaction buffer.

ii. The commit phase

The commit phase includes the entire process of writing data to WALs, writing data to
memory tables, committing the data, and returning results to the user. This process
involves both I/O operations (logging and returning results) and CPU operations (copying
logs and writing data to memory tables).

To increase the throughput during transaction processing, the system concurrently processes
a large number of transactions. A single I/O operation is costly, and therefore most storage
engines tend to commit a number of transactions at a time, which is called "group commit".
This allows you to combine I/O operations. However, the transactions that are to be
committed at a time still need to wait for a long period of time. For example, when logs are
being written to a disk, nothing else is done except waiting for the data to be flushed to disks.

To further increase the throughput during transaction processing, X-Engine adopts a pipeline
technology that divides the commit phase into four independent and more fine-grained
stages:

i. Copying logs to the log buffer

ii. Flushing logs to disks

iii. Writing data to memory tables

iv. Committing the data

When a transaction commit thread enters the commit phase, it can freely choose any stage of
the pipeline to process the data. In this way, threads can concurrently process data at
different stages. If the tasks for each stage are properly divided based on sizes, all the stages
of the pipeline can be nearly fully loaded. In addition, transaction processing threads instead
of background threads are used in the commit phase. Each stage is either executing tasks in a
stage or processing requests. This process does not involve any waiting or switching, and
therefore the capabilities of each thread are fully utilized.

Read operations

In LSM, if multiple records with the same key have different SNs, the records with later SNs are
appended to the record with the earliest SN. Records that have the same key but different SNs
may be stored at different levels. The system must identify the appropriate SN of each
requested record in compliance with the visibility rules that are defined based on the
transaction isolation levels. In most cases, the system searches for records with the latest SNs
from the highest level to the lowest level.

ApsaraDB for RDS AliSQL Kernel · X-Engine

> Document Version:20201014 34

For single-record queries, the query process ends after the single record is found. If the record
is located at a high level, for example, in a memory table, it will be returned quickly. If the
record is located at a low level, for example, at a level used for random reading, the system
must search downwards level by level. In this case, a bloom filter can be used to skip some
levels to expedite the query, but this involves more I/O operations. A row cache is introduced
into X-Engine to expedite single-row queries. The row cache stores data above all the
persistent data levels. When a single-row query does not hit data in memory tables, it will hit
data in the row cache. The row cache needs to store each record with the latest SN at all
persistence levels. However, the records in the row cache may change. For example, every
time after a read-only memory table is flushed to a persistence level, the records in the row
cache must be updated accordingly. This operation is subtle and requires careful design.

For range scans, it is impossible to determine the level where the data associated with a
specific key range is stored. In this case, the final result can be returned only after all levels
are scanned for the data and the data is merged. X-Engine adopts a series of methods to
address this problem. For example, SuRF presented at the best paper at SIGMOD 2018 provides
a range scan filter to reduce the number of levels to be scanned. The asynchronous I/O and
prefetching mechanism are also provided to address this problem.

The core to read operations is the cache design. A row cache handles single-row queries. A
block cache handles requests missed by the row cache or range scan requests. However, in
LSM, a compaction incurs updates to a large number of data blocks at a time. This causes a
large amount of data in the block cache to expire instantly and results in a sharp performance
jitter. The following optimizations are made to address this problem:

Reduces the granularity of compaction.
Reduces the amount of data modified during each compaction.
Updates the existing cached data only when the data is modified during each compaction.

Compaction

Compactions are important. The system needs to read data associated with overlapped key
ranges from adjacent levels, merge the data, and write the merged data to a new level. This
is the cost of simple write operations. The storage architecture of X-Engine is redesigned to
optimize compactions.

As mentioned previously, X-Engine divides each level of data into fixed-sized extents. An
extent is equivalent to a small but complete Sorted String Table (SSTable), which stores the
data with a continuous key range at the level. A key range is further divided into smaller
continuous segments that are called data blocks. Data blocks are equivalent to pages in
conventional databases, except that data blocks are read-only and their lengths are not
fixed.

A comparison between metadata snapshots 1 and 2 unveils the intent of the extent design.
Only a small portion of overlapped data and the meta index node need to be modified each
time. The structures of metadata snapshots 1 and 2 actually share a large number of data
structures. This is called data reuse, and the extent size is a crucial factor that determines the
data reuse rate. As a completely reusable physical structure, the extent size is minimized to
reduce the amount of overlapped data. However, the extent size must be proper. If the extent
size is abnormally small, a large number of indexes will be required, which increases
management costs.

AliSQL Kernel · X-Engine ApsaraDB for RDS

35 > Document Version:20201014

In X-Engine, the data reuse rate is high in compactions. Assume that you want to merge the
extents that contain overlapped key ranges at Level 1 and Level 2. In this case, the merge
algorithm scans the data row by row. Any physical structure, including data blocks and
extents, that does not overlap with the data at other levels can be reused. The difference
between the reuse of extents and the reuse of data blocks is that the meta indexes of
extents can be modified while data blocks only support data copying. Data blocks are not
recommended although they significantly reduce CPU utilization.

The following figure shows a typical data reuse process in a compaction.

The data reuse process is completed by using row-by-row iteration. However, this fine-
grained data reuse causes data fragmentation.

Data reuse benefits the compaction itself, reduces I/O and CPU consumption during the
compaction, and improves the overall performance of the system. For example, in the
compaction process, data does not need to be completely rewritten, which greatly reduces
the storage space occupied by written data. In addition, most of the data remains unchanged,
and therefore the cached data remains valid after data updates. This reduces read
performance jitters caused by the expiration of the cached data during the compaction.

In fact, optimizations to compactions are only part of what X-Engine does. X-Engine also
optimizes the compaction scheduling policies and defines the method of selecting extents,
the granularity of compactions, and the execution priorities of the specified compactions.
These all affect the performance of the system. Although no perfect policies exist, X-Engine
has accumulated valuable experience and defined a number of rules to define proper
compaction scheduling policies.

Scenarios
For more information, see Best practices of X-Engine.

Get started with X-Engine
For more information, see Usage notes.

Follow-up development
As a storage engine for MySQL, X-Engine must be continuously improved in terms of its
compatibility with MySQL systems. Based on the most urgent needs, some features such as
foreign keys will be gradually enhanced, and more data structures and index types will be
supported.

The core value of X-Engine lies in cost-effectiveness. Continuously improving performance at
lower costs is a long-term fundamental goal. Alibaba Cloud continues its exploration for new
approaches that make X-Engine more efficient on operations, such as compaction scheduling,
cache management and optimization, data compression, and transaction processing.

X-Engine will not be limited to a storage engine for standalone databases. It will serve as the
core of the Alibaba Cloud proprietary distributed PolarDB to provide enterprise-grade database
services.

This topic describes the X-Engine storage engine supported by ApsaraDB RDS for MySQL. This
engine can process transactions and reduce disk usage.

3.2. Usage notes

ApsaraDB for RDS AliSQL Kernel · X-Engine

> Document Version:20201014 36

https://www.alibabacloud.com/help/doc-detail/148402.htm#concept-2364901
https://www.alibabacloud.com/help/doc-detail/148404.htm#concept-2364454

Introduction
X-Engine is an online transaction processing (OLTP) database storage engine developed by the
Database Products Business Unit of Alibaba Cloud to suit the needs of ApsaraDB PolarDB. This
storage engine is widely used in many business systems of Alibaba Group to reduce costs. These
systems include the transaction history database and DingTalk chat history database. In
addition, X-Engine is a crucial database technology that empowers Alibaba Group to withstand
bursts of traffic that may surge to hundreds of times greater than usual during the Double 11
shopping festival in China.

X-Engine is optimized for large-scale e-commerce transaction processing. The paper X-Engine:
An Optimized Storage Engine for Large-scale E-Commerce Transaction Processing written by the
X-Engine R&D team describes the pioneering work X-Engine has achieved in the database
engine field. This paper was accepted by the Industrial Track of SIGMOD 2019.

Unlike the InnoDB storage engine, X-Engine adopts the log-structured merge-tree (LSM tree)
architecture for tiered storage. LSM tree has the following significant advantages:

The small size of hotspot datasets that require indexes improves write performance.
The bottom-layer persistent data pages are read-only. In addition, they are stored in a
compact format and are compressed by default to reduce storage costs.

In addition to the advantages of LSM tree, X-Engine brings the following innovations in
engineering implementation:

Continuously optimized write performance: Continuous optimization allows X-Engine to
deliver write performance that is over 10 times higher than the write performance of RocksDB
that runs in the LSM tree architecture.
Data reuse at the storage layer: Data reuse optimizes the performance of compaction
operations and reduces the impact of compaction operations on system resources in the
traditional LSM tree architecture. This allows you to keep system performance stable.
Hybrid storage: You can deploy various storage media, such as SSDs and HDDs. These storage
media provide different I/O capabilities on the same RDS instance. The hybrid storage
architecture works with the tiered storage architecture of X-Engine to intelligently store hot
and cold data separately. This allows you to reduce overall costs without compromising
performance.
Multi-level caching, refilling, and prefetching: These allow X-Engine to use the fine-grained
access mechanism and cache technology to make up for the read performance shortcomings
of the engines that adopt the LSM tree architecture.

The preceding optimizations make X-Engine an alternative to the traditional InnoDB storage
engine. In addition to supporting transactions, X-Engine can also reduce occupied storage space
by up to 90% and thus lower storage costs. X-Engine is especially suitable for businesses that
have a large data volume and require high read/write performance.

Note For more information about the use scenarios of X-Engine, see Best practices of
X-Engine.

Prerequisites
Your RDS instance runs MySQL 8.0 on High-availability Edition or Basic Edition.

Purchase an RDS instance that uses X-Engine

AliSQL Kernel · X-Engine ApsaraDB for RDS

37 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/148402.htm#concept-2364901

If you want to use X-Engine for your RDS instance, select MySQL 8.0 for Database Engine on the
Basic Configuration page and select X-Engine (Low Cost) for Storage Engine on the Instance
Configuration page when you purchase an RDS instance. For more information about other
parameters, see Create an ApsaraDB RDS for MySQL instance.

Note
If you want to use X-Engine for an RDS instance that runs MySQL 5.5, 5.6, or 5.7, you
must migrate the data of the RDS instance to a new RDS instance that runs MySQL 8.0.
For more information, see Migrate data between RDS instances.
If you want to convert the storage engine of an RDS instance to X-Engine, see Convert
the storage engine from InnoDB, TokuDB, or MyRocks to X-Engine.

Create X-Engine tables
If you select X-Engine when you create an instance, the table created within the instance uses
X-Engine by default. Execute the following statement to view the default engine used by an
instance:

show variables like '%default_storage_engine%';

If the default engine is X-Engine, you do not need to specify the storage engine in the table
creation statement.

After you have created a table, data is stored in X-Engine.

Note You can create tables that use the InnoDB engine in an instance that uses X-
Engine. If you use Data Transmission Service (DTS) to migrate an InnoDB table to an X-Engine
instance, the destination table also uses InnoDB. For more information, see Solution 2 in
Convert the storage engine from InnoDB, TokuDB, or MyRocks to X-Engine.

Limits
Limits on resource allocations if X-Engine and InnoDB are used together

When you use X-Engine for an instance, 95% of the memory is used as the write cache and
block cache to speed up reading and writing. The InnoDB buffer pool does not occupy much
memory. Do not use tables that use InnoDB to store a large volume of data within an instance
that uses X-Engine. Otherwise, the X-Engine performance may deteriorate due to a low cache
hit ratio. We recommend that you use only a single engine type for tables within an ApsaraDB
for RDS instance that runs MySQL 8.0.

Limits on engine features

X-Engine has some limits on features. Some features are in development. Other features that
are not listed in the following table are the same as those of InnoDB.

ApsaraDB for RDS AliSQL Kernel · X-Engine

> Document Version:20201014 38

https://www.alibabacloud.com/help/doc-detail/26117.htm#concept-wzp-ncf-vdb
https://www.alibabacloud.com/help/zh/doc-detail/26626.htm
https://www.alibabacloud.com/help/doc-detail/148403.htm#task-2375955
https://www.alibabacloud.com/help/doc-detail/148403.htm#task-2375955/section-4wc-kda-hjy

Category Feature X-Engine Remarks

SQL features

Foreign key Not supported. None

Temporary table Not supported. None

Partition table

Not supported. X-Engine does
not support the creation,
addition, deletion,
modification, or query of
partitions.

None

Generated Column Not supported. None

Handler API Not supported. None

Column
properties

Maximum column size

(LONGBLOB/LONGTEXT/JSON)
32 MB None

GIS data type

Not supported. X-Engine does
not support the following GIS
data types: GEOMETRY, POINT,
LINESTRING, POLYGON,
MULTIPOINT,
MULTILINESTRING,
MULTIPOLYGON, and
GEMOMETRYCOLLECTION.

None

Indexes

Hash index Not supported. None

Spatial index
Not supported. X-Engine does
not support the creation and
use of full-text indexes.

None

Transactions

Transaction isolation level

Two isolation levels are
provided:

Read Committed (RC)

Repeatable Read (RR)

None

Maximum transaction size 32 MB

Support for
larger
transactions
is under
development
.

Savepoint Not supported. None

AliSQL Kernel · X-Engine ApsaraDB for RDS

39 > Document Version:20201014

XA transaction Not supported.

Support for
XA
transactions
is under
development
.

Locks

Lock granularity

Table-level locks supported.

Row-level locks supported.

Gap locks not supported.

None

Skip Locked

Lock Nowait
Not supported. None

Character
sets

Character sets supported by
non-indexed columns Supported. None

Character sets supported by
indexed columns

Latin1 (latin1_bin)

GBK (gbk_chinese_ci and
gbk_bin)

UTF-8 (utf8_general_ci and
utf8_bin)

UTF-8MB4
(utf8mb4_0900_ai_ci,
utf8mb4_general_ci, and
utf8mb4_bin)

None

Primary/seco
ndary
replication

Binary log formats

stmt/row/mixed

Note The default
binary log format is the
row-based format. The
statement-based and
row-based log formats
may lead to data security
issues in specific
concurrency scenarios.

None

Category Feature X-Engine Remarks

Limits on large transactions

X-Engine does not support large transactions. If a transaction modifies a large number of
rows, X-Engine uses the commit in middle feature. For example, if you use a transaction to
modify more than 10,000 rows, X-Engine commits this transaction and starts a new
transaction. However, the commit in middle feature cannot strictly follow atomicity,
consistency, isolation, durability (ACID). Exercise caution when you use the commit in middle
feature. Examples:

ApsaraDB for RDS AliSQL Kernel · X-Engine

> Document Version:20201014 40

Start a transaction to insert more than 10,000 rows. During the insertion, a portion of the
committed data can be queried by other requests.
Start a transaction to modify more than 10,000 rows. If a portion of the data is committed in
the middle of the transaction, you cannot roll the transaction back.

drop table t1;

create table t1(c1 int primary key , c2 int)ENGINE=xengine;

begin;

call insert_data(12000); // 12,000 rows is inserted, and a commit in middle operation is triggered.

As a result, the first 10,000 rows of data are committed.

rollback;// Only the last 2,000 rows can be rolled back.

select count(*) from t1; // The committed 10,000 rows of data can be queried.

+----------+

| count(*) |

+----------+

| 10000 |

+----------+

1 row in set (0.00 sec)

Start a transaction to delete or modify more than 10,000 rows. Some rows are omitted.

drop table t1;

create table t1(c1 int primary key , c2 int)ENGINE=xengine;

call insert_data(10000);

begin;

insert into t1 values(10001,10001), (10002,10002);

delete from t1 where c1 >= 0;// The deletion triggers a commit in middle operation, and the two r

ows of data inserted by the current transaction are not deleted.

commit;

select * from t1;

+-------+-------+

| c1 | c2 |

+-------+-------+

| 10001 | 10001 |

| 10002 | 10002 |

+-------+-------+

2 rows in set (0.00 sec)

Parameters

AliSQL Kernel · X-Engine ApsaraDB for RDS

41 > Document Version:20201014

Note When you create an RDS instance, you can select X-Engine as the default storage
engine. You can also adjust the parameter template based on the parameters described in
the following table to suit your business requirements. For more information, see Create an
ApsaraDB RDS for MySQL instance.

Category Parameter Description Remarks

Performance

xengine_arena_block_size

The unit used when a memory
table requests new memory
from the operating system and
the external memory
management system of
jemalloc.

Read-only
after startup.

xengine_batch_group_max_gro
up_size

The maximum number of
groups of a transaction
pipeline.

Read-only
after startup.

xengine_batch_group_max_lea
der_wait_time_us

The maximum wait time of a
transaction pipeline.

Read-only
after startup.

xengine_batch_group_slot_arra
y_size

The maximum batch size of a
transaction pipeline.

Read-only
after startup.

Memory

xengine_block_cache_size The size of the read block
cache.

This
parameter
cannot be
modified.

xengine_row_cache_size The size of the row cache.

This
parameter
cannot be
modified.

xengine_write_buffer_size The maximum size of a single
memory table.

This
parameter
cannot be
modified.

xengine_block_size The size of the data block on a
disk.

Read-only
after
initialization.

Read-only
after startup.

xengine_db_write_buffer_size The maximum size of the active
memory tables in all subtables.

This
parameter
cannot be
modified.

ApsaraDB for RDS AliSQL Kernel · X-Engine

> Document Version:20201014 42

https://www.alibabacloud.com/help/doc-detail/26117.htm#concept-wzp-ncf-vdb

xengine_db_total_write_buffer
_size

The maximum size of the active
memory tables and immutable
memory tables in all subtables.

This
parameter
cannot be
modified.

xengine_scan_add_blocks_limit

The number of blocks that can
be added to the block cache
during each range-based scan
request.

This
parameter
cannot be
modified.

compaction xengine_flush_delete_percent_
trigger

If the number of records in a
memory table exceeds the
value of this parameter, the
xengine_flush_delete_record_t
rigger parameter takes effect
on the memory table.

None

Lock

xengine_max_row_locks
The maximum number of rows
that can be locked in a single
SQL request.

This
parameter
cannot be
modified.

xengine_lock_wait_timeout The timeout period of lock
wait.

This
parameter
cannot be
modified.

Category Parameter Description Remarks

Running status metrics
The following table shows the running status metrics of X-Engine. You can view the metrics on
the Monitoring page.

Metric Description

xengine_rows_deleted The number of rows deleted.

xengine_rows_inserted The number of rows written.

xengine_rows_read The number of rows read.

xengine_rows_updated The number of rows updated.

xengine_system_rows_deleted The number of deletion operations on an X-
Engine system table.

xengine_system_rows_inserted The number of insert operations on an X-Engine
system table.

xengine_system_rows_read The number of read operations on an X-Engine
system table.

AliSQL Kernel · X-Engine ApsaraDB for RDS

43 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/102074.htm#concept-sp4-jgl-jgb

xengine_system_rows_updated The number of updates on an X-Engine system
table.

xengine_block_cache_add The number of add operations on the block
cache.

xengine_block_cache_data_hit The number of hits in read data blocks.

xengine_block_cache_data_miss The number of misses in read data blocks.

xengine_block_cache_filter_hit The number of hits in filter blocks.

xengine_block_cache_filter_miss The number of misses in filter blocks.

xengine_block_cache_hit

The number of hits in the block cache. The value
of this metric is calculated by using the following
formula: The value of this metric= The value of
the data_hit metric + The value of index_hit
metric.

xengine_block_cache_index_hit The number of hits in index blocks.

xengine_block_cache_index_miss The number of misses in index blocks.

xengine_block_cache_miss

The number of misses in the block cache. The
value of this metric is calculated by using the
following formula: The value of this metric= The
value of the data_hit metric + The value of the
index_hit metric.

xengine_block_cachecompressed_miss The number of misses in the compressed block
cache.

xengine_bytes_read The number of bytes on the read physical disk.

xengine_bytes_written The number of bytes that are added to the block
cache.

xengine_memtable_hit The number of hits in memory tables.

xengine_memtable_miss The number of misses in memory tables.

xengine_number_block_not_compressed The number of uncompressed blocks.

xengine_number_keys_read The number of times that keys are read.

xengine_number_keys_updated The number of times that keys are updated.

xengine_number_keys_written The number of times that keys are written.

xengine_number_superversion_acquires The number of times that Superversion is
applied for references.

Metric Description

ApsaraDB for RDS AliSQL Kernel · X-Engine

> Document Version:20201014 44

xengine_number_superversion_cleanups
The number of times that Superversion is
cleared. If Superversion is not referenced, it is
cleared.

xengine_number_superversion_releases
The number of times that the referenced
Superversion is released. If Superversion is not
referenced, it is cleared.

xengine_snapshot_conflict_errors
The number of times that an error is reported
due to snapshot version conflicts at the RR
isolation level.

xengine_wal_bytes The size of redo logs that are flushed into the
disk. Unit: bytes.

xengine_wal_group_syncs The number of times that GroupCommit is
executed by redo logs.

xengine_wal_synced The number of times that redo logs are
synchronized.

xengine_write_other The number of times that a follower commits
transactions in a transaction pipeline.

xengine_write_self The number of times that a leader commits
transactions in a transaction pipeline.

xengine_write_wal The number of times that redo logs are written.

Metric Description

ApsaraDB RDS for MySQL 8.0 supports X-Engine. X-Engine provides better data compression
capabilities and reduces disk space costs. This topic describes how to convert the storage
engine from InnoDB, TokuDB, or MyRocks to X-Engine.

Context
X-Engine is an online transaction processing (OLTP) database storage engine that is developed
by Alibaba Cloud to suit the needs of PolarDB. This storage engine now is widely used in a
number of business systems of Alibaba Group to reduce costs. These include the transaction
history database and DingTalk chat history database. In addition, X-Engine is a crucial database
technology that empowers Alibaba Group to withstand bursts of traffic that may surge by
hundreds of times than usual during Double 11, a shopping festival in China.

For more information, see Best practices of X-Engine.

3.3. Convert the storage engine from
InnoDB, TokuDB, or MyRocks to X-Engine

AliSQL Kernel · X-Engine ApsaraDB for RDS

45 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/148402.htm#concept-2364901

Note When you create an RDS instance designed to run MySQL 8.0, we recommend that
you specify X-Engine as the default storage engine. You can also specify X-Engine for the
RDS instance after instance creation by setting the engine parameter to xengine.

Precautions
If the table you want to convert uses InnoDB, make sure that the remaining disk space of your
RDS instance is twice the data volume of the table before the conversion. After the conversion
to X-Engine, the disk space occupied by the data in the table decreases to 10% to 50% of the
disk space occupied before the conversion.
If you use solution 1 described in the following sections to perform the conversion, you must
reconfigure parameters and restart your RDS instance. Stop your database services before you
perform the conversion.
If you use solution 2 described in the following sections to migrate all data from your RDS
instance to a new RDS instance, you must update the endpoints on your application. We
recommend that you perform this migration during off-peak hours.
Before you convert the storage engine of your online business, make sure that X-Engine is
compatible with SQL.
Change the value of the default_storage_engine to xengine after the conversion. This
ensures that all of the tables created later use X-Engine.

Solution recommendations
If your RDS instance runs MySQL 8.0 (with a kernel version of 20200229 or later), we recommend
that you use Solution 1. This way, you do not need to configure various tools.

Note If the kernel version of your RDS instance does not meet requirements, you can
update the kernel version on the Basic Information page. In the Configuration Information
section, check whether the Upgrade Version button exists. If the button exists, click it to
view and update the kernel version. If the button does not exist, you are already using the
latest kernel version. For more information, see Upgrade the minor engine version of an
ApsaraDB RDS for MySQL instance.

If your RDS instance runs MySQL 5.6 or 5.7, we recommend that you use Solution 2.

Solution 1
This solution allows you to enable X-Engine by using a parameter template and then use DDL
statements to convert the storage engine to X-Engine. This solution is easy and fast, but
requires you to restart your RDS instance. In addition, data manipulation language (DML)
operations may be blocked, and migrating large-sized tables is time-consuming.

1. Log on to the ApsaraDB for RDS console.

2. In the top navigation bar, select the region where the target RDS instance resides.

3. Find the target instance and click its ID.

ApsaraDB for RDS AliSQL Kernel · X-Engine

> Document Version:20201014 46

https://www.alibabacloud.com/help/doc-detail/96059.htm#concept-gnx-vgj-wdb11
https://rds.console.aliyun.com/

4. In the left-side navigation pane, click Parameters.

5. In the upper-left corner of the Editable Parameters tab, click Apply Template. In the dialog
box that appears, select MySQL_8.0_X-Engine_High-availability_Default Parameter
Template from the Apply Template drop-down list and click OK.

Note This operation restarts the instance. After the restart, 95% of the memory
resources are allocated to X-Engine. Do not use X-Engine and InnoDB at the same time.

6. Use DMS to log on to an ApsaraDB for RDS instance.

7. In the top navigation bar, choose SQL Operations > SQL Window.

8. Run the following command:

alter table <The name of the target database>. <The name of the target database> engine xengi

ne;

Example:

alter table test.sbtest1 engine xengine;

Solution 2
This solution allows you to synchronize the data of a table in real time from your original RDS
instance to a new RDS instance by using Alibaba Cloud Data Transmission Service (DTS). After
the data synchronization is complete, you can switch your business to the new RDS instance.

Note The new RDS instance inherits the storage engine of your original RDS instance by
default. You must export the SQL statements for table creations, and change the storage
engine to X-Engine in the SQL statements. Then, migrate the data to the new X-Engine
table.

1. Perform the following steps to export scripts of all schemas of the original RDS instance.

i. Log on to the original RDS instance by using Alibaba Cloud Data Management (DMS).

ii. In the top navigation bar, choose Data Operation > Export.

iii. Choose New > Export Database.

iv. Configure parameters as prompted to export scripts of all schemas and click OK. In the
dialog box that appears, click Yes.

Note The dialog box is displayed because Extended Options is selected in the
Advanced Options dialog box. You can ignore it.

2. Decompress the schema scripts and change InnoDB or TokuDB to X-Engine.

AliSQL Kernel · X-Engine ApsaraDB for RDS

47 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/96161.htm#concept-cml-x4v-ydb
https://www.alibabacloud.com/help/doc-detail/96161.htm#concept-cml-x4v-ydb

3. Purchase a new RDS instance that runs MySQL 8.0 and has the same specifications as the
original RDS instance. Make sure that you select the X-Engine parameter template.

Note When you create an RDS instance, you can use the default X-Engine
parameter template to specify X-Engine as the default storage engine. For more
information, see Create an ApsaraDB RDS for MySQL instance.

4. Perform the following steps to import the schema scripts into the new RDS instance.

i. Log on to the new RDS instance by using DMS.

ii. In the top navigation bar, choose Data Operation > Import.

iii. On the page that appears, click New Task.

iv. In the dialog box that appears, configure parameters as prompted and click Start.

Note After the scripts are imported, you can run the show create table <The nam

e of the target table>; command to verify that the table uses the X-Engine storage
engine.

5. Synchronize data from the original RDS instance to the new RDS instance. For more
information, see Configure two-way data synchronization between ApsaraDB RDS for MySQL
instances.

Warning Do not select Initial schema synchronization during synchronization
initialization.

Result
After the synchronization is complete, you can check whether the data synchronization is
successful. You can then test whether X-Engine is compatible with SQL. If X-Engine is compatible
with SQL, you can convert the storage engine of your online business to X-Engine.

This topic describes the benefits of X-Engine. X-Engine provides 50% lower storage costs, but
can still ensure the same performance as InnoDB.

Background information
X-Engine is a storage engine that is developed by Alibaba Cloud to reduce the disk usage and
overall database cost of your ApsaraDB RDS for MySQL instance. X-Engine stores data in a tiered
storage architecture and uses the Zstandard algorithm to compress data at a high compression
ratio. You can understand the advantages of X-Engine over InnoDB and TokuDB by comparing
their storage overheads and performance.

3.4. Benefits of X-Engine

ApsaraDB for RDS AliSQL Kernel · X-Engine

> Document Version:20201014 48

https://www.alibabacloud.com/help/doc-detail/26117.htm#concept-wzp-ncf-vdb
https://www.alibabacloud.com/help/doc-detail/96161.htm#concept-cml-x4v-ydb
https://www.alibabacloud.com/help/doc-detail/56776.htm#concept-56776-zh

Note The major technological innovations of X-Engine have been released at three top
academic conferences: ACM SIGMOD 2019 and VLDB2020 in the database field and the USENIX
Conference on File and Storage Technologies (FAST) 2020 in the storage field.

Test environment
The RDS instance used for testing is created with the rds.mysql.s3.large type and a storage
capacity of 2 TB. This instance type supports four CPU cores and 8 GB of memory.

50% lower storage costs than InnoDB

The preceding figure shows a comparison of disk usage between X-Engine and InnoDB.

Both X-Engine and InnoDB use their default configurations and the default table schema
provided by SysBench. Each table contains 10 million data records, and the total number of
tables gradually increases from 32 to 736. As the data volume grows, the disk usage of X-Engine
increases at a lower speed and drops by up to 42% compared with InnoDB. In addition, X-Engine
requires less disk space to store large-sized individual data records. For example, after an image
database is migrated to X-Engine, it occupies only 14% of the disk space required in InnoDB.

InnoDB does not compress data in most of its business scenarios. If data compression is enabled,
the disk usage of InnoDB decreases by about 33%, but the query performance also sharply
decreases. For example, the performance for updates based on primary keys decreases by about
90%. This interrupts your business. X-Engine can compress data to reduce storage costs while
maintaining stable performance.

Sysbench test command:

AliSQL Kernel · X-Engine ApsaraDB for RDS

49 > Document Version:20201014

#InnoDBprepare Database

sysbench/usr/share/sysbench/oltp_update_index.lua\

 --mysql-host=[RDS instance connection string]\

 --mysql-user=sbtest\

 --mysql-password=sbtest\

 --mysql-db=sbtest\

 --threads=32\

 --tables=[32-736]\

 --table_size=10000000\

 --mysql-storage_engine=INNODB\

 prepare

#X-Engineprepare Database

sysbench/usr/share/sysbench/oltp_update_index.lua\

 --mysql-host=[RDS instance connection string]\

 --mysql-user=sbtest\

 --mysql-password=sbtest\

 --mysql-db=sbtest\

 --threads=32\

 --tables=[32-736]\

 --table_size=10000000\

 --mysql-storage_engine=XENGINE\

 prepare

Lower storage overheads than TokuDB
TokuDB no longer offers low cost storage options. Also, Percona no longer offers support,
maintenance, and updates for TokuDB. However, X-Engine offers lower storage overheads than
TokuDB. We recommend that you change the storage engine of your ApsaraDB RDS for MySQL
instance from TokuDB to X-Engine.

TokuDB uses a fractal tree structure. This structure consists of more leaf nodes than the B+-tree
structure that is used by InnoDB. These leaf nodes are populated with data records and stored
as data blocks. Therefore, TokuDB supports a higher data compression ratio than InnoDB.
However, the fractal tree structure does not support tiered storage. The tiered storage
architecture of X-Engine not only consists of blocks that are populated with data records but
also offers optimized storage. This allows X-Engine to support lower storage overheads than
TokuDB.

The preceding figure shows a comparison of disk usage between X-Engine and TokuDB.

A total of 32 tables are created on the RDS instance used for testing. Each table contains 100
million data records. These data records occupy 411 GB of disk space in TokuDB and 400 GB of
disk space in X-Engine. This proves the improvements and advantages of X-Engine over TokuDB
in terms of storage costs.

ApsaraDB for RDS AliSQL Kernel · X-Engine

> Document Version:20201014 50

Sysbench test command:

#TokuDBprepare Database

sysbench/usr/share/sysbench/oltp_update_index.lua\

 --mysql-host=[RDS instance connection string]\

 --mysql-user=sbtest\

 --mysql-password=sbtest\

 --mysql-db=sbtest\

 --threads=32\

 --tables=[32-736]\

 --table_size=1000000000\

 --mysql-storage_engine=TokuDB\

 prepare

#X-Engineprepare Database

sysbench/usr/share/sysbench/oltp_update_index.lua\

 --mysql-host=[RDS instance connection string]\

 --mysql-user=sbtest\

 --mysql-password=sbtest\

 --mysql-db=sbtest\

 --threads=32\

 --tables=[32-736]\

 --table_size=1000000000\

 --mysql-storage_engine=XENGINE\

 prepare

Tiered storage and tiered access to increase QPS
X-Engine reduces the disk usage for cold data to lower the overall storage cost while
maintaining a stable rate of queries per second (QPS) for hot data.

The tiered storage architecture of X-Engine allows you to store hot and cold data at different
tiers and compress cold data by default.
X-Engine applies technologies such as prefix encoding to every data record. This allows you to
reduce storage overheads.
In most of the actual business scenarios, data is skewed because the volume of hot data is
lower than that of cold data. Despite the skewed data, the tiered access architecture of X-
Engine allows you to increase the QPS.

The preceding figure shows the performance of X-Engine for processing point queries to skewed
data.

AliSQL Kernel · X-Engine ApsaraDB for RDS

51 > Document Version:20201014

This test uses the popular method of Zipf distribution to control the degree of data skew. If the
degree of data skew (namely, the Zipf factor) is high, more point queries hit hot data in the
cache instead of cold data on disks. This decreases the access latency and increases the QPS. In
addition, the compression of cold data only has a small impact on the QPS.

The tiered storage and tiered access architectures of X-Engine eliminate the impact of cold data
on most of the SQL statements that are executed to query hot data. These architectures also
increase the QPS by 2.7 times than when all data is evenly accessed.

Sysbench test command:

sysbench/usr/share/sysbench/oltp_point_select.lua\

 --mysql-host=[RDS instance connection string]\

 --mysql-user=sbtest\

 --mysql-password=sbtest\

 --time=3600\

 --mysql-db=sbtest\

 --tables=32\

 --threads=512\

 --table_size=10000000\

 --rand-type=zipfian\

 --rand-zipfian-exp=[0-1]\

 --report-interval=1\

 run

Equally matched performance of X-Engine and InnoDB for cold data
queries
X-Engine and InnoDB offer an equally matched QPS and transactions per second (TPS) for
processing queries to a large volume of cold data, especially archived and historical data.

The preceding figure shows a comparison of cold data query performance between InnoDB and
X-Engine.

In most of the online transactional processing (OLTP) scenarios, X-Engine and InnoDB offer
equally matched performance for processing frequent updates (oltp_update_index and
oltp_write_only) and point queries (oltp_point_select).

However, when X-Engine queries data for a specific time range or checks the uniqueness of a
single data record, its tiered storage architecture requires a scan or access to a number of
storage tiers. As a result, X-Engine processes range queries (oltp_read_only) and inserts
(OLTP_insert) at a slightly lower speed than InnoDB.

X-Engine processes data reads and writes (oltp_read_write) at the same speed as InnoDB.

Sysbench test command:

ApsaraDB for RDS AliSQL Kernel · X-Engine

> Document Version:20201014 52

#oltp_read_only

sysbench/usr/share/sysbench/oltp_read_only.lua\

 --mysql-host=[RDS instance connection string]\

 --mysql-user=sbtest\

 --mysql-password=sbtest\

 --mysql-db=sbtest\

 --time=3600\

 --tables=32\

 --threads=512\

 --table_size=10000000\

 --rand-type=uniform\

 --report-interval=1\

 run

Summary
X-Engine is a storage engine that is tailored to the cost-effectiveness requirements of ApsaraDB
RDS for MySQL. It offers performance that is comparable to InnoDB but at lower storage costs. X-
Engine has been used in a number of core businesses of Alibaba Group. These include the
DingTalk chat history database, Taobao image database, and Taobao transaction history
database.

Get started with X-Engine
If you are new to ApsaraDB RDS for MySQL, select X-Engine as the default storage engine when
you create an instance. For more information, see Create an ApsaraDB RDS for MySQL instance.

AliSQL Kernel · X-Engine ApsaraDB for RDS

53 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/26117.htm#concept-wzp-ncf-vdb

ApsaraDB for RDS provides the Thread Pool feature to maximize performance. This feature
separates threads from sessions. It allows sessions to share threads and complete more tasks
with less threads.

Benefits
By default, each session creates an exclusive thread in MySQL. If a large number of sessions are
active, they will compete for resources. In addition, your database system needs to process a
heavy workload of thread scheduling, and a large amount of data in the cache becomes invalid.
This decreases your database performance.

The thread pool of ApsaraDB for RDS grants priorities to SQL statements based on the statement
types. The thread pool also provides a concurrency control mechanism to limit the number of
connections. This ensures high database performance in the event of a large number of highly
concurrent connections. The benefits of the thread pool are as follows:

When a large number of threads are running concurrently, the thread pool automatically
limits the number of concurrent threads to a proper range. Within this range, your database
system processes a moderate workload of thread scheduling, and most of the data in the
cache remains valid.
When a large number of transactions are executed concurrently, the thread pool
automatically grants different priorities to SQL statements and transactions. Based on the
priorities, the thread pool limits the number of concurrent statements and transactions
separately. This mitigates resource competition.
The thread pool grants high priorities to SQL statements that are used to manage data and
ensures that these statements are preferentially executed. This delivers stable execution of
operations such as connection establishment, management, and monitoring even if your
database system is heavily loaded.
The thread pool grants low priorities to complicated SQL statements that are used to query
data and limits the maximum number of concurrent statements. This prevents a large number
of complicated SQL statements from exhausting resources and making the database service
unavailable.

Prerequisites
Your RDS instance is running MySQL 5.6, 5.7, or 8.0.

Use the thread pool
The following table describes the parameters of the thread pool. You can configure these
parameters in the ApsaraDB for RDS console. For more information, see Reconfigure the
parameters of an ApsaraDB RDS for MySQL instance.

Parameter Description

4.Feature
4.1. Thread Pool

ApsaraDB for RDS AliSQL Kernel · Feature

> Document Version:20201014 54

https://www.alibabacloud.com/help/doc-detail/96063.htm#concept-lfl-xmn-wdb

thread_pool_enabled

Specifies whether to enable the Thread Pool feature. Valid values:

ON

OFF

Default value: ON.

Note

You can enable or disable the Thread Pool feature only by
using this parameter. The thread_handling parameter has
phased out.

Enabling or disabling the Thread Pool feature does not require
an instance restart.

thread_pool_size The number of groups in the thread pool. Default value: 4. Threads in the
thread pool are evenly divided into groups and managed by group.

thread_pool_oversubs
cribe

The number of active threads allowed per group. Default value: 32. A
thread is active if it is executing an SQL statement. However, if the SQL
statement is in one of the following states, the thread is inactive:

The SQL statement is waiting for disk I/O.

The SQL statement is waiting for the involved transaction to be
committed.

Parameter Description

Query the status of the thread pool
Run the following command to query the status of the thread pool:

show status like "thread_pool%";

Example:

AliSQL Kernel · Feature ApsaraDB for RDS

55 > Document Version:20201014

mysql> show status like "thread_pool%";

+----------------------------+-------+

| Variable_name | Value |

+----------------------------+-------+

| thread_pool_active_threads | 1 |

| thread_pool_big_threads | 0 |

| thread_pool_dml_threads | 0 |

| thread_pool_idle_threads | 19 |

| thread_pool_qry_threads | 0 |

| thread_pool_total_threads | 20 |

| thread_pool_trx_threads | 0 |

| thread_pool_wait_threads | 0 |

+----------------------------+-------+

8 rows in set (0.00 sec)

The following table describes the parameters that describe the status of the thread pool.

Parameter Description

thread_pool_active_th
reads The number of active threads in the thread pool.

thread_pool_big_threa
ds

The number of threads that are executing complicated SQL statements in
the thread pool. Complicated SQL statements contain subqueries,
aggregate functions, and clauses such as GROUP BY and LIMIT.

thread_pool_dml_thre
ads

The number of threads that are executing data manipulation language
(DML) statements in the thread pool.

thread_pool_idle_thre
ads The number of idle threads in the thread pool.

thread_pool_qry_threa
ds

The number of threads that are executing simple SQL statements in the
thread pool.

thread_pool_total_thr
eads The total number of threads in the thread pool.

thread_pool_trx_threa
ds The number of threads that are executing transactions in the thread pool.

thread_pool_wait_thre
ads

The number of threads that are waiting for disk I/O and those that are
waiting for transactions to be committed in the thread pool.

Use SysBench to test the thread pool

ApsaraDB for RDS AliSQL Kernel · Feature

> Document Version:20201014 56

The following figures show comparisons of performance between business scenarios with the
thread pool enabled and disabled. Based on the test results, the thread pool significantly
increases your database performance in the event of a large number of highly concurrent
sessions.

Databases may be unstable because the execution plan of SQL statements is constantly
changing. Alibaba Cloud provides the statement outline feature to make stable execution plans
by using optimizer and index hints. The DBMS_OUTLN package can be installed to use the
statement outline feature.

Prerequisites
The RDS instance version is one of the following:

MySQL 8.0
MySQL 5.7

Feature design
The statement outline feature supports the following types of hints provided by MySQL 8.0.

Optimizer hint

Optimizer hints are classified by scope and object, and are divided into various types, such as
global level hint, table level hint, index level hint, and JOIN_ORDER hint. For more information,
see Optimizer Hints.

Index hint

Index hints are classified by scope and type. For more information, see Index Hints.

Introduction to the outline table
AliSQL uses a system table named outline to store hints. The instance system automatically
creates the table when the system is started. You can refer to the following statements that
create the outline table.

4.2. Statement outline

AliSQL Kernel · Feature ApsaraDB for RDS

57 > Document Version:20201014

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html
https://dev.mysql.com/doc/refman/8.0/en/index-hints.html

CREATE TABLE `mysql`.`outline` (

 `Id` bigint(20) NOT NULL AUTO_INCREMENT,

 `Schema_name` varchar(64) COLLATE utf8_bin DEFAULT NULL,

 `Digest` varchar(64) COLLATE utf8_bin NOT NULL,

 `Digest_text` longtext COLLATE utf8_bin,

 `Type` enum('IGNORE INDEX','USE INDEX','FORCE INDEX','OPTIMIZER') CHARACTER SET utf8 COLLATE utf8

_general_ci NOT NULL,

 `Scope` enum('','FOR JOIN','FOR ORDER BY','FOR GROUP BY') CHARACTER SET utf8 COLLATE utf8_general

_ci DEFAULT '',

 `State` enum('N','Y') CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL DEFAULT 'Y',

 `Position` bigint(20) NOT NULL,

 `Hint` text COLLATE utf8_bin NOT NULL,

 PRIMARY KEY (`Id`)

) /*! 50100 TABLESPACE `mysql` */ ENGINE=InnoDB

DEFAULT CHARSET=utf8 COLLATE=utf8_bin STATS_PERSISTENT=0 COMMENT='Statement outline'

The following table describes the parameters.

Parameter Description

Id The ID of the outline table.

Schema_name The name of the database.

Digest The 64-byte hash string calculated from Digest_text during the hash
calculation.

Digest_text The digest of the SQL statement.

Type
The hint type of optimizer hints is OPTIMIZER.

The hint type of index hints is USE INDEX, FORCE INDEX, or IGNORE INDEX.

Scope

This parameter is only specified for index hints. Valid values:

FOR GROUP BY

FOR ORDER BY

FOR JOIN

An empty string indicates index hints of all types.

State Specifies whether to enable the statement outline.

ApsaraDB for RDS AliSQL Kernel · Feature

> Document Version:20201014 58

Position

For optimizer hints, the Position parameter is the position of the
keyword in query blocks because all optimizer hints are applied to query
blocks. The value of Position indicates the order of the keyword that is
applied by hints. The valid values of Position starts from 1.

For index hints, the Position parameter is the position of the table. The
value of Position indicates the order of the table that is applied by hints.
The valid value starts from 1.

Hint

For optimizer hints, Hint indicates an integrated hint string, such as /*+

MAX_EXECUTION_TIME(1000) */ .

For index hints, Hint indicates a list of index names, such as ind_1,ind_2

 .

Parameter Description

Manage the statement outline
AliSQL provides six management interfaces in the DBMS_OUTLN package. They are described as
follows:

add_optimizer_outline

Adds optimizer hints. The statement is as follows:

dbms_outln.add_optimizer_outline('<Schema_name>','<Digest>','<query_block>','<hint>','<query>');

Note You can enter either of the Digest or Query SQL statements. If you enter the
query statement, DBMS_OUTLN calculates the values of Digest and Digest_text.

Example:

CALL DBMS_OUTLN.add_optimizer_outline("outline_db", '', 1, '/*+ MAX_EXECUTION_TIME(1000) */',

 "select * from t1 where id = 1");

add_index_outline

Adds index hints. The statement is as follows:

dbms_outln.add_index_outline('<Schema_name>','<Digest>',<Position>,'<Type>','<Hint>','<Scope>','<

Query>');

Note You can enter either of the Digest or Query SQL statements. If you enter the
query statement, DBMS_OUTLN calculates the values of Digest and Digest_text.

Example:

call dbms_outln.add_index_outline('outline_db', '', 1, 'USE INDEX', 'ind_1', '',

 "select * from t1 where t1.col1 =1 and t1.col2 ='xpchild'");

AliSQL Kernel · Feature ApsaraDB for RDS

59 > Document Version:20201014

preview_outline

Queries the status of the SQL statement matching the statement outline, which can be used
for manual verification. The statement is as follows:

dbms_outln.preview_outline('<Schema_name>','<Query>');

Example:

mysql> call dbms_outln.preview_outline('outline_db', "select * from t1 where t1.col1 =1 and t1.col2 ='x

pchild'");

+------------+--+------------+------------+-------+-

--------------------+

| SCHEMA | DIGEST | BLOCK_TYPE | BLOCK_NAME | BLOCK | HINT

|

+------------+--+------------+------------+-------+-

--------------------+

| outline_db | b4369611be7ab2d27c85897632576a04bc08f50b928a1d735b62d0a140628c4c | TABLE | t

1 | 1 | USE INDEX (`ind_1`) |

+------------+--+------------+------------+-------+-

--------------------+

1 row in set (0.00 sec)

show_outline

Displays the in-memory hit rate of the statement outline. The statement is as follows:

dbms_outln.show_outline();

Example:

ApsaraDB for RDS AliSQL Kernel · Feature

> Document Version:20201014 60

mysql> call dbms_outln.show_outline();

+------+------------+--+-----------+-------+------+

---+------+----------+---

--+

| ID | SCHEMA | DIGEST | TYPE | SCOPE | POS | HINT

| HIT | OVERFLOW | DIGEST_TEXT |

+------+------------+--+-----------+-------+------+

---+------+----------+---

--+

| 33 | outline_db | 36bebc61fce7e32b93926aec3fdd790dad5d895107e2d8d3848d1c60b74bcde6 | OPTIM

IZER | | 1 | /*+ SET_VAR(foreign_key_checks=OFF) */ | 1 | 0 | SELECT * FROM `t1` WH

ERE `id` = ? |

| 32 | outline_db | 36bebc61fce7e32b93926aec3fdd790dad5d895107e2d8d3848d1c60b74bcde6 | OPTIM

IZER | | 1 | /*+ MAX_EXECUTION_TIME(1000) */ | 2 | 0 | SELECT * FROM `t1` WHER

E `id` = ? |

| 34 | outline_db | d4dcef634a4a664518e5fb8a21c6ce9b79fccb44b773e86431eb67840975b649 | OPTIMI

ZER | | 1 | /*+ BNL(t1,t2) */ | 1 | 0 | SELECT `t1` . `id` , `t2` . `id` FROM `t1

` , `t2` |

| 35 | outline_db | 5a726a609b6fbfb76bb8f9d2a24af913a2b9d07f015f2ee1f6f2d12dfad72e6f | OPTIMIZ

ER | | 2 | /*+ QB_NAME(subq1) */ | 2 | 0 | SELECT * FROM `t1` WHERE `t1` . `

col1` IN (SELECT `col1` FROM `t2`) |

| 36 | outline_db | 5a726a609b6fbfb76bb8f9d2a24af913a2b9d07f015f2ee1f6f2d12dfad72e6f | OPTIMIZ

ER | | 1 | /*+ SEMIJOIN(@subq1 MATERIALIZATION, DUPSWEEDOUT) */ | 2 | 0 | SELECT * FROM

`t1` WHERE `t1` . `col1` IN (SELECT `col1` FROM `t2`) |

| 30 | outline_db | b4369611be7ab2d27c85897632576a04bc08f50b928a1d735b62d0a140628c4c | USE IN

DEX | | 1 | ind_1 | 3 | 0 | SELECT * FROM `t1` WHERE `t1` . `col1` =

? AND `t1` . `col2` = ? |

| 31 | outline_db | 33c71541754093f78a1f2108795cfb45f8b15ec5d6bff76884f4461fb7f33419 | USE INDEX

| | 2 | ind_2 | 1 | 0 | SELECT * FROM `t1` , `t2` WHERE `t1` . `col1` =

`t2` . `col1` AND `t2` . `col2` = ? |

+------+------------+--+-----------+-------+------+

---+------+----------+---

--+

7 rows in set (0.00 sec)

The following table describes the HIT and OVERFLOW parameters.

Parameter Description

HIT The number of times that the statement outline finds the destination
query block or table.

AliSQL Kernel · Feature ApsaraDB for RDS

61 > Document Version:20201014

OVERFLOW The number of times that the statement outline does not find the
destination query block or table.

Parameter Description

del_outline

Deletes a statement outline from the memory and the table. The statement is as follows:

dbms_outln.del_outline(<Id>);

Example:

mysql> call dbms_outln.del_outline(32);

Note If the statement outline that you want to delete does not exist, the system
displays a corresponding error. You can execute the SHOW WARNINGS; statement to view
the error message.

mysql> call dbms_outln.del_outline(1000);

Query OK, 0 rows affected, 2 warnings (0.00 sec)

mysql> show warnings;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 7521 | Statement outline 1000 is not found in table |

| Warning | 7521 | Statement outline 1000 is not found in cache |

+---------+------+--+

2 rows in set (0.00 sec)

flush_outline

If you modify the statement outline in the outline table, you need to execute the following
statement so that the statement outline takes effect again. The statement is as follows:

dbms_outln.flush_outline();

Example:

mysql> update mysql.outline set Position = 1 where Id = 18;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> call dbms_outln.flush_outline();

Query OK, 0 rows affected (0.01 sec)

ApsaraDB for RDS AliSQL Kernel · Feature

> Document Version:20201014 62

Feature test
There are two methods to verify whether the statement outline takes effect.

Use the preview_outline interface.

mysql> call dbms_outln.preview_outline('outline_db', "select * from t1 where t1.col1 =1 and t1.col2 ='x

pchild'");

+------------+--+------------+------------+-------+-

--------------------+

| SCHEMA | DIGEST | BLOCK_TYPE | BLOCK_NAME | BLOCK | HINT

|

+------------+--+------------+------------+-------+-

--------------------+

| outline_db | b4369611be7ab2d27c85897632576a04bc08f50b928a1d735b62d0a140628c4c | TABLE | t

1 | 1 | USE INDEX (`ind_1`) |

+------------+--+------------+------------+-------+-

--------------------+

1 row in set (0.01 sec)

Execute the EXPLAIN statement.

AliSQL Kernel · Feature ApsaraDB for RDS

63 > Document Version:20201014

mysql> explain select * from t1 where t1.col1 =1 and t1.col2 ='xpchild';

+----+-------------+-------+------------+------+---------------+-------+---------+-------+------+----------+-----

--------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

|

+----+-------------+-------+------------+------+---------------+-------+---------+-------+------+----------+-----

--------+

| 1 | SIMPLE | t1 | NULL | ref | ind_1 | ind_1 | 5 | const | 1 | 100.00 | Using where |

+----+-------------+-------+------------+------+---------------+-------+---------+-------+------+----------+-----

--------+

1 row in set, 1 warning (0.00 sec)

mysql> show warnings;

+-------+------+---

-----------------------------+

| Level | Code | Message

|

+-------+------+---

-----------------------------+

| Note | 1003 | /* select#1 */ select `outline_db`.`t1`.`id` AS `id`,`outline_db`.`t1`.`col1` AS `col1`,`outl

ine_db`.`t1`.`col2` AS `col2` from `outline_db`.`t1` USE INDEX (`ind_1`) where ((`outline_db`.`t1`.`col1

` = 1) and (`outline_db`.`t1`.`col2` = 'xpchild')) |

+-------+------+---

-----------------------------+

1 row in set (0.00 sec)

AliSQL provides the Sequence Engine feature. This feature allows you to use a Sequence engine
on your ApsaraDB for RDS instance to simplify the generation of sequence values.

Introduction
Unique, monotonically increasing sequence values are commonly required for the primary keys
in a single-node persistent database system, for the globally unique identifiers (GUIDs) in a
distributed persistent database system, and for the idempotence among multiple persistent
database systems. Each database system may have its unique way to ensure unique sequence
values. For example, MySQL provides the AUTO_INCREMENT attribute, and Oracle and SQL Server
provide the SEQUENCE attribute.

4.3. Sequence Engine

ApsaraDB for RDS AliSQL Kernel · Feature

> Document Version:20201014 64

However, in MySQL databases, it is inconvenient to encapsulate unique sequence values such as
dates or user names by using the AUTO_INCREMENT attribute. To make the generation of unique
sequence values easier, the following alternative solutions are provided:

Use an application or a proxy to generate sequence values. However, in this case, the states
of the sequence values are sent to the application. This makes scaling more complicated.
Use a simulated table to generate sequence values. However, middleware must be provided
to encapsulate and simplify the logic that is used to obtain the generated sequence values.

A Sequence engine is compatible with various database engines and simplifies the generation of
sequence values.

A Sequence engine is compatible with various storage engines used with MySQL. However, the
underlying persistent data is still stored by using existing storage engines such as InnoDB and
MyISAM. This ensures compatibility with third-party tools such as XtraBackup. Therefore, a
Sequence engine is merely a logical engine.

A Sequence engine uses Sequence Handler to access sequence objects. This allows you to
increase the value of a sequence by using the NEXTVAL operator and manage the cached data.
The data is passed to the underlying base table engine to support data access.

Prerequisites
Your RDS instance is running one of the following database engine versions:

MySQL 5.6
MySQL 8.0

Limits
You cannot perform subqueries or JOIN queries in a Sequence engine.

You can use the SHOW CREATE TABLE or SHOW CREATE SEQUENCE statement to access a
sequence. However, you cannot use the SHOW CREATE SEQUENCE statement to access a
regular table.
You cannot specify a Sequence engine during table creation. If you want to specify a
Sequence engine for a table, you must execute the statement described in the "Create a
sequence" section.

Create a sequence
To create a sequence, execute the following statement:

CREATE SEQUENCE [IF NOT EXISTS] schema.sequence_name

 [START WITH <constant>]

 [MINVALUE <constant>]

 [MAXVALUE <constant>]

 [INCREMENT BY <constant>]

 [CACHE <constant> | NOCACHE]

 [CYCLE | NOCYCLE]

 ;

AliSQL Kernel · Feature ApsaraDB for RDS

65 > Document Version:20201014

The following table describes the parameters that you need to configure.

Parameter Description

START The start value of the sequence.

MINVALUE The minimum value of the sequence.

MAXVALUE

The maximum value of the sequence.

Note If the sequence is specified as NOCYCLE, the following error
is reported when the maximum value is reached:

ERROR HY000: Sequence 'db.seq' has been run out.

INCREMENT BY The increment at which the value of the sequence increases.

CACHE/NOCACHE
The size of the cache. You can set a larger cache size for better
performance. However, if your RDS instance is restarted, sequence values
stored in the cache will be lost.

CYCLE/NOCYCLE

Specifies whether the value of the sequence restarts from the specified
MINVALUE after reaching the maximum value. Valid values:

CYCLE: The value of the sequence will restart from the specified
MINVALUE after reaching the maximum value.

NOCYCLE: The value of the sequence will not restart from the specified
MINVALUE after reaching the maximum value.

Example:

create sequence s

 start with 1

 minvalue 1

 maxvalue 9999999

 increment by 1

 cache 20

 cycle;

If you want to use the mysqldump program to back up your RDS instance, you can create a
sequence table and insert an initial row into the sequence table. Example:

ApsaraDB for RDS AliSQL Kernel · Feature

> Document Version:20201014 66

CREATE SEQUENCE schema.sequence_name (

 `currval` bigint(21) NOT NULL COMMENT 'current value',

 `nextval` bigint(21) NOT NULL COMMENT 'next value',

 `minvalue` bigint(21) NOT NULL COMMENT 'min value',

 `maxvalue` bigint(21) NOT NULL COMMENT 'max value',

 `start` bigint(21) NOT NULL COMMENT 'start value',

 `increment` bigint(21) NOT NULL COMMENT 'increment value',

 `cache` bigint(21) NOT NULL COMMENT 'cache size',

 `cycle` bigint(21) NOT NULL COMMENT 'cycle state',

 `round` bigint(21) NOT NULL COMMENT 'already how many round'

) ENGINE=InnoDB DEFAULT CHARSET=latin1

INSERT INTO schema.sequence_name VALUES(0,0,1,9223372036854775807,1,1,10000,1,0);

COMMIT;

Introduction to sequence tables
Sequences are stored in the tables that are created based on the default storage engine. If you
query the sequences that you created, the system returns the tables that are created based on
the default storage engine. Example:

SHOW CREATE [TABLE|SEQUENCE] schema.sequence_name;

CREATE SEQUENCE schema.sequence_name (

 `currval` bigint(21) NOT NULL COMMENT 'current value',

 `nextval` bigint(21) NOT NULL COMMENT 'next value',

 `minvalue` bigint(21) NOT NULL COMMENT 'min value',

 `maxvalue` bigint(21) NOT NULL COMMENT 'max value',

 `start` bigint(21) NOT NULL COMMENT 'start value',

 `increment` bigint(21) NOT NULL COMMENT 'increment value',

 `cache` bigint(21) NOT NULL COMMENT 'cache size',

 `cycle` bigint(21) NOT NULL COMMENT 'cycle state',

 `round` bigint(21) NOT NULL COMMENT 'already how many round'

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Statements supported
A Sequence engine supports the following statements:

 SELECT [nextval | currval | *] FROM seq;

 SELECT nextval(seq),currval(seq);

 SELECT seq.currval, seq.nextval from dual;

AliSQL Kernel · Feature ApsaraDB for RDS

67 > Document Version:20201014

This topic describes the Returning feature of AliSQL. This feature enables data manipulation
language (DML) statements to return result sets and provides the DBMS_TRANS package for you
to track the execution of DML statements.

Context
The execution results of MySQL statements are divided into three types: result sets, OK packets,
and ERR packets. An OK or ERR packet contains attributes such as the number of affected and
the number of scanned records. However, the execution of a DML statement (INSERT, UPDATE, or
DELETE) is often followed by the execution of the SELECT statement to query current records. In
such cases, the Returning feature enables the server to respond to the client only once by
combining the execution results of the two statements into a result set.

Prerequisites
Your RDS instance is running MySQL 8.0.

Syntax

DBMS_TRANS.returning(<Field_list>,<Statement>);

The following table describes the parameters that you need to configure.

Parameter Description

Field_list

The fields to return. If you enter more than one field, separate them with
commas (,). Native fields and wildcards (*) in the specified table are
supported. However, operations such as calculation and aggregation are
not supported.

Statement The DML statement to execute. Only the INSERT, UPDATE, and DELETE
statements are supported.

Precautions
 dbms_trans.returning() is not a transactional statement. It inherits the context of the specified

transaction based on the DML statement that you want to execute. To terminate the
transaction, you must explicitly commit it or roll it back.

INSERT Returning
The server returns the records that were inserted into the specified table by using the INSERT
statement.

Example:

4.4. Returning

ApsaraDB for RDS AliSQL Kernel · Feature

> Document Version:20201014 68

CREATE TABLE `t` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `col1` int(11) NOT NULL DEFAULT '1',

 `col2` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB;

mysql> call dbms_trans.returning("*", "insert into t(id) values(NULL),(NULL)");

+----+------+---------------------+

| id | col1 | col2 |

+----+------+---------------------+

| 1 | 1 | 2019-09-03 10:39:05 |

| 2 | 1 | 2019-09-03 10:39:05 |

+----+------+---------------------+

2 rows in set (0.01 sec)

Note
If you do not specify the Field_list parameter, the server returns an OK or ERR packet.

mysql> call dbms_trans.returning("", "insert into t(id) values(NULL),(NULL)");

Query OK, 2 rows affected (0.01 sec)

Records: 2 Duplicates: 0 Warnings: 0

mysql> select * from t;

+----+------+---------------------+

| id | col1 | col2 |

+----+------+---------------------+

| 1 | 1 | 2019-09-03 10:40:55 |

| 2 | 1 | 2019-09-03 10:40:55 |

| 3 | 1 | 2019-09-03 10:41:06 |

| 4 | 1 | 2019-09-03 10:41:06 |

+----+------+---------------------+

4 rows in set (0.00 sec)

The Returning feature only supports statements that are similar to INSERT VALUES . It
does not support statements such as CREATE AS and INSERT SELECT .

mysql> call dbms_trans.returning("", "insert into t select * from t");

ERROR 7527 (HY000): Statement didn't support RETURNING clause

AliSQL Kernel · Feature ApsaraDB for RDS

69 > Document Version:20201014

UPDATE Returning
The server returns the records that were updated in the specified table by the using UPDATE
statement.

Example:

mysql> call dbms_trans.returning("id, col1, col2", "update t set col1 = 2 where id >2");

+----+------+---------------------+

| id | col1 | col2 |

+----+------+---------------------+

| 3 | 2 | 2019-09-03 10:41:06 |

| 4 | 2 | 2019-09-03 10:41:06 |

+----+------+---------------------+

2 rows in set (0.01 sec)

Note The Returning feature does not allow the UPDATE statement to be executed on
more than one table.

DELETE Returning
The server returns the records that were deleted from the specified table by using the DELETE
statement.

Example:

mysql> call dbms_trans.returning("id, col1, col2", "delete from t where id < 3");

+----+------+---------------------+

| id | col1 | col2 |

+----+------+---------------------+

| 1 | 1 | 2019-09-03 10:40:55 |

| 2 | 1 | 2019-09-03 10:40:55 |

+----+------+---------------------+

2 rows in set (0.00 sec)

ApsaraDB for RDS AliSQL Kernel · Feature

> Document Version:20201014 70

The fast query cache is a query cache that is developed by the Database Products Business Unit
of Alibaba Cloud based on the native MySQL query cache. It uses a new design and
implementation mechanism to increase the query performance of your ApsaraDB for RDS
instance.

Prerequisites
Your RDS instance runs MySQL 5.7 (with a kernel version of 20200331 or later).

Background information
A query cache is a cache policy that allows you to expedite queries by saving CPU resources. It
stores the text of each qualified statement with the result set that was returned. If an identical
statement is received at a later time, the database server directly retrieves the result set from
the query cache. This eliminates the need to analyze, optimize, and execute the statement
again.

However, the native MySQL query cache has the following drawbacks in terms of design and
implementation:

It cannot process a large number of concurrent queries at fast speeds. This speed is further
reduced if multiple CPU cores are configured.
It cannot utilize memory resources properly or reclaim memory resources in a timely manner.
This results in a waste of memory resources and low memory usage.
If the cache hit ratio is low, query performance does not increase and may even decrease.

Therefore, the native MySQL query cache is not widely used. This technology is no longer
provided in the latest version of MySQL 8.0. In contrast, the fast query cache has the following
benefits:

Optimized concurrency control

The global locking mechanism that is used in the native MySQL query cache to synchronize the
running of threads is removed. The fast query cache uses a new synchronization mechanism.
This mechanism allows you to fully utilize the capability of multiple CPU cores and process a
large number of concurrent queries at fast speeds.

Optimized memory management

The memory preallocation mechanism used in the native MySQL query cache is removed. The
fast query cache uses a dynamic memory allocation mechanism that is more flexible. This
mechanism allows you to reclaim invalid memory resources in a timely manner and increase
the utilization of memory resources.

Optimized caching

The fast query cache detects cache usage dynamically and adjusts the cache policy in real
time. This allows you to ensure stable query performance if the cache hit ratio is low or your
RDS instance is used to process both read and write requests.

Unlike the native MySQL query cache, the fast query cache can be used in a wide range of
business scenarios to increase query performance.

5.Performance
5.1. Fast query cache

AliSQL Kernel · Performance ApsaraDB for RDS

71 > Document Version:20201014

Enable the fast query cache
For better query performance, you can reduce the memory space for the InnoDB buffer pool.
However, we recommend that you increase the memory space for the fast query cache. The fast
query cache is in the test invitation phase. If you are interested, submit a ticket.

Compare the performance of the native MySQL query cache and the fast
query cache
For the following example, compare the queries per second (QPS) with different query cache
configurations under the same conditions in various test cases. These query cache
configurations are QC-OFF (no query cache is enabled), MySQL-QC (the native MySQL query
cache is enabled), and RDS-QC (the fast query cache is enabled).

Test environment: a dedicated RDS instance with 4 CPU cores and 8 GB of memory
Test tool: SysBench
Test data volume: 250 MB (25 tables in total, 40,000 records per table)

Test case 1: Test the QPS for read-only queries with a cache hit ratio higher than 99%.

The oltp_point_select script is used. Execute only primary key-based POINT SELECT
statements. In addition, set the query cache size to 512 MB. This size is greater than the test
data volume. It allows the cache hit ratio to reach more than 99%. In this test case, focus on
how much the QPS increases based on the number of concurrent queries.

QPS for read-only queries with a cache hit ratio higher than 99%

Number
of
concurr
ent
queries

QC-OFF MySQL-QC (QPS increase
compared with QC-OFF)

RDS-QC (QPS increase
compared with QC-OFF)

1 7,947 8,771 (10.38%) 9,196 (15.72%)

8 61,685 65,686 (6.49%) 74,603 (20.94%)

16 102,800 73,027 (-28.96%) 141,856 (37.99%)

32 102,222 60,567 (-40.75%) 199,209 (94.88%)

64 110,230 60,216 (-45.37%) 218,456 (98.18%)

128 111,274 62,844 (-43.52%) 223,885 (101.20%)

256 109,978 63,832 (-41.96%) 218,692 (98.85%)

512 107,379 64,866 (-39.59%) 211,062 (96.56%)

1,024 102,610 62,291 (-39.29%) 198,787 (93.73%)

ApsaraDB for RDS AliSQL Kernel · Performance

> Document Version:20201014 72

https://workorder-intl.console.aliyun.com/#/ticket/createIndex

Note Based on the test result, as the number of concurrent queries increases, the
QPS of the native MySQL query cache sharply decreases. However, the QPS of the fast
query cache remains stable and can even increase by up to 100%.

Test case 2: Test the QPS for read-only queries with a cache hit ratio higher than 80%.

The oltp_read_only script is used. Run queries including range queries that each return more
than one record. In addition, set the query cache size to 512 MB. This size ensures sufficient
memory capacity and allows the cache hit ratio to reach more than 80%. In this test case,
focus on how much the QPS increases based on the number of concurrent queries.

QPS for read-only queries with a cache hit ratio higher than 80%

Number
of
concurr
ent
queries

QC-OFF MySQL-QC (QPS increase
compared with QC-OFF)

RDS-QC (QPS increase
compared with QC-OFF)

1 4,944 6,467 (30.82%) 6,860 (38.77%)

8 28,195 28,651 (1.62%) 42,720 (51.52%)

16 35,292 31,099 (-11.88%) 63,227 (79.15%)

32 34,067 27,610 (-18.95%) 63,133 (85.32%)

64 35,706 27,518 (-22.93%) 70,556 (97.61%)

128 36,303 27,733 (-23.61%) 74,146 (104.24%)

256 36,386 27,738 (-23.77%) 75,550 (107.64%)

512 36,083 27,398 (-24.07%) 74,317 (105.96%)

1,024 35,077 26,861 (-23.42%) 71,205 (103.00%)

Note Based on the test result, as the number of concurrent queries increases, the
QPS of the native MySQL query cache significantly decreases. However, the QPS of the fast
query cache can increase by up to 100%.

Test case 3: Test the QPS for read-only queries with a cache hit ratio of about 10%

The oltp_read_only script is used. Run queries including range queries that each return more
than one record. In addition, set the query cache size to 16 MB. This size results in insufficient
memory capacity and deletion of cached data and allows the cache hit ratio to drop to about
10%. In this test case, focus on how much the QPS decreases based on the number of
concurrent queries.

QPS for read-only queries with a cache hit ratio of about 10%

AliSQL Kernel · Performance ApsaraDB for RDS

73 > Document Version:20201014

Number
of
concurr
ent
queries

QC-OFF MySQL-QC (QPS increase
compared with QC-OFF)

RDS-QC (QPS increase
compared with QC-OFF)

1 4,944 4,727 (-4.38%) 4,917 (-0.54%)

8 28,195 22,542 (-20.05%) 27,897 (-1.06%)

16 35,292 24,064 (-31.81%) 34,625 (-1.89%)

32 34,067 21,330 (-37.39%) 33,592 (-1.39%)

64 35,706 19,791 (-44.57%) 35,571 (-0.38%)

128 36,303 19,519 (-46.23%) 36,055 (-0.68%)

256 36,386 19,168 (-47.32%) 36,243 (-0.39%)

512 36,083 18,420 (-48.95%) 35,679 (-1.12%)

1,024 35,077 20,168 (-42.50%) 34,595 (-1.37%)

Note Based on the test result, as the number of concurrent queries increases, the
QPS of the native MySQL query cache significantly decreases by up to 50%. However, the
fast query cache allows you to ensure that the QPS decrease is within 2%.

Test case 4: Test the QPS for read/write queries.

The oltp_read_write script is used. Run transactions that each perform updates on tables.
These frequent updates result in deletion of data from the query cache, and consequently the
query cache is considered invalid. In this test case, focus on how much the QPS decreases
based on the number of concurrent queries.

QPS for read/write queries

Number of
concurrent
queries

QC-OFF RDS-QC (QPS increase compared with
QC-OFF)

1 4,188 4,199 (0.27%)

8 21,587 21,263 (-1.50%)

16 26,224 25,956 (-1.02%)

32 27,887 27,741 (-0.52%)

64 29,852 29,426 (-1.43%)

ApsaraDB for RDS AliSQL Kernel · Performance

> Document Version:20201014 74

128 30,024 29,724 (-1.00%)

256 29,835 29,615 (-0.74%)

512 29,525 29,683 (0.54%)

1,024 29,905 29,512 (-1.31%)

Number of
concurrent
queries

QC-OFF RDS-QC (QPS increase compared with
QC-OFF)

Note Based on the test result, as the number of concurrent queries increases, the
fast query cache allows you to ensure that the QPS decrease is within 2%.

Practice guidelines
Assume that you can determine the size of the data sets that need to be cached. For example,
you enable a query cache on a specified table by using the SQL_CACHE option. In this situation,
you can evaluate the QPS by using the preceding test cases. A few more tips on using the fast
query cache are as follows:

Enable the fast query cache in various scenarios
The fast query cache aims to increase the QPS for read queries. We recommend that you
enable the fast query cache if your RDS instance processes a large number of read queries
but a small number of write queries. Otherwise, we recommend that you enable the fast
query cache only for tables that are frequently read but to which data is infrequently
written. You can enable the fast query cache for a specified table by using the SQL_CACHE
option. If your RDS instance processes a small number of read queries but a large number of
write queries, the data of your RDS instance is frequently updated. In this situation, if you
enable the fast query cache, the QPS may decrease by up to 2%.
The QPS increase produced by the fast query cache varies based on the cache hit ratio.
Before you enable the fast query cache for your RDS instance, we recommend that you
obtain the hit ratio of the InnoDB buffer pool. If the hit ratio is lower than 80%, we
recommend that you do not enable the fast query cache. The hit ratio of the InnoDB buffer
pool is calculated by using the following formula: Hit ratio = (1 - The value of the
Innodb_buffer_pool_reads parameter/The value of the Innodb_buffer_pool_read_requests
parameter) x 100%. You can also obtain the read/write ratio of each table from the
TABLE_STATISTICS table. If a table has a high read/write ratio, enable the fast query cache
for the table by using the SQL_CACHE option. For more information about how to query the
TABLE_STATISTICS table, see Performance Insight.

Manage the fast query cache by using the query_cache_type parameter

The fast query cache is managed by using the same method as the native MySQL query cache.
You can manage the fast query cache by using the query_cache_type parameter.

AliSQL Kernel · Performance ApsaraDB for RDS

75 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/132200.htm#task-1909611

Parameter Value Description

query_cache_typ
e

OFF Disables the fast query cache. This is the default value.

ON
Enables the fast query cache. However, you can use the
SQL_NO_CACHE option to specify that your RDS instance
does not retrieve result sets from the fast query cache.

DEMAND Disables the fast query cache. However, you can enable
the fast query cache later by using the SQL_CACHE option.

You can set the query_cache_type parameter for a specific session based on your business
scenario.

If your RDS instance processes a small number of read queries but a large number of write
queries, the data of your RDS instance is frequently updated. In this situation, set the
query_cache_type parameter to OFF for your RDS instance.
If your RDS instance features a small volume of data, fixed query types, and high hit ratio,
set the query_cache_type parameter to ON for your RDS instance.
If your RDS instance features a large data volume, changing query types, and unstable hit
ratio, set the query_cache_type parameter to DEMAND for your RDS instance. You can
enable the fast query cache only for a specific statement by using the SQL_CACHE option.

Specify a proper query cache size by using the query_cache_size parameter

The query_cache_size parameter determines SQL statement execution efficiency. If you want
to cache the results of queries that each return more than one record, you may need to
specify a query cache size that is many times larger than the data volume. If you do not run
range queries, you can evaluate the relationship between the data volume and the
query_cache_size parameter as follows:

Test environment: a dedicated RDS instance with 4 CPU cores and 8 GB of memory (The size
of the InnoDB buffer pool is set to 6 GB by using the innodb_buffer_pool_size parameter.)
Test tool: SysBench
Test data volume: 10 GB (100 tables in total, 400,000 records per table)

Test case: Specify different cache sizes by using the query_cache_size parameter and execute
the oltp_point_select script for each cache size. Make sure that 64 threads run concurrently to
query data. In this case, hot data accounts for 20%. This way, you can obtain the impacts of
different cache sizes on the QPS. The actual result set is 2.5 GB in size.

QPS with different cache sizes

query_cache_siz
e (MB) QC-OFF RDS-QC hit ratio RDS-QC (QPS increase compared with

QC-OFF)

128 104,473 45% 110,483 (5.75%)

256 104,473 72% 128,297 (22.80%)

512 104,473 82% 137,153 (31.28%)

1024 104,473 84% 133,624 (27.90%)

ApsaraDB for RDS AliSQL Kernel · Performance

> Document Version:20201014 76

2048 104,473 87% 125,766 (20.38%)

query_cache_siz
e (MB) QC-OFF RDS-QC hit ratio RDS-QC (QPS increase compared with

QC-OFF)

When you set the query_cache_size parameter, note the following information:

If you can determine the result set size, set the query_cache_size parameter to a value that
is 20% of the result set size .

If you cannot determine the result set size, set the query_cache_size parameter to a value
that is 20% of the value of the innodb_buffer_pool_size parameter .

The memory capacity of your RDS instance is limited. We recommend that you properly
adjust the values of the query_cache_size and innodb_buffer_pool_size parameters at the
same time. This allows you to refrain from exhausting the memory capacity that is allowed.

The Binlog in Redo function synchronously writes binary logs to the redo log file when a
transaction is committed. This reduces operations on disks and improves database performance.

Prerequisites
Your RDS instance runs MySQL 8.0 (with a kernel version of 20200430 or later).

Context
To ensure data security in crucial MySQL business scenarios, the system stores both binary and
redo logs when a transaction is committed. Both the following parameters must be set to 1:

sync_binlog = 1;

innodb_flush_log_at_trx_commit = 1;

Each time a transaction is committed, the system performs two I/O operations. One is to write
the binary logs to disks, and the other is to write the redo logs to disks. Although Group Commit
is enabled for binary logs, the system must still wait for the two I/O operations to complete. This
affects the efficiency of transaction processing, especially when standard or enhanced SSDs are
used. The performance of I/O merging is based on the number of concurrent transactions that
are committed at the same time. When the number of concurrent transactions is small, the
performance is low. For example, when a small number of write transactions are committed, the
system response is slow.

5.2. Binlog in Redo

AliSQL Kernel · Performance ApsaraDB for RDS

77 > Document Version:20201014

To increase the efficiency of committing transactions, AliSQL provides the Binlog in Redo
function. You can enable the function by setting the persist_binlog_to_redo parameter to on.
When a transaction is committed, the system synchronously writes binary logs to the redo log
file and stores only the redo log file to disks. This reduces I/O consumption. The binary log files
are then asynchronously stored to disks by using a separate thread at regular intervals. If a
restart operation is triggered upon an exception, the system uses the binary logs in the redo log
file to complement the binary log files. In this way, the database performance improves and the
system response is faster. Also, the number of times that the binary log files are stored is
reduced. This significantly relieves the pressure on the file system while increasing performance.
This pressure can be resulted from the calls of the fsync functions that are triggered by file
updates in real time. The fsync function synchronizes files to disks.

Binlog in Redo does not change the format of binary logs. Replication and third-party tools that
are based on binary logs are not affected.

Parameters
persist_binlog_to_redo

The switch that is used to enable or disable the Binlog in Redo function. This parameter is a
global system variable. Valid values: on and off. The parameter change immediately takes
effect. You do not need to restart your RDS instance.

Note If you want to enable Binlog in Redo, you only need to set the persist_binlog_to

_redo parameter to on. You do not need to modify the settings of other parameters. The
setting sync_binlog = 1 automatically becomes invalid.

sync_binlog_interval

The interval at which binary logs are asynchronously stored. This parameter is a global system
variable. It takes effect only when the persist_binlog_to_redo parameter is set to on. Default
value: 50. Unit: milliseconds (ms). In normal cases, the default value is recommended. The
parameter change immediately takes effect. You do not need to restart your RDS instance.

Stress testing
Test environment

Application server: an Alibaba Cloud ECS instance
RDS instance type: 32 CPU cores, 64 GB of memory, and enhanced SSDs
RDS edition: High-availability Edition with asynchronous data replication

Test cases

Sysbench provides the following test cases:

oltp_update_non_index
oltp_insert
oltp_write_only

Test results

ApsaraDB for RDS AliSQL Kernel · Performance

> Document Version:20201014 78

oltp_update_non_index

After Binlog in Redo is enabled, the queries per second (QPS) significantly increases and the
latency is low when the number of concurrent queries is small.

oltp_insert

After Binlog in Redo is enabled, the QPS significantly increases and the latency is low when
the number of concurrent queries is small.

oltp_write_only

After Binlog in Redo is enabled, the QPS slightly increases and the latency is low when the
number of concurrent queries is small.

Number of times that the fsync function is called for binary logs

After Binlog in Redo is enabled, the number of times is significantly reduced.

Test conclusion
oltp_update_non_index and oltp_insert test single-statement transactions, and the
transactions are committed on a frequent basis. oltp_write_only tests multi-statement
transactions, and the transactions are committed on a less frequent basis. This type of
transaction contains two UPDATE statements, one DELETE statement, and one INSERT
statement. Performance improvement in oltp_update_non_index and oltp_insert is more
notable than that in oltp_write_only.
When the number of concurrent transactions is less than 256, Binlog in Redo significantly
improves database performance and reduces latency. In most scenarios, Binlog in Redo
provides significant benefits.
Binlog in Redo significantly reduces the number of times that the fsync function is called for
binary logs. This improves the performance of the file system.

The Statement Queue feature of AliSQL allows statements to queue in the same bucket. These
statements may be executed on the same resources. For example, these statements are
executed on the same row of a table. This reduces overheads from possible conflicts.

Context

5.3. Statement Queue

AliSQL Kernel · Performance ApsaraDB for RDS

79 > Document Version:20201014

During the execution of concurrent statements, the MySQL server and engine are likely to
conflict with each other in a number of serial operations. Take transactional lock conflicts
triggered by data manipulation language (DML) statements as an example. The InnoDB storage
engine supports resource locking accurate to rows. If you execute a number of DML statements
concurrently on a row, serious conflicts may occur. The overall throughput of your database
system decreases in proportion with the number of concurrent statements. The Statement
Queue feature reduces overheads from these conflicts and increases the performance of your
database system.

Prerequisites
The RDS instance version is one of the following:

MySQL 8.0
MySQL 5.7

Benefits
AliSQL executes UPDATE statements concurrently on a single row four times faster than native
MySQL.

Variables
AliSQL provides two variables that are used to define the bucket quantity and size of a
statement queue:

ccl_queue_bucket_count: the number of buckets allowed in the statement queue. Valid
values: 1 to 64. Default value: 4.
ccl_queue_bucket_size: the number of concurrent statements allowed per bucket. Valid
values: 1 to 4096. Default value: 64.

Note You can reconfigure the variables in the ApsaraDB for RDS console. For more
information, see Reconfigure the parameters of an ApsaraDB RDS for MySQL instance.

Syntaxes
AliSQL supports two hint syntaxes:

ccl_queue_value

AliSQL uses a hash algorithm to determine the bucket into which each statement is placed
based on the value of a specified field.

Syntax:

/*+ ccl_queue_value([int | string)] */

Example:

update /*+ ccl_queue_value(1) */ t set c=c+1 where id = 1;

update /*+ ccl_queue_value('xpchild') */ t set c=c+1 where name = 'xpchild';

ccl_queue_field

ApsaraDB for RDS AliSQL Kernel · Performance

> Document Version:20201014 80

https://www.alibabacloud.com/help/doc-detail/96063.htm#concept-lfl-xmn-wdb

AliSQL uses a hash algorithm to determine the bucket into which each statement is placed
based on the value of the field that is specified in the WHERE clause.

Syntax:

/*+ ccl_queue_field(string) */

Example:

update /*+ ccl_queue_field("id") */ t set c=c+1 where id = 1 and name = 'xpchild';

Note In the ccl_queue_field hint, the WHERE clause only supports binary operators on
raw fields. These raw fields have not been altered by using functions or computation
operations. In addition, the right operand of such a binary operator must be a number or
string.

Functions
AliSQL provides two functions that are used to query the status of a statement queue:

dbms_ccl.show_ccl_queue()

This function is used to query the status of the current statement queue.

mysql> call dbms_ccl.show_ccl_queue();

+------+-------+-------------------+---------+---------+----------+

| ID | TYPE | CONCURRENCY_COUNT | MATCHED | RUNNING | WAITTING |

+------+-------+-------------------+---------+---------+----------+

| 1 | QUEUE | 64 | 1 | 0 | 0 |

| 2 | QUEUE | 64 | 40744 | 65 | 6 |

| 3 | QUEUE | 64 | 0 | 0 | 0 |

| 4 | QUEUE | 64 | 0 | 0 | 0 |

+------+-------+-------------------+---------+---------+----------+

4 rows in set (0.01 sec)

The following table describes the parameters in this function.

Parameter Description

CONCURRENCY_COUN
T The maximum number of concurrent queries allowed.

MATCHED The total number of rules matched.

RUNNING The number of statements that are being executed concurrently.

WAITTING The number of statements that are waiting in queue.

dbms_ccl.flush_ccl_queue()

AliSQL Kernel · Performance ApsaraDB for RDS

81 > Document Version:20201014

This function is used to delete data about the statement queue from the memory and query
the status of the statement queue.

mysql> call dbms_ccl.flush_ccl_queue();

Query OK, 0 rows affected (0.00 sec)

mysql> call dbms_ccl.show_ccl_queue();

+------+-------+-------------------+---------+---------+----------+

| ID | TYPE | CONCURRENCY_COUNT | MATCHED | RUNNING | WAITTING |

+------+-------+-------------------+---------+---------+----------+

| 1 | QUEUE | 64 | 0 | 0 | 0 |

| 2 | QUEUE | 64 | 0 | 0 | 0 |

| 3 | QUEUE | 64 | 0 | 0 | 0 |

| 4 | QUEUE | 64 | 0 | 0 | 0 |

+------+-------+-------------------+---------+---------+----------+

4 rows in set (0.00 sec)

Practices
Statement Queue can work with Statement outline to support online updates of your application
code. In the following example, SysBench is used to execute the update_non_index.lua script:

Test environment
Schema

CREATE TABLE `sbtest1` (

 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `k` int(10) unsigned NOT NULL DEFAULT '0',

 `c` char(120) NOT NULL DEFAULT '',

 `pad` char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (`id`),

 KEY `k_1` (`k`)

) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8 MAX_ROWS=1000000;

Statement

UPDATE sbtest1 SET c='xpchild' WHERE id=0;

ApsaraDB for RDS AliSQL Kernel · Performance

> Document Version:20201014 82

https://www.alibabacloud.com/help/doc-detail/130028.htm#concept-1664234

Script

./sysbench

--mysql-host= {$ip}

--mysql-port= {$port}

--mysql-db=test

--test=./sysbench/share/sysbench/update_non_index.lua

--oltp-tables-count=1

--oltp_table_size=1

--num-threads=128

--mysql-user=u0

Procedure

i. Create a statement outline in online mode.

mysql> CALL DBMS_OUTLN.add_optimizer_outline('test', '', 1,

 ' /*+ ccl_queue_field("id") */ ',

 "UPDATE sbtest1 SET c='xpchild' WHERE id=0");

Query OK, 0 rows affected (0.01 sec)

ii. View the statement outline that you created.

mysql> call dbms_outln.show_outline();

+------+--------+--+-----------+-------+------

+--------------------------------+------+----------+---+

| ID | SCHEMA | DIGEST | TYPE | SCOPE | POS | HINT

| HIT | OVERFLOW | DIGEST_TEXT |

+------+--------+--+-----------+-------+------

+--------------------------------+------+----------+---+

| 1 | test | 7b945614749e541e0600753367884acff5df7e7ee2f5fb0af5ea58897910f023 | OPTIMIZE

R | | 1 | /*+ ccl_queue_field("id") */ | 0 | 0 | UPDATE `sbtest1` SET `c` = ? WHERE `id` = ?

|

+------+--------+--+-----------+-------+------

+--------------------------------+------+----------+---+

1 row in set (0.00 sec)

iii. Verify that the statement outline has taken effect.

AliSQL Kernel · Performance ApsaraDB for RDS

83 > Document Version:20201014

mysql> explain UPDATE sbtest1 SET c='xpchild' WHERE id=0;

+----+-------------+---------+------------+-------+---------------+---------+---------+-------+------+------

----+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtere

d | Extra |

+----+-------------+---------+------------+-------+---------------+---------+---------+-------+------+------

----+-------------+

| 1 | UPDATE | sbtest1 | NULL | range | PRIMARY | PRIMARY | 4 | const | 1 | 100.00 |

Using where |

+----+-------------+---------+------------+-------+---------------+---------+---------+-------+------+------

----+-------------+

1 row in set, 1 warning (0.00 sec)

mysql> show warnings;

+-------+------+--

-----------------------------+

| Level | Code | Message |

+-------+------+--

-----------------------------+

| Note | 1003 | update /*+ CCL_QUEUE_FIELD('id') */ `test`.`sbtest1` set `test`.`sbtest1`.`c` = 'xpc

hild' where (`test`.`sbtest1`.`id` = 0) |

+-------+------+--

-----------------------------+

1 row in set (0.00 sec)

iv. Query the status of the statement queue used.

mysql> call dbms_ccl.show_ccl_queue();

+------+-------+-------------------+---------+---------+----------+

| ID | TYPE | CONCURRENCY_COUNT | MATCHED | RUNNING | WAITTING |

+------+-------+-------------------+---------+---------+----------+

| 1 | QUEUE | 64 | 0 | 0 | 0 |

| 2 | QUEUE | 64 | 0 | 0 | 0 |

| 3 | QUEUE | 64 | 0 | 0 | 0 |

| 4 | QUEUE | 64 | 0 | 0 | 0 |

+------+-------+-------------------+---------+---------+----------+

4 rows in set (0.00 sec)

v. Start the test.

ApsaraDB for RDS AliSQL Kernel · Performance

> Document Version:20201014 84

sysbench

--mysql-host= {$ip}

--mysql-port= {$port}

--mysql-db=test

--test=./sysbench/share/sysbench/update_non_index.lua

--oltp-tables-count=1

--oltp_table_size=1

--num-threads=128

--mysql-user=u0

vi. View the test result.

mysql> call dbms_ccl.show_ccl_queue();

+------+-------+-------------------+---------+---------+----------+

| ID | TYPE | CONCURRENCY_COUNT | MATCHED | RUNNING | WAITTING |

+------+-------+-------------------+---------+---------+----------+

| 1 | QUEUE | 64 | 10996 | 63 | 4 |

| 2 | QUEUE | 64 | 0 | 0 | 0 |

| 3 | QUEUE | 64 | 0 | 0 | 0 |

| 4 | QUEUE | 64 | 0 | 0 | 0 |

+------+-------+-------------------+---------+---------+----------+

4 rows in set (0.03 sec)

mysql> call dbms_outln.show_outline();

+------+--------+-----------+-----------+-------+------+--------------------------------+--------+----------+

---+

| ID | SCHEMA | DIGEST | TYPE | SCOPE | POS | HINT | HIT | OVERFLOW | DIGES

T_TEXT |

+------+--------+-----------+-----------+-------+------+--------------------------------+--------+----------+

---+

| 1 | test | xxxxxxxxx | OPTIMIZER | | 1 | /*+ ccl_queue_field("id") */ | 115795 | 0 | UPDA

TE `sbtest1` SET `c` = ? WHERE `id` = ? |

+------+--------+-----------+-----------+-------+------+--------------------------------+--------+----------+

---+

1 row in set (0.00 sec)

Note Based on the query results, the statement outline is hit 115,795 times, the
statement queue is hit 10,996 times, a total of 63 statements are being executed
concurrently, and four statements are waiting in queue.

5.4. Inventory Hint

AliSQL Kernel · Performance ApsaraDB for RDS

85 > Document Version:20201014

This topic describes the Inventory Hint feature provided by AliSQL. This feature can work with
the Returning and Statement Queue features to commit and roll back transactions rapidly.

Background information
In business scenarios such as seckilling, inventory reduction is a common task model that
requires high concurrency and serialization. In this model, AliSQL uses queues and transactional
hints to control concurrency and commit or roll back transactions. This increases the throughput
of your business.

Prerequisites
The RDS instance version is one of the following:

MySQL 8.0
MySQL 5.7
MySQL 5.6

Syntax
The following three hints are introduced to specify tables in SELECT, UPDATE, INSERT, and
DELETE statements.

COMMIT_ON_SUCCESS and ROLLBACK_ON_FAIL

These are two transactional hints.

COMMIT_ON_SUCCESS: specifies to commit the transaction if the execution of the statement
to which this hint is applied succeeds.
ROLLBACK_ON_FAIL: specifies to roll the transaction back if the execution of the statement
to which this hint is applied fails.

Syntax:

/*+ COMMIT_ON_SUCCESS */

/*+ ROLLBACK_ON_FAIL */

Example:

UPDATE /*+ COMMIT_ON_SUCCESS ROLLBACK_ON_FAIL */ T

SET c = c - 1

WHERE id = 1;

TARGET_AFFECT_ROW(NUMBER)

This is a conditional hint. After you apply it to a statement, the execution of the statement
succeeds only when the number of affected rows is the same as the number specified in this
hint.

Syntax:

/*+ TARGET_AFFECT_ROW(NUMBER) */

Example:

ApsaraDB for RDS AliSQL Kernel · Performance

> Document Version:20201014 86

UPDATE /*+ TARGET_AFFECT_ROW(1) */ T

SET c = c - 1

WHERE id = 1;

Precautions
The transactional hints do not support the autocommit mode. If you use a transactional hint in
a statement with the autocommit mode, an error is reported. Example:

mysql> UPDATE /*+ commit_on_success rollback_on_fail target_affect_row(1) */ t

 -> SET col1 = col1 + 1

 -> WHERE id = 1;

ERROR 7531 (HY000): Inventory transactinal hints didn't allowed in autocommit mode

Transactional hints cannot be used in substatements. If you use a transactional hint in a
substatement, an error is reported. Example:

 mysql> CREATE TRIGGER tri_1

 -> BEFORE INSERT ON t

 -> FOR EACH ROW

 -> BEGIN

 -> INSERT /*+ commit_on_success */ INTO t1 VALUES (1);

 -> end//

mysql> INSERT INTO t VALUES (2, 1);

ERROR HY000: Inventory transactional hints didn't alllowed in stored procedure

The conditional hint cannot be used in a SELECT or EXPLAIN statement. If you use the
conditional hint in a SELECT or EXPLAIN statement, an error is reported. Example:

mysql> EXPLAIN UPDATE /*+ commit_on_success rollback_on_fail target_affect_row(1) */ t

 -> SET col1 = col1 + 1

 -> WHERE id = 1;

ERROR 7532 (HY000): Inventory conditional hints didn't match with result

AliSQL Kernel · Performance ApsaraDB for RDS

87 > Document Version:20201014

Note You can specify an invalid number in the TARGET_AFFECT_ROW hint and check
whether the system reports errors:

mysql> EXPLAIN UPDATE /*+ commit_on_success rollback_on_fail target_affect_row(-1) */ t

 -> SET col1 = col1 + 1

 -> WHERE id = 1;

+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+--------

--+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |

Extra |

+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+--------

--+-------------+

| 1 | UPDATE | t | NULL | range | PRIMARY | PRIMARY | 4 | const | 1 | 100.00 | Using

where |

+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+--------

--+-------------+

1 row in set, 2 warnings (0.00 sec)

mysql> show warnings;

+---------+------+--

---+

| Level | Code | Message

|

+---------+------+--

---+

| Warning | 1064 | Optimizer hint syntax error near '-1) */ t set col1=col1+1 where id =1' at line 1

|

| Note | 1003 | update /*+ COMMIT_ON_SUCCESS ROLLBACK_ON_FAIL */ `test`.`t` set `test`.`t`.`c

ol1` = (`test`.`t`.`col1` + 1) where (`test`.`t`.`id` = 1) |

+---------+------+--

---+

2 rows in set (0.00 sec)

Work with Returning
You can use Inventory Hint with Returning for the system to return real-time result sets.
Example:

ApsaraDB for RDS AliSQL Kernel · Performance

> Document Version:20201014 88

https://www.alibabacloud.com/help/doc-detail/144126.htm#task-2315489

mysql> CALL dbms_trans.returning("*", "update /*+ commit_on_success rollback_on_fail target_affect_r

ow(1) */ t

 set col1=col1+1 where id=1");

+----+------+

| id | col1 |

+----+------+

| 1 | 13 |

+----+------+

1 row in set (0.00 sec)

mysql> CALL dbms_trans.returning("*", "insert /*+ commit_on_success rollback_on_fail target_affect_ro

w(1) */ into

 t values(10,10)");

+----+------+

| id | col1 |

+----+------+

| 10 | 10 |

+----+------+

1 row in set (0.01 sec)

Work with Statement Queue
You can use Inventory Hint with Statement Queue for the system to queue statements. Example:

mysql> UPDATE /*+ ccl_queue_field(id) commit_on_success rollback_on_fail target_affect_row(1) */ t

 -> SET col1 = col1 + 1

 -> WHERE id = 1;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> UPDATE /*+ ccl_queue_value(1) commit_on_success rollback_on_fail target_affect_row(1) */ t

 -> SET col1 = col1 + 1

 -> WHERE id = 1;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

AliSQL Kernel · Performance ApsaraDB for RDS

89 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/144127.htm#task-2315487

This topic describes the faster DDL feature that provides an optimized buffer pool management
mechanism. This mechanism allows you to reduce the impact of data definition language (DDL)
operations and increase the number of concurrent DDL operations that are allowed.

Prerequisites
Your RDS instance runs one of the following MySQL versions:

MySQL 8.0 (with a minor engine version of 20200630 or later.)
MySQL 5.7 (with a minor engine version of 20200630 or later.)
MySQL 5.6 (with a minor engine version of 20200630 or later.)

Context
DDL operations are common for RDS instances. When you use your RDS instance, you may
encounter issues related to DDL operations. For example, you may encounter the following
issues:

When you add indexes, why does a performance jitter occur and interrupt the read and write
operations on your RDS instance?
Why does it require more than 10 minutes to perform a DDL operation on a table whose size is
less than 1 GB?
When a connection that generates temporary tables is closed, why does a performance jitter
occur?

The database engine team of ApsaraDB for RDS has performed in-depth analyses and intensive
tests to locate these issues. Based on the analysis and test results, the team has identified
defects in the cache maintenance logic that is used to manage DDL operations. To fix these
issues, the team has developed the faster DDL feature. The optimized buffer pool management
mechanism provided by this feature reduces competition for locks that are triggered by DDL
operations. When your RDS instance processes a normal number of workloads, this allows you to
ensure the performance of your RDS instance during DDL operations.

Enable faster DDL
You can enable the faster DDL feature by setting the loose_innodb_rds_faster_ddl parameter to
ON in the ApsaraDB for RDS console. For more information, see Reconfigure the parameters of an
ApsaraDB RDS for MySQL instance.

Test with DDL operations
Test scenario

Use the in-place algorithm to perform online DDL operations by executing the following MySQL
8.0-supported statements: CREATE INDEX and OPTIMIZE TABLE. The CREATE INDEX statement
creates an index on a table without the need to rebuild the table. The OPTIMIZE TABLE
statement creates an index on a table with the need to rebuild the table.

6.Stability
6.1. Faster DDL

ApsaraDB for RDS AliSQL Kernel · Stability

> Document Version:20201014 90

https://www.alibabacloud.com/help/doc-detail/96059.htm#concept-gnx-vgj-wdb11
https://www.alibabacloud.com/help/doc-detail/96059.htm#concept-gnx-vgj-wdb11
https://www.alibabacloud.com/help/doc-detail/96059.htm#concept-gnx-vgj-wdb11
https://www.alibabacloud.com/help/doc-detail/96063.htm#concept-lfl-xmn-wdb

Operation Instant In-place Rebuilds
table

Permits
concurrent
DML
operations

Only
modifies
metadata

CREATE
INDEX No Yes No Yes No

OPTIMIZE
TABLE No Yes Yes Yes No

Test instance

The RDS instance that is used for the test runs MySQL 8.0. It provides 8 CPU cores and 64 GB of
memory. The size of the table on which you perform DDL operations is 600 MB.

Test procedure

Use SysBench to perform a stress test. In this test, perform online DDL operations and compare
the operation results.

Test result

Operation
Average execution
duration (with faster
DDL disabled)

Average execution
duration (with faster
DDL enabled)

Performance increase
times

CREATE INDEX 56 seconds 4.9 seconds 11.4

OPTIMIZE TABLE 220 seconds 17 seconds 12.9

Test summary

The faster DDL feature enables ApsaraDB RDS for MySQL with AliSQL to reduce the execution
duration of a DDL operation by more than 90% compared with the MySQL Community Edition.

Test with temporary tables
Temporary tables are common in MySQL. For example, the system creates temporary tables that
are used to query tables from the information_schema database or to expedite the execution of
complex SQL statements. When a thread exits, all of the related temporary tables are deleted.
This is known as a specific type of DDL operation that causes a performance jitter on your RDS
instance. For more information, see Temp ibt tablespace truncation at disconnection stuck
InnoDB under large BP.

Test instance

The RDS instance that is used for the test runs MySQL 8.0. It provides 8 CPU cores and 64 GB of
memory.

Test procedure

Use tpcc-mysql to perform a stress test. In this test, run queries to make sure that the buffer
pool reaches near full capacity. Then, initiate single-threaded requests over short-lived
connections to generate temporary tables.

Test result

AliSQL Kernel · Stability ApsaraDB for RDS

91 > Document Version:20201014

https://bugs.mysql.com/bug.php?id=98869

Comparison item DDL operations not
included Faster DDL enabled Faster DDL disabled

Transactions per
second (TPS) 42,000 40,000 < 10,000

The following figure shows the second-level performance data that is obtained from the
stress test. The red highlighted parts indicate the TPSs that are supported by the RDS
instance when the faster DDL feature is disabled.

Test summary

Every time when a thread that generates temporary tables exits, the native MySQL causes a
severe performance jitter. The jitter decreases the TPS by more than 70%. After the faster DDL
feature is enabled, the TPS decrease is reduced to 5%.

Optimization effect
The faster DDL feature supports MySQL 5.6, 5.7, and 8.0. However, the supported DDL operations
can vary based on the selected MySQL version.

Category DDL operation MySQL 5.6 MySQL 5.7 MySQL 8.0

In-place DDL

For more information, see
MySQL 8.0 Online DDL
Operations and MySQL 5.7
Online DDL Operations.

No Yes Yes

Tablespace
management

Enables or disables tablespace
encryption. No Yes Yes

Releases or deletes a
tablespace. No Yes Yes

Discards a tablespace. Yes Yes Yes

Table
deletion Releases or deletes a table. Yes Yes Yes

Undo
operation

Releases or deletes an undo
tablespace. No No Yes

Table refresh Refreshes a table and its dirty
pages. Yes Yes Yes

Defects fixed by faster DDL
The faster DDL feature fixes the following defects:

Bug #95582: DDL using bulk load is very slow under long flush_list
Bug #98869: Temp ibt tablespace truncation at disconnection stuck InnoDB under large BP
Bug #99021: BUF_REMOVE_ALL_NO_WRITE is not needed for undo tablespace
Bug #98974: InnoDB temp table could hurt InnoDB perf badly

ApsaraDB for RDS AliSQL Kernel · Stability

> Document Version:20201014 92

https://dev.mysql.com/doc/refman/8.0/en/innodb-online-ddl-operations.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-online-ddl-operations.html
https://bugs.mysql.com/bug.php?id=95582
https://bugs.mysql.com/bug.php?id=98869
https://bugs.mysql.com/bug.php?id=99021
https://bugs.mysql.com/bug.php?id=98974

Alibaba Cloud provides the concurrency control (CCL) feature to ensure the stability of ApsaraDB
RDS MySQL instances in case of unexpected request traffic, resource-consuming statements,
and SQL access model changes. The DBMS_CCL package can be installed to use the CCL feature.

Prerequisites
The RDS instance version is one of the following:

MySQL 8.0
MySQL 5.7

Precautions
CCL operations only affect the current instance because no binlogs are generated. For
example, CCL operations performed on the primary instance are not synchronized to the
secondary instance, read-only instance, or disaster recovery instance.
CCL includes a timeout mechanism which resolves transaction deadlocks caused by DML
statements. The waiting threads also respond to the transaction timeout and kill threads to
prevent deadlocks.

Feature design
The CCL provides features based on the following dimensions:

SQL command

The types of SQL statements, such as SELECT, UPDATE, INSERT, and DELETE.

Object

The objects managed by SQL statements, such as tables and views.

keywords

The keywords of SQL statements.

Create a CCL table
AliSQL uses a system table named concurrency_control to store CCL rules. The instance system
automatically creates the table when the system is started. You can refer to the following
statements that create the concurrency_control table.

6.2. Statement concurrency control

AliSQL Kernel · Stability ApsaraDB for RDS

93 > Document Version:20201014

CREATE TABLE `concurrency_control` (

 `Id` bigint(20) NOT NULL AUTO_INCREMENT,

 `Type` enum('SELECT','UPDATE','INSERT','DELETE') NOT NULL DEFAULT 'SELECT',

 `Schema_name` varchar(64) COLLATE utf8_bin DEFAULT NULL,

 `Table_name` varchar(64) COLLATE utf8_bin DEFAULT NULL,

 `Concurrency_count` bigint(20) DEFAULT NULL,

 `Keywords` text COLLATE utf8_bin,

 `State` enum('N','Y') NOT NULL DEFAULT 'Y',

 `Ordered` enum('N','Y') NOT NULL DEFAULT 'N',

 PRIMARY KEY (`Id`)

) /*! 50100 TABLESPACE `mysql` */ ENGINE=InnoDB

DEFAULT CHARSET=utf8 COLLATE=utf8_bin

STATS_PERSISTENT=0 COMMENT='Concurrency control'

Parameter Description

Id The ID of the CCL rule.

Type The type of the SQL statement.

Schema_name The name of the database.

Table_name The name of the table in the database.

Concurrency_count The number of concurrent threads.

Keywords The keyword. Multiple keywords are separated by semicolons (;).

State Specifies whether to enable the CCL rule.

Ordered Specifies whether to match multiple keywords in sequence.

Manage CCL rules
AliSQL provides four management interfaces in the DBMS_CCL package. They are described as
follows:

add_ccl_rule

Use the following statement to create a rule.

dbms_ccl.add_ccl_rule('<Type>','<Schema_name>','<Table_name>',<Concurrency_count>,'<Keywords>

');

Example:

The number of concurrent threads of the SELECT statement is 10.

mysql> call dbms_ccl.add_ccl_rule('SELECT', '', '', 10, '');

ApsaraDB for RDS AliSQL Kernel · Stability

> Document Version:20201014 94

The number of concurrent threads of the SELECT statement is 20, and the keyword of the
statement is key1.

mysql> call dbms_ccl.add_ccl_rule('SELECT', '', '', 20, 'key1');

The number of concurrent threads of the SELECT statement in the test.t table is 20.

mysql> call dbms_ccl.add_ccl_rule('SELECT', 'test', 't', 20, '');

Note The rule with a larger Id has higher priority.

del_ccl_rule

Use the following statement to delete a rule.

dbms_ccl.del_ccl_rule(<Id>);

Example:

Delete the CCL rule whose ID is 15.

mysql> call dbms_ccl.del_ccl_rule(15);

Note If the CCL rule that you want to delete does not exist, the system displays an
error. You can execute the SHOW WARNINGS; statement to view the error message.

mysql> call dbms_ccl.del_ccl_rule(100);

 Query OK, 0 rows affected, 2 warnings (0.00 sec)

mysql> show warnings;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 7514 | Concurrency control rule 100 is not found in table |

| Warning | 7514 | Concurrency control rule 100 is not found in cache |

+---------+------+--+

show_ccl_rule

Use the following statement to view the enabled rules in the memory.

dbms_ccl.show_ccl_rule();

Example:

AliSQL Kernel · Stability ApsaraDB for RDS

95 > Document Version:20201014

mysql> call dbms_ccl.show_ccl_rule();

+------+--------+--------+-------+-------+-------+-------------------+---------+---------+----------+----------+

| ID | TYPE | SCHEMA | TABLE | STATE | ORDER | CONCURRENCY_COUNT | MATCHED | RUNNING | WAITTI

NG | KEYWORDS |

+------+--------+--------+-------+-------+-------+-------------------+---------+---------+----------+----------+

| 17 | SELECT | test | t | Y | N | 30 | 0 | 0 | 0 | |

| 16 | SELECT | | | Y | N | 20 | 0 | 0 | 0 | key1 |

| 18 | SELECT | | | Y | N | 10 | 0 | 0 | 0 | |

+------+--------+--------+-------+-------+-------+-------------------+---------+---------+----------+----------+

The following table describes the MATCHED, RUNNING, and WAITTING parameters.

Parameter Description

MATCHED The number of times the rule is matched.

RUNNING The number of concurrent threads under the rule.

WAITTING The number of threads to be run under the rule.

flush_ccl_rule

If you modify the rules in the concurrency_control table, you must execute the following
statement to validate the rules again.

dbms_ccl.flush_ccl_rule();

Example:

mysql> update mysql.concurrency_control set CONCURRENCY_COUNT = 15 where Id = 18;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> call dbms_ccl.flush_ccl_rule();

Query OK, 0 rows affected (0.00 sec)

Feature test
Test rules

Execute the following statements to create the rules for three dimensions.

ApsaraDB for RDS AliSQL Kernel · Stability

> Document Version:20201014 96

call dbms_ccl.add_ccl_rule('SELECT', 'test', 'sbtest1', 3, ''); // The SELECT statement manages the sbt

est1 table and the number of concurrent threads is 3.

call dbms_ccl.add_ccl_rule('SELECT', '', '', 2, 'sbtest2'); // The keyword of the SELECT statement is s

btest2 and the number of concurrent threads is 2.

 call dbms_ccl.add_ccl_rule('SELECT', '', '', 2, ''); // The number of concurrent threads of the SELE

CT statement is 2.

Test scenarios

Use sysbench to test in the following scenarios:

64 threads
4 tables
select.lua

Test results

Execute the following statement to view the number of concurrent threads under the rules.

mysql> call dbms_ccl.show_ccl_rule();

+------+--------+--------+---------+-------+-------+-------------------+---------+---------+----------+----------

+

| ID | TYPE | SCHEMA | TABLE | STATE | ORDER | CONCURRENCY_COUNT | MATCHED | RUNNING | WAIT

TING | KEYWORDS |

+------+--------+--------+---------+-------+-------+-------------------+---------+---------+----------+----------

+

| 20 | SELECT | test | sbtest1 | Y | N | 3 | 389 | 3 | 9 | |

| 21 | SELECT | | | Y | N | 2 | 375 | 2 | 14 | sbtest2 |

| 22 | SELECT | | | Y | N | 2 | 519 | 2 | 34 | |

+------+--------+--------+---------+-------+-------+-------------------+---------+---------+----------+----------

+

3 rows in set (0.00 sec)

The numbers displayed in the RUNNING column are the same as the numbers specified when
you create the rules.

This topic describes the Performance Agent feature provided by AliSQL as a plug-in to collect
statistics of performance data on ApsaraDB RDS for MySQL instances.

Background information
Performance Agent adds a memory table named PERF_STATISTICS to the information_schema
system database. This table stores the performance data generated over a recent period of
time. You can query performance data from this table.

Prerequisites

6.3. Performance Agent

AliSQL Kernel · Stability ApsaraDB for RDS

97 > Document Version:20201014

The RDS instance runs one of the following database engine versions:

MySQL 8.0 (The kernel version of the RDS instance is 20200229 or later)
MySQL 5.7 (The kernel version of the RDS instance is 20200229 or later)

Note For information about updating the kernel version, see Upgrade the minor engine
version of an ApsaraDB RDS for MySQL instance.

Parameters
The following table describes the parameters you must configure for Performance Agent. For
more information, see Reconfigure parameters for an RDS MySQL instance.

Parameter Description

performance_agent_enabled
Specifies whether to enable the Performance
Agent feature. Valid values: ON | OFF. Default
value: ON.

performance_agent_interval
The interval at which you want to collect
performance data. Unit: seconds. Default value:
1.

performance_agent_perfstat_volume_size

The maximum number of data records that are
allowed in the PERF_STATISTICS memory table.
Default value: 3600. If you set the
performance_agent_interval parameter to 1, the
system retains the performance data generated
within the last hour.

Schema
The schema of the PERF_STATISTICS memory table is as follows:

ApsaraDB for RDS AliSQL Kernel · Stability

> Document Version:20201014 98

https://www.alibabacloud.com/help/doc-detail/96059.htm#concept-gnx-vgj-wdb11
https://www.alibabacloud.com/help/doc-detail/96063.htm#concept-lfl-xmn-wdb

CREATE TEMPORARY TABLE `PERF_STATISTICS` (

 `TIME` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',

 `PROCS_MEM_USAGE` double NOT NULL DEFAULT '0',

 `PROCS_CPU_RATIO` double NOT NULL DEFAULT '0',

 `PROCS_IOPS` double NOT NULL DEFAULT '0',

 `PROCS_IO_READ_BYTES` bigint(21) NOT NULL DEFAULT '0',

 `PROCS_IO_WRITE_BYTES` bigint(21) NOT NULL DEFAULT '0',

 `MYSQL_CONN_ABORT` int(11) NOT NULL DEFAULT '0',

 `MYSQL_CONN_CREATED` int(11) NOT NULL DEFAULT '0',

 `MYSQL_USER_CONN_COUNT` int(11) NOT NULL DEFAULT '0',

 `MYSQL_CONN_RUNNING` int(11) NOT NULL DEFAULT '0',

 `MYSQL_LOCK_IMMEDIATE` int(11) NOT NULL DEFAULT '0',

 `MYSQL_LOCK_WAITED` int(11) NOT NULL DEFAULT '0',

 `MYSQL_COM_INSERT` int(11) NOT NULL DEFAULT '0',

 `MYSQL_COM_UPDATE` int(11) NOT NULL DEFAULT '0',

 `MYSQL_COM_DELETE` int(11) NOT NULL DEFAULT '0',

 `MYSQL_COM_SELECT` int(11) NOT NULL DEFAULT '0',

 `MYSQL_COM_COMMIT` int(11) NOT NULL DEFAULT '0',

 `MYSQL_COM_ROLLBACK` int(11) NOT NULL DEFAULT '0',

 `MYSQL_COM_PREPARE` int(11) NOT NULL DEFAULT '0',

 `MYSQL_LONG_QUERY` int(11) NOT NULL DEFAULT '0',

 `MYSQL_TCACHE_GET` bigint(21) NOT NULL DEFAULT '0',

 `MYSQL_TCACHE_MISS` bigint(21) NOT NULL DEFAULT '0',

 `MYSQL_TMPFILE_CREATED` int(11) NOT NULL DEFAULT '0',

 `MYSQL_TMP_TABLES` int(11) NOT NULL DEFAULT '0',

 `MYSQL_TMP_DISKTABLES` int(11) NOT NULL DEFAULT '0',

 `MYSQL_SORT_MERGE` int(11) NOT NULL DEFAULT '0',

 `MYSQL_SORT_ROWS` int(11) NOT NULL DEFAULT '0',

 `MYSQL_BYTES_RECEIVED` bigint(21) NOT NULL DEFAULT '0',

 `MYSQL_BYTES_SENT` bigint(21) NOT NULL DEFAULT '0',

 `MYSQL_BINLOG_OFFSET` int(11) NOT NULL DEFAULT '0',

 `MYSQL_IOLOG_OFFSET` int(11) NOT NULL DEFAULT '0',

 `MYSQL_RELAYLOG_OFFSET` int(11) NOT NULL DEFAULT '0',

 `EXTRA` json NOT NULL DEFAULT 'null'

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Column Description

TIME The time when the data record was generated. The time is in the
yyyy-MM-dd HH:mm:ss format.

AliSQL Kernel · Stability ApsaraDB for RDS

99 > Document Version:20201014

PROCS_MEM_USAGE The amount of physical memory occupied by the data record. Unit:
bytes.

PROCS_CPU_RATIO The CPU utilization of the data record.

PROCS_IOPS The number of I/O operations that the system invoked.

PROCS_IO_READ_BYTES The amount of data that was read by I/O operations. Unit: bytes.

PROCS_IO_WRITE_BYTES The amount of data that was written by I/O operations. Unit:
bytes.

MYSQL_CONN_ABORT The number of disconnected connections.

MYSQL_CONN_CREATED The number of new connections.

MYSQL_USER_CONN_COUNT The total number of connections.

MYSQL_CONN_RUNNING The number of active connections.

MYSQL_LOCK_IMMEDIATE The number of locks held by the data record.

MYSQL_LOCK_WAITED The number of locks for which the data record waited.

MYSQL_COM_INSERT The number of statements executed to insert data.

MYSQL_COM_UPDATE The number of statements executed to update data.

MYSQL_COM_DELETE The number of statements executed to delete data.

MYSQL_COM_SELECT The number of statements executed to query data.

MYSQL_COM_COMMIT The number of transactions explicitly committed.

MYSQL_COM_ROLLBACK The number of transactions rolled back.

MYSQL_COM_PREPARE The number of statements that were pre-processed.

MYSQL_LONG_QUERY The number of slow queries.

MYSQL_TCACHE_GET The number of cache hits.

MYSQL_TCACHE_MISS The number of cache misses.

MYSQL_TMPFILE_CREATED The number of temporary files created.

MYSQL_TMP_TABLES The number of temporary tables created.

MYSQL_TMP_DISKTABLES The number of temporary disk tables created.

MYSQL_SORT_MERGE The number of times that data was merged and sorted.

Column Description

ApsaraDB for RDS AliSQL Kernel · Stability

> Document Version:20201014 100

MYSQL_SORT_ROWS The number of rows sorted.

MYSQL_BYTES_RECEIVED The amount of data received. Unit: bytes.

MYSQL_BYTES_SENT The amount of data sent. Unit: bytes.

MYSQL_BINLOG_OFFSET The size of the binary log file generated. Unit: bytes.

MYSQL_IOLOG_OFFSET The size of the binary log file sent from the primary instance. Unit:
bytes.

MYSQL_RELAYLOG_OFFSET The size of the binary log file sent from the secondary instance.
Unit: bytes.

EXTRA

The statistics information about InnoDB. The EXTRA parameter
consists of multiple fields in the JSON format. For more
information, see Fields in the EXTRA parameter.

Note The values of the metrics in the InnoDB statistics
information are the same as the values obtained by executing
the SHOW STATUS statement.

Column Description

Fields in the EXTRA parameter

Field Description

INNODB_TRX_CNT The number of transactions.

INNODB_DATA_READ The amount of data read. Unit: bytes.

INNODB_IBUF_SIZE The number of pages merged.

INNODB_LOG_WAITS The number of times that InnoDB waited to write logs.

INNODB_MAX_PURGE The number of transactions deleted.

INNODB_N_WAITING The number of locks for which InnoDB waited.

INNODB_ROWS_READ The number of rows read.

INNODB_LOG_WRITES The number of times that logs were written by InnoDB.

INNODB_IBUF_MERGES The number of times that data was merged by InnoDB.

INNODB_DATA_WRITTEN The amount of data written. Unit: bytes.

INNODB_DBLWR_WRITES The number of double write operations.

INNODB_IBUF_SEGSIZE The size of data inserted into the buffer.

AliSQL Kernel · Stability ApsaraDB for RDS

101 > Document Version:20201014

INNODB_ROWS_DELETED The number of rows deleted.

INNODB_ROWS_UPDATED The number of rows updated.

INNODB_COMMIT_TRXCNT The number of transactions committed.

INNODB_IBUF_FREELIST The length of the idle list.

INNODB_MYSQL_TRX_CNT The number of MySQL transactions.

INNODB_ROWS_INSERTED The number of rows inserted.

INNODB_ACTIVE_TRX_CNT The number of active transactions.

INNODB_OS_LOG_WRITTEN The amount of log data written. Unit: bytes.

INNODB_ACTIVE_VIEW_CNT The number of active views.

INNODB_RSEG_HISTORY_LEN The length of the TRX_RSEG_HISTORY table.

INNODB_AVG_COMMIT_TRXTIME The average time taken to commit a transaction.

INNODB_MAX_COMMIT_TRXTIME The maximum time taken to commit a transaction.

INNODB_DBLWR_PAGES_WRITTE
N The number of writes completed by double write operations.

Field Description

Procedure
Query the system table to obtain performance data.

Query the CPU utilization and memory usage within the last 30 seconds. Example:

ApsaraDB for RDS AliSQL Kernel · Stability

> Document Version:20201014 102

MySQL> select TIME, PROCS_MEM_USAGE, PROCS_CPU_RATIO from information_schema.PERF_STAT

ISTICS order by time DESC limit 30;

+---------------------+-----------------+-----------------+

| TIME | PROCS_MEM_USAGE | PROCS_CPU_RATIO |

+---------------------+-----------------+-----------------+

| 2020-02-27 11:15:36 | 857812992 | 18.55 |

| 2020-02-27 11:15:35 | 857808896 | 18.54 |

| 2020-02-27 11:15:34 | 857268224 | 19.64 |

| 2020-02-27 11:15:33 | 857268224 | 21.06 |

| 2020-02-27 11:15:32 | 857264128 | 20.39 |

| 2020-02-27 11:15:31 | 857272320 | 20.32 |

| 2020-02-27 11:15:30 | 857272320 | 21.35 |

| 2020-02-27 11:15:29 | 857272320 | 28.8 |

| 2020-02-27 11:15:28 | 857268224 | 29.08 |

| 2020-02-27 11:15:27 | 857268224 | 26.92 |

| 2020-02-27 11:15:26 | 857268224 | 23.84 |

| 2020-02-27 11:15:25 | 857264128 | 13.76 |

| 2020-02-27 11:15:24 | 857264128 | 15.12 |

| 2020-02-27 11:15:23 | 857264128 | 14.76 |

| 2020-02-27 11:15:22 | 857264128 | 15.38 |

| 2020-02-27 11:15:21 | 857260032 | 13.23 |

| 2020-02-27 11:15:20 | 857260032 | 12.75 |

| 2020-02-27 11:15:19 | 857260032 | 12.17 |

| 2020-02-27 11:15:18 | 857255936 | 13.22 |

| 2020-02-27 11:15:17 | 857255936 | 20.51 |

| 2020-02-27 11:15:16 | 857255936 | 28.74 |

| 2020-02-27 11:15:15 | 857251840 | 29.85 |

| 2020-02-27 11:15:14 | 857251840 | 29.31 |

| 2020-02-27 11:15:13 | 856981504 | 28.85 |

| 2020-02-27 11:15:12 | 856981504 | 29.19 |

| 2020-02-27 11:15:11 | 856977408 | 29.12 |

| 2020-02-27 11:15:10 | 856977408 | 29.32 |

| 2020-02-27 11:15:09 | 856977408 | 29.2 |

| 2020-02-27 11:15:08 | 856973312 | 29.36 |

| 2020-02-27 11:15:07 | 856973312 | 28.79 |

+---------------------+-----------------+-----------------+

30 rows in set (0.08 sec)

AliSQL Kernel · Stability ApsaraDB for RDS

103 > Document Version:20201014

Query the rows that are read and written by InnoDB within the last 30 seconds. Example:

MySQL> select TIME, EXTRA->'$.INNODB_ROWS_READ', EXTRA->'$.INNODB_ROWS_INSERTED' from inf

ormation_schema.PERF_STATISTICS order by time DESC limit 30;

+---------------------+-----------------------------+---------------------------------+

| TIME | EXTRA->'$.INNODB_ROWS_READ' | EXTRA->'$.INNODB_ROWS_INSERTED' |

+---------------------+-----------------------------+---------------------------------+

| 2020-02-27 11:22:17 | 39209 | 0 |

| 2020-02-27 11:22:16 | 36098 | 0 |

| 2020-02-27 11:22:15 | 38035 | 0 |

| 2020-02-27 11:22:14 | 37384 | 0 |

| 2020-02-27 11:22:13 | 38336 | 0 |

| 2020-02-27 11:22:12 | 33946 | 0 |

| 2020-02-27 11:22:11 | 36301 | 0 |

| 2020-02-27 11:22:10 | 36835 | 0 |

| 2020-02-27 11:22:09 | 36900 | 0 |

| 2020-02-27 11:22:08 | 36402 | 0 |

| 2020-02-27 11:22:07 | 39672 | 0 |

| 2020-02-27 11:22:06 | 39316 | 0 |

| 2020-02-27 11:22:05 | 37830 | 0 |

| 2020-02-27 11:22:04 | 36396 | 0 |

| 2020-02-27 11:22:03 | 34820 | 0 |

| 2020-02-27 11:22:02 | 37350 | 0 |

| 2020-02-27 11:22:01 | 39463 | 0 |

| 2020-02-27 11:22:00 | 38419 | 0 |

| 2020-02-27 11:21:59 | 37673 | 0 |

| 2020-02-27 11:21:58 | 35117 | 0 |

| 2020-02-27 11:21:57 | 36140 | 0 |

| 2020-02-27 11:21:56 | 37592 | 0 |

| 2020-02-27 11:21:55 | 39765 | 0 |

| 2020-02-27 11:21:54 | 35553 | 0 |

| 2020-02-27 11:21:53 | 35882 | 0 |

| 2020-02-27 11:21:52 | 37061 | 0 |

| 2020-02-27 11:21:51 | 40699 | 0 |

| 2020-02-27 11:21:50 | 39608 | 0 |

| 2020-02-27 11:21:49 | 39317 | 0 |

| 2020-02-27 11:21:48 | 37413 | 0 |

+---------------------+-----------------------------+---------------------------------+

30 rows in set (0.08 sec)

Connect to a performance monitoring platform to monitor your database performance in real

ApsaraDB for RDS AliSQL Kernel · Stability

> Document Version:20201014 104

time. For example, connect to Grafana.

This topic describes how to use the Purge Large File Asynchronously function to delete files from
an ApsaraDB for RDS instance running AliSQL. This function is designed to ensure database
stability by deleting large files asynchronously.

Context
If your ApsaraDB for RDS instance runs the InnoDB storage engine, directly deleting large files
from the instance compromises the stability of your POSIX file system. As a result, InnoDB starts
a background thread to delete large files asynchronously. InnoDB renames data files housing
tablespaces to identify them as temporary files before starting to delete the tablespaces
asynchronously.

Note AliSQL ensures the atomicity of Data Definition Language (DDL) statements by
deleting log files.

Procedure
1. View the global variable settings of your RDS instance, as shown in the following example:

mysql> SHOW GLOBAL VARIABLES LIKE '%data_file_purge%';

 +--+-------+

 | Variable_name | Value |

 +--+-------+

 | innodb_data_file_purge | ON |

 | innodb_data_file_purge_all_at_shutdown | OFF |

 | innodb_data_file_purge_dir | |

 | innodb_data_file_purge_immediate | OFF |

 | innodb_data_file_purge_interval | 100 |

 | innodb_data_file_purge_max_size | 128 |

 | innodb_print_data_file_purge_process | OFF |

 +--+-------+

The following table describes these variables.

Variable Description

innodb_data_file_pur
ge

Specifies whether to enable the Purge Large File Asynchronously
function.

innodb_data_file_pur
ge_all_at_shutdown

Specifies whether to delete all files when the host server of your RDS
instance is shut down.

6.4. Purge Large File Asynchronously

AliSQL Kernel · Stability ApsaraDB for RDS

105 > Document Version:20201014

https://grafana.com/

innodb_data_file_pur
ge_dir The directory for stored temporary files.

innodb_data_file_pur
ge_immediate Specifies whether to revoke data file links, but not to delete them.

innodb_data_file_pur
ge_interval The intervals at which files are deleted. Unit: ms.

innodb_data_file_pur
ge_max_size The maximum size of a single file that can be deleted. Unit: MB.

innodb_print_data_fil
e_purge_process Specifies whether to display the file deletion process.

Variable Description

Note We recommend that you set the following variables to the values provided in
the example:

set global INNODB_DATA_FILE_PURGE = on;

set global INNODB_DATA_FILE_PURGE_INTERVAL = 100;

set global INNODB_DATA_FILE_PURGE_MAX_SIZE = 128;

2. Run the following command to view the file deletion progress:

select * from information_schema.build_current_task

This topic describes how to use the Performance Insight function for load monitoring, association
analysis, and optimizing performance. This function helps you quickly evaluate the loads of your
ApsaraDB for RDS instance and locate performance problems to ensure database stability.

Prerequisites
Your RDS instance runs one of the following database engine versions:

MySQL 8.0
MySQL 5.7

The kernel version of your RDS instance is 20190915 or later.

Note Log on to the ApsaraDB for RDS console, find the target RDS instance, and
navigate to the Basic Information page. Then in the Configuration Information section,
check whether the Upgrade Kernel Version button is available. If the button is available,
click it to view the kernel version of your RDS instance. If the button is not available, you
are already using the latest kernel version. For more information, see Upgrade the minor
engine version of an ApsaraDB RDS for MySQL instance.

6.5. Performance Insight

ApsaraDB for RDS AliSQL Kernel · Stability

> Document Version:20201014 106

https://www.alibabacloud.com/help/doc-detail/96059.htm#concept-gnx-vgj-wdb11

Overview
The Performance Insight function consists of the following two parts:

Object Statistics

Object Statistics queries statistics from indexes and the following two tables:

TABLE_STATISTICS: records rows with read and modified data.
INDEX_STATISTICS: records rows with data read from indexes.

Performance Point

Performance Point collects performance details of your RDS instance. Using these details, you
can quantify the overheads of SQL statements faster and more accurately. Performance Point
measures database performance using the following three dimensions:

CPU: includes but is not limited to the total time spent executing an SQL statement and the
time spent by CPU executing an SQL statement.
Lock: includes the time occupied by locks such as metadata locks on the server, storage
transaction locks, mutual exclusions (mutexes) (in debugging mode only), and readers-
writer locks.
I/O: includes the time taken to perform operations such as reading and writing data files,
writing log files, reading binary logs, reading redo logs, and asynchronously reading redo
logs.

Use Object Statistics
1. Check that the values of the OPT_TABLESTAT and OPT_INDEXSTAT parameters are ON.

Example:

mysql> show variables like "opt_%_stat";

 +---------------+-------+

 | Variable_name | Value |

 +---------------+-------+

 | opt_indexstat | ON |

 | opt_tablestat | ON |

 +---------------+-------+

Note If these parameters cannot be found or their values are not ON, check that
your RDS instance is running MySQL 5.7.

2. Query the TABLE_STATISTICS or INDEX_STATISTICS table in the information_schema database
to obtain table or index statistics. Examples:

AliSQL Kernel · Stability ApsaraDB for RDS

107 > Document Version:20201014

mysql> select * from TABLE_STATISTICS limit 10;

 +--------------+--------------+-----------+--------------+------------------------+---------------+-------------

-+--------------+

 | TABLE_SCHEMA | TABLE_NAME | ROWS_READ | ROWS_CHANGED | ROWS_CHANGED_X_INDEXES | R

OWS_INSERTED | ROWS_DELETED | ROWS_UPDATED |

 +--------------+--------------+-----------+--------------+------------------------+---------------+-------------

-+--------------+

 | mysql | db | 2 | 0 | 0 | 0 | 0 | 0 |

 | mysql | engine_cost | 2 | 0 | 0 | 0 | 0 | 0 |

 | mysql | proxies_priv | 1 | 0 | 0 | 0 | 0 | 0 |

 | mysql | server_cost | 6 | 0 | 0 | 0 | 0 | 0 |

 | mysql | tables_priv | 2 | 0 | 0 | 0 | 0 | 0 |

 | mysql | user | 7 | 0 | 0 | 0 | 0 | 0 |

 | test | sbtest1 | 1686 | 142 | 184 | 112 | 12 | 18 |

 | test | sbtest10 | 1806 | 125 | 150 | 105 | 5 | 15 |

 | test | sbtest100 | 1623 | 141 | 182 | 110 | 10 | 21 |

 | test | sbtest11 | 1254 | 136 | 172 | 110 | 10 | 16 |

 +--------------+--------------+-----------+--------------+------------------------+---------------+-------------

-+--------------+

 mysql> select * from INDEX_STATISTICS limit 10;

 +--------------+--------------+------------+-----------+

 | TABLE_SCHEMA | TABLE_NAME | INDEX_NAME | ROWS_READ |

 +--------------+--------------+------------+-----------+

 | mysql | db | PRIMARY | 2 |

 | mysql | engine_cost | PRIMARY | 2 |

 | mysql | proxies_priv | PRIMARY | 1 |

 | mysql | server_cost | PRIMARY | 6 |

 | mysql | tables_priv | PRIMARY | 2 |

 | mysql | user | PRIMARY | 7 |

 | test | sbtest1 | PRIMARY | 2500 |

 | test | sbtest10 | PRIMARY | 3007 |

 | test | sbtest100 | PRIMARY | 2642 |

 | test | sbtest11 | PRIMARY | 2091 |

 +--------------+--------------+------------+-----------+

The following table describes parameters of the responses to the sample query requests.

Parameter Description

TABLE_SCHEMA The name of a database.

ApsaraDB for RDS AliSQL Kernel · Stability

> Document Version:20201014 108

TABLE_NAME The name of a table.

ROWS_READ The number of rows read from a table.

ROWS_CHANGED The number of rows modified in a table.

ROWS_CHANGED_X_IN
DEXES The number of rows modified by using indexes in a table.

ROWS_INSERTED The number of rows inserted into a table.

ROWS_DELETED The number of rows deleted from a table.

ROWS_UPDATED The number of rows updated in a table.

INDEX_NAME The name of an index.

Parameter Description

Use Performance Point
1. View the global variable settings of your RDS instance, as shown in the following example:

mysql> show variables like "%performance_point%";

 +---------------------------------------+-------+

 | Variable_name | Value |

 +---------------------------------------+-------+

 | performance_point_dbug_enabled | OFF |

 | performance_point_enabled | ON |

 | performance_point_iostat_interval | 2 |

 | performance_point_iostat_volume_size | 10000 |

 | performance_point_lock_rwlock_enabled | ON |

 +---------------------------------------+-------+

Note If these variables cannot be found, check that your RDS instance is running
MySQL 5.7.

2. Query the events_statements_summary_by_digest_supplement table in the
performance_schema database to obtain the top 10 SQL statements in various dimensions.
Example:

AliSQL Kernel · Stability ApsaraDB for RDS

109 > Document Version:20201014

mysql> select * from events_statements_summary_by_digest_supplement limit 10;

 +--------------------+----------------------------------+---+------------

--+

 | SCHEMA_NAME | DIGEST | DIGEST_TEXT | ELAPSED_TIME |

 +--------------------+----------------------------------+---+------------

--+

 | NULL | 6b787dd1f9c6f6c5033120760a1a82de | SELECT @@`version_comment` LIMIT ? |

932 |

 | NULL | 2fb4341654df6995113d998c52e5abc9 | SHOW SCHEMAS | 2363

|

 | NULL | 8a93e76a7846384621567fb4daa1bf95 | SHOW VARIABLES LIKE ? | 17

933 |

 | NULL | dd148234ac7a20cb5aee7720fb44b7ea | SELECT SCHEMA () | 1006

|

 | information_schema | 2fb4341654df6995113d998c52e5abc9 | SHOW SCHEMAS |

2156 |

 | information_schema | 74af182f3a2bd265678d3dadb53e08da | SHOW TABLES |

3161 |

 | information_schema | d3a66515192fcb100aaef6f8b6e45603 | SELECT * FROM `TABLE_STATISTICS`

LIMIT ? | 2081 |

 | information_schema | b3726b7c4c4db4b309de2dbc45ff52af | SELECT * FROM `INDEX_STATISTICS`

LIMIT ? | 2384 |

 | information_schema | dd148234ac7a20cb5aee7720fb44b7ea | SELECT SCHEMA () |

129 |

 | test | 2fb4341654df6995113d998c52e5abc9 | SHOW SCHEMAS | 342 |

 +--------------------+----------------------------------+---+------------

--+

The following table describes parameters of the response to the sample query request.

Parameter Description

SCHEMA_NAME The name of a database.

DIGEST The 64-byte hash string obtained from the DIGEST_TEXT parameter.

DIGEST_TEXT The digest of an SQL statement.

ELAPSED_TIME The total time spent executing an SQL statement. Unit: μs.

CPU_TIME The time spent by CPU executing an SQL statement. Unit: μs.

SERVER_LOCK_TIME The time occupied by metadata locks on the server during the execution
of an SQL statement. Unit: μs.

ApsaraDB for RDS AliSQL Kernel · Stability

> Document Version:20201014 110

TRANSACTION_LOCK_
TIME

The time occupied by storage transaction locks during the execution of
an SQL statement. Unit: μs.

MUTEX_SPINS The number of mutex spins triggered during the execution of an SQL
statement.

MUTEX_WAITS The number of spin waits triggered by mutexes during the execution of
an SQL statement.

RWLOCK_SPIN_WAITS The number of spin waits triggered by readers-write locks during the
execution of an SQL statement.

RWLOCK_SPIN_ROUN
DS

The number of rounds in which the background thread looped in the
spin-wait cycles triggered by readers-write locks during the execution
of an SQL statement.

RWLOCK_OS_WAITS The number of operating system waits triggered by readers-write locks
during the execution of an SQL statement.

DATA_READS The number of times the system read data from data files during the
execution of an SQL statement.

DATA_READ_TIME The time spent reading data from data files during the execution of an
SQL statement. Unit: μs.

DATA_WRITES The number of times the system wrote data into data files during the
execution of an SQL statement.

DATA_WRITE_TIME The time spent writing data into data files during the execution of an
SQL statement. Unit: μs.

REDO_WRITES The number of times the system wrote data into log files during the
execution of an SQL statement.

REDO_WRITE_TIME The time spent writing data into log files during the execution of an SQL
statement. Unit: μs.

LOGICAL_READS The number of times the system read logical pages during the
execution of an SQL statement.

PHYSICAL_READS The number of times the system read physical pages during the
execution of an SQL statement.

PHYSICAL_ASYNC_RE
ADS

The number of times system read physical asynchronous pages during
the execution of an SQL statement.

Parameter Description

3. Query the IO_STATISTICS table in the information_schema database to obtain information
about recent data read and write operations: Example:

AliSQL Kernel · Stability ApsaraDB for RDS

111 > Document Version:20201014

mysql> select * from IO_STATISTICS limit 10;

 +---------------------+-----------+----------------+

 | T IME | DATA_READ | DATA_READ_TIME |

 +---------------------+-----------+----------------+

 | 2019-08-08 09:56:53 | 73 | 983 |

 | 2019-08-08 09:56:57 | 0 | 0 |

 | 2019-08-08 09:59:17 | 0 | 0 |

 | 2019-08-08 10:00:55 | 4072 | 40628 |

 | 2019-08-08 10:00:59 | 0 | 0 |

 | 2019-08-08 10:01:09 | 562 | 5800 |

 | 2019-08-08 10:01:11 | 606 | 6910 |

 | 2019-08-08 10:01:13 | 609 | 6875 |

 | 2019-08-08 10:01:15 | 625 | 7077 |

 | 2019-08-08 10:01:17 | 616 | 5800 |

 +---------------------+-----------+----------------+

The following table describes parameters of the response to the query request.

Parameter Description

TIME The point in time at which data read and write operations were
performed.

DATA_READ The number of times the system read data.

DATA_READ_TIME The total time spent reading data. Unit: μs.

DATA_READ_MAX_TIM
E The maximum time spent reading data. Unit: μs.

DATA_READ_BYTES The total amount of data read. Unit: bytes.

DATA_WRITE The number of times the system wrote data.

DATA_WRITE_TIME The total time spent writing data. Unit: μs.

DATA_WRITE_MAX_TI
ME The maximum time spent writing data. Unit: μs.

DATA_WRITE_BYTES The total amount of data written. Unit: bytes.

ApsaraDB for RDS AliSQL Kernel · Stability

> Document Version:20201014 112

This topic describes the data protection feature provided by ApsaraDB RDS for MySQL. This
feature controls permissions to perform high-risk operations.

Prerequisites
The instance runs one of the following MySQL versions:

MySQL 8.0 (The kernel version is 20200430 or later.)
MySQL 5.7 (The kernel version is 20200430 or later.)
MySQL 5.6 (The kernel version is 20200430 or later.)

Context
Data protection takes effect on the following database operation commands:

High-risk data operation commands

 Drop Table

 Truncate Table

 Alter Table Drop Paritition

 Alter Table Truncate Partition

 Alter Table Exchange Paritition

 Drop Tablespace

Extended commands

 DROP View

 ALTER View

 Drop Function

 Drop Procedure

 Drop Trigger

 Purge Binary Logs

Note Data protection is applied to the extended commands to ensure the running of
application code.

Parameters
The data protection feature involves the following four parameters:

rds_data_protect_level

Specifies the level of data protection. Valid values:

7.Security
7.1. Data Protect

AliSQL Kernel · Security ApsaraDB for RDS

113 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/96059.htm#concept-gnx-vgj-wdb11
https://www.alibabacloud.com/help/doc-detail/96059.htm#concept-gnx-vgj-wdb11
https://www.alibabacloud.com/help/doc-detail/96059.htm#concept-gnx-vgj-wdb11

NONE: disables data protection.
DDL: blocks DROP and TRUNCATE operations on databases and tables.
ALL: blocks all DROP and TRUNCATE operations, including the operations on views, stored
procedures, functions, and triggers.

Note We recommend that you configure a data protection level in the non-
maintenance or non-publishing phase and disable data protection in the maintenance or
publishing phase.

rds_data_protect_ignore

Specifies a list of databases that do not need to be protected. For example, this parameter
can be used in scenarios where development and production databases are created on the
same RDS instance. You can specify that the development databases are not protected.

rds_data_protect_admin

Specifies which users can delete data when the rds_data_protect_control parameter is set to
USER.

rds_data_protect_control

Specifies a data protection policy. The following protection policies are supported:

USER: Only users specified by the rds_data_protect_admin parameter or users who have the
SUPER_ACL permissions can delete data. This value applies to most business scenarios on
the cloud.
SUPER: Only users who have the SUPER_ACL permissions can delete data. You can use
SUPER_ACL to implement precise data protection for common on-premises applications.
MAINTAIN: Only users with the SUPER_ACL and MAINTAIN permissions can delete data. The
MAINTAIN permissions allow users to initiate connections from Alibaba Cloud. This value
applies to scenarios where you want to delete data on Alibaba Cloud.
LOCAL: Only users with the SUPER_ACL and MAINTAIN permissions can delete data by
logging on to the instance over local connections. This value applies to core applications. If
you configure this value, you cannot delete data by logging on to the instance over remote
connections. You must log on to the physical server.

Enable data protection
Data protection is in the invitational preview. You can submit a ticket to enable this feature.

Data definition language (DDL) statements cannot be rolled back. If a table is unintentionally
deleted by using a DROP TABLE statement, the table data may be lost. Alibaba Cloud provides
the recycle bin feature that allows you to temporarily store deleted tables. You can specify a
retention period within which you can retrieve the deleted tables. In addition, Alibaba Cloud
provides the DBMS_RECYCLE package that is used to manage the deleted tables in the recycle
bin.

Parameters
The following table describes the parameters that you must configure for the recycle bin
feature.

7.2. Recycle bin

ApsaraDB for RDS AliSQL Kernel · Security

> Document Version:20201014 114

https://workorder-intl.console.aliyun.com/#/ticket/createIndex

Parameter Description

loose_recycle_bin
Specifies whether to enable the recycle bin feature. You can enable this
feature for your RDS instance or a specific session. You can reconfigure
this parameter in the ApsaraDB for RDS console.

loose_recycle_bin_rete
ntion

The period for which you want to retain tables in the recycle bin. Unit:
seconds. Default value: 604800. The default value indicates seven days.
You can reconfigure this parameter in the ApsaraDB for RDS console.

recycle_scheduler
Specifies whether to enable the thread that is used to asynchronously
delete tables from the recycle bin. This parameter is temporarily
unavailable.

recycle_scheduler_inte
rval

The polling interval that is followed by the thread to asynchronously delete
tables from the recycle bin. Unit: seconds. Default value: 30. This
parameter is temporarily unavailable.

recycle_scheduler_pur
ge_table_print

Specifies whether to log the operations that are performed by the thread
to asynchronously delete tables from the recycle bin. This parameter is
temporarily unavailable.

Introduction
Recycling and deletion

Recycling

When you execute a TRUNCATE TABLE statement to delete a table, the system moves the
deleted table to the recycle bin. Then, the system creates an empty table that has the
same structure as the deleted table. The empty table resides in the same location as the
deleted table.

When you execute a DROP TABLE or DROP DATABASE statement to delete a table or a
database, the system moves only the deleted tables to the recycle bin. The system deletes
the other objects based on the following policies:

If no relationships exist between an object and the deleted tables, the system
determines whether to retain the object based on the executed statement.
If an object is based on the deleted tables and may cause modifications to the data in
these tables, the system deletes the object. These objects include triggers and foreign
keys. The system does not delete column statistics. These statistics are stored to the
recycle bin with the deleted tables.

Deletion

The recycle bin starts a background thread to asynchronously delete tables from the
recycle bin. These tables are stored in the recycle bin longer than the period that is
specified by the recycle_bin_retention parameter. If a table in the recycle bin is large, the
system starts another background thread to asynchronously delete the large table.

Permission control

When you start your RDS instance that runs MySQL, a database named __recycle_bin__ is
initialized to store the data that is moved to the recycle bin. The __recycle_bin__ database is a
system database. You cannot modify or delete the database.

AliSQL Kernel · Security ApsaraDB for RDS

115 > Document Version:20201014

You cannot delete tables from the recycle bin by executing DROP TABLE statements.
However, you can use the call dbms_recycle.purge_table('<TABLE>'); method to delete tables
from the recycle bin.

Note The account that you use must have the permissions to delete tables from your
RDS instance and the recycle bin by executing DROP TABLE statements.

Table naming in the recycle bin

Tables in the __recycle_bin__ database originate from different databases and may have the
same name. To ensure that each table has a unique name in the recycle bin, Alibaba Cloud
implements the following naming conventions:

"__" + <Storage Engine> + <SE private id>

The following table describes the parameters in the naming conventions.

Parameter Description

Storage Engine The name of the storage engine that is used by the table.

SE private id
The unique value that is generated by the storage engine to identify the
table. For example, the unique value that is used to identify an InnoDB
table is the ID of the table.

Independent recycling

The recycle bin configuration that you specify on an RDS instance is applied only to that
instance. Therefore, the recycle bin configuration that you specify on your primary RDS
instance will not be applied to its secondary, read-only, or disaster recovery RDS instances to
which binary logs are replicated. For example, you can specify a 7-day retention period on
your primary RDS instance and a 14-day retention period on the secondary RDS instances
separately.

Note The storage usage of an RDS instance varies based on the retention period that
you specify on that instance.

Precautions
After you execute a DROP TABLE statement to delete a table, the system may migrate the
related data file from the tablespace that stores the table. This applies if the __recycle_bin__
database and the table reside in different file systems. In addition, this process is time-
consuming.
A general tablespace may store more than one table. If you execute a DROP TABLE statement
to delete a table from a general tablespace, the system does not migrate the related data
file from the general tablespace.

Prerequisites
Your RDS instance runs MySQL 8.0.

Manage the recycle bin

ApsaraDB for RDS AliSQL Kernel · Security

> Document Version:20201014 116

AliSQL provides the following two management methods in the DBMS_RECYCLE package:

show_tables

Displays all of the tables that are temporarily stored in the recycle bin. The following code
snippet is an example of the show_tables method:

call dbms_recycle.show_tables();

Example:

mysql> call dbms_recycle.show_tables();

+-----------------+---------------+---------------+--------------+---------------------+---------------------+

| SCHEMA | TABLE | ORIGIN_SCHEMA | ORIGIN_TABLE | RECYCLED_TIME | PURGE_TIME |

+-----------------+---------------+---------------+--------------+---------------------+---------------------+

| __recycle_bin__ | __innodb_1063 | product_db | t1 | 2019-08-08 11:01:46 | 2019-08-15 11:01:46 |

| __recycle_bin__ | __innodb_1064 | product_db | t2 | 2019-08-08 11:01:46 | 2019-08-15 11:01:46 |

| __recycle_bin__ | __innodb_1065 | product_db | parent | 2019-08-08 11:01:46 | 2019-08-15 11:01:4

6 |

| __recycle_bin__ | __innodb_1066 | product_db | child | 2019-08-08 11:01:46 | 2019-08-15 11:01:46

|

+-----------------+---------------+---------------+--------------+---------------------+---------------------+

4 rows in set (0.00 sec)

Parameter Description

SCHEMA The name of the database that stores the table after the table is moved
to the recycle bin.

TABLE The name of the table after the table is moved to the recycle bin.

ORIGIN_SCHEMA The name of the database that stores the table before the table is
moved to the recycle bin.

ORIGIN_TABLE The name of the table before the table is moved to the recycle bin.

RECYCLED_TIME The time when the table was moved to the recycle bin.

PURGE_TIME The time when the table is expected to be deleted from the recycle bin.

purge_table

Manually deletes a table from the recycle bin. The following code snippet is an example of the
purge_table method:

call dbms_recycle.purge_table('<TABLE>');

AliSQL Kernel · Security ApsaraDB for RDS

117 > Document Version:20201014

Note
The TABLE variable specifies the new name of the table after the table is moved to
the recycle bin.
The account that you use must have the permissions to delete tables from your RDS
instance and the recycle bin by executing DROP TABLE statements.

Example:

mysql> call dbms_recycle.purge_table('__innodb_1063');

Query OK, 0 rows affected (0.01 sec)

ApsaraDB for RDS AliSQL Kernel · Security

> Document Version:20201014 118

This topic describes how to convert the storage engine of DRDS from InnoDB to X-Engine.

Context
Most users of existing ApsaraDB for RDS instances want to use X-Engine. These users have the
following characteristics:

Most RDS instances run MySQL 5.6 or MySQL 5.7. Few RDS instances run MySQL 8.0.
A single instance has a large volume of data, which reaches the upper limit of disk space
supported by the instance type. For example, an RDS instance with 4 CPU cores and 8 GB of
memory supports up to 2 TB of local SSDs.
The users also use DRDS. In addition, some users use an old version of DRDS and have
customized functions, such as SQL passthrough.

To address the user requirements, Alibaba Cloud allows you to convert the storage engine of
DRDS from InnoDB to X-Engine by following the procedure in this topic.

Note For more information about X-Engine, see X-Engine overview.

Conversion plan
RDS for MySQL 8.0 instances provide consistent API operations and user experience regardless of
whether they use InnoDB or X-Engine. In this situation, after a DRDS upgrade, we recommend
that you convert the storage engines for the RDS instances from InnoDB to X-Engine one by one.
For example, if a DRDS instance has eight RDS instances, first convert the storage engine for one
of the eight RDS instances. Monitor the instance running for a period of time. If you confirm that
no compatibility or performance issues occur, convert the storage engines for the remaining
seven RDS instances.

Compression ratio verification before conversion
Before conversion, we recommend that you purchase an RDS instance that is powered by X-
Engine with the same specifications as the existing RDS instance that is powered by the InnoDB
storage engine. Then, you can use Alibaba Cloud Data Transmission Service (DTS) to import data
from the existing RDS instance to the purchased instance. This way, you can check the
compression efficiency. The compression efficiency allows you to determine the following items:

Instance storage capacity

Based on the compression efficiency, you can determine the instance specifications that you
need to purchase after you convert a storage engine from InnoDB to X-Engine. For example, if
the space required after compression is below 30% of the original space, you can purchase an
RDS instance with 1 TB of disk space after you convert the storage engine of an RDS instance
that originally requires 3 TB of disk space. Alternatively, you can purchase an RDS instance
with the same specifications to reserve storage space for future business development.

8.Best practices
8.1. Convert the storage engine of DRDS
from InnoDB to X-Engine

AliSQL Kernel · Best pract ices ApsaraDB for RDS

119 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/148660.htm#concept-2377809

Number of database shards

After storage space is reduced, you can reduce the number of database shards. For example,
you can merge databases that are distributed across instances to one instance. This reduces
costs.

Note You can release the RDS instance that is powered by X-Engine after you complete
the verification, or you can clear the instance for official conversion later.

Conversion procedure
1. Upgrade DRDS to a version later than V5.4.2-15744202.

Note

If the DRDS version is later than v5.4.2-15744202, skip this step.

To ensure compatibility, you must adjust the service code. This applies if your
business is based on specific API operations that are provided in an earlier version
of DRDS, for example, the SQL passthrough function for performance optimization.

2. Select an RDS instance with the InnoDB storage engine from DRDS as the first instance for
conversion. Export table creation statements and change the engine type to X-Engine.
Then, create an RDS instance with the target specifications and X-Engine. Alternatively, use
the RDS instance that you created when you verify the compression efficiency and import
the table structure scripts into this instance.

For more information about how to create an RDS instance, see Create an ApsaraDB RDS
for MySQL instance.

For more information about how to import and export table creation statements, see
Convert the storage engine from InnoDB, TokuDB, or MyRocks to X-Engine.

Note If you use DTS to migrate data, the engine type of the source instance is
inherited by default. You must separately export the table creation statements and
change the engine type to X-Engine before you can migrate data to the destination
instance that is powered by X-Engine.

3. Use DTS to synchronize data from the RDS instance with the InnoDB storage engine to the
RDS instance with X-Engine. For more information about data synchronization, see Configure
two-way data synchronization between ApsaraDB RDS for MySQL instances.

Note You can use the two-way synchronization function of DTS to ensure data
consistency between the two RDS instances.

4. Modify DRDS routing rules and redirect the access requests to the RDS instance with the
InnoDB storage engine to the RDS instance with X-Engine. If you want to modify the DRDS
routing rules, submit a ticket.

ApsaraDB for RDS AliSQL Kernel · Best pract ices

> Document Version:20201014 120

https://www.alibabacloud.com/help/doc-detail/26117.htm#concept-wzp-ncf-vdb
https://www.alibabacloud.com/help/doc-detail/148403.htm#task-2375955/section-4wc-kda-hjy
https://www.alibabacloud.com/help/doc-detail/56776.htm#concept-56776-zh
https://workorder-intl.console.aliyun.com/#/ticket/createIndex

Note Run the first RDS instance with X-Engine for five days. Monitor the instance
running and consider the request processing time, exception information, and two-way
synchronization progress. If an exception occurs, you must make sure that services can
be switched back to the original RDS instance with the InnoDB storage engine. For more
information, see View the resource and engine metrics of an ApsaraDB RDS for MySQL
instance.

5. After you confirm that the first RDS instance with X-Engine is running as normal, proceed
with the conversion for 30% to 50% of the remaining RDS instances and then monitor the
instance running for three to five days. In this case, repeat the preceding steps 2 to 4.

Note Do not release or bring the original RDS instances with InnoDB offline because
these instances are required to perform DTS two-way synchronization with new RDS
instances with X-Engine.

6. Perform the conversion for all the remaining RDS instances. After you complete the
conversion for all the instances of DRDS, monitor the instance running for three to five days.
If the new instances run as normal, release all DTS synchronization links and the original
RDS instances with InnoDB.

This topic describes how X-Engine of ApsaraDB for RDS helps reduce the costs of DingTalk and
implement online collaborative offices.

Context
DingTalk is a leading enterprise-grade instant messaging (IM) tool in China. It serves hundreds of
millions of users across China. Its basic functions include video conferences and daily reports.
DingTalk Open Platform also provides various office automation (OA) applications to facilitate
communication between co-workers.

In 2020, COVID-19 is a serious problem. To avoid the risk of infection caused by work in
centralized offices, a large number of employees have opted to work from home. The demand
for collaborative office tools suddenly increases. In this situation, DingTalk is quickly elevated to
the top of the App Store download list. This results in a sharp increase in DingTalk access.
DingTalk is based on the elastic infrastructure provided by Alibaba Cloud. This ensures that all
the traffic peaks are smoothly handled.

To serve a large number of users, DingTalk must ensure the timely and correct delivery of
messages, and provide specific functions, such as read and unread messages. Unlike user-level
IM tools such as WeChat, enterprise-grade IM tools must include the permanent storage of chat
records and provide the multi-terminal roaming function. This function allows users to receive
messages from multiple terminals. As the number of users sharply increases, DingTalk faces
challenges in the costs incurred by the permanent storage of chat records while ensuring the
performance of read and write operations on the chat records.

To address these challenges, DingTalk uses X-Engine as the storage engine for messages. This
achieves a balance between the costs and performance. X-Engine has the following
advantages:

8.2. DingTalk secures App Store top rank
with X-Engine

AliSQL Kernel · Best pract ices ApsaraDB for RDS

121 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/102074.htm#concept-sp4-jgl-jgb

The storage space required by X-Engine is about 62% less than that required by the InnoDB
storage engine.
Specific database functions such as transactions and secondary indexes are supported.
Service code can be migrated to RDS instances that are powered by X-Engine without
changes.
X-Engine separates hot and cold data to accelerate the processing of current messages. It
also implements the most efficient compression algorithm for historical messages.

X-Engine storage efficiency is tested on two datasets: Link-Bench and Alibaba internal
transaction business. In the test, X-Engine requires 2-fold less storage space than the InnoDB
storage engine with compression enabled, and 3- to 5-fold less storage space than the InnoDB
engine with compression disabled.

Low costs achieved by X-Engine
X-Engine adopts the following technologies to ensure low costs:

Compact pages

X-Engine uses the Copy-on-write technology to write new data to new pages without
updating the original pages. The new pages are read-only and cannot be directly updated.
These pages are stored in a compact manner, and the data is compressed by using specific
algorithms, such as prefix encoding. This improves the storage efficiency. You can use the
compaction operation to clear invalid records. This ensures a compact arrangement of valid
records. X-Engine requires only 10% to 50% of the storage space compared with conventional
storage engines, such as InnoDB.

Data compression and cleaning of invalid records

Pages after encoding can be compressed by using general compression algorithms, such as
zlib, zstd, and snappy. Data at a low level of a log-structured merge-tree (LSM tree) is
compressed by default.

Data compression sacrifices computing resources for storage space. We recommend that you
select compression algorithms that provide a low compression ratio and a high speed of
compression and decompression. After a large number of comparative tests, X-Engine selects
zstd as the default compression algorithm with additional support for other compression
algorithms.

In addition, the compaction operation is introduced to delete invalid records. This way, only
valid records are retained. The more frequently the compaction operation is performed, the
lower the proportion of invalid records, and the higher the storage efficiency. Therefore, you
must perform the compaction operation at a suitable frequency.

The X-Engine team also develops the field-programmable gate array (FPGA) compaction
technology to reduce the computing resource consumption of the compaction operation. This
technology uses heterogeneous computing hardware to accelerate the compaction process. It
streamlines compaction and compression operations by using FPGA hardware. On a host
without FPGA hardware, X-Engine can use a suitable scheduling algorithm to save storage
space at a lower performance cost.

Intelligent separation between hot and cold data

ApsaraDB for RDS AliSQL Kernel · Best pract ices

> Document Version:20201014 122

In normal access to a storage system, most access requests direct to a small portion of data.
This is why the cache works. In an LSM tree structure, frequently accessed data is stored at a
high level to a fast storage device, such as NVM and DRAM. Infrequently accessed data is
stored at a low level to a slow storage device. This is the hot and cold data separation in X-
Engine.

The separation algorithm completes the following tasks:

In the compaction operation, the pages and records that are least likely to be accessed are
selected and moved to the bottom of the LSM tree.
Current hot data is selected and backfilled to memory (BlockCache and RowCache) in the
compaction or dump process. This prevents compromised performance from jitters in cache
hit rates.
The AI algorithm recognizes data that may be accessed in the future and pre-reads it into
memory. This increases the hit rates for accessing cache at the first time.

Hot data and cold data are accurately identified to avoid computing resource waste due to
invalid compression or decompression. This improves system throughput.

For more information, see X-Engine overview.

Related papers
X-Engine: An Optimized Storage Engine for Large-scale E-commerce Transaction Processing
FPGA-Accelerated Compactions for LSM-based Key-Value Store

Taobao historical orders are supported by a PolarDB-X cluster based on X-Engine. This fixes the
known issues caused by the use of HBase databases, reduces storage costs, and allows users to
query orders at all times.

Context
Taobao is the largest online shopping platform in China. It serves more than 700 million active
users and tens of millions of sellers.

The large platform provides support for about 100 million transactions on physical and virtual
commodities every day. Each transaction process involves different phases, such as member
information verification, commodity library inquiry, order creation, inventory reduction,
discounts, order payment, logistics information update, and payment confirmation. Each phase
involves database record creation and status update. The entire process requires hundreds of
database transactions, and the entire database cluster performs tens of billions of transaction
read and write operations every day. The database team faces the challenge of huge storage
costs incurred by the increasing volume of data every day while ensuring the stable
performance of the database system.

Orders are the most critical information in the entire transaction process and must be
permanently stored in databases. If a transaction dispute arises, the order records must be
provided for users to query. Over the last nearly 17 years since Taobao was founded in 2003, the
total number of database records related to orders has reached the trillion level, and the disk
space occupied by these records has exceeded the PB level.

8.3. Storage engine that processes trillions
of Taobao orders

AliSQL Kernel · Best pract ices ApsaraDB for RDS

123 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/148660.htm#concept-2377809
https://dl.acm.org/doi/10.1145/3299869.3314041
https://www.usenix.org/system/files/fast20-zhang_teng.pdf

The following sections describe how Taobao ensures low latency every time that users query
orders without increasing storage costs.

Architecture evolution
The architecture of transaction order databases has evolved through four phases as the traffic
increases.

Phase 1

In this initial phase, the traffic was low, and Taobao used an Oracle database to store all
order information. Order creation and historical order queries were performed on the same
database.

Phase 2

As the volume of historical order data increased, the single database can no longer meet the
performance and capacity requirements at the same time. Therefore, the database was split
into an online database and a historical database. Historical orders that were generated
three months ago were migrated to the historical database. However, the historical database
contained too much data to allow queries. In this phase, users can only query historical orders
for the last three months.

Phase 3

To fix the issues related to storage costs and historical order queries, Taobao migrated
historical orders to an HBase database.

HBase provides both primary and indexing tables. Users can query the primary tables for order
details and the indexing tables for order IDs based on the IDs of buyers or sellers. In this
situation, orders may not be migrated to the historical order database in chronological order,
and many types of orders are not migrated to this database. As a result, the order list is not
sorted by time, and users cannot search for orders by using the listed sequence of orders.

Phase 4

The historical order database is built in a PolarDB-X cluster based on X-Engine. This reduces
storage costs and fixes the out-of-time-order issue.

Business pain points
The architecture evolution shows that the business team and the database team have suffered
from the following pain points over the last 10 years since the historical order database was
introduced:

Storage costs

A large volume of data is written every day and the data is never deleted. Low-cost storage is
required.

Query performance

Diversified query functions are required to meet specific requirements, such as query by time
and query by order type. Databases must support secondary indexes that can ensure data
consistency and performance.

Query latency

The query latency must be low to ensure user experience. For example, queries on historical
orders of 90 days ago are much fewer than those in the last 90 days, but these queries still
require low latency.

ApsaraDB for RDS AliSQL Kernel · Best pract ices

> Document Version:20201014 124

Historical order database solution based on X-Engine
The transaction order system has been iterated for 10 years in terms of the architecture, where
online and historical databases are separated. Most service code is compatible with this
architecture, which is also inherited in this solution. This architecture mitigates risks caused by
the reconstruction and migration of service code. Initially, the HBase cluster is replaced with the
PolarDB-X cluster that is based on X-Engine.

The online database is still deployed in a MySQL cluster that is based on the InnoDB storage
engine, and stores only orders for the last 90 days. The data volume is small, which ensures a
high cache hit rate and reduces read/write latency.
Orders that were generated 90 days ago are migrated from the online database to the
historical database through data synchronization and are deleted from the online database.
The storage engine of the historical database is converted to X-Engine. This database stores
all orders that were generated 90 days ago. If you want to perform read or write operations
on these orders, access the historical database.

After this new solution is used, the storage costs are the same as those incurred by the use of
the HBase database. The historical database is compatible with the online database, and
identical indexes can be created on the two databases. This fixes the out-of-time-order issue. In
the historical database, hot data is separated from cold data to reduce read latency.

Summary
The transaction order records on Taobao are stored in the streamline mode. Recently written
records are frequently accessed at first, and the access frequency sharply decreases over time.
X-Engine separates hot and cold data and is suitable for this type of access. A single database
cluster based on X-Engine is sufficient for these access scenarios.

Assume that a new or existing business needs to store a large number of streamline records. If
hot data and cold data are not separated on the business layer, we recommend that you use
the distributed PolarDB-X cluster based on X-Engine to ensure scalability without increasing
storage costs.

Alibaba Cloud has launched X-Engine. You can purchase it if required. For more information, see
Create an ApsaraDB RDS for MySQL instance.

This topic describes how to use SysBench to test the performance of X-Engine used with
ApsaraDB RDS for MySQL. This helps you evaluate the performance of X-Engine.

Prerequisites
The default storage engine of your RDS instance is X-Engine.

8.4. Best practices for X-Engine testing

AliSQL Kernel · Best pract ices ApsaraDB for RDS

125 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/26117.htm#concept-wzp-ncf-vdb

Note If X-Engine is used, the value of the XENGINE parameter must be DEFAULT in the
Support column.

MySQL [(none)]> show storage engines;

+--------------------+---------+--+--------------

+------+------------+

| Engine | Support | Comment | Transactions | XA | Savepoi

nts |

+--------------------+---------+--+--------------

+------+------------+

| FEDERATED | NO | Federated MySQL storage engine | NULL | NULL

| NULL |

| BLACKHOLE | YES | /dev/null storage engine (anything you write to it disappears) | NO

| NO | NO |

| XENGINE | DEFAULT | X-Engine storage engine | YES | YES | YE

S |

| MEMORY | YES | Hash based, stored in memory, useful for temporary tables | NO

| NO | NO |

| InnoDB | YES | Supports transactions, row-level locking, and foreign keys | YES

| YES | YES |

| PERFORMANCE_SCHEMA | YES | Performance Schema | NO | NO

| NO |

| Sequence | YES | Sequence Storage Engine Helper | NO | NO | N

O |

| MyISAM | YES | MyISAM storage engine | NO | NO | NO

|

| MRG_MYISAM | YES | Collection of identical MyISAM tables | NO | NO |

NO |

| CSV | YES | CSV storage engine | NO | NO | NO |

| ARCHIVE | YES | Archive storage engine | NO | NO | NO

|

+--------------------+---------+--+--------------

+------+------------+

11 rows in set (0.00 sec)

The table used for testing is stored in X-Engine.

ApsaraDB for RDS AliSQL Kernel · Best pract ices

> Document Version:20201014 126

Note In this example, the table used for testing is created with the ENGINE
parameter set to XENGINE. If you set the ENGINE parameter to INNODB or another storage
engine, the table used for testing is stored in the specified storage engine rather than X-
Engine.

MySQL [sbtest]> show create table sbtest1;

+---------+--

--

--

-----------------------------+

| Table | Create Table

|

+---------+--

--

--

-----------------------------+

| sbtest1 | CREATE TABLE `sbtest1` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `k` int(11) NOT NULL DEFAULT '0',

 `c` char(120) COLLATE utf8mb4_general_ci NOT NULL DEFAULT '',

 `pad` char(60) COLLATE utf8mb4_general_ci NOT NULL DEFAULT '',

 PRIMARY KEY (`id`),

 KEY `k_1` (`k`)

) ENGINE=XENGINE AUTO_INCREMENT=2001 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_gener

al_ci |

+---------+--

--

--

-----------------------------+

1 row in set (0.01 sec)

Note We recommend that you use SysBench 1.1.0 or later.

Use DTS to test storage space usage
We recommend that you use Alibaba Cloud Data Migration Service (DTS) to migrate your actual
database data to your RDS instance and then check the disk usage of X-Engine. In this case, the
test results are more close to your actual business situation. X-Engine adopts technologies such
as space-friendly storage format, prefix encoding, tiered storage, and efficient compression
algorithms to reduce disk usage. The actual effect of these technologies varies based on
schemas and record length in your databases. Therefore, using your actual database data
allows you to obtain more accurate test results.

AliSQL Kernel · Best pract ices ApsaraDB for RDS

127 > Document Version:20201014

DTS does not support an automatic conversion of the storage engine during data migration. You
must manually create databases and tables on your RDS instance that runs X-Engine, set the
ENGINE parameter to XENGINE in the table creation statements as described in the
"Prerequisites" section, and migrate data by using DTS. Do not migrate the schemas.

We recommend that you do not execute SQL statements immediately after the data import is
complete. You can monitor the CPU utilization and input/output operations per second (IOPS)
usage of your RDS instance in the ApsaraDB for RDS console. After the CPU utilization and IOPS
approach zero, you can execute SQL statements to test the performance of X-Engine. In this
case, the disk usage is calculated more accurately. This is because the log-structured merge-
tree (LSM tree) architecture used by X-Engine depends on background asynchronous tasks to
implement functions such as data compression. These functions reduce storage costs. The
background asynchronous tasks take some time and consume CPU and IOPS resources.

For more information, see Migrate data between ApsaraDB for RDS instances.

Use SysBench to test the storage space usage
To fully test the compression efficiency of X-Engine, we recommend that you set the table_size
parameter in the following command to a large value within the disk size range allowed for your
RDS instance.

We recommend that you monitor the CPU utilization and IOPS usage of your RDS instance in the
ApsaraDB for RDS console. After the CPU utilization and IOPS approach zero, the space usage is
calculated more accurately.

Run the following command to test the storage space usage:

sysbench /usr/share/sysbench/oltp_update_index.lua \

 -- mysql-host=[The endpoint of your RDS instance] \

 --mysql-user=sbtest \

 --mysql-password=sbtest@888 \

 --mysql-db=sbtest \

 --threads=32 \

 --tables=32 \

 --table_size=1000000000 \

 --mysql-storage-engine=XENGINE \

 prepare

Use SysBench to test performance
If you use SysBench for performance testing, we recommend that you set the rand-type
parameter to zipfian and the rand-zipfian-exp parameter to 0.9.

rand-type: specifies the type of the distribution that is used to generate random numbers in
SQL statements.
Zipfian distribution: a common data distribution with hot spots. When the rand-zipfian-exp
parameter is set to 0.9, the random numbers generated by using Zipfian distribution are closer
to those generated in the real world. The test results are more valuable in comparison to
those generated by using the default uniform distribution.

ApsaraDB for RDS AliSQL Kernel · Best pract ices

> Document Version:20201014 128

https://www.alibabacloud.com/help/doc-detail/96154.htm#concept-fxm-bhp-ydb

We recommend that you conduct a single test for a long period of time, such as 3,600 seconds.
The test results of average performance obtained from a long-time test is more valuable and
less affected by potential interference factors.

We recommend that you use a large number of threads, for example, 512 threads, to test the
throughput.

To improve the performance of X-Engine by configuring parameters, contact your Alibaba Cloud
account manager or after-sales engineers. You can also submit a ticket to receive consulting
services.

Run the following command to test the performance:

sysbench /usr/share/sysbench/oltp_point_select.lua \

 -- mysql-host=[The endpoint of your RDS instance] \

 --mysql-user=sbtest \

 --mysql-password=sbtest@888 \

 --time=3600 \

 --mysql-db=sbtest \

 --tables=32 \

 --threads=512 \

 --table_size=10000000 \

 --rand-type=zipfian \

 --rand-zipfian-exp=0.9 \

 --report-interval=1 \

 run

Use a Python script to perform multiple tests at a time
If you want to perform multiple tests at a time by using SysBench, we recommend that you use a
Python script that can automatically perform the tests and record the test results. When you
execute the script, you are prompted to enter the endpoint of your RDS instance. Example:

import subprocess

import time

import sys

def execute_test(test_name, db_conn_string):

 # setup sysbench parameters

 mysql = "--mysql-host=%s" % db_conn_string

 user = "--mysql-user=sbtest"

 password = "--mysql-password=*********"

 time = "--time=3600"

 database = "--mysql-db=sbtest"

 tables = "--tables=32"

 threads = "--threads=512"

 table_size = "--table_size=1000000"

AliSQL Kernel · Best pract ices ApsaraDB for RDS

129 > Document Version:20201014

https://workorder-intl.console.aliyun.com/#/ticket/createIndex

 table_size = "--table_size=1000000"

 distribution = "--rand-type=pareto --rand-pareto-h=0.9"

 # formulate the sysbench command

 cmd = 'sysbench ' + test_name + " " + mysql + " " + user+ " " + password + " " + time+ " " + database+ "

" + tables + " " + threads + " " + table_size+ " " + distribution+ " " + "--report-interval=1"+ " " +'run'

 # execute

 out = subprocess.check_output(cmd,

 stderr = subprocess.STDOUT, shell=True)

 # output sysbench outputs to a file

 output_file_name = "xengine_result_"+test_name[20:len(test_name)]

 output_file = open(output_file_name, "w")

 output_file.write(out)

 output_file.close()

if __name__ == '__main__':

 # the connection string for the MySQL (X-Engine) instance to be tested

 db_conn_string = sys.argv[1]

 test = [

 "/usr/share/sysbench/oltp_update_index.lua",

 "/usr/share/sysbench/oltp_point_select.lua",

 "/usr/share/sysbench/oltp_read_only.lua",

 "/usr/share/sysbench/oltp_write_only.lua",

 "/usr/share/sysbench/oltp_read_write.lua",

 "/usr/share/sysbench/oltp_insert.lua"

]

 for atest in test:

 print("start test:\t%s\t%s" % (atest, time.ctime()))

 execute_test(atest, db_conn_string)

 print("end test:\t%s\t%s" % (atest, time.ctime()))

 # sleep foe some seconds

 # after a period of testing with inserts/updates/deletes, x-engine needs some time to complete

 # its asynchronous background compactions.

 time.sleep(1000)

8.5. Use DMS to archive data to X-Engine

ApsaraDB for RDS AliSQL Kernel · Best pract ices

> Document Version:20201014 130

This topic describes how to use the task orchestration feature of Data Management Service
(DMS) to regularly migrate historical data from an ApsaraDB RDS for MySQL database that uses
the InnoDB engine to an ApsaraDB RDS for MySQL database that uses X-Engine. This is a cost-
effective storage solution.

Prerequisites
Database instances are registered in DMS and meet the following conditions:

The source database is an ApsaraDB RDS for MySQL database that uses the InnoDB engine.
The destination database is an ApsaraDB RDS for MySQL database that uses X-Engine. For
information about how to create an ApsaraDB RDS for MySQL instance, see Create an
ApsaraDB RDS for MySQL instance.
Both the source and destination instances are in Secure Collaboration mode.
Cross-database query is enabled for both the source and destination instances. For
information about how to enable this feature, see Modify an instance.

Note In this example, the database link of the source instance is dblink_src_rds, and
that of the destination instance is dblink_target_rds.

Context
As business develops and data accumulates in a database, various problems may arise, such as
surging storage costs and reduced performance of the database. Therefore, Alibaba Cloud
provides a cost-effective storage solution based on X-Engine, a storage engine that is
developed by Alibaba Cloud. Assume that your business is supported by an ApsaraDB RDS for
MySQL database that uses the InnoDB engine. You can migrate historical data in this database
to an ApsaraDB RDS for MySQL database that uses X-Engine, where data can be stored at lower
costs. In this way, only hot data is stored in the business database. This improves the security
and availability of your business and reduces storage costs.

Note X-Engine is an online transaction processing (OLTP) storage engine that is
developed by Alibaba Cloud. This storage engine is widely used in many business systems of
Alibaba Group, including the transaction history database and DingTalk chat history
database. This significantly reduces business costs. In addition, X-Engine is a crucial
database technology that empowers Alibaba Group to cope with bursts of traffic that may
surge to hundreds of times greater than usual during Double 11. X-Engine provides similar
performance as the InnoDB engine, but costs far less than the InnoDB engine. Therefore, X-
Engine is a highly cost-effective storage engine. For more information, see X-Engine
overview.

The process is shown in the figure below:

You can use the task orchestration feature of DMS to automatically and regularly migrate
historical data to a database that uses X-Engine. This helps reduce labor costs.

AliSQL Kernel · Best pract ices ApsaraDB for RDS

131 > Document Version:20201014

https://www.alibabacloud.com/help/doc-detail/26117.htm#concept-wzp-ncf-vdb
file:///home/admin/icms-dita-ot-worker/.default/temp/~~159709~~
https://www.alibabacloud.com/help/doc-detail/148660.htm#concept-2377809

In this example, a task flow that consists of four tasks is created by using the task orchestration
feature in DMS. The first task in the task flow creates a destination table in the ApsaraDB RDS for
MySQL database that uses X-Engine. The second task backs up historical data in a source table,
namely, data that has been stored in the source table for more than a month, to the destination
table on a daily basis. The third task deletes the historical data in the source table. Then, the
last task executes an OPTIMIZE TABLE statement to optimize the source table. This task flow is
run at a specified time point every day. The source database only stores data that is generated
over the last month. Large amounts of historical data are migrated to the destination database
that uses X-Engine, which is more cost-effective.

Create a task flow
1. Log on to the DMS console.

2. In the top navigation bar, choose Data Factory > Task Orchestration. The Home tab of the
Task Orchestration page appears.

3. In the Free orchestration tasks section, click New task flow.

4. In the New Task Flow dialog box, enter relevant information in the Task Flow Name and
Description fields and click OK. In this example, set the task flow name to Rds_innodb_to_X-E

ngine and enter Rds_innodb_to_X-Engine demo in the Description field. The Task
Orchestration page appears.

Create tasks
Create the following tasks in the task flow:

Create a destination table: This task creates a destination table in the destination database.
This table will be used to store historical data of the source table.
Back up historical data: This task uses cross-database query to back up historical data from a
source table in the source database to the destination table.
Delete the historical data in the source table: After the historical data in the source table is
backed up to the destination table, this task deletes the historical data in the source table.
Optimize the source table: After the historical data in the source table is deleted, this task
executes an OPTIMIZE TABLE statement to optimize the source table and save storage space.

1. On the Task Orchestration page, create and configure the following tasks:Create a
destination table

i. In the navigation tree, find the MySQL task node and drag the task node to the canvas.

ii. Double-click this task node on the canvas, modify its name, and then press Enter. In this
example, rename the task node as Create a destination table.

iii. Click this task node. The Content tab appears on the right.

iv. On the Content tab, select the destination database from the drop-down list. In this
example, select the ApsaraDB RDS for MySQL database that uses X-Engine.

ApsaraDB for RDS AliSQL Kernel · Best pract ices

> Document Version:20201014 132

https://dms.alibabacloud.com/

v. Enter an SQL statement for creating a destination table in the destination database and
click Save. In this example, enter the following SQL statement:

CREATE TABLE IF NOT EXISTS `target_xengine_tbl` (

 `id` BIGINT,

 `price` DECIMAL(10,2),

 `count` INT,

 `trx_time` DATETIME,

 PRIMARY KEY (`id`)

) ENGINE=XENGINE DEFAULT CHARSET=utf8;

Note In this example, the name of the destination table is target_xengine_tbl .
The schema of this table must be the same as that of the source table, which is
named src_innodb_tbl .

Back up historical data

i. In the navigation tree, find the Cross Database SQL task node and drag the task node to
the canvas.

ii. Double-click this task node on the canvas, modify its name, and then press Enter. In this
example, rename the task node as Back up historical data.

iii. Click this task node. The Content tab appears on the right.

AliSQL Kernel · Best pract ices ApsaraDB for RDS

133 > Document Version:20201014

iv. On the Content tab, enter an SQL statement for backing up historical data from the
source table to the destination table and click Save. In this example, enter the following
SQL statement:

INSERT INTO `dblink_target_rds`.`target_db`.`target_xengine_tbl`

 (`id`, `price`, `count`, `trx_time`)

SELECT `id`, `price`, `count`, `trx_time`

FROM `dblink_src_rds`.`src_db`.`src_innodb_tbl`

WHERE `trx_time` >= '${thirty_one_days_ago}'

AND `trx_time` < '${thirty_days_ago}';

Note This SQL statement is used to back up historical data from the source
table in the source database to the destination table in the destination database.

In this example, the database link dblink_src_rds refers to the source
ApsaraDB RDS for MySQL instance that uses the InnoDB engine. The database
link dblink_target_rds refers to the destination ApsaraDB RDS for MySQL
instance that uses X-Engine.

The following two variables are used in the WHERE clause to specify the
range of historical data to be backed up: ${thirty_one_days_ago} and ${thirty

_days_ago} .

v. Click the blank area on the canvas. The Scheduling tab appears on the right. Click the
Variables tab, configure one or more variables as needed, and then click Save. In this
example, configure two variables: thirty_one_days_ago and thirty_days_ago , as shown
in the following figure.

Delete the historical data in the source table

i. In the navigation tree, find the MySQL task node and drag the task node to the canvas.

ii. Double-click this task node on the canvas, modify its name, and then press Enter. In this
example, rename the task node as Delete the historical data in the source table.

iii. Click this task node. The Content tab appears on the right.

iv. On the Content tab, select the source database from the drop-down list. In this
example, select the ApsaraDB RDS for MySQL database that uses the InnoDB engine.

Note This task is designed to delete the historical data, which has been
backed up to the destination table, in the source table.

ApsaraDB for RDS AliSQL Kernel · Best pract ices

> Document Version:20201014 134

v. Enter an SQL statement for deleting the historical data in the source table and click
Save. In this example, enter the following SQL statement:

DELETE FROM `src_innodb_tbl`

 WHERE `trx_time` >= '${thirty_one_days_ago}'

 AND `trx_time` < '${thirty_days_ago}';

Optimize the source table

i. In the navigation tree, find the MySQL task node and drag the task node to the canvas.

ii. Double-click this task node on the canvas, modify its name, and then press Enter. In this
example, rename the task node as Optimize the source table.

iii. Click this task node. The Content tab appears on the right.

iv. On the Content tab, select the source database from the drop-down list. In this
example, select the ApsaraDB RDS for MySQL database that uses the InnoDB engine.

v. Enter an SQL statement for optimizing the source table and click Save. In this example,
enter the following SQL statement:

OPTIMIZE TABLE `src_innodb_tbl`;

Note To prevent the OPTIMIZE TABLE statement from affecting online business,
we recommend that you allow changing schemas without locking tables for the
source ApsaraDB RDS for MySQL instance, as shown in the following figure. For more
information, see Modify an instance.

2. On the canvas, connect the four task nodes to form a task flow. Draw lines between the
task nodes in the order that the task nodes are created.

Configure scheduling properties
1. Click the blank area on the canvas. The Scheduling tab appears on the right. Turn on the

switch at the top of the Scheduling tab and complete the configurations. In this example,
configure the task flow to be run at 01:00 every day, as shown in the following figure.

Note In this example, to avoid business peak hours, the task flow is configured to
be run at 01:00 every day. You can customize the scheduling properties based on your
actual needs.

2. Click Save.

AliSQL Kernel · Best pract ices ApsaraDB for RDS

135 > Document Version:20201014

file:///home/admin/icms-dita-ot-worker/.default/temp/~~159709~~

	1.Features of AliSQL
	2.Release notes of minor AliSQL versions
	3.X-Engine
	3.1. X-Engine overview
	3.2. Usage notes
	3.3. Convert the storage engine from InnoDB, TokuDB, or MyRocks to X-Engine
	3.4. Benefits of X-Engine

	4.Feature
	4.1. Thread Pool
	4.2. Statement outline
	4.3. Sequence Engine
	4.4. Returning

	5.Performance
	5.1. Fast query cache
	5.2. Binlog in Redo
	5.3. Statement Queue
	5.4. Inventory Hint

	6.Stability
	6.1. Faster DDL
	6.2. Statement concurrency control
	6.3. Performance Agent
	6.4. Purge Large File Asynchronously
	6.5. Performance Insight

	7.Security
	7.1. Data Protect
	7.2. Recycle bin

	8.Best practices
	8.1. Convert the storage engine of DRDS from InnoDB to X-Engine
	8.2. DingTalk secures App Store top rank with X-Engine
	8.3. Storage engine that processes trillions of Taobao orders
	8.4. Best practices for X-Engine testing
	8.5. Use DMS to archive data to X-Engine

