Alibaba Cloud

FunctionFlow

Service Integration

Document Version: 20220120

(-] Alibaba Cloud

FunctionFlow Service Integration-Legal disclaimer

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be deemed
as your total acceptance of this legal disclaimer.

1.

You shall download and obt ain this document from the Alibaba Cloud website or other Alibaba Cloud-
aut horized channels, and use this document for your own legal business activities only. The content of
this document is considered confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided to any third party for
use wit hout the prior written consent of Alibaba Cloud.

. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminated by

any organization, company or individual in any form or by any means without the prior written consent of
Alibaba Cloud.

. The content of this document may be changed because of product version upgrade, adjustment, or

other reasons. Alibaba Cloud reserves the right to modify the content of this document without notice
and an updated version of this document will be released through Alibaba Cloud-aut horized channels
from time to time. You should pay attention to the version changes of this document as they occur and
download and obt ain the most up-to-date version of this document from Alibaba Cloud-aut horized
channels.

. This document serves only as a reference guide for your use of Alibaba Cloud products and services.

Alibaba Cloud provides this document based onthe "status quo", "being defective", and "existing
functions" of its products and services. Alibaba Cloud makes every effort to provide relevant operational
guidance based on existing technologies. However, Alibaba Cloud hereby makes a clear statement that
it in no way guarantees the accuracy, integrity, applicability, and reliability of the content of this
document, either explicitly or implicitly. Alibaba Cloud shall not take legal responsibility for any errors or
lost profits incurred by any organization, company, or individual arising from download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, take responsibility for any indirect,
consequential, punitive, contingent, special, or punitive damages, including lost profits arising from t he
use or trust inthis document (evenif Alibaba Cloud has been notified of the possibility of such a loss).

. By law, allthe contents in Alibaba Cloud documents, including but not limited to pictures, architecture

design, page layout, and text description, are intellectual property of Alibaba Cloud and/or its
affiliates. This intellect ual property includes, but is not limited to, trademark rights, patent rights,
copyrights, and trade secrets. No part of this document shall be used, modified, reproduced, publicly
transmitted, changed, disseminated, distributed, or published wit hout the prior written consent of
Alibaba Cloud and/or its affiliates. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for marketing, advertising, promotion, or ot her purposes wit hout the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited to, "Alibaba Cloud",
"Aliyun", "HiChina", and other brands of Alibaba Cloud and/or its affiliates, which appear separately or in
combination, as well as the auxiliary signs and patterns of the preceding brands, or anyt hing similar to
the company names, trade names, trademarks, product or service names, domain names, patterns,
logos, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates.

. Please directly contact Alibaba Cloud for any errors of this document.

> Document Version: 20220120

FunctionFlow

Service Integration-Document conv
entions

Document conventions

Style

/\ Danger

warning

) Notice

@ Note

Bold

Courier font

Italic

(1 or [alb]

{} or {a|b}

Description

A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

A note indicates supplemental
instructions, best practices, tips, and
other content.

Closing angle brackets are used to
indicate a multi-level menu cascade.

Bold formatting is used for buttons ,
menus, page names, and other Ul
elements.

Courier font is used for commands

ltalic formatting is used for parameters
and variables.

This format is used for an optional value,
where only one item can be selected.

This format is used for a required value,
where only one item can be selected.

Example

& Danger:

Resetting will result in the loss of user
configuration data.

warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

p Notice:

If the weight is set to 0, the server no
longer receives new requests.

@ Note:

You can use Ctrl + A to select all files.

Click Settings> Network> Set network
type.

Click OK.

Runthe cd /d C:/window command to
enter the Windows system folder.

bae log list --instanceid

Instance_ID

ipconfig [-all|-t]

switch {active|stand}

> Document Version: 20220120

FunctionFlow Service Integration-Table of Conten

ts
Table of Contents
1.0verview S e e e e s e 05
2.Child flows of Serverless Workflow -------=--=-==m-mrmmrmm oo 08
3.Asynchronous function invocation -------=-=-==m-mmmrmmm o 12
4.MNS queles F =t e e e 17
5.Integrate MNS topics s s o e s e 21

> Document Version: 20220120

FunctionFlow Service Integration-Overview

1.0verview

Serverless Workf low can integrate with multiple Alibaba Cloud services. After integration, these services
are executed in task steps in Serverless Workflow. Service integration modes are defined in Flow
Definition Language (FDL). In atask step, you can use resourcearn to define the service that you
want to integrate, and use pattern to define the integration mode that you want to use. This topic
describes information about service integration, including integration modes, context objects, and
integrated cloud services.

For more information about the available cloud services, see Integrated cloud services.

Integration modes
Serverless Workflow supports the following integration modes:

e Request-response mode: In this mode, when you invoke a third-party service, Serverless Workf low
proceeds to the next step immediately after it gets an HTTP response. This is the default mode.
In a step of aflow defined in FDL, the resourceAarn parameter definesthe service, and the patte
rn: requestResponse parameter defines the service integration mode. The latter parameteris
optional. If it is not specified, the default integration mode is used. In this mode, Serverless Workf low
proceeds to the next step immediately after it receives an invocation response. The following
example shows a child flow, in which Serverless Workflow is the integrated service:

version: vl
type: flow
steps:
- type: task
name: testSubflow
resourceArn: acs:fnf:::flow/flowABC #Defines the child flow.
pattern: requestResponse #Sets the service integration mode to the request-response m
ode, which is the default mode.
- type: pass

name: dummy

In this example, whenthe testsubflow sStepisexecuted,the fiowaBc child flow is triggered.
After flowABC is triggered, the flow proceedsto the dummy step, while fiowaBc may still be
running.

e Synchronous mode: In this mode, a service generally provides an APIfor asynchronous execution.
After Serverless Workflow invokes the API, Serverless Workflow waits for the relevant taskto
complete and the execution result to be returned before it proceeds to the next step.

For specific integrated services, Serverless Workf low waits for the relevant taskto complete and then
proceeds to the next step. This type of service provides an asynchronous APIto start a task. You
must submit the task and wait forthe taskto complete before the next step starts.

In a step of aflow defined in FDL, the resourcearn parameter definesthe service, and the patte
rn: sync parameter defines the service integration mode. The following example shows a child
flow, in which Serverless Workflow is the integrated service:

> Document Version: 20220120 5

Service Integration-Overview FunctionFlow

version: vl
type: flow
steps:
- type: task
name: testTask
resourceArn: acs:fnf:::flow/flowABC #Defines the child flow.
pattern: sync #Sets the service integration mode to the synchronous mode.
- type: pass

name: dummy

In this example, when the task step is executed, a Serverless Workflow child flow is triggered. After
the child flow is triggered, the flow waits for its execution result and then proceeds to the next step.
Whenthe testTask stepisexecuted,the fiowaBc child flow is triggered. After flowABCis
triggered, the flow waits for its execution result. After fiowarc is completed, the flow proceeds
tothe aqummy step. At this point, flowABC has been completed.

e Wait-for-callback mode: In this mode, when you invoke a third-party service and pass in the task
token, Serverless Workflow waits for you to use the token to notify the flow of the execution result
before the flow proceeds to the next step.

The callback task suspends the current flow at the task scheduling point until the callback instruction
forthe corresponding task token is received. In a step of a flow defined in FDL, the resourceArn
parameter defines the service, and the pattern: waitForCallback parameterdefines the service
integration mode. The following example shows a child flow, in which Serverless Workflow is the
integrated service:

version: vl
type: flow
steps:
- type: task
name: testSubflow
resourceArn: acs:fnf:::flow/flowABC #Defines the child flow.
pattern: waitForCallback #Set the service integration mode to the wait-for-callback m
ode.
- type: pass

name: dummy

In this example, whenthe testsubflow Stepisexecuted,the fiowasc child flow is triggered.

After flowABC is triggered, the flow is paused to wait for a callback that is implemented with the

invocation of the ReportTaskSucceed OF ReportTaskFailed oOperation. Afterthe flow receives

and processes a callback request, it proceedsto the dummy step, regardless of whether fiowaBc
has been completed. The callback s initiated by you.

Context objects

A context object is an internal JSON object in a flow execution instance, which contains information
about the execution and steps. This object allows access from external services. To implement the
access, you can map the context object to a specific variable in inputMappings. The following example
shows the structure of the available context objects:

6 > Document Version: 20220120

FunctionFlow Service Integration-Overview

"context": {
"flow": {
// The unique ID, name, and string type of the flow.
"id": "vall",
"name "val2",
s
"execution": {

// The name of the execution.

"name": "val3"

s

"step": {
// The name of the step.
"name": "val4"

// The event ID of the step.
"eventId": "valb"
// The iteration index. This parameter is valid in a foreach step.
"IterationIndex": "valo",
o
"task": {
// The identifier of the step, which is a string. This parameter is valid in the wait
—-for-callback mode.
"token": "val7",
by

To integrate the Serverless Workf low service, you must obtain fromthe child flow the information
about the parent flow that invokes this child flow, and obtain taskT oken in this invocation step.
taskT oken will be used in the callback. You can obtain the target and source fields in the following
way:

inputMappings:

- target: current flow name
source: $context.flow.name

- target: current execution name
source: $context.execution.name

- target: current step task token

source: Scontext.task.token

Integrated cloud services

Request-response

Service mode Synchronous mode Wait-for-callback mode
Function Compute Supported Not supported Not supported

M Servi MNS

qj:j:?e ervice () Supported Not supported Supported

MNS topics Supported Not supported Supported

Serverless Workflow Supported Supported Supported

> Document Version: 20220120 7

Service Integration- Child flows of Se

FunctionFlow

rverless Workflow

2.Child flows of Serverless
Workflow

The feature of integrating child flows of Serverless workflow allows you to execute another flow in a
flow. This topic describes scenarios, integration modes, context objects, and input and output rules of
child flows of Serverless workflow.

Scenarios
The feature of integrating child flows of Serverless workflow can be applied in the following scenarios:

Divide a flow into multiple child flows to reduce the flow complexity.

Facilitate the reuse of flows. You can put some common steps in a flow and reuse these stepsin
other flows.

Remove limits of the current single flow. For example, a single flow can contain a maximum of 5,000
events by default and the maximum execution time is one year.

Implement error handling for the overall out put of the flow. For example, you can design a parallel
step as a child flow and handle errors that occur in the execution of the child flows in the parent
flow.

Integration modes
Serverless workflow supports three integration modes: request/response, synchronous, and wait-for-
callback modes.

Request/response mode
In this mode, the parent flow starts to execute the next step immediately afterthe child flow is
started. The following piece of code defines the flow:

version: vl
type: flow
steps:
- type: task
name: fnfInvoke
resourceArn: acs:fnf:::flow/subflow demo child

pattern: requestResponse # The default mode. You do not need to specify this paramete

inputMappings: # If inputMappings is not specified, the default mapping rule is used.
In other words, the parameters of the parent flow are used as the input into the child f1l
ow.
- target: childName # The execution name of the child flow that will be initiated i
n the service.
source: $input.childName
serviceParams: # The parameters of the service that is integrated in Serverless work
flow. You do not need to specify this parameter. If this parameter is not specified, a ra
ndom string is used as the name of this execution, and the parameter included in inputMap
pings is used as the input into the child flow.
Input: $ # Use the mapped input parameter as the input parameter to initiate the c
hild flow.
ExecutionName: $.childName # If a variable is specified in serviceParams, ensure th

at this variable exists in inputMappings.

e Synchronous mode

> Document Version: 20220120

Service Integration- Child flows of Se
rverless Workflow

FunctionFlow

In this mode, the parent flow starts a child flow and proceeds to the next step after the execution
of the child flow is completed. The following piece of code defines the flow:

version: vl
type: flow
steps:

- type: parallel
name: parallelTask
branches:

- steps:

In this step, Serverless workflow is integrated in the synchronous mode, where
inputMappings is used as the input into the child flow, and the execution name of the chi
1d flow is dynamically specified based on the input into the parent flow.

- type: task

name: fnfSync

resourceArn: acs:fnf:::flow/subflow demo child

pattern: sync

inputMappings: # If inputMappings is not specified, the default mapping rule is
used. In other words, the parameters of the parent flow are used as the input into the ch
ild flow.

- target: childSyncName # The execution name of the child flow that will be i
nitiated in the service. If you want to specify an execution name for the child flow, per
form input mapping for the target execution name and use the mapped result in servicePara
ms, as shown in this example.

source: $input.childSyncName.
serviceParams: # The parameters of the service that is integrated in Serverles
s workflow.

Input: $ # Use the mapped input parameter as the input parameter to initiate
the child flow. We recommend that you use the provided method unless you explicitly speci
fy the behavior and syntax for Input in other ways.

ExecutionName: $.childSyncName # If a variable is specified in serviceParams,

ensure that this variable exists in inputMappings.

e Wait-for-callback mode
In this mode, the parent flow starts a child flow and enters the suspended state until it receives a
callback notification. The following piece of code defines the flow:

> Document Version: 20220120 9

Service Integration- Child flows of Se
rverless Workflow

FunctionFlow

version: vl
type: flow
steps:
- steps:
In this step, Serverless workflow is integrated in the wait-for-callback mode, wher
e inputMappings is used as the input into the child flow, and the execution name of the c
hild flow is dynamically specified based on the input into the parent flow.
- type: task
name: fnfWaitForCallback
resourceArn: acs:fnf:::flow/subflow demo child
pattern: waitForCallback
inputMappings: # If inputMappings is not specified, the default mapping rule is use
d. In other words, the parameters of the parent flow are used as the input into the child
flow.
-target: task token # To ensure that callbacks can be used in the child flow, map
task token to a custom name.
source: S$context.task.token # Obtain the task token that identifies the task f
rom the context object.
- target: childCallbackName
source: $input.childCallbackName
serviceParams: # The parameters of the service that is integrated in Serverless wo
rkflow.
Input: $ # Use the mapped input parameter as the input parameter to initiate the
child flow.
ExecutionName: $.childCallbackName # If a variable is specified in serviceParams,

ensure that this variable exists in inputMappings.

Context object description

In the integration modes for child flows, you can passthe scontext.execution.name and
$context.flow.name variablesto a child flow to identify the parent flow that starts the child flow. In
the wait-for-callback mMode, $context.task.token isused to passthe identifier of the parent
flow to the child flow to implement the callback.

Input and output rules for child flows

e Request/response mode
In this mode, the input into a child flow derives fromthat of the corresponding task step. You can
obtain the input by specifying sinput inthe child flow.
The start information of the child flow (response fromthe callto startkExecution)isused asthe
output, whereas the output of the child flow is ignored by the parent flow. After a child flow is
started, the following start information of the child flow is provided by default: $1local.ExecutionN
ame , Slocal.FlowName ,and S$local.RequestId .If youwant to map otheroutput parameters
of the child flow to the parent flow, you can map them by performing output mapping inthe
corresponding step in the parent flow.

10 > Document Version: 20220120

Service Integration- Child flows of Se

FunctionFlow
rverless Workflow

- type: task

pattern: requestResponse

outputMappings: # In the request/response mode, you can obtain the $local.ExecutionN
ame, $local.FlowName, and $local.RequestId parameters.
- target: subflow children request id
source: $local.RequestId # The ID of the request that initiates the child flow.
- target: subflow children exec name
source: $local.ExecutionName # The execution name of the child flow that will be
initiated.
- target: subflow children flow name

source: $local.FlowName # The flow name of the child flow that will be initiated

e Synchronous mode
In this mode, the input into a child flow derives fromthat of the corresponding task step. You can
obtain the input by specifying sinput inthe child flow.
The output of the child flow, whichisthe output inthe response fromthe callto pescribeExecu
tion ,isreturned to the parent flow asthe output of this step inthe parent flow. You can use this
output in subsequent steps of the parent flow. If you want to map other output parameters of the
child flow to the parent flow, you can map them by performing output mapping

o Wait-for-callback mode
In this mode, the input into a child flow derives fromthat of the corresponding task step. You can
obtain the input by specifying s$input inthe child flow.
The output of the callback s used as the output of this step in the parent flow. The value of the o
utput parameter that you pass in whenyou callthe ReportTaskSucceeded o0Operationis used as
the output of this step in the parent flow. The values of the Error and Cause parameters that you
pass inwhenyou callthe RreportTaskrailed o0peration are used asthe output of this step inthe
parent flow. If you want to map other output parameters of the child flow to the parent flow, you
can map them by performing output mapping

> Document Version: 20220120 11

Service Integration-Asynchronous fu
nction invocation

FunctionFlow

3.Asynchronous function invocation

Serverless Workf low can asynchronously invoke functions of Function Compute. Asynchronous
invocation is ideal for some scenarios such as long-termtasks and manual audits. This can help you
prevent throttling errors and simplify troubleshooting procedures and retry logic. This topic describes
the scenarios, integration patterns. This topic also provides an example on how to integrate the
asynchronous function invocation feature into Serverless Workf low.

Prerequisites
The following operations are complete:

e (Optional) Asynchronous invocation is enabled. For more information, see Asynchronous invocation.
Afteryou enable stateful asynchronous invocation for your functions, you can stop the function
instance when the task is being executed. This helps you view the flow from a finer-grained
perspective.

e Function Compute is granted the permissions to access Serverless Workf low. T his ensures that
Serverless Workflow can be called back to execute subsequent steps after the asynchronous
function execution is complete. The following snippet shows how to configure the permission policy.

{

"Statement": [
{

"Effect": "Allow",

"Action": [
"fnf:ReportTaskSucceeded",
"fnf:ReportTaskFailed"

1,

"Resource": [

wxn

] r

"Version": "1"

}

For more information about how to grant permission to Function Compute, see Grant Function Compute
permissions to access other Alibaba Cloud services.

Background information

By default, Serverless Workflow uses the synchronous pattern when Serverless Workflow orchestrates
Function Compute tasks to implement task flows. In the synchronous pattern, Serverless Workflow does
not proceed to the next step until the flow receives the execution results of the previous function. The
following snippet shows a flow that uses the synchronous pattern.

version: vl
type: flow
steps:
- type: task
name: mytask
resourceArn: acs:fc:{region}:{account}:services/{serviceName}.{qualifier}/functions/{fu

nctionName}

12 > Document Version: 20220120

https://www.alibabacloud.com/help/doc-detail/181866.htm#task-2134862
https://www.alibabacloud.com/help/doc-detail/181589.htm#task-2077619

FunctionFlow

Service Integration- Asynchronous fu
nction invocation

The following issues may occur when you use the synchronous pattern for function invocation:

e The resource limits to invocation of functions of Function Compute may cause throttling errors.
By default, a maximum of 300 pay-as-you-go instances are allowed in a single region for an Alibaba
Cloud account of Function Compute. When you use Serverless Workflow to invoke a function, the
invocation shares the same quota with the function invocations that are initiated by other services.
This may cause throttling errors. In this case, you need to define a complex retry policy in your
Serverless Workflow flow. However, this does not ensure that the flow is executed successfully.

e [f the task requires a long time to execute, a persistent connection must be established between
Serverless Workflow and Function Compute. Unstable network conditions may cause unexpected

errors.

Serverless Workf low allows you to combine the asynchronous function invocation feature with various
integration patterns to solve the preceding issues. At the same time, the combination can meet the

following requirements:

e |n some scenarios, the system needs to perform subsequent steps without waiting for the execution

completion of the current step.

e [f unexpected errors occur when the flow is being executed, the system needs to skip the current

step and proceed to the next step.

Scenarios

In different scenarios, Serverless Workflow uses the request-response pattern (requestResponse),
synchronous pattern(sync), or wait-for-callback pattern (wait ForCallback) to asynchronously invoke

functions of Function Compute.
Integration pattern Parameter

requestResponse

Sample flow:

- type: task
Request-response pattern
(default pattern) pattern: requestResponse
serviceParams:

InvocationType: Async

sync

Sample flow:

- type: task
Synchronization pattern pattern: sync
serviceParams:

InvocationType: Async

Scenario

Tasks are long-running and the
task execution results are non-
consequential.

Tasks are long-running and may
be throttled.

> Document Version: 20220120

13

Service Integration-Asynchronous fu
nction invocation

FunctionFlow

Integration pattern Parameter Scenario
waitForCallback
Sample flow: . .
When a flow arrives at a specific
- type: task step, the flow needs to proceed
. to subsequent steps regardless
Wait-for-callback pattern . .
P pattern: waitForCallback of whether the execution of the
serviceParams: current step is complete. A
InvocationType: Async sample scenario is manual audit.

Service parameters

In the following examples, Serverless Workf low uses Function Compute as the task node, uses
resourceArn to specify Function Compute as the destination service, and uses serviceParams toO

specify the parameters that are used to invoke functions of Function Compute. serviceParams

supports the following parameters:

® InvocationType :theinvocationtype of functions. The valid valuesare sync and async
Sync indicates synchronous invocation. Async indicates asynchronous invocation.

e (Optional) statefulAsyncInvocationID :the ID of astateful asynchronous invocation. You can use
this parameter to search for the name of the destination taskin the Function Compute console.

® Note I you set InvocationType tO Async and specify avalue for
StatefulAsyncinvocationID, the function invocation pattern of Serverless Workflow is stateful
and asynchronous invocation. The value of the StatefulAsyncinvocationID parameter must be
unique for all the functions.

Integration pattern of asynchronous function invocation

When a flow arrives at the specified step, Severless Workflow asynchronously invokes a function and
executes the function. Then, the flow proceeds to the next step without waiting for a callback orthe
execution completion of the preceding step.

version: vl
type: flow
steps:
- type: task

name: mytask

resourceArn: acs:fc:{region}:{account}:services/{serviceName}.{qualifier}/functions/{fu
nctionName}

pattern: requestResponse # Async invocation with sync pattern

serviceParams:

InvocationType: Async

The preceding example shows that a function is triggered to execute when the flow arrives at the
mytask step.Afterthe functionis triggered, the flow proceeds to the next step when the execution

of the mytask step may not be complete.

14 > Document Version: 20220120

Service Integration- Asynchronous fu

FunctionFlow C .
nction invocation

When a flow arrives at the specified step, Serverless Workflow asynchronously invokes a function and
executes the function. Then, the flow is suspended and does not proceed to the next step untilthe
Serverless Workf low flow is notified that the function execution is complete.

version: vl
type: flow
steps:
- type: task

name: mytask

resourceArn: acs:fc:{region}:{account}:services/{serviceName}.{qualifier}/functions/{fu
nctionName}

pattern: sync # Async invocation with sync pattern

serviceParams:

InvocationType: Async

Serverless Workflow The preceding example shows that when the flow arrives at the mytask step, a
function is triggered to execute. Then the flow is suspended and does not proceed to the next step
until the flow is informed that the function execution is complete.

@ Note The use of the synchronous integration pattern is the same as the use of the
synchronous function invocation feature in terms of operations. Only the function invocation
methods are different.

When a flow arrives at the specified step, Serverless Workflow asynchronously invokes a function,
executes the function, and passes in a task token. Then, the flow is suspended. Regardless of whether
the function execution is complete, the flow does not proceed to the next step until you use the task
token to manually notify the flow of the function execution result.

version: vl
type: flow
steps:
- type: task

name: mytask

resourcelArn: acs:fc:{region}:{account}:services/{serviceName}.{qualifier}/functions/{fu
nctionName}

pattern: waitForCallback # Async invocation with sync pattern

serviceParams:

InvocationType: Async

The preceding example shows that a function is triggered to execute when the flow arrives at the

mytask step.Afterthe functionis triggered, the flow is suspended to wait for a callback that is
implemented with the invocation of the ReportTaskSucceed or ReportTaskFailed APl operation. The
flow does not proceed to the next step until the flow receives a callback request and processes the
callback request. The callback request is initiated by you. You can initiate the callback request when the
function execution is complete or not.

Request-response pattern
Synchronization pattern

Wait-for-callback pattern

> Document Version: 20220120 15

Service Integration-Asynchronous fu
nction invocation

FunctionFlow

Example: asynchronous function invocation

Serverless Workflow combines the asynchronous function invocation feature and the stateful
asynchronous invocation feature to provide supports for job-type scenarios. When you enable the
stateful asynchronous invocation feature and use the asynchronous invocation pattern, you can view
the function execution status and stop the function execution when and after the function is invoked.
This makes the flow observable and easy to operate. The following snippet shows the flow definition
language (FDL) of Serverless Workf low.

version: vl
type: flow
steps:
- type: task
name: mytask
resourceArn: acs:fc:::services/{serviceName}.{qualifier}/functions/{functionName}
pattern: sync # Async invocation with sync pattern
inputMappings:
- target: id
source: $context.execution.name
serviceParams:
InvocationType: Async
StatefulAsyncInvocationID: $.id

16 > Document Version: 20220120

FunctionFlow Service Integration- MNS queues

4. MNS queues

In the task step of Serverless workflow, you can send messages to a specified Message Service (MNS)
queue. This topic describes the scenarios, common parameters, integration modes, and permission
configurations for integrating MNS queues.

Scenarios
You can integrate the MNS queues in the task step in the request /response and wait-for-callback
modes. The following table lists the scenarios of these two modes.

Integration mode Parameter Scenario Description

Services other than flow
execution are
persistently notified,
requestResponse Event notification and the flow execution
is irrelevant to how the
notified services
process the message.

Request/response
mode

After a task executor in
an environment, such as
an Elastic Compute
Service (ECS) virtual
machine or a server in
an on-premises data

Orchestration of center, receives a
Wait-for-callback mode waitForCallback message sent to a
custom task types
queue, the task

executor calls back
Serverless workflow
after it executes the
relevant task. For more
information, see Best
Practices.

Common parameters
In the following example, Serverless workflow sends a message to the queue specified in

resourceArn . The specified queue name replaces {queue-name} .The body and parameters of the
message are specified in servicerarams .The following content lists the supported parameters:

e MessageBody: The body of the message, which is required. MessageBody: $: The message body
is generated by inputMappings. The following content describes how the message body is generated
when the step enters the StepEntered event:

o Theinput objectis {"key": "value 1"}
o The mapped input is {"key 1": "value 1", "key 2": "value"}
o Thetaskstepusesthe ({"key 1": "value 1", "key 2": "value"} String asthe message body
and sends it to the MNS queue.
e Priority: The priority of the message, which is required.
e DelaySeconds: The message latency, in seconds. The parameter is optional.

> Document Version: 20220120 17

https://www.alibabacloud.com/help/doc-detail/139379.htm#multiTask2184159

Service Integration- MNS queues FunctionFlow

For more information about parameters, see SendMessage in MNS documentation.

version: vl

type: flow
steps:
- type: task

name: Task 1
resourceArn: acs:mns:::/queues/{queue-name}/messages # The task step sends messages to
the MNS queue named {queue-name} under the same account in the same region.
pattern: requestResponse # The task step ends after the mes
sage is sent to the MNS queue.
inputMappings:
- target: key 1
source: S$input.key
- target: key 2
source: value
serviceParams: # The service integration parameters.

MessageBody: $ # The mapped input is used as the body of the message you want to sen

DelaySeconds: 0 # The message latency, in seconds.

Priority: 1 # The priority of the MNS queue.

Integration modes

e Request/response mode
The pattern: requestResponse parameter of the taskstep indicates the request/response mode.
In this mode, Serverless workflow sends a message to the {queue-name} queue specifiedin resou
rceArn .Afterthe message is sent, the step is completed. If the message fails to be sent, the step
fails oris retried based on the retry configurations.

version: vl

type: flow
steps:
- type: task

name: mytask
resourceArn: acs:mns:::/queues/{queue-name}/messages # The task step sends messages t
o an MNS queue under the same account in the same region.
pattern: requestResponse # The task step ends after the m
essage is sent to the MNS queue.
inputMappings:
- target: key 3
source: value
serviceParams: # The service integration parameters.
MessageBody: $ # {"key 3": "value"} is sent as the message body to the MNS queue.
DelaySeconds: 0 # The message latency, in seconds.

Priority: 1 # The priority of the MNS queue.

e Wait-for-callback mode

18 > Document Version: 20220120

https://www.alibabacloud.com/help/doc-detail/35134.htm#concept-2028931

FunctionFlow Service Integration- MNS queues

Inthe taskstep, pattern: waitForCallback indicates the wait-for-callback mode. In this mode,
Serverless workflow sends a message to the {queue-name} queue specified in resourceArn
Afterthe message is sent, the step suspends and waits for a callback. The task executor needs to
use the corresponding task token to call back Serverless workflow. If the callback result indicates that
the call to ReportTaskSuccceeded is successful, the task step is successful. If the callback result
indicates that the ReportTaskFailed operation was called, the step fails or is retried based on the
retry configuration.

taskToken: The tasktoken can be obtained fromthe context object of this step. inputMappings is
used to assign taskToken to a field in the JSON object of the message body. In the following
example, the context object inthis stepis {"task":{"token":"my-token-1"}} .The mapped task
iNnput is {"task token": "my-token-1", "key": "value"} ,whichis also sent asthe message body

to the MNS queue.

version: vl
type: flow
steps:
- type: task
name: mytask
resourceArn: acs:mns:::/queues/{queue-name}/messages # The task step sends messages t
o the MNS queue named {queue-name} under the same account in the same region.
pattern: waitForCallback # The task step suspends after the message is sent to the MN
S queue and waits until it receives the callback.
inputMappings:
- target: task token
source: S$context.task.token # Serverless Workflow queries the task token from th
e context object.
- target: key
source: value
serviceParams: # The service integration parameters.
MessageBody: $ # The mapped input is used as the body of the message you want to s
end.
Priority: 1 # The priority of the MNS queue.

Flow role configuration

Serverless workflow assumes the RAM role specified by the flow to obtain your temporary AccessKey
pairto access MNS on your behalf. Therefore, you must grant the flow role the SendMessage
permission to send messages to MNS. You can select either a system policy or a custom policy to grant
Serverless workflow the permission to send messages to your MNS queue.

e System Policy: grants the AliyunMNSFullAccess system permission to the flow role.

e Custom Policy: If you only allow the flow role to send messages to the {queue-name} queue,
create the following policy and bind it to the flow role.

> Document Version: 20220120 19

Service Integration- MNS queues FunctionFlow

"Version": "1",
"Statement": [
{
"Action": "mns:SendMessage",
"Resource": "acs:mns:*:*:/queues/{queue-name}/messages",
"Effect": "Allow"

20 > Document Version: 20220120

FunctionFlow

Service Integration-Integrate MNS t

opics

5.Integrate MNS topics

In Serverless workf low, task steps have integrated Alibaba Cloud Message Service (MNS) topics. You can
publish messages to MNS topics by defining task steps in a flow. By setting PublishMessage parameters,

you can push messages that are from MNS topics to queues, HTTP endpoints, and email addresses.

Integration modes

The following section describes two integration modes of MNS topics: request /response mode and
wait-for-callback mode. You can use one of themto orchestrate MNS topics.

e Request/response mode

In this mode, after a PublishMessage request is sent, the flow proceeds with the task steps. The

following piece of code defines the flow:

version: vl
type: flow

steps:

- type: task

name: mns-topic-task

resourceArn: acs:mns:::/topics/{topicName}/messages # mns topic resource arn

pattern: requestResponse # Optional. The default mode.

outputMappings:

Response parameters of PublishMessage

- target: messagelID # The ID of the message.
source: $local.Messageld
- target: requestID # The ID of the request.
source: $local.RequestId
- target: messageBodyMD5 # The MD5 value of the message body.
source: $local.MessageBodyMD5
serviceParams:

Request parameters of PublishMessage

MessageBody: $.messageBody # The message body.

MessageTag: $.messageTag # Optional. The message tag.

MessageAttributes:

ust be in JSON format.

e Wait-for-callback mode
In this mode, after a PublishMessage request is sent, the flow holds on the task steps until a callback
notification is received. The following piece of code defines the flow:

$.messageAttributes # The additional message attributes, which m

> Document Version: 20220120

21

Service Integration-Integrate MNS t

FunctionFlow

opics

version: vl
type: flow
steps:
- type: task
name: mns-topic-task
resourceArn: acs:mns:::/topics/{topicName}/messages # mns topic resource arn
pattern: waitForCallback # The wait-for-callback mode.
inputMappings:
- target: messageBody
source: $input.messageBody
- target: messageTag
source: $.messageTag
- target: messageAttributes
source: $.messageAttributes
- target: taskToken # The token that is automatically generated for task status cal
lbacks
source: S$context.task.token
serviceParams:
Request parameters of PublishMessage
MessageBody: $ # The message body, in which TaskToken is encapsulated.
MessageTag: $.messageTag # Optional. The message tag.
MessageAttributes:

$S.messageAttributes # Optional. The additional message attributes.

Description of parameters

e context

o

TaskToken

In the wait-for-callback mode, a task step automatically generates TaskToken fortaskstatus
callbacks. You canuse scontext.task.token to querythe value.You can runtaskstatus
callbacks by passing the TaskToken parameterto callthe ReportTaskSucceeded and
ReportTaskFailed operations.

e Fields in serviceParams

o

o

o

o

MessageBody: This is the message body string to be sent.
MessageTag: Optional. This is the tag of the message to be sent.

MessageAttributes: Optional. You must specify this parameter to push messages in specific ways.
The value must be aJSON string.

Mail push: The parameters must include MailAttributes, as shown in the following code:

"MailAttributes": {
"Subject":"{Email subject}",
"AccountName":" {Sender address (email address)}",
"AddressType": O,
"IsSHTML" :true,
"ReplyToAddress":0

For more information about the preceding parameters, see PublishMessage.

22

> Document Version: 20220120

https://www.alibabacloud.com/help/doc-detail/131878.htm#doc-api-fnf-ReportTaskSucceeded
https://www.alibabacloud.com/help/doc-detail/131879.htm#doc-api-fnf-ReportTaskFailed
https://www.alibabacloud.com/help/doc-detail/27497.htm#concept-2028955

	1.Overview
	2.Child flows of Serverless Workflow
	3.Asynchronous function invocation
	4.MNS queues
	5.Integrate MNS topics

