
Alibaba CloudAlibaba Cloud

FunctionFlow
Service Integration

Document Version: 20220120

Alibaba CloudAlibaba Cloud

FunctionFlow
Service Integration

Document Version: 20220120

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

Funct ionFlow Service Int egrat ion··Legal disclaimer

> Document Version: 20220120 I

Document conventions
St yleSt yle Descript ionDescript ion ExampleExample

 DangerDanger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:Danger:

Resetting will result in the loss of user
configuration data.

 WarningWarning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not iceNot ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not eNot e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ingsSet t ings > Net workNet work> Set net workSet net work
t ypet ype.

BoldBold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OKOK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

Funct ionFlow Service Int egrat ion··Document conv
ent ions

> Document Version: 20220120 I

Table of Contents
1.Overview

2.Child flows of Serverless Workflow

3.Asynchronous function invocation

4.MNS queues

5.Integrate MNS topics

05

08

12

17

21

Funct ionFlow Service Int egrat ion··Table of Cont en
t s

> Document Version: 20220120 I

Serverless Workflow can integrate with mult iple Alibaba Cloud services. After integration, these services
are executed in task steps in Serverless Workflow. Service integration modes are defined in Flow
Definit ion Language (FDL). In a t askt ask step, you can use resourceArn to define the service that you
want to integrate, and use pattern to define the integration mode that you want to use. This topic
describes information about service integration, including integration modes, context objects, and
integrated cloud services.
For more information about the available cloud services, see Integrated cloud services.

Integration modesIntegration modes
Serverless Workflow supports the following integration modes:

Request-response mode: In this mode, when you invoke a third-party service, Serverless Workflow
proceeds to the next step immediately after it gets an HTTP response. This is the default mode.
In a step of a flow defined in FDL, the resourceArn parameter defines the service, and the patte
rn: requestResponse parameter defines the service integration mode. The latter parameter is
optional. If it is not specified, the default integration mode is used. In this mode, Serverless Workflow
proceeds to the next step immediately after it receives an invocation response. The following
example shows a child flow, in which Serverless Workflow is the integrated service:

version: v1
type: flow
steps:
 - type: task
 name: testSubflow
 resourceArn: acs:fnf:::flow/flowABC #Defines the child flow.
 pattern: requestResponse #Sets the service integration mode to the request-response m
ode, which is the default mode.
 - type: pass
 name: dummy

In this example, when the testSubflow step is executed, the flowABC child flow is triggered.
After flowABC is triggered, the flow proceeds to the dummy step, while flowABC may st ill be
running.

Synchronous mode: In this mode, a service generally provides an API for asynchronous execution.
After Serverless Workflow invokes the API, Serverless Workflow waits for the relevant task to
complete and the execution result to be returned before it proceeds to the next step.
For specific integrated services, Serverless Workflow waits for the relevant task to complete and then
proceeds to the next step. This type of service provides an asynchronous API to start a task. You
must submit the task and wait for the task to complete before the next step starts.
In a step of a flow defined in FDL, the resourceArn parameter defines the service, and the patte
rn: sync parameter defines the service integration mode. The following example shows a child
flow, in which Serverless Workflow is the integrated service:

1.Overview1.Overview

Funct ionFlow Service Int egrat ion··Overview

> Document Version: 20220120 5

version: v1
type: flow
steps:
 - type: task
 name: testTask
 resourceArn: acs:fnf:::flow/flowABC #Defines the child flow.
 pattern: sync #Sets the service integration mode to the synchronous mode.
 - type: pass
 name: dummy

In this example, when the task step is executed, a Serverless Workflow child flow is triggered. After
the child flow is triggered, the flow waits for its execution result and then proceeds to the next step.
When the testTask step is executed, the flowABC child flow is triggered. After flowABC is
triggered, the flow waits for its execution result . After flowABC is completed, the flow proceeds
to the dummy step. At this point, flowABC has been completed.

Wait-for-callback mode: In this mode, when you invoke a third-party service and pass in the task
token, Serverless Workflow waits for you to use the token to notify the flow of the execution result
before the flow proceeds to the next step.
The callback task suspends the current flow at the task scheduling point until the callback instruct ion
for the corresponding task token is received. In a step of a flow defined in FDL, the resourceArn
parameter defines the service, and the pattern: waitForCallback parameter defines the service
integration mode. The following example shows a child flow, in which Serverless Workflow is the
integrated service:

version: v1
type: flow
steps:
 - type: task
 name: testSubflow
 resourceArn: acs:fnf:::flow/flowABC #Defines the child flow.
 pattern: waitForCallback #Set the service integration mode to the wait-for-callback m
ode.
 - type: pass
 name: dummy

In this example, when the testSubflow step is executed, the flowABC child flow is triggered.
After flowABC is triggered, the flow is paused to wait for a callback that is implemented with the
invocation of the ReportTaskSucceed or ReportTaskFailed operation. After the flow receives
and processes a callback request, it proceeds to the dummy step, regardless of whether flowABC
 has been completed. The callback is init iated by you.

Context objectsContext objects
A context object is an internal JSON object in a flow execution instance, which contains information
about the execution and steps. This object allows access from external services. To implement the
access, you can map the context object to a specific variable in inputMappings. The following example
shows the structure of the available context objects:

Service Int egrat ion··Overview Funct ionFlow

6 > Document Version: 20220120

"context": {
 "flow": {
 // The unique ID, name, and string type of the flow.
 "id": "val1",
 "name "val2",
 },
 "execution": {
 // The name of the execution.
 "name": "val3"
 },
 "step": {
 // The name of the step.
 "name": "val4"
 // The event ID of the step.
 "eventId": "val5"
 // The iteration index. This parameter is valid in a foreach step.
 "IterationIndex": "val6",
 },
 "task": {
 // The identifier of the step, which is a string. This parameter is valid in the wait
-for-callback mode.
 "token": "val7",
 },
}

To integrate the Serverless Workflow service, you must obtain from the child flow the information
about the parent flow that invokes this child flow, and obtain taskToken in this invocation step.
taskToken will be used in the callback. You can obtain the target and source fields in the following
way:

 ...
 inputMappings:
 - target: current_flow_name
 source: $context.flow.name
 - target: current_execution_name
 source: $context.execution.name
 - target: current_step_task_token
 source: $context.task.token

Integrated cloud servicesIntegrated cloud services

Service
Request-response
mode

Synchronous mode Wait-for-callback mode

Function Compute Supported Not supported Not supported

Message Service (MNS)
queues

Supported Not supported Supported

MNS topics Supported Not supported Supported

Serverless Workflow Supported Supported Supported

Funct ionFlow Service Int egrat ion··Overview

> Document Version: 20220120 7

The feature of integrating child flows of Serverless workflow allows you to execute another flow in a
flow. This topic describes scenarios, integration modes, context objects, and input and output rules of
child flows of Serverless workflow.

ScenariosScenarios
The feature of integrating child flows of Serverless workflow can be applied in the following scenarios:

Divide a flow into mult iple child flows to reduce the flow complexity.

Facilitate the reuse of flows. You can put some common steps in a flow and reuse these steps in
other flows.

Remove limits of the current single flow. For example, a single flow can contain a maximum of 5,000
events by default and the maximum execution t ime is one year.

Implement error handling for the overall output of the flow. For example, you can design a parallel
step as a child flow and handle errors that occur in the execution of the child flows in the parent
flow.

Integration modesIntegration modes
Serverless workflow supports three integration modes: request/response, synchronous, and wait-for-
callback modes.

Request/response mode
In this mode, the parent flow starts to execute the next step immediately after the child flow is
started. The following piece of code defines the flow:

version: v1
type: flow
steps:
 - type: task
 name: fnfInvoke
 resourceArn: acs:fnf:::flow/subflow_demo_child
 pattern: requestResponse # The default mode. You do not need to specify this paramete
r.
 inputMappings: # If inputMappings is not specified, the default mapping rule is used.
In other words, the parameters of the parent flow are used as the input into the child fl
ow.
 - target: childName # The execution name of the child flow that will be initiated i
n the service.
 source: $input.childName
 serviceParams: # The parameters of the service that is integrated in Serverless work
flow. You do not need to specify this parameter. If this parameter is not specified, a ra
ndom string is used as the name of this execution, and the parameter included in inputMap
pings is used as the input into the child flow.
 Input: $ # Use the mapped input parameter as the input parameter to initiate the c
hild flow.
 ExecutionName: $.childName # If a variable is specified in serviceParams, ensure th
at this variable exists in inputMappings.

Synchronous mode

2.Child flows of Serverless2.Child flows of Serverless
WorkflowWorkflow

Service Int egrat ion··Child flows of Se
rverless Workflow

Funct ionFlow

8 > Document Version: 20220120

In this mode, the parent flow starts a child flow and proceeds to the next step after the execution
of the child flow is completed. The following piece of code defines the flow:

version: v1
type: flow
steps:
 - type: parallel
 name: parallelTask
 branches:
 - steps:
 # In this step, Serverless workflow is integrated in the synchronous mode, where
inputMappings is used as the input into the child flow, and the execution name of the chi
ld flow is dynamically specified based on the input into the parent flow.
 - type: task
 name: fnfSync
 resourceArn: acs:fnf:::flow/subflow_demo_child
 pattern: sync
 inputMappings: # If inputMappings is not specified, the default mapping rule is
used. In other words, the parameters of the parent flow are used as the input into the ch
ild flow.
 - target: childSyncName # The execution name of the child flow that will be i
nitiated in the service. If you want to specify an execution name for the child flow, per
form input mapping for the target execution name and use the mapped result in servicePara
ms, as shown in this example.
 source: $input.childSyncName.
 serviceParams: # The parameters of the service that is integrated in Serverles
s workflow.
 Input: $ # Use the mapped input parameter as the input parameter to initiate
the child flow. We recommend that you use the provided method unless you explicitly speci
fy the behavior and syntax for Input in other ways.
 ExecutionName: $.childSyncName # If a variable is specified in serviceParams,
ensure that this variable exists in inputMappings.

Wait-for-callback mode
In this mode, the parent flow starts a child flow and enters the suspended state until it receives a
callback notificat ion. The following piece of code defines the flow:

Funct ionFlow Service Int egrat ion··Child flows of Se
rverless Workflow

> Document Version: 20220120 9

version: v1
type: flow
steps:
 - steps:
 # In this step, Serverless workflow is integrated in the wait-for-callback mode, wher
e inputMappings is used as the input into the child flow, and the execution name of the c
hild flow is dynamically specified based on the input into the parent flow.
 - type: task
 name: fnfWaitForCallback
 resourceArn: acs:fnf:::flow/subflow_demo_child
 pattern: waitForCallback
 inputMappings: # If inputMappings is not specified, the default mapping rule is use
d. In other words, the parameters of the parent flow are used as the input into the child
flow.
 -target: task_token # To ensure that callbacks can be used in the child flow, map
task_token to a custom name.
 source: $context.task.token # Obtain the task token that identifies the task f
rom the context object.
 - target: childCallbackName
 source: $input.childCallbackName
 serviceParams: # The parameters of the service that is integrated in Serverless wo
rkflow.
 Input: $ # Use the mapped input parameter as the input parameter to initiate the
child flow.
 ExecutionName: $.childCallbackName # If a variable is specified in serviceParams,
ensure that this variable exists in inputMappings.

Context object descriptionContext object description
In the integration modes for child flows, you can pass the $context.execution.name and
$context.flow.name variables to a child flow to identify the parent flow that starts the child flow. In
the wait-for-callback mode, $context.task.token is used to pass the identifier of the parent
flow to the child flow to implement the callback.

Input and output rules for child flowsInput and output rules for child flows
Request/response mode
In this mode, the input into a child flow derives from that of the corresponding task step. You can
obtain the input by specifying $Input in the child flow.
The start information of the child flow (response from the call to StartExecution) is used as the
output, whereas the output of the child flow is ignored by the parent flow. After a child flow is
started, the following start information of the child flow is provided by default: $local.ExecutionN
ame , $local.FlowName , and $local.RequestId . If you want to map other output parameters
of the child flow to the parent flow, you can map them by performing output mapping in the
corresponding step in the parent flow.

Service Int egrat ion··Child flows of Se
rverless Workflow

Funct ionFlow

10 > Document Version: 20220120

 - type: task
 pattern: requestResponse
 ...
 outputMappings: # In the request/response mode, you can obtain the $local.ExecutionN
ame, $local.FlowName, and $local.RequestId parameters.
 - target: subflow_children_request_id
 source: $local.RequestId # The ID of the request that initiates the child flow.
 - target: subflow_children_exec_name
 source: $local.ExecutionName # The execution name of the child flow that will be
initiated.
 - target: subflow_children_flow_name
 source: $local.FlowName # The flow name of the child flow that will be initiated
.

Synchronous mode
In this mode, the input into a child flow derives from that of the corresponding task step. You can
obtain the input by specifying $Input in the child flow.
The output of the child flow, which is the Output in the response from the call to DescribeExecu
tion , is returned to the parent flow as the output of this step in the parent flow. You can use this
output in subsequent steps of the parent flow. If you want to map other output parameters of the
child flow to the parent flow, you can map them by performing output mapping .

Wait-for-callback mode
In this mode, the input into a child flow derives from that of the corresponding task step. You can
obtain the input by specifying $Input in the child flow.
The output of the callback is used as the output of this step in the parent flow. The value of the O
utput parameter that you pass in when you call the ReportTaskSucceeded operation is used as
the output of this step in the parent flow. The values of the Error and Cause parameters that you
pass in when you call the ReportTaskFailed operation are used as the output of this step in the
parent flow. If you want to map other output parameters of the child flow to the parent flow, you
can map them by performing output mapping .

Funct ionFlow Service Int egrat ion··Child flows of Se
rverless Workflow

> Document Version: 20220120 11

Serverless Workflow can asynchronously invoke functions of Function Compute. Asynchronous
invocation is ideal for some scenarios such as long-term tasks and manual audits. This can help you
prevent thrott ling errors and simplify troubleshooting procedures and retry logic. This topic describes
the scenarios, integration patterns. This topic also provides an example on how to integrate the
asynchronous function invocation feature into Serverless Workflow.

PrerequisitesPrerequisites
The following operations are complete:

(Optional) Asynchronous invocation is enabled. For more information, see Asynchronous invocation.
After you enable stateful asynchronous invocation for your functions, you can stop the function
instance when the task is being executed. This helps you view the flow from a finer-grained
perspective.

Function Compute is granted the permissions to access Serverless Workflow. This ensures that
Serverless Workflow can be called back to execute subsequent steps after the asynchronous
function execution is complete. The following snippet shows how to configure the permission policy.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "fnf:ReportTaskSucceeded",
 "fnf:ReportTaskFailed"
],
 "Resource": [
 "*"
]
 }
],
 "Version": "1"
}

For more information about how to grant permission to Function Compute, see Grant Function Compute
permissions to access other Alibaba Cloud services.

Background informationBackground information
By default , Serverless Workflow uses the synchronous pattern when Serverless Workflow orchestrates
Function Compute tasks to implement task flows. In the synchronous pattern, Serverless Workflow does
not proceed to the next step until the flow receives the execution results of the previous function. The
following snippet shows a flow that uses the synchronous pattern.

version: v1
type: flow
steps:
 - type: task
 name: mytask
 resourceArn: acs:fc:{region}:{account}:services/{serviceName}.{qualifier}/functions/{fu
nctionName}

3.Asynchronous function invocation3.Asynchronous function invocation

Service Int egrat ion··Asynchronous fu
nct ion invocat ion

Funct ionFlow

12 > Document Version: 20220120

https://www.alibabacloud.com/help/doc-detail/181866.htm#task-2134862
https://www.alibabacloud.com/help/doc-detail/181589.htm#task-2077619

The following issues may occur when you use the synchronous pattern for function invocation:

The resource limits to invocation of functions of Function Compute may cause thrott ling errors.
By default , a maximum of 300 pay-as-you-go instances are allowed in a single region for an Alibaba
Cloud account of Function Compute. When you use Serverless Workflow to invoke a function, the
invocation shares the same quota with the function invocations that are init iated by other services.
This may cause thrott ling errors. In this case, you need to define a complex retry policy in your
Serverless Workflow flow. However, this does not ensure that the flow is executed successfully.

If the task requires a long t ime to execute, a persistent connection must be established between
Serverless Workflow and Function Compute. Unstable network condit ions may cause unexpected
errors.

Serverless Workflow allows you to combine the asynchronous function invocation feature with various
integration patterns to solve the preceding issues. At the same t ime, the combination can meet the
following requirements:

In some scenarios, the system needs to perform subsequent steps without wait ing for the execution
completion of the current step.

If unexpected errors occur when the flow is being executed, the system needs to skip the current
step and proceed to the next step.

ScenariosScenarios
In different scenarios, Serverless Workflow uses the request-response pattern (requestResponse),
synchronous pattern(sync), or wait-for-callback pattern (waitForCallback) to asynchronously invoke
functions of Function Compute.

Integration pattern Parameter Scenario

Request-response pattern
(default pattern)

 requestResponse
Sample flow:

- type: task
 ...
 pattern: requestResponse
 serviceParams:
 InvocationType: Async

Tasks are long-running and the
task execution results are non-
consequential.

Synchronization pattern

 sync
Sample flow:

- type: task
 ...
 pattern: sync
 serviceParams:
 InvocationType: Async

Tasks are long-running and may
be throttled.

Funct ionFlow Service Int egrat ion··Asynchronous fu
nct ion invocat ion

> Document Version: 20220120 13

Wait-for-callback pattern

 waitForCallback
Sample flow:

- type: task
 ...
 pattern: waitForCallback
 serviceParams:
 InvocationType: Async

When a flow arrives at a specific
step, the flow needs to proceed
to subsequent steps regardless
of whether the execution of the
current step is complete. A
sample scenario is manual audit.

Integration pattern Parameter Scenario

Service parametersService parameters
In the following examples, Serverless Workflow uses Function Compute as the task node, uses
 resourceArn to specify Function Compute as the dest ination service, and uses serviceParams to

specify the parameters that are used to invoke functions of Function Compute. serviceParams
supports the following parameters:

 InvocationType : the invocation type of functions. The valid values are Sync and Async .
Sync indicates synchronous invocation. Async indicates asynchronous invocation.

(Optional) StatefulAsyncInvocationID : the ID of a stateful asynchronous invocation. You can use
this parameter to search for the name of the dest ination task in the Function Compute console.

Not e Not e If you set InvocationType to Async and specify a value for
StatefulAsyncInvocationID, the function invocation pattern of Serverless Workflow is stateful
and asynchronous invocation. The value of the StatefulAsyncInvocationID parameter must be
unique for all the functions.

Integration pattern of asynchronous function invocationIntegration pattern of asynchronous function invocation
When a flow arrives at the specified step, Severless Workflow asynchronously invokes a function and
executes the function. Then, the flow proceeds to the next step without wait ing for a callback or the
execution completion of the preceding step.

version: v1
type: flow
steps:
 - type: task
 name: mytask
 resourceArn: acs:fc:{region}:{account}:services/{serviceName}.{qualifier}/functions/{fu
nctionName}
 pattern: requestResponse # Async invocation with sync pattern
 serviceParams:
 InvocationType: Async

The preceding example shows that a function is triggered to execute when the flow arrives at the
 mytask step. After the function is triggered, the flow proceeds to the next step when the execution

of the mytask step may not be complete.

Service Int egrat ion··Asynchronous fu
nct ion invocat ion

Funct ionFlow

14 > Document Version: 20220120

When a flow arrives at the specified step, Serverless Workflow asynchronously invokes a function and
executes the function. Then, the flow is suspended and does not proceed to the next step until the
Serverless Workflow flow is notified that the function execution is complete.

version: v1
type: flow
steps:
 - type: task
 name: mytask
 resourceArn: acs:fc:{region}:{account}:services/{serviceName}.{qualifier}/functions/{fu
nctionName}
 pattern: sync # Async invocation with sync pattern
 serviceParams:
 InvocationType: Async

Serverless Workflow The preceding example shows that when the flow arrives at the mytask step, a
function is triggered to execute. Then the flow is suspended and does not proceed to the next step
until the flow is informed that the function execution is complete.

Not e Not e The use of the synchronous integration pattern is the same as the use of the
synchronous function invocation feature in terms of operations. Only the function invocation
methods are different.

When a flow arrives at the specified step, Serverless Workflow asynchronously invokes a function,
executes the function, and passes in a task token. Then, the flow is suspended. Regardless of whether
the function execution is complete, the flow does not proceed to the next step until you use the task
token to manually notify the flow of the function execution result .

version: v1
type: flow
steps:
 - type: task
 name: mytask
 resourceArn: acs:fc:{region}:{account}:services/{serviceName}.{qualifier}/functions/{fu
nctionName}
 pattern: waitForCallback # Async invocation with sync pattern
 serviceParams:
 InvocationType: Async

The preceding example shows that a function is triggered to execute when the flow arrives at the
 mytask step. After the function is triggered, the flow is suspended to wait for a callback that is

implemented with the invocation of the ReportTaskSucceed or ReportTaskFailed API operation. The
flow does not proceed to the next step until the flow receives a callback request and processes the
callback request. The callback request is init iated by you. You can init iate the callback request when the
function execution is complete or not.

Request-response patternRequest-response pattern

Synchronization patternSynchronization pattern

Wait-for-callback patternWait-for-callback pattern

Funct ionFlow Service Int egrat ion··Asynchronous fu
nct ion invocat ion

> Document Version: 20220120 15

Example: asynchronous function invocationExample: asynchronous function invocation
Serverless Workflow combines the asynchronous function invocation feature and the stateful
asynchronous invocation feature to provide supports for job-type scenarios. When you enable the
stateful asynchronous invocation feature and use the asynchronous invocation pattern, you can view
the function execution status and stop the function execution when and after the function is invoked.
This makes the flow observable and easy to operate. The following snippet shows the flow definit ion
language (FDL) of Serverless Workflow.

version: v1
type: flow
steps:
 - type: task
 name: mytask
 resourceArn: acs:fc:::services/{serviceName}.{qualifier}/functions/{functionName}
 pattern: sync # Async invocation with sync pattern
 inputMappings:
 - target: id
 source: $context.execution.name
 serviceParams:
 InvocationType: Async
 StatefulAsyncInvocationID: $.id

Service Int egrat ion··Asynchronous fu
nct ion invocat ion

Funct ionFlow

16 > Document Version: 20220120

In the task step of Serverless workflow, you can send messages to a specified Message Service (MNS)
queue. This topic describes the scenarios, common parameters, integration modes, and permission
configurations for integrating MNS queues.

ScenariosScenarios
You can integrate the MNS queues in the task step in the request/response and wait-for-callback
modes. The following table lists the scenarios of these two modes.

Integration mode Parameter Scenario Description

Request/response
mode

requestResponse Event notification

Services other than flow
execution are
persistently notified,
and the flow execution
is irrelevant to how the
notified services
process the message.

Wait-for-callback mode waitForCallback
Orchestration of
custom task types

After a task executor in
an environment, such as
an Elastic Compute
Service (ECS) virtual
machine or a server in
an on-premises data
center, receives a
message sent to a
queue, the task
executor calls back
Serverless workflow
after it executes the
relevant task. For more
information, see Best
Practices.

Common parametersCommon parameters
In the following example, Serverless workflow sends a message to the queue specified in
 resourceArn . The specified queue name replaces {queue-name} . The body and parameters of the

message are specified in serviceParams . The following content lists the supported parameters:

MessageBodyMessageBody: The body of the message, which is required. MessageBody: $: The message body
is generated by inputMappings. The following content describes how the message body is generated
when the step enters the StepEntered event:

The input object is {"key": "value_1"} .

The mapped input is {"key_1": "value_1", "key_2": "value"} .

The task step uses the {"key_1": "value_1", "key_2": "value"} string as the message body
and sends it to the MNS queue.

Priorit yPriorit y: The priority of the message, which is required.

DelaySecondsDelaySeconds: The message latency, in seconds. The parameter is optional.

4.MNS queues4.MNS queues

Funct ionFlow Service Int egrat ion··MNS queues

> Document Version: 20220120 17

https://www.alibabacloud.com/help/doc-detail/139379.htm#multiTask2184159

For more information about parameters, see SendMessage in MNS documentation.

version: v1
type: flow
steps:
 - type: task
 name: Task_1
 resourceArn: acs:mns:::/queues/{queue-name}/messages # The task step sends messages to
the MNS queue named {queue-name} under the same account in the same region.
 pattern: requestResponse # The task step ends after the mes
sage is sent to the MNS queue.
 inputMappings:
 - target: key_1
 source: $input.key
 - target: key_2
 source: value
 serviceParams: # The service integration parameters.
 MessageBody: $ # The mapped input is used as the body of the message you want to sen
d.
 DelaySeconds: 0 # The message latency, in seconds.
 Priority: 1 # The priority of the MNS queue.

Integration modesIntegration modes
Request/response mode
The pattern: requestResponse parameter of the task step indicates the request/response mode.
In this mode, Serverless workflow sends a message to the {queue-name} queue specified in resou
rceArn . After the message is sent, the step is completed. If the message fails to be sent, the step
fails or is retried based on the retry configurations.

version: v1
type: flow
steps:
 - type: task
 name: mytask
 resourceArn: acs:mns:::/queues/{queue-name}/messages # The task step sends messages t
o an MNS queue under the same account in the same region.
 pattern: requestResponse # The task step ends after the m
essage is sent to the MNS queue.
 inputMappings:
 - target: key_3
 source: value
 serviceParams: # The service integration parameters.
 MessageBody: $ # {"key_3": "value"} is sent as the message body to the MNS queue.
 DelaySeconds: 0 # The message latency, in seconds.
 Priority: 1 # The priority of the MNS queue.

Wait-for-callback mode

Service Int egrat ion··MNS queues Funct ionFlow

18 > Document Version: 20220120

https://www.alibabacloud.com/help/doc-detail/35134.htm#concept-2028931

In the task step, pattern: waitForCallback indicates the wait-for-callback mode. In this mode,
Serverless workflow sends a message to the {queue-name} queue specified in resourceArn .
After the message is sent, the step suspends and waits for a callback. The task executor needs to
use the corresponding task token to call back Serverless workflow. If the callback result indicates that
the call to ReportTaskSuccceeded is successful, the task step is successful. If the callback result
indicates that the ReportTaskFailed operation was called, the step fails or is retried based on the
retry configuration.
taskToken: The task token can be obtained from the context object of this step. inputMappings is
used to assign taskToken to a field in the JSON object of the message body. In the following
example, the context object in this step is {"task":{"token":"my-token-1"}} . The mapped task
input is {"task_token": "my-token-1", "key": "value"} , which is also sent as the message body
to the MNS queue.

version: v1
type: flow
steps:
 - type: task
 name: mytask
 resourceArn: acs:mns:::/queues/{queue-name}/messages # The task step sends messages t
o the MNS queue named {queue-name} under the same account in the same region.
 pattern: waitForCallback # The task step suspends after the message is sent to the MN
S queue and waits until it receives the callback.
 inputMappings:
 - target: task_token
 source: $context.task.token # Serverless Workflow queries the task token from th
e context object.
 - target: key
 source: value
 serviceParams: # The service integration parameters.
 MessageBody: $ # The mapped input is used as the body of the message you want to s
end.
 Priority: 1 # The priority of the MNS queue.

Flow role configurationFlow role configuration
Serverless workflow assumes the RAM role specified by the flow to obtain your temporary AccessKey
pair to access MNS on your behalf. Therefore, you must grant the flow role the SendMessage
permission to send messages to MNS. You can select either a system policy or a custom policy to grant
Serverless workflow the permission to send messages to your MNS queue.

Syst em PolicySyst em Policy: grants the AliyunMNSFullAccess system permission to the flow role.

Cust om PolicyCust om Policy: If you only allow the flow role to send messages to the {queue-name}{queue-name} queue,
create the following policy and bind it to the flow role.

Funct ionFlow Service Int egrat ion··MNS queues

> Document Version: 20220120 19

{
 "Version": "1",
 "Statement": [
 {
 "Action": "mns:SendMessage",
 "Resource": "acs:mns:*:*:/queues/{queue-name}/messages",
 "Effect": "Allow"
 }
]
}

Service Int egrat ion··MNS queues Funct ionFlow

20 > Document Version: 20220120

In Serverless workflow, task steps have integrated Alibaba Cloud Message Service (MNS) topics. You can
publish messages to MNS topics by defining task steps in a flow. By sett ing PublishMessage parameters,
you can push messages that are from MNS topics to queues, HTTP endpoints, and email addresses.

Integration modesIntegration modes
The following sect ion describes two integration modes of MNS topics: request/response mode and
wait-for-callback mode. You can use one of them to orchestrate MNS topics.

Request/response mode
In this mode, after a PublishMessage request is sent, the flow proceeds with the task steps. The
following piece of code defines the flow:

version: v1
type: flow
steps:
 - type: task
 name: mns-topic-task
 resourceArn: acs:mns:::/topics/{topicName}/messages # mns topic resource arn
 pattern: requestResponse # Optional. The default mode.
 outputMappings:
 # Response parameters of PublishMessage
 - target: messageID # The ID of the message.
 source: $local.MessageId
 - target: requestID # The ID of the request.
 source: $local.RequestId
 - target: messageBodyMD5 # The MD5 value of the message body.
 source: $local.MessageBodyMD5
 serviceParams:
 # Request parameters of PublishMessage
 MessageBody: $.messageBody # The message body.
 MessageTag: $.messageTag # Optional. The message tag.
 MessageAttributes: $.messageAttributes # The additional message attributes, which m
ust be in JSON format.

Wait-for-callback mode
In this mode, after a PublishMessage request is sent, the flow holds on the task steps until a callback
notificat ion is received. The following piece of code defines the flow:

5.Integrate MNS topics5.Integrate MNS topics

Funct ionFlow Service Int egrat ion··Int egrat e MNS t
opics

> Document Version: 20220120 21

version: v1
type: flow
steps:
 - type: task
 name: mns-topic-task
 resourceArn: acs:mns:::/topics/{topicName}/messages # mns topic resource arn
 pattern: waitForCallback # The wait-for-callback mode.
 inputMappings:
 - target: messageBody
 source: $input.messageBody
 - target: messageTag
 source: $.messageTag
 - target: messageAttributes
 source: $.messageAttributes
 - target: taskToken # The token that is automatically generated for task status cal
lbacks
 source: $context.task.token
 serviceParams:
 # Request parameters of PublishMessage
 MessageBody: $ # The message body, in which TaskToken is encapsulated.
 MessageTag: $.messageTag # Optional. The message tag.
 MessageAttributes:
$.messageAttributes # Optional. The additional message attributes.

Description of parametersDescription of parameters
context

TaskToken
In the wait-for-callback mode, a task step automatically generates TaskToken for task status
callbacks. You can use $context.task.token to query the value. You can run task status
callbacks by passing the TaskToken parameter to call the ReportTaskSucceeded and
ReportTaskFailed operations.

Fields in serviceParams

MessageBody: This is the message body string to be sent.

MessageTag: Optional. This is the tag of the message to be sent.

MessageAttributes: Optional. You must specify this parameter to push messages in specific ways.
The value must be a JSON string.

Mail push: The parameters must include MailAttributes, as shown in the following code:

{
 "MailAttributes": {
 "Subject":"{Email subject}",
 "AccountName":"{Sender address (email address)}",
 "AddressType": 0,
 "IsHTML":true,
 "ReplyToAddress":0
 }
}

For more information about the preceding parameters, see PublishMessage.

Service Int egrat ion··Int egrat e MNS t
opics

Funct ionFlow

22 > Document Version: 20220120

https://www.alibabacloud.com/help/doc-detail/131878.htm#doc-api-fnf-ReportTaskSucceeded
https://www.alibabacloud.com/help/doc-detail/131879.htm#doc-api-fnf-ReportTaskFailed
https://www.alibabacloud.com/help/doc-detail/27497.htm#concept-2028955

	1.Overview
	2.Child flows of Serverless Workflow
	3.Asynchronous function invocation
	4.MNS queues
	5.Integrate MNS topics

