
Alibaba Cloud

物联网平台
Device Access

Document Version: 20210312

Alibaba Cloud

物联网平台
Device Access

Document Version: 20210312

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

物联网平台 Device Access·Legal disclaimer

> Document Version: 20210312 I

Document conventions
St yle Descript ion Example

 Danger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:

Resetting will result in the loss of user
configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ings > Net work > Set net work
t ype .

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

物联网平台 Device Access·Document convent io
ns

> Document Version: 20210312 I

Table of Contents
1.Create a product

2.Create devices

2.1. Create a device

2.2. Create multiple devices at a time

2.3. Manage devices

3.Download device SDKs

4.Authenticate devices

4.1. Overview

4.2. Unique-certificate-per-device authentication

4.3. Unique-certificate-per-product authentication

5.Devices retrieve certificates

5.1. Overview

5.2. Burn certificates on devices

5.3. Devices retrieve certificates from the cloud

6.Topics

6.1. What is a topic?

6.2. Edit a topic category

6.3. Automatic topic subscription

7.Protocols for connecting devices

7.1. Use MQTT protocol

7.1.1. MQTT standard

7.1.2. Establish MQTT connections over TCP

7.1.3. MQTT-based dynamic registration

7.1.4. Establish MQTT over WebSocket connections

7.1.5. Examples of creating signatures for MQTT connections

7.1.6. IPv6-based MQTT connections

06

09

09

10

12

15

17

18

19

20

24

24

24

26

29

29

31

33

36

36

36

38

40

45

47

51

物联网平台 Device Access·Table of Cont ent s

> Document Version: 20210312 I

7.2. Use CoAP protocol

7.2.1. CoAP standard

7.2.2. Connect devices to IoT Platform over CoAP

7.3. Use HTTP protocol

7.3.1. HTTP standard

7.3.2. Establish connections over HTTP

8.Generic protocol SDK

8.1. What is the IoT as Bridge SDK?

8.2. Use the basic features

8.3. Use the advanced features

8.4. OTA updates

54

54

54

63

63

63

70

70

72

79

87

Device Access·Table of Cont ent s 物联网平台

II > Document Version: 20210312

When you use IoT Platform, you must first create a product in the console. A product consists of
mult iple devices of the same type. In most cases, these devices have the same features. For example,
you can create a product to represent a hardware product model, and create a device of the product
model.

Procedure
1. Log on to the IoT Platform console.

2.

3. In the left-side navigation pane, choose Devices > Product s . On the page that appears, click
Creat e Product .

4. Specify the parameters and then click OK.

Parameter Description

Product

The name of the product. The product name must be unique within the
Alibaba Cloud account. For example, you can enter the product model as the
product name. The product name must be 4 to 30 characters in length, and
can contain letters, digits, underscores (_), hyphens (-), at signs (@), and
parentheses ().

Node Type

The type of devices under the product. Valid values:

Direct ly Connect ed Device : Devices can directly connect to IoT
Platform. The devices cannot be attached with sub-devices. The devices
cannot be attached to gateways as sub-devices.

Gat eway Sub-device : Devices cannot directly connect to IoT Platform.
The devices must connect to IoT Platform by using gateways. For more
information about gateways and sub-devices, see Gateways and sub-
devices.

Gat eway Device : Devices can directly connect to IoT Platform and be
attached with sub-devices. You can use a gateway to manage sub-
devices. You can maintain the topological relationships of sub-devices,
and synchronize the topological relationships to IoT Platform.

Gateway Connection
Protocol

This parameter is available if you set the Node Type parameter to Gat eway
Sub-device. This parameter specifies the communication protocol between
sub-devices and gateways. Valid values:

Custom: Other standard or private protocols are used.

Modbus: The Modbus protocol is used.

OPC UA: The OPC UA protocol is used.

ZigBee: The ZigBee protocol is used.

BLE: The BLE protocol is used.

1.Create a product

物联网平台 Device Access·Creat e a product

> Document Version: 20210312 6

http://iot.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/73734.htm#concept-ngv-knl-vdb

Network Connection
Method

The network connection method of directly connected devices or gateway
devices.

Wi-Fi

Cellular (2G/3G/4G)

Ethernet

Others

Checksum Type

After a device submits Thing Specification Language (TSL) data to IoT
Platform, IoT Platform verifies the data based on the specified data
verification mode.

IoT Platform verifies only the identifier and dataType fields of the data.

After verification, all data is forwarded. The data that fails to pass the
verification is tagged when the data is forwarded. For more information,
see Data formats.

In the IoT Platform console, the data is displayed on the T SL Dat a tab of
the Device Det ails page.

IoT Platform does not verify the data. All data is forwarded.

In the IoT Platform console, the data is not displayed on the T SL Dat a
tab of the Device Det ails page.

Data Type

The format of upstream and downstream data. Valid values:

ICA Standard Data Format (Alink JSON): The JSON-based Alink protocol is
provided by IoT Platform for communication between devices and IoT
Platform.

Custom: If you want to use a custom serial data format, set this
parameter to Custom.

You must submit a data parsing script in the console to convert upstream
custom-format data to Alink JSON data and parse downstream Alink JSON
data to custom-format data. This way, devices can communicate with IoT
Platform.

Product Description
The description of the product. The description can be up to 100 characters
in length.

Parameter Description

What's next
1. Develop the product.

In the left-side navigation pane, choose Devices > Product s . In the product list , f ind the product
and click View to go to the Product Details page. Click the following tabs to view product details:
Product Information, Topic Categories, Edit a topic category, Define Feature, Server-side Subscription, and
Data Parsing.

2. Develop a device.

Device Access·Creat e a product 物联网平台

7 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/73736.htm#concept-ap3-lql-b2b
http://iot.console.aliyun.com/
http://iot.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/68702.htm#concept-rhj-535-42b
https://www.alibabacloud.com/help/doc-detail/73731.htm#concept-mny-tnl-vdb
https://www.alibabacloud.com/help/doc-detail/85539.htm#concept-ppk-rz4-k2b
https://www.alibabacloud.com/help/doc-detail/73727.htm#concept-okp-zlv-tdb
https://www.alibabacloud.com/help/doc-detail/149963.htm#task-2382526
https://www.alibabacloud.com/help/doc-detail/89226.htm#concept-d2m-g2v-y2b

On the Product Details page, click the Device Provisioning tab. You can create a device, develop
device features, burn a cert if icate to the device, and authenticate the device when you establish a
connection. After you develop the device, you can connect the device to IoT Platform. For more
information, see Connect devices to IoT Platform.

3. On the Product Details page, click Publish to publish the product.

Before you publish the product, make sure that all parameters of the product are set and devices
are developed and debugged.

After you publish the product, the product status changes to Published. In this case, you can only
view the product information. You cannot modify or delete the product.

You can unpublish the product. To do it , click Unpublish.

物联网平台 Device Access·Creat e a product

> Document Version: 20210312 8

https://www.alibabacloud.com/help/doc-detail/42648.htm#concept-jlk-mjl-vdb

A product consists of mult iple devices of the same type. After you create a product, you must create
devices for the product. You can create a device or mult iple devices at a t ime. This art icle describes how
to create a device at a t ime.

Procedure
1. Log on to the IoT Platform console.

2. In the left-side navigation pane, choose Devices > Devices.

3. On the Devices page, click Add Device.

4. In the Add Device dialog box, set the required parameters, and click OK.

Parameter Description

Products

Select a product. The device derives the features and properties of the specified
product.

Not e If the product is registered with another platform, make sure
that your account has sufficient activation codes to create the device.

2.Create devices
2.1. Create a device

Device Access·Creat e devices 物联网平台

9 > Document Version: 20210312

http://iot.console.aliyun.com/

DeviceName

The device name.

The device name must be unique within the product.

The device name must be 4 to 32 characters in length, and can contain letters,
digits, hyphens (-), underscores (_), at signs (@), periods (.), and colons (:).

Not e You can leave the DeviceName parameter unspecified. If the
parameter is left unspecified, IoT Platform generates a globally unique
identifier (GUID) as the device name.

Alias
The alias. The alias must be 4 to 64 characters in length, and can contain letters,
digits, and underscores (_).

Parameter Description

Result
After a device is created, the View Device Cert if icat e dialog box appears. You can view and copy the
device cert if icate information. A device cert if icate consists of a product key, device name, and device
secret. A device cert if icate is the credential that the device uses to communicate with IoT Platform. We
recommend that you keep your device cert if icates confidential.

Parameter Description

ProductKey
The key of the product to which the device belongs. It is the GUID that is issued
by IoT Platform to the product.

DeviceName
The device name. The identifier of the device. The identifier is unique within the
product. DeviceName and ProductKey uniquely identify the device, and are used
for authentication with IoT Platform.

DeviceSecret
The device key that is issued by IoT Platform for device authentication and
encryption. It must be used in combination with the device name.

What's next
View device information. For more information, see Manage devices.

The status of the created devices is Not Act ivat ed . Use a Link SDK to implement a device, connect the
device to IoT Platform, and then act ivate the device. For more information, see the Link SDK
documentation.

Connect the device to IoT Platform. For more information about best pract ices, see the following
art icles:

使用MQTT.fx接入物联网平台

Connect Android Things to IoT Platform

A product consists of mult iple devices of the same type. After you create a product, you must create
devices for the product. You can create one or more devices at a t ime. This topic describes how to
create mult iple devices at a t ime.

2.2. Create multiple devices at a time

物联网平台 Device Access·Creat e devices

> Document Version: 20210312 10

https://www.alibabacloud.com/help/doc-detail/113275.htm#concept-h5h-q44-hhb
https://www.alibabacloud.com/help/product/93051.htm
https://www.alibabacloud.com/help/doc-detail/86706.htm#concept-d3l-fw3-p2b
https://www.alibabacloud.com/help/doc-detail/86831.htm#concept-ntf-mgq-p2b

Procedure
1. Log on to the IoT Platform console.

2.

3. In the left-side navigation pane, choose Devices > Devices.

4. On the Devices page, click Bat ch Add .

5. Select a product. Each new device derives the features and propert ies of the product.

Not e If the product is associated with another platform, make sure that your account
has sufficient act ivation codes to create the device.

6. Select a method to name devices.

Aut o Generat e : You do not need to name devices. After you enter the number of devices, IoT
Platform generates names for all devices. Each device name consists of random letters and
digits.

Bat ch Upload : You must name each device. Click Download.csv T emplat e to download a
template, specify the DeviceName and Nickname parameters in the template, and then upload
the template to the IoT Platform console.

Not e You must note the following issues:

Each device name must be 4 to 32 characters in length and can contain letters, digits,
hyphens (-), underscores (_), at sign (@), periods (.), and colons (:). The name of each
device that you create for a product must be unique.

The Nickname parameter specifies an alias. Each alias must be 4 to 64 characters in
length and can contain letters, digits, and underscores (_). This parameter is optional.

Each template file can contain a maximum of 1,0000 device names.

The maximum size of a template file is 2 MB.

7. Click OK.If a template file includes one or more invalid device names, an error occurs. You can click
Download Invalid Device Name List to download a TXT file. The file includes invalid device
names. Modify the invalid device names in the file based on the naming rules of devices. Then,

Device Access·Creat e devices 物联网平台

11 > Document Version: 20210312

http://iot.console.aliyun.com/

upload the file again.

8. After the devices are created, click Download Act ivat ion Credent ial to download the
cert if icates of the devices. Then, you can burn the cert if icates on the devices.

Result
The devices are created. You can view the information about the devices and download the cert if icates
of the devices on the Bat ch Management tab of the Devices page.

Find the batch of the devices, and click Det ails to view the details of the devices.

Click DownloadCSV to download the cert if icates of the devices.

What's next
View device information. For more information, see Manage devices.

The status of the created devices is Not Act ivat ed . Use a Link SDK to implement a device, connect the
device to IoT Platform, and then act ivate the device. For more information, see the Link SDK
documentation.

Connect the device to IoT Platform. For more information about best pract ices, see the following
art icles:

使用MQTT.fx接入物联网平台

Connect Android Things to IoT Platform

After you create a device in IoT Platform, you can manage or view the device in the IoT Platform
console.

Manage the devices of an Alibaba Cloud account
1. Log on to the IoT Platform console.

2.

3. In the left-side navigation pane, choose Devices > Devices. The Devices page appears.

Task Operation

2.3. Manage devices

物联网平台 Device Access·Creat e devices

> Document Version: 20210312 12

https://www.alibabacloud.com/help/doc-detail/113275.htm#concept-h5h-q44-hhb
https://www.alibabacloud.com/help/product/93051.htm
https://www.alibabacloud.com/help/doc-detail/86706.htm#concept-d3l-fw3-p2b
https://www.alibabacloud.com/help/doc-detail/86831.htm#concept-ntf-mgq-p2b
http://iot.console.aliyun.com/

View the devices of a product

Select a product in the upper-left corner of the page.

You can view the status of each device:

Inactive: The device is not connected to IoT Platform.

You can download a device SDK to develop the device, connect
the device to IoT Platform, and then activate the device.

Online: The device is activated and connected to IoT Platform.

Offline: The device is activated and disconnected from IoT
Platform.

Search for a device
Enter a device name, alias, or tag to search for a device. Fuzzy
search is supported.

View detailed information
about a device

Find a device and click View .

Delete a device

Find a device and click Delet e .

Not e After a device is deleted, the device certificate
becomes invalid and the data about this device is deleted from
IoT Platform.

Task Operation

View detailed information about a device
In the device list , f ind a device and click View. The Device Det ails page appears.

Task Operation

View device information
View the basic information about the device, including device
certificate information, firmware information, extended information,
and tag information.

Device Access·Creat e devices 物联网平台

13 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/42648.htm#concept-jlk-mjl-vdb
https://www.alibabacloud.com/help/doc-detail/58328.htm#task-prw-fzz-xdb

View device data

On the T SL Dat a tab, you can perform the following operations:

Click the St at us tab to view the current values, data records, and
desired values of properties that are submitted by the device.

Click the Event s tab to view the event records that are submitted by
the device.

Click the Invoke Service tab to view the service call records of the
device.

View device logs

On the Device Log tab, view the operational logs of IoT Platform. If
you turn on Device local log report ing , you can also view the on-
premises logs of the device. For more information, see IoT Platform
logs and Local device logs.

View device groups
On the Groups tab, view the group information of the device. You can
click Add t his device t o t he group to add the device to an existing
group. For more information, see Device group.

Task Operation

Related API operations

Operation Description

RegisterDevice Registers a device.

QueryDeviceDetail Queries the details of a device.

BatchQueryDeviceDetail Queries the details of multiple devices.

QueryDevice Queries the devices of a product.

DeleteDevice Deletes a device.

For more information about API operations related to device management, see API operations for devices.

物联网平台 Device Access·Creat e devices

> Document Version: 20210312 14

https://www.alibabacloud.com/help/doc-detail/44542.htm#concept-a32-x4w-f2b
https://www.alibabacloud.com/help/doc-detail/159427.htm#task-2454897
https://www.alibabacloud.com/help/doc-detail/90386.htm#task-ejm-qp2-cfb
https://www.alibabacloud.com/help/doc-detail/69470.htm#reference-pc2-kpz-wdb
https://www.alibabacloud.com/help/doc-detail/69594.htm#reference-rrg-lpz-wdb
https://www.alibabacloud.com/help/doc-detail/123470.htm#doc-api-Iot-BatchQueryDeviceDetail
https://www.alibabacloud.com/help/doc-detail/69905.htm#reference-vhm-npz-wdb
https://www.alibabacloud.com/help/doc-detail/69281.htm#reference-jn4-3qz-wdb
https://www.alibabacloud.com/help/doc-detail/69893.htm#reference-kd4-l4z-wdb/section-dcj-qzc-xdb

IoT Platform provides various device SDKs to simplify the development process and connect devices
with IoT Platform.

Prerequisites
The required operations are performed in the IoT Platform console. The device and topic information
that is required for device development is obtained.

For more information about the operations, see Create a product, Create a device, Topics, and Add a TSL
model.

Develop devices by using device SDKs
To connect a device with IoT Platform, you can integrate an SDK that is provided by IoT Platform in the
device. After you develop the device and connect the device to IoT Platform, the device is act ivated
and shows the online status in IoT Platform.

For information about the device SDK for C, see Link SDK for C.

If the provided SDK does not meet your requirements, you can send an email to linkkitSDK-
query@list.alibaba-inc.com . Use the following template when you write the email:

Email Subject: Query about SDK programming language or platform
Message Body:

Company Name:
Contact:
Phone Number:
Programming Language or Platform:
Requirements:
Scale of Device Production and Development Plan:

IoT as Bridge SDK
Alibaba Cloud IoT Platform supports communication over MQTT, CoAP, or HTTP. Other types of
protocols, such as the fire protect ion agreement GB/T 26875.3-2011, Modbus, and JT808, are not
supported. In some scenarios where devices cannot be directly connected to IoT Platform, you can use
the IoT as Bridge SDK to deploy a bridging service and establish connections between the devices and
IoT Platform.

For more information, see IoT as Bridge SDK.

Development devices based on the Alink protocol
If the provided device SDK does not meet your requirements, you can develop a custom SDK. For more
information, see Alink protocol.

For information about the examples of using open source MQTT clients to access IoT Platform, see the
following topics:

Using Paho MQTT Go client

Using Paho MQTT C# client

Using Paho MQTT C client

Using Paho MQTT Java client

3.Download device SDKs

Device Access·Download device SD
Ks

物联网平台

15 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/73728.htm#task-lxd-pnl-vdb
https://www.alibabacloud.com/help/doc-detail/73729.htm#task-yk1-rnl-vdb
https://www.alibabacloud.com/help/doc-detail/73731.htm#concept-mny-tnl-vdb
https://www.alibabacloud.com/help/doc-detail/88241.htm#task-qhm-d3j-w2b
https://www.alibabacloud.com/help/doc-detail/96623.htm
https://www.alibabacloud.com/help/doc-detail/86369.htm#concept-d4s-jcv-42b
https://www.alibabacloud.com/help/doc-detail/90459.htm#concept-pfw-hdg-cfb
https://www.alibabacloud.com/help/doc-detail/146503.htm#task-2359926
https://www.alibabacloud.com/help/doc-detail/146505.htm#task-2360906
https://www.alibabacloud.com/help/doc-detail/146611.htm#task-2361871
https://www.alibabacloud.com/help/doc-detail/146631.htm#task-2362406

Using Paho MQTT Android client

物联网平台 Device Access·Download device SD
Ks

> Document Version: 20210312 16

https://www.alibabacloud.com/help/doc-detail/146630.htm#task-2362441

To secure devices, IoT Platform provides cert if icates for devices, including product cert if icates
(ProductKey and ProductSecret) and device cert if icates (DeviceName and DeviceSecret). A device
cert if icate is a unique identifier used to authenticate a device. Before a device connects to IoT Hub
through a protocol, the device reports the product cert if icate or the device cert if icate, depending on
the authentication method. The device can connect to IoT Platform only when it passes
authentication. IoT Platform supports various authentication methods to meet the requirements of
different environments.

IoT Platform supports the following authentication methods:

Unique-cert if icate-per-device authentication: Each device has been installed with its own unique
device cert if icate.

Unique-cert if icate-per-product authentication: All devices under a product have been installed with
the same product cert if icate.

Sub-device authentication: This method can be applied to sub-devices that connect to IoT Platform
through the gateway.

These methods have their own advantages in terms of accessibility and security. You can choose one
according to the security requirements of the device and the actual production condit ions. The
following table shows the comparison among these methods.

Comparison of authentication methods

Items
Unique-certificate-per-
device authentication

Unique-certificate-per-
product authentication

Sub-device
authentication

Information written into
the device

ProductKey,
DeviceName, and
DeviceSecret

ProductKey and
ProductSecret

ProductKey

Whether to enable
authentication in IoT
Platform

No. Enabled by default.
Yes. You must enable
dynamic register.

Yes. You must enable
dynamic register.

DeviceName pre-
registration

Yes. You need to make
sure that the specified
DeviceName is unique
under a product.

Yes. You need to make
sure that the specified
DeviceName is unique
under a product.

Yes.

Certificate installation
requirement

Install a unique device
certificate on every
device. The safety of
every device certificate
must be guaranteed.

Install the same
product certificate on
all devices under a
product. Make sure that
the product certificate
is safely kept.

Install the same
product certificate into
all sub-devices. The
security of the gateway
must be guaranteed.

Security High Medium Medium

Upper limit for
registrations

Yes. A product can have
a maximum of 500,000
devices.

Yes. A product can have
a maximum of 500,000
devices.

Yes. A maximum of 200
sub-devices can be
registered with one
gateway.

4.Authenticate devices

Device Access·Aut hent icat e device
s

物联网平台

17 > Document Version: 20210312

Other external reliance None None
Security of the
gateway.

Items
Unique-certificate-per-
device authentication

Unique-certificate-per-
product authentication

Sub-device
authentication

A device must pass identity authentication before it can be connected to IoT Platform. IoT Platform
supports device authentication by using device keys.

Use device keys for authentication
When you create a product, set Aut hent icat ion Mode to Device Secret . IoT Platform issues a
ProductSecret and DeviceSecret or other device keys to each device. When a device is accessing IoT
Platform, the device must use the device keys for identity authentication.

IoT Platform supports various authentication methods to meet the requirements of different scenarios.

Unique-cert if icate-per-device authentication: A device cert if icate is burned to each device. The
device cert if icate includes a ProductKey, DeviceName, and DeviceSecret. For more information, see
Unique-cert if icate-per-device authentication.

Pre-registrat ion unique-cert if icate-per-product authentication: A product cert if icate is burned to all
devices of a product. The product cert if icate includes a ProductKey and ProductSecret. For more
information, see Unique-cert if icate-per-product authentication. Enable dynamic registrat ion for the
product, and use dynamic registrat ion to obtain a DeviceSecret for a device.

Preregistrat ion-free unique-cert if icate-per-product authentication: A product cert if icate is burned
to all devices of a product. The product cert if icate includes a ProductKey and ProductSecret. For
more information, see Unique-cert if icate-per-product authentication. Enable dynamic registrat ion for
the product, and use dynamic registrat ion to obtain a combination of ClientID and DeviceToken
instead of a DeviceSecret.

Sub-device authentication: After a sub-device is connected to IoT Platform by using a gateway, you
can use dynamic registrat ion to obtain a DeviceSecret for the sub-device.

These methods have their own benefits in terms of accessibility and security. You can choose a method
based on the security requirements of the device and the actual production condit ions. The following
table shows the comparison among these methods.

Comparison of authentication methods

Item
Unique-certificate-
per-device
authentication

Pre-registration
unique-certificate-
per-product
authentication

Preregistration-
free unique-
certificate-per-
product
authentication

Sub-device
authentication

Information
burned into the
device

ProductKey,
DeviceName, and
DeviceSecret

ProductKey and
ProductSecret

ProductKey and
ProductSecret

ProductKey

4.1. Overview

物联网平台 Device Access·Aut hent icat e device
s

> Document Version: 20210312 18

https://www.alibabacloud.com/help/doc-detail/74005.htm#task-n21-glp-wfb
https://www.alibabacloud.com/help/doc-detail/74006.htm#task-m1l-zqq-wfb
https://www.alibabacloud.com/help/doc-detail/74006.htm#task-m1l-zqq-wfb
https://www.alibabacloud.com/help/doc-detail/89298.htm#concept-gm3-jtw-y2b/section-xfq-zww-y2b

Enable dynamic
registration in IoT
Platform

Not required. The
dynamic
registration
feature is enabled
by default.

Required. Required. Required.

Create a device in
IoT Platform and
register the
DeviceName

Required. You
must ensure that
the specified
DeviceName is
unique under a
product.

Required. You
must ensure that
the specified
DeviceName is
unique under a
product.

Not required.

Required. You
must ensure that
the specified
DeviceName is
unique under a
product.

Certificate burning
requirement

Burn a unique
device certificate
to each device.
You must ensure
the security of
each device
certificate.

Burn the same
product certificate
to all devices of a
product. You
must ensure that
the product
certificate is
safely kept.

Burn the same
product certificate
to all devices of a
product. You
must ensure that
the product
certificate is
safely kept.

A gateway can
obtain the
ProductKeys of
all sub-devices
on premises.

Burn the
ProductKey of
each sub-device
on the
gateway.

Security High Medium Medium Medium

Upper limit for
registrations

A product can
have a maximum
of 500,000
devices.

A product can
have a maximum
of 500,000
devices.

A product can
have a maximum
of 500,000
devices.

A maximum of
1,500 sub-devices
can be registered
under a gateway.

Other external
reliance

N/A N/A N/A
Security of the
gateway.

Item
Unique-certificate-
per-device
authentication

Pre-registration
unique-certificate-
per-product
authentication

Preregistration-
free unique-
certificate-per-
product
authentication

Sub-device
authentication

If the unique-cert if icate-per-device authentication method is used, you must install a unique device
cert if icate on each device in advance. The device cert if icate includes a product key, device name, and
device secret. When you connect a device to IoT Platform, IoT Platform authenticates the device
cert if icate. After the device passes authentication, IoT Platform activates the device to enable data
communication between the device and IoT Platform.

Context

4.2. Unique-certificate-per-device
authentication

Device Access·Aut hent icat e device
s

物联网平台

19 > Document Version: 20210312

The unique-cert if icate-per-device authentication method is recommended because of its high level of
security.

Procedure:

Procedure
1. Create a product.Create a product in the IoT Platform console. For more information, see Create a

product.

2. Add a device.

Add a device to an exist ing product and obtain the device cert if icate information. For more
information, see Create a device and Create multiple devices at a t ime.

3. Burn the device cert if icate information onto the device.

i. Download a Link SDK.

ii. Init ialize the Link SDK. Specify the device cert if icate information in the Link SDK.Init ialize the Link
SDK in which the unique-cert if icate-per-device authentication method is specified. For more
information, see the device authentication, and authentication and connection art icles of
language-specific Link SDKs in the Link SDK documentation.

iii. Develop the device SDK based on your business requirements. For example, you can develop
the following features: over-the-air (OTA) update, sub-device connection, Thing Specificat ion
Language (TSL) model, and device shadows.

iv. Burn the developed device SDK to the device on the production line.

4. Connect the device to IoT Platform.After you power on the device and connect the device to IoT
Platform, the device submits an authentication request that includes the device cert if icate
information to IoT Platform. For more information, see Establish MQTT connections over TCP,
Connect devices to IoT Platform over CoAP, and Establish connections over HTTP.

5. Act ivate the device in the IoT Platform console.IoT Platform authenticates the device cert if icate.
After the device passes authentication and connects with IoT Platform, the device can publish
messages to topics and subscribe to topic messages. This enables messaging between the device
and IoT Platform.

If you use unique-cert if icate-per-product authentication, the same firmware is burned to all devices of
a product. The firmware includes the same product cert if icate information (ProductKey and
ProductSecret). When a device init iates an act ivation request, IoT Platform authenticates the device. If
the device passes the authentication, IoT Platform sends the information that the device requires to
connect with IoT Platform.

4.3. Unique-certificate-per-product
authentication

物联网平台 Device Access·Aut hent icat e device
s

> Document Version: 20210312 20

http://iot.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/73728.htm#task-lxd-pnl-vdb
https://www.alibabacloud.com/help/doc-detail/73729.htm#task-yk1-rnl-vdb
https://www.alibabacloud.com/help/doc-detail/89261.htm#task-av2-fcw-y2b
https://www.alibabacloud.com/help/doc-detail/96627.htm
https://www.alibabacloud.com/help/doc-detail/96627.htm
https://www.alibabacloud.com/help/doc-detail/73742.htm#concept-mhv-ghm-b2b
https://www.alibabacloud.com/help/doc-detail/57697.htm#concept-gn3-kr5-wdb
https://www.alibabacloud.com/help/doc-detail/58034.htm#concept-djd-vt5-wdb

Context

Not e

If you use this authentication method, the product cert if icate may be disclosed because all
devices of a product have the same firmware. On the Product Det ails page, you can turn
off the Dynamic Registrat ion switch to reject authentication requests from new devices.

Transport Layer Security (TLS) encryption must be used if you dynamically register the
devices based on unique-cert if icate-per-product authentication. If your device SDK cannot
use TLS encryption, you must use the Unique-cert if icate-per-device authentication method.

The following figure shows the process of unique-cert if icate-per-product authentication.

You can use unique-cert if icate-per-product authentication in the following two methods:

Pre-registrat ion unique-cert if icate-per-product authentication

Before you connect a device to IoT Platform, you must register the DeviceName in IoT Platform. We
recommend that you use the MAC address, IMEI number, or serial number (SN) as the DeviceName.
Then, IoT Platform issues a DeviceSecret to the device.

After IoT Platform authenticates the device, the device uses the ProductKey, DeviceName, and
DeviceSecret to establish a connection with IoT Platform.

Pre-registrat ion unique-cert if icate-per-product authentication supports MQTT-based connections.

Preregistrat ion-free unique-cert if icate-per-product authentication

You do not need to pre-register a device in IoT Platform. Instead, you can use an IoT card number as
the DeviceName.

After IoT Platform authenticates the device, the device uses the ProductKey, DeviceName, ClientID,
and DeviceToken to establish a connection with IoT Platform.

Preregistrat ion-free unique-cert if icate-per-product authentication supports MQTT-based
connections.

Procedure
1. Create a product.Create a product in the IoT Platform console. For more information, see Create a

product.

2. Enable dynamic registrat ion.On the Product Det ails page, turn on the Dynamic Registrat ion
switch. IoT Platform sends an SMS verificat ion code to confirm your identity.

Device Access·Aut hent icat e device
s

物联网平台

21 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/74005.htm#task-n21-glp-wfb
http://iot.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/73728.htm#task-lxd-pnl-vdb

Not e If dynamic registrat ion is disabled when devices init iate act ivation requests, IoT
Platform rejects the requests. Act ivated devices are not affected.

3. Add a device.

Pre-registrat ion unique-cert if icate-per-product authentication

Add a device to the created product. For more information, see Create multiple devices at a t ime or
Create a device.

IoT Platform authenticates the DeviceName when a device init iates an act ivation request. We
recommend that you use an identifier that can be obtained from the device as the DeviceName.
The identifier can be the MAC address, IMEI, or SN of the device.

Then, IoT Platform issues a DeviceSecret to the device. The init ial status of the device is Inact ive.

If you use preregistrat ion-free unique-cert if icate-per-product authentication, skip this step.

4. Burn the device SDK on the production line.

i. Download the device SDK.For more information, see Link SDK.

ii. Init ialize the device SDK and enable dynamic registrat ion. In the device SDK, specify the
ProductKey and ProductSecret.For more information about how to configure device SDK to
use the unique-cert if icate-per-product method, see the documentations about
authentication and connection in Link SDK.

iii. Develop the device SDK based on your business requirements. For example, you can develop
the following features: over-the-air (OTA) update, sub-device connection, Thing Specificat ion
Language (TSL) model, and device shadows.

iv. Burn the developed device SDK to the device on the production line.

5. Connect the device to IoT Platform.Power on the device and connect it to IoT Platform. Then, the
device carries the ProductKey, ProductSecret, and DeviceName to init iate an authentication
request. For more information, see MQTT-based dynamic registrat ion and HTTP-based dynamic
device registrat ion.

6. Act ivate the device in IoT Platform.

Pre-registrat ion unique-cert if icate-per-product authentication

物联网平台 Device Access·Aut hent icat e device
s

> Document Version: 20210312 22

https://www.alibabacloud.com/help/doc-detail/89261.htm#task-av2-fcw-y2b
https://www.alibabacloud.com/help/doc-detail/73729.htm#task-yk1-rnl-vdb
https://www.alibabacloud.com/help/doc-detail/96627.htm
https://www.alibabacloud.com/help/doc-detail/96627.htm
https://www.alibabacloud.com/help/doc-detail/132111.htm#task-1545804
https://www.alibabacloud.com/help/doc-detail/89298.htm#concept-gm3-jtw-y2b/section-efq-cxw-y2b

After IoT Platform authenticates the device, IoT Platform delivers the DeviceSecret that is issued
in Step 3 to the device. The device obtains the device cert if icate (ProductKey, DeviceName, and
DeviceSecret). Then, the device can use the cert if icate to establish a connection with IoT
Platform.

Not e

A device cert if icate can be used to act ivate only one physical device.

If Device A is act ivated by using the DeviceName but Device B must use this
DeviceName, you can delete Device A from IoT Platform and invalidate the
DeviceSecret of Device A. Then, you can use the DeviceName to add and act ivate
Device B.

To reactivate a device due to the loss of its DeviceSecret, use the ResetThing API
operation to reset the device, and then reconnect the device to IoT Platform. IoT
Platform issues the same DeviceSecret to the device.

Preregistrat ion-free unique-cert if icate-per-product authentication

After IoT Platform authenticates the device, IoT Platform issues the ClientID and DeviceToken to
the device. Then, the device uses the ProductKey and ProductSecret, ClientID, and DeviceToken
to establish a connection with IoT Platform.

Not e A maximum of five physical devices can be act ivated in IoT Platform with the
same ProductKey, ProductSecret, and DeviceName. Each device has a unique ClientID and
DeviceToken.

A DeviceName may be used for mult iple physical devices that have different ClientIDs. In this
case, the following message appears on the Product Det ails page of the IoT Platform console:
The devices of the current product have mult iple ClientIDs. You can retain one physical device or
clear all physical devices.

a. On the Product Det ails page, click View to view the security-compromised devices of the
product.

b. Choose Devices > Devices. On the page that appears, f ind the device and click View to go
to the Device Det ails page. The ClientID for the current connection is displayed. Click
Swit ch or Clear next to the ClientID.

Swit ch : Select the ClientID from the drop-down list . Check the first connection t ime of
the device that corresponds to the ClientID, or click Log Service and view IoT Platform
logs to determine whether the physical device needs to be retained. Then, you can select
the ClientID of the physical device that you want to retain, and click OK. The physical
devices that use other ClientIDs cannot be connected.

Clear: All physical devices cannot be connected.

Device Access·Aut hent icat e device
s

物联网平台

23 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/155680.htm#doc-api-Iot-ResetThing
https://www.alibabacloud.com/help/doc-detail/44542.htm#concept-a32-x4w-f2b

Devices can use the following two methods to retrieve device cert if icates (ProductKey, DeviceName,
and DeviceSecret) issued by IoT Platform: 1. Device manufacturers burn cert if icates on devices. 2.
Devices retrieve cert if icates from the cloud after being powered on and connected to the Internet.

Burn device cert if icates

Device manufacturers retrieve cert if icates issued by IoT Platform, and then use production lines to
burn cert if icates on devices. After being powered on and connected to the Internet, devices use the
cert if icates to access IoT Platform. The solut ion requires device manufacturers to transform
production lines to burn cert if icates.

For more information about this solut ion, see Burn certificates on devices.

Retrieve cert if icates from the cloud

After being powered on and connected to the Internet, devices automatically retrieve the IP address,
and connect to the cloud server of device manufacturers to retrieve cert if icates, and then connect
to IoT Platform. During production, device manufacturers do not need to burn cert if icates on devices.
This solut ion eliminates the need of cert if icate burning on production lines and speeds up the mass
production of devices.

For more information about this solut ion, see Devices retrieve certificates from the cloud.

This topic describes how to use production lines to burn cert if icates (ProductKey, DeviceName, and
DeviceSecret) on devices.

The solut ion requires device manufacturers to transform production lines based on business needs. This
topic only describes the burning methods that are available.

Retrieve device certificates
When you create devices, the system automatically generates the device cert if icates. You can use one
of the following methods to retrieve device cert if icates and write the cert if icates to databases or files.

Use the IoT Platform console to create a device and view the device cert if icate.

After a device is created, the T he devices have been added. dialog box automatically appears.
Click Learn More or Copy Device Cert if icat e to retrieve the device cert if icate.

On the Device List tab, f ind the required device and click View. On the Device Det ails page, click
the Device Inf ormat ion tab to view the device information.

Use the IoT Platform console to create mult iple devices and view the device cert if icates.

After devices are created, the T he devices have been added. dialog box appears. Click
Download Device Cert if icat e to download the device cert if icates.

On the Devices page, click the Bat ch Management tab. On this tab, click DownloadCSV to
download the cert if icates of all devices under the product.

Call API operations to create devices. IoT Platform returns the generated device cert if icates to your
application.

5.Devices retrieve certificates
5.1. Overview

5.2. Burn certificates on devices

物联网平台 Device Access·Devices ret rieve cert
ificat es

> Document Version: 20210312 24

https://www.alibabacloud.com/help/doc-detail/157415.htm#task-2445785
https://www.alibabacloud.com/help/doc-detail/157414.htm#concept-2445784

Not e For more information about how to create devices, see the following topics:

1. For information about how to create a product, see Create a product.

2. Topics about how to create devices:

For information about how to create a device in the IoT Platform console, see Create a
device.

For information about how to create mult iple devices in the IoT Platform console, see
Create mult iple devices at a t ime.

You can call API operations to create devices. IoT Platform provides the RegisterDevice
operation to create a single device and the BatchRegisterDevice and
BatchRegisterDeviceWithApplyId operations to create mult iple devices. For information
about how to retrieve the SDK and call the API operations, see Download SDKs.

Burn certificates
After retrieving device cert if icates, you can start a server on your production line to distribute the
device cert if icates. Programmers, burners, or devices can apply for cert if icates to the cert if icate
distributor and burn the cert if icates on the NVRAM or Flash of the devices.

Two cert if icate burning methods are available. You can use either of the burning methods based on
your needs. The following figure shows the procedure.

Two burning methods are described as follows:

Use programmers or burners to burn device cert if icates.

You need to modify the exist ing programmers or burner programs. Use PCs to apply for device
cert if icates to the cert if icate distributor and then use programmers or burners to burn the cert if icates
on chips or devices.

In this solut ion, mult iple burners or programmers must be deployed on a production line to burn
cert if icates. You can increase or decrease the number of burners or programmers based on the scale
of device production.

Enable devices to directly retrieve cert if icates.

You need to enable device firmware to automatically detect whether valid cert if icates exist after
devices are powered on. If no invalid cert if icates exist , devices apply for cert if icates to the cert if icate
distributor and then write the cert if icates into the NVRAM or Flash.

In this solut ion, you do not need to deploy burners or programmers on your production line. In
addit ion, mult iple devices can apply for cert if icates to the cert if icate distributor at the same t ime.

Device Access·Devices ret rieve cert
ificat es

物联网平台

25 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/73728.htm#task-lxd-pnl-vdb
https://www.alibabacloud.com/help/doc-detail/73729.htm#task-yk1-rnl-vdb
https://www.alibabacloud.com/help/doc-detail/89261.htm#task-av2-fcw-y2b
https://www.alibabacloud.com/help/doc-detail/69470.htm#reference-pc2-kpz-wdb
https://www.alibabacloud.com/help/doc-detail/69473.htm#reference-dyt-grz-wdb
https://www.alibabacloud.com/help/doc-detail/69514.htm#reference-iwr-frz-wdb
https://www.alibabacloud.com/help/doc-detail/30579.htm#reference-b4q-wwb-zdb

In this solut ion, you do not need to burn cert if icates on devices. Instead, devices send requests to the
server to retrieve cert if icates (ProductKey, DeviceName, and DeviceSecret) after being powered on and
connected to networks.

Procedure
In this solut ion, you must deploy a device cert if icate distribution server, and develop the corresponding
server API and device information table.

The cert if icate distribution server calls the API when receiving requests from devices to retrieve
cert if icates. The business logic of this API is described as follows: queries the device information table
based on the device ID that is specified in a request, and performs the following operations based on
the query result .

Returns an error message if the device ID is not found in the table. The error message indicates that
the device is invalid.

Returns a device cert if icate if the device ID is found in the table and the corresponding cert if icate
exists.

Calls the RegisterDevice API operation of IoT Platform to register the device and returns a device
cert if icate if the device ID is found in the table but the corresponding cert if icate does not exist .

After retrieving the cert if icate, the device can use the cert if icate to connect to IoT Platform.

The following figure shows the procedure.

5.3. Devices retrieve certificates from the
cloud

物联网平台 Device Access·Devices ret rieve cert
ificat es

> Document Version: 20210312 26

https://www.alibabacloud.com/help/doc-detail/69470.htm#reference-pc2-kpz-wdb

Not e

Devices must be able to automatically retrieve the IP address and connect to your cert if icate
distribution server.

You can develop the cert if icate distribution server based on your needs.

You must ensure the security and reliability of the connections from devices to the
cert if icate distribution server.

Server API
We recommend that you develop the API as follows.

Request parameters

Parameter Description

deviceId
The ID of the device. You can specify a MAC address or series number (SN) for
this parameter.

Response parameters

Parameter Description

productKey The ProductKey in the device certificate that is issued by IoT Platform.

deviceName The DeviceName in the device certificate that is issued by IoT Platform.

deviceSecret The DeviceSecret in the device certificate that is issued by IoT Platform.

Device information table
We recommend that you create the device information table as follows.

Table propert ies

Table property Recommended value

Table name device_table

T ime to live (TTL) -1

Maximum data version 1

Maximum time offset 86400

Primary key deviceId

Fields

Field Description

Device Access·Devices ret rieve cert
ificat es

物联网平台

27 > Document Version: 20210312

deviceId
The ID of the device. You can specify an MAC address or series number (SN) for
this parameter.

registerT ime The time when the device was registered.

activateT ime The time when the device was activated.

productKey The ProductKey in the device certificate that is issued by IoT Platform.

deviceName The DeviceName in the device certificate that is issued by IoT Platform.

deviceSecret The DeviceSecret in the device certificate that is issued by IoT Platform.

IotId
The device ID issued by IoT Platform. This parameter uniquely identifies the
device in IoT Platform.

Field Description

物联网平台 Device Access·Devices ret rieve cert
ificat es

> Document Version: 20210312 28

The cloud and devices communicate with each other in IoT Platform through topics. The device reports
messages to a specified topic and subscribes to messages from the topic. IoT Platform sends
commands to topics, and subscribes to specific topics to obtain device information.

IoT Platform communicates with devices based on topics. Topics are associated with devices, and topic
categories are associated with products.

Topic categories
Topic categories are used to simplify authorization and improve topic-based communication between
devices and IoT PlatformA topic category indicates a set of topics. For example, a custom topic
category named /${YourProductKey}/$ {YourDeviceName}/user/update includes the
 /${YourProductKey}/device1/user/update and /${YourProductKey}/device2/user/update topics.

Log on to the IoT Platform console.Choose Devices > Product s . Find the product, and click View to
go to the Product Det ails page. Click the T opic Cat egories tab, and then click T opics f or Basic
Communicat ions , T opics f or T SL Communicat ions , or Cust om T opics to view topic categories. For
more information about the three types of topic categories, see Topic types.

When you use a topic category, take note of the following items:

A topic category consists of several f ields. Separate these fields with forward slashes (/). A topic
category contains the following pre-defined fields: ${YourProductKey} and ${YourDeviceName}.
Replace the ${YourProductKey} variable with your ProductKey. Replace the ${YourDeviceName}
variable with your DeviceName.

Permissions:

Publish: Devices can publish messages to the topic.

Subscribe: Devices can subscribe to the topic to receive messages.

Topics
Topic categories are used to define topics. Topic categories cannot be used for communication. Only
topics can be used for communication.

Not ice When you debug upstream and downstream communication, make sure that
specified topics have the required permissions.

After you create a device under a product, topic categories of the product are automatically mapped
to the device to generate topics. You do not need to create topics for the device. Topics are in the
same format as topic categories. The difference between topics and topic categories is that the
${YourDeviceName} variable in topic categories is replaced with an actual DeviceName in topics.

Process of generating topics

6.Topics

6.1. What is a topic?

Device Access·Topics 物联网平台

29 > Document Version: 20210312

https://iot.console.aliyun.com

The topics of a device can be used for communication only by the device. For example, the
 /${YourProductKey}/device1/user/update topic belongs to a device named Device 1. Only Device 1 can

publish messages and subscribe to this topic. Other devices cannot use this topic.

After the device sends a SUB command to subscribe to a topic, you can perform the following steps to
view the subscribed topic. Log on to the IoT Platform console,and choose Devices > Devices. Find the
device and click View. On the Device Det ails page, click the T opic List tab. All subscribed topics are
displayed in the Subscribed T opics sect ion. IoT Platform can send upstream messages to these
topics.

You can click Post Message next to a topic of a device and send a message to the device by using the
topic. The Post Message option is unavailable for topics that include wildcards. For more information,
see A topic that includes one or more wildcards.

A device can send a UNSUB request to unsubscribe from a topic. After the topic is unsubscribed, it is
removed from the Subscribed T opics sect ion.

If you need to disable message sending and receiving features of a device, log on to the IoT Platform
console,and disable the device on the Devices page. You can also call the DisableThing operation on
the server to disable the device. If you do not want to disable the device, you can control the messages
that are sent to the device.

Topic types
Topics are categorized into the following three types.

Parameter Description

物联网平台 Device Access·Topics

> Document Version: 20210312 30

https://iot.console.aliyun.com
https://www.alibabacloud.com/help/doc-detail/85539.htm#concept-ppk-rz4-k2b/section-4x5-31w-af5
https://iot.console.aliyun.com
https://www.alibabacloud.com/help/doc-detail/69602.htm#doc-api-Iot-DisableThing

Topics for basic
communications

Topics for basic communications are predefined in IoT Platform. Topics of this
type include the following topics:

OTA update-related topics. For more information about the purpose and data
format of each topic, see OTA update.

Device tag-related topics. For more information about the purpose and data
format of each topic, see Device tags.

Clock synchronization-related topics. Clock synchronization is implemented by
using the Network T ime Protocol (NTP) service. For more information, see
Configure the NTP service.

Device shadow-related topics. For more information about the purpose and
data format of each topic, see Device shadow data stream.

Configuration update-related topics. For more information about the purpose
and data format of each topic, see Remote configuration.

Broadcast topics. You can call the PubBroadcast API operation of IoT Platform
to broadcast messages to devices that subscribe to a broadcast topic. This
allows you to batch control the devices.

Topics for TSL
communications

Topics for Thing Specification Language (TSL) communications are predefined in
IoT Platform. Topics of this type include the following topics: For more
information about the data format of each TSL-based topic, see Device
properties, events, and services.

Not e You cannot call the Pub API operation of IoT Platform to send
messages to a TSL-based topic.

IoT Platform allows you to perform the following operations to control
remote devices by using TSL-based topics: 1. Call the SetDeviceProperty or
SetDevicesProperty API operation to set the values of device properties. 2.
Call the InvokeThingService or InvokeThingsService API operation to invoke
device services.

Edit a topic category

You can customize Topic categories on the T opic cat egories page of a
product based on your business requirements. For more information, see custom
Topic categories.

A topic category is a configuration template that is used to generate topics.
Each topic category of a product is used by all devices within the product. If you
edit and update a topic category, the change applies to all topics that are
generated by the topic category. This may affect messaging between the
devices that subscribe to these topics and IoT Platform. We recommend that
you complete the configuration of topic categories when you implement
devices. We also recommend that you do not modify or adjust the topic
categories after these devices are connected to IoT Platform.

Parameter Description

6.2. Edit a topic category

Device Access·Topics 物联网平台

31 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/89307.htm#concept-swx-ttw-y2b
https://www.alibabacloud.com/help/doc-detail/89304.htm#concept-pvz-qtw-y2b
https://www.alibabacloud.com/help/doc-detail/102509.htm#concept-s2r-tx3-kgb
https://www.alibabacloud.com/help/doc-detail/53964.htm#concept-f1f-v1v-wdb
https://www.alibabacloud.com/help/doc-detail/89308.htm#concept-j4b-vtw-y2b
https://www.alibabacloud.com/help/doc-detail/69909.htm#doc-api-Iot-PubBroadcast
https://www.alibabacloud.com/help/doc-detail/89301.htm#concept-mvc-4tw-y2b
https://www.alibabacloud.com/help/doc-detail/69579.htm#doc-api-Iot-SetDeviceProperty
https://www.alibabacloud.com/help/doc-detail/96243.htm#doc-api-Iot-SetDevicesProperty
https://www.alibabacloud.com/help/doc-detail/69584.htm#doc-api-Iot-InvokeThingService
https://www.alibabacloud.com/help/doc-detail/96242.htm#doc-api-Iot-InvokeThingsService
https://www.alibabacloud.com/help/doc-detail/85539.htm#concept-ppk-rz4-k2b

This art icle describes how to edit the topic category of a product. Each topic category of a product is
used by all devices of the product.

Procedure
1. Log on to the IoT Platform console.

2.

3. In the left-side navigation pane, choose Devices > Product s .

4. On the Product s page, find the product for which you want to edit a topic category, and click
View.

5. On the Product Det ails page, choose T opic Cat egories > T opic Cat egory > Edit T opic
Cat egory .

6. Set the required parameters, and click OK.

Parameter Description

Device Operation
Authorizations

The permission of the device for the topic category. Valid values: Publish,
Subscribe, and Publish and Subscribe.

Topic Category

The name of the topic category. The name can contain letters, digits, and
underscores (_). Each field of the topic category cannot be empty.

Not e If you set the Device Operation Authorizations parameter of
a topic category to Subscribe, you can specify the + and # wildcards in
the topic category. These wildcards allow devices to subscribe to
multiple topics at a t ime. For more information about how to use
wildcards, see A topic that includes one or more wildcards.

物联网平台 Device Access·Topics

> Document Version: 20210312 32

https://iot.console.aliyun.com

Description The description.

Parameter Description

A topic that includes one or more wildcards
If you set the Device Operation Authorizations parameter to Subscribe, IoT Platform allows you to
specify two wildcards in a topic. This feature allows a device to subscribe to mult iple topics at a t ime.

Wildcard Description

#

This wildcard must be specified for the last field in a topic and can match all
field values at the current level and sub-levels.

For example, you create the /a1aycMA****/${deviceName}/user/# topic
category. If Device 1 subscribes to the /a1aycMA****/device1/user/# topic, the
device subscribes to all topics that start with /a1aycMA****/device1/user/ , for
example, /a1aycMA****/device1/user/update and
 /a1aycMA****/device1/user/update/error .

+

This wildcard can match all field values at the current level.

For example, you create the /a1aycMA****/${deviceName}/user/+/error topic
category. If Device 1 subscribes to the /a1aycMA****/device1/user/+/error
topic, the device subscribes to multiple topics, such as
 /a1aycMA****/device1/user/get/error and
 /a1aycMA****/device1/user/update/error .

A topic that includes one or more wildcards represents a set of topics. A device can subscribe to the
topic. However, on the T opic List page of the device, the Post Message act ion is unavailable for the
topic. You cannot send messages to the device by using the topic.

Topic-based communication
IoT Platform calls the Pub API operation to publish messages to a specified topic. Devices receive
messages from IoT Platform by subscribing to the topic.

For more information about topic-based communication, see Use custom topics for communication.

If you connect devices to IoT Platform over MQTT, you must subscribe to topics before you can receive
messages from IoT Platform. Link SDK for C versions 3.1, 3.2, and 4.x that are provided by IoT Platform
support automatic topic subscript ion. This art icle describes topics that are automatically subscribed by
devices.

Background information
IoT Platform communicates with devices based on topics. If you want to use mult iple features of IoT
Platform, you must subscribe to feature-specific topics. A large amount of t ime is required to subscribe
to topics and then enable devices to work properly. To shorten the t ime, IoT Platform provides the
automatic topic subscript ion feature. You can use specified topics to send messages from devices
without sending requests to subscribe to the topics.

6.3. Automatic topic subscription

Device Access·Topics 物联网平台

33 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/69793.htm#doc-api-Iot-Pub
https://www.alibabacloud.com/help/doc-detail/120986.htm#concept-423001

Not e

After devices are connected to IoT Platform by using Link SDK for C version 3.1, 3.2, or 4.x,
IoT Platform can send downstream messages by using automatically subscribed topics.

If devices are deleted and destroyed, or devices call the aiot_mqtt_unsub operation to
unsubscribe from the topics, IoT Platform no longer sends messages to the devices.

Topics

Feature Topic

TSL-based
communication

/sys/${productKey}/${deviceName}/thing/model/down_raw

/sys/${productKey}/${deviceName}/thing/model/up_raw_reply

/sys/${productKey}/${deviceName}/thing/event/+/post_reply

/sys/${productKey}/${deviceName}/thing/deviceinfo/update_reply

/sys/${productKey}/${deviceName}/thing/deviceinfo/delete_reply

/sys/${productKey}/${deviceName}/thing/dynamicTsl/get_reply

/sys/${productKey}/${deviceName}/thing/dsltemplate/get_reply

/sys/${productKey}/${deviceName}/rrpc/request/+

/sys/${productKey}/${deviceName}/thing/service/property/set

/sys/${productKey}/${deviceName}/thing/service/property/get

/sys/${productKey}/${deviceName}/thing/event/property/history/post_reply

/sys/${productKey}/${deviceName}/thing/service/+

Sub-device
management

/sys/${productKey}/${deviceName}/thing/gateway/permit

/sys/${productKey}/${deviceName}/thing/topo/change

/sys/${productKey}/${deviceName}/thing/sub/register_reply

/sys/${productKey}/${deviceName}/thing/sub/unregister_reply

/sys/${productKey}/${deviceName}/thing/topo/add_reply

/sys/${productKey}/${deviceName}/thing/topo/delete_reply

/sys/${productKey}/${deviceName}/thing/disable_reply

/sys/${productKey}/${deviceName}/thing/topo/get_reply

/ota/device/upgrade/${productKey}/${deviceName}

物联网平台 Device Access·Topics

> Document Version: 20210312 34

http://gaic.alicdn.com/ztms/linkkit/html/aiot__mqtt__api_8h.html?spm=a2c4g.11186623.2.22.15686ef0xqk331#ac5bf829313794c8532eeafa84956e4da

Firmware update

/ota/device/request/${productKey}/${deviceName}

Remote configuration
/sys/${productKey}/${deviceName}/thing/config/push

/sys/${productKey}/${deviceName}/thing/config/get_reply

On-premises
communication

/sys/${productKey}/${deviceName}/thing/lan/prefix/get_reply

/sys/${productKey}/${deviceName}/thing/lan/blacklist/update_reply

/sys/${productKey}/${deviceName}/thing/lan/prefix/update

Device shadows

/sys/${productKey}/${deviceName}/thing/property/desired/get_reply

/sys/${productKey}/${deviceName}/thing/property/desired/delete_reply

/shadow/get/${productKey}/${deviceName}

Reset of device
response

/sys/${productKey}/${deviceName}/thing/reset_reply

Response of IoT
Platform to device
connection

/sys/${productKey}/${deviceName}/thing/awss/enrollee/match_reply

/sys/${productKey}/${deviceName}/thing/awss/enrollee/checkin

Response of IoT
Platform to sub-device
connection

/sys/${productKey}/${deviceName}/thing/awss/enrollee/found_reply

/sys/${productKey}/${deviceName}/thing/cipher/get_reply

/sys/${productKey}/${deviceName}/thing/awss/device/switchap

Unique-certificate-per-
product authentication
of sub-devices

/sys/${productKey}/${deviceName}/thing/proxy/provisioning/product_register_re
ply

Activation of global
devices

/sys/${productKey}/${deviceName}/thing/bootstrap/config/push

Downstream
notifications

/sys/${productKey}/${deviceName}/_thing/event/notify

Response to devices
after data submission

/sys/${productKey}/${deviceName}/_thing/service/post_reply

Task management

/sys/{productKey}/{deviceName}/thing/job/notify

/sys/{productKey}/{deviceName}/thing/job/get_reply

/sys/{productKey}/{deviceName}/thing/job/update_reply

Feature Topic

Device Access·Topics 物联网平台

35 > Document Version: 20210312

Message Queuing Telemetry Transport (MQTT) is an asynchronous communication protocol based on
the TCP/IP protocol stack. MQTT is a lightweight protocol that is used for message transmission in the
publish/subscribe mode. MQTT is scalable in unreliable network environments. It is applicable in
scenarios where the storage space of device hardware or network bandwidth is limited. The sender and
receiver of a message that is transmitted over MQTT are not restricted by t ime or space. You can
connect a device to IoT Platform by using the MQTT protocol.

Supported versions
IoT Platform supports device connection over MQTT. Valid MQTT versions include 5.0, 3.1.1, and 3.1. For
more information, see MQTT 5.0, MQTT 3.1.1, and MQTT 3.1.

Not e To use the MQTT 5.0 protocol, you must buy an Enterprise Edit ion instance, and then
submit a t icket to apply for the whitelist permission for the instance.

Differences of IoT Platform-based MQTT from standard MQTT
Supports MQTT messages including PUB, SUB, PING, PONG, CONNECT, DISCONNECT, and UNSUB.

Supports the clean session flag.

Does not support will and retained messages.

Supports quality of service (QoS) 0 and QoS 1 messages and does not support QoS 2 messages.

Does not support sett ing the QoS on subscriber clients. Only the QoS that is set by publisher clients is
valid.

Supports the synchronous RRPC mode based on native MQTT topics. A server can call a device service
and obtain a response at the same t ime.

Supported MQTT 5.0 features
Compared with the previous version, MQTT 5.0 provides a large number of new features to improve the
performance and ease of use. For more information, see Appendix C. Summary of new features in MQTT
5.0.

IoT Platform supports the following new features of MQTT 5.0:

Set the maximum length of messages on clients and servers to filter messages.

MqttConnectionOptions connOpts = new MqttConnectionOptions();
connOpts.setMaximumPacketSize(1024L);

Set the maximum number of QoS 1 messages per second.

MqttConnectionOptions connOpts = new MqttConnectionOptions();
connOpts.setReceiveMaximum(5);

Use the UserProperty parameter to specify a list of propert ies. This parameter is used to transmit

7.Protocols for connecting devices
7.1. Use MQTT protocol
7.1.1. MQTT standard

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 36

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://mqtt.org/
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
https://selfservice.console.aliyun.com/ticket/createIndex
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#AppendixC

addit ional property data. Each property consists of a key and a value.

Not e You can add up to 20 propert ies. Each key cannot start with an underscore (_). The
total length of each key and value cannot exceed 128 characters.

MqttProperties properties = new MqttProperties();
List<UserProperty> userPropertys = new ArrayList<>();
userPropertys.add(new UserProperty("key1","value1"));
properties.setUserProperties(userPropertys);

After a device is connected to IoT Platform by using the MQTT 5.0 protocol, you can view the
submitted UserProperty parameter in IoT Platform logs.

Add the ResponseTopic and Correlat ionData parameters to achieve communication in a mode that is
similar to HTTP-based request/response.

For example, the requester is a device, and the responder is your business server. After you use the
AMQP subscript ion or data forwarding feature, you can parse the ResponseTopic and
Correlat ionData parameters from the property data in the message. Then, you can call the Pub
operation to send a response to the device.

MqttProperties properties = new MqttProperties();
properties.setCorrelationData("requestId12345".getBytes());
properties.setResponseTopic("/" + productKey + "/" + deviceName + "/user/get");

Not e

The parsed Correlat ionData parameter must be Base64 decoded to the byte array that is
submitted by the device.

The ResponseTopic or Correlat ionData parameter cannot exceed 128 characters in length.

Add response codes that devices can use to identify request status and problems.

For more information, see Troubleshooting.

Scale down message communication topics to integers to reduce the size of MQTT messages. This
saves bandwidth resources.

Security levels
TLS-based TCP connection: high security

Not e

TLS 1.0, 1.1, and 1.2 are supported. We recommend that you use TLS 1.2 for encryption.
TLS 1.0 and 1.1 are previous versions and may pose security risks.

Link SDK is configured with TLS 1.2. You do not need to configure the TSL protocol if you
use Link SDK.

Unencrypted TCP connection: low security

IoT Internet Device ID-based TCP connection (IoT Internet Device ID is a chip-level encryption service):
high security

Device Access·Prot ocols for connec
t ing devices

物联网平台

37 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/69793.htm#doc-api-Iot-Pub
https://www.alibabacloud.com/help/doc-detail/148610.htm#concept-2378353
https://www.alibabacloud.com/help/doc-detail/96627.htm

Topic specifications
For more information about the definit ions and types of topics, see What is a topic?.

You can view system topics on the Device Details page of the IoT Platform console. For information
about feature-specific topics, see the documentation about specific features.

This art icle describes how to establish MQTT connections over TCP by using an MQTT client.

Context
When you configure an MQTT CONNECT message, take note of the following issues:

If a device cert if icate (ProductKey, DeviceName, and DeviceSecret) or a combination of ProductKey,
DeviceName, ClientID, and DeviceToken is used to connect mult iple physical devices, clients may
frequently go online and offline. This is because when a new device init iates an authentication
request to IoT Platform, the original device is forced to go offline. After the device goes offline, it
automatically tries to re-establish a connection.

In MQTT connection mode, Link SDK automatically tries to re-establish a connection after the device
is disconnected. You can view device behaviors by using Log Service.

Connect an MQTT client to IoT Platform
1. Optional. We recommend that you use the TLS protocol for encryption.

Link SDK integrates the TLS encryption feature, which eliminates your needs of configuration.

If you are developing your own device SDK, you must download the root cert if icate. For more
information about how to use the root cert if icate, see mbed TLS.

2. Connect the MQTT client to the server. For more information about the connection method, see
Open-source MQTT client. For more information about the MQTT protocol, see MQTT
documentation.

Not e Alibaba Cloud does not provide technical support for third-party code.

3. Establish an MQTT connection.

We recommend that you use Link SDK to connect the device to IoT Platform. If you use your own
device SDK for connection, you must specify the following parameters.

Endpoint

The endpoint of a public instance is ${YourProductKey}.iot-as-mqtt. ${Yo
urRegionId}.aliyuncs.com:1883 .

${YourRegionId}: Replace this variable with the region ID of your
product. For more information, see Regions and zones.

7.1.2. Establish MQTT connections over TCP

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 38

https://www.alibabacloud.com/help/doc-detail/73731.htm#concept-mny-tnl-vdb
https://www.alibabacloud.com/help/doc-detail/96627.htm
https://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt
https://tls.mbed.org/kb/how-to/mbedtls-tutorial
https://github.com/mqtt/mqtt.github.io/wiki/libraries
http://mqtt.org/
https://www.alibabacloud.com/help/doc-detail/40654.htm

Variable header: Keep
Alive

The CONNECT message must include a keep-alive period. Valid values of the
keep-alive t ime: 30 to 1,200 seconds. Otherwise, IoT Platform rejects the
connection. We recommend that you set the keep-alive period to a value
that is greater than 300 seconds. If the network connection is unstable, we
recommend that you set the keep-alive period to a higher value.

Parameters in an MQTT
CONNECT message

Unique-certificate-per-device authentication and pre-registration unique-
certificate-per-product authentication: Use the device certificate
(ProductKey, DeviceName, and DeviceSecret) to connect the device to IoT
Platform.

mqttClientId: clientId+"|securemode=3,signmethod=hmacsha1,timest
amp=132323232|"
mqttUsername: deviceName+"&"+productKey
mqttPassword: sign_hmac(deviceSecret,content)
mqttClientId: Extended parameters are placed between vertical bars (|
).

clientId: the ID of the client. We recommend that you use the MAC
address or serial number (SN) of the device as the client ID. The client ID
cannot exceed 64 characters in length.

securemode: the current security mode. Valid values: 2 (direct TLS
connection) and 3 (direct TCP connection).

signmethod: the signature algorithm. Valid values: hmacmd5,
hmacsha1, hmacsha256, and sha256. Default value: hmacmd5.

timestamp: the current t ime, in milliseconds. This parameter is optional.

mqttPassword: the password. Calculation method: Alphabetically sort
the parameters that are submitted to the server and encrypt the
parameters based on the specified signature algorithm. For more
information about the signature calculation example, see Examples of
signing MQTT connections.

content: a concatenated string of the parameters that are submitted
to the server. These parameters include productKey, deviceName,
timestamp, and clientId. The parameters are sorted in alphabetical
order and concatenated without delimiters.

Example:

Assume that the following values are specified: clientId=12345, deviceNa
me=device, productKey=pk, timestamp=789, signmethod=hmacsha1, dev
iceSecret=secret . The following code shows the parameters in an MQTT
CONNECT message that is sent over TCP:

mqttclientId=12345|securemode=3,signmethod=hmacsha1,timestam
p=789|
mqttUsername=device&pk
mqttPassword=hmacsha1("secret","clientId12345deviceNamedevice
productKeypktimestamp789").toHexString();

The encrypted password is a hexadecimal string that is converted from a
binary string. The following code shows the result:

FAFD82A3D602B37FB0FA8B7892F24A477F85****

Device Access·Prot ocols for connec
t ing devices

物联网平台

39 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/116333.htm#concept-188639

Preregistration-free unique-certificate-per-product authentication: Use
ProductKey, DeviceName, ClientID, and DeviceToken to connect the device
to IoT Platform.

mqttClientId: clientId+"|securemode=-2,authType=connwl|"
mqttUsername: deviceName+"&"+productKey
mqttPassword: deviceToken
mqttClientId: Extended parameters are placed between vertical bars (|
).

clientId, deviceToken: the ClientID and DeviceToken that are obtained
when the device is dynamically registered. For more information, see
MQTT-based dynamic registration.

securemode: the current security mode. If you use preregistration-free
unique-certificate-per-product authentication, set the value to -2.

authType: the authentication method. If you use preregistration-free
unique-certificate-per-product authentication, set the value to connwl.

Examples
For information about examples of using open-source MQTT clients to access IoT Platform, see the
following art icles:

Using Paho MQTT Go client

Using Paho MQTT C# client

Using Paho MQTT C client

Using Paho MQTT Java client

Using Paho MQTT Android client

MQTT keep-alive
In a keep-alive interval, the device must send at least one message, including ping requests.

If IoT Platform does not receive a message in a keep-alive interval, the device is disconnected from IoT
Platform and needs to reconnect to the server.

Valid values of the keep-alive t ime: 30 to 1,200 seconds. We recommend that you set the keep-alive
period to a value that is greater than 300 seconds.

If a device is directly connected to IoT Platform, you can dynamically register the device by using the
MQTT protocol. You can use the unique-cert if icate-per-product authentication method to connect the
device with IoT Platform. The device establishes a Transport Layer Security (TLS) connection with IoT
Platform to obtain the information that is required for a TCP connection. Then, the device ends the TLS
connection and establishes the TCP connection for communication. This art icle describes the dynamic
registrat ion process.

Prerequisites
The following steps that are specified in the Unique-cert if icate-per-product authentication topic are
performed:

7.1.3. MQTT-based dynamic registration

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 40

https://www.alibabacloud.com/help/doc-detail/132111.htm#task-1545804
https://www.alibabacloud.com/help/doc-detail/146503.htm#task-2359926
https://www.alibabacloud.com/help/doc-detail/146505.htm#task-2360906
https://www.alibabacloud.com/help/doc-detail/146611.htm#task-2361871
https://www.alibabacloud.com/help/doc-detail/146631.htm#task-2362406
https://www.alibabacloud.com/help/doc-detail/146630.htm#task-2362441
https://www.alibabacloud.com/help/doc-detail/74006.htm#task-m1l-zqq-wfb

1. Create a product.

2. Enable dynamic registrat ion.

3. Add a device.

4. Burn the device cert if icate to the device.

Dynamic registration process

1. The device sends a CONNECT message that includes dynamic registrat ion parameters to establish a
connection.

Not e Dynamic registrat ion supports only TLS-based connections. It does not support
direct TCP connections. During dynamic registrat ion, IoT Platform does not verify the keep-alive
t ime of the MQTT connection. Therefore, you do not need to set the keep-alive t ime.

MQTT endpoint:

The endpoint of a public instance is ${YourProductKey}.iot-as-mqtt. ${YourRegionId}.aliyuncs.co
m:1883 .

Replace the ${YourRegionId} variable with your region ID. For more information about region
IDs, see Regions and zones.

Dynamic registrat ion parameters of the CONNECT message:

Device Access·Prot ocols for connec
t ing devices

物联网平台

41 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/40654.htm#concept-2459516

If the device belongs to an Enterprise Edit ion instance and uses the preregistrat ion-free
Unique-cert if icate-per-product authentication method, the dynamic registrat ion parameters in
the following example are used:

mqttClientId: clientId+"|securemode=-2,authType=xxxx,random=xxxx,signmethod=xxxx,instanceId
=xxxx|"
mqttUserName: deviceName+"&"+productKey
mqttPassword: sign_hmac(productSecret,content)

If the device belongs to a public instance and uses the pre-registrat ion Unique-cert if icate-per-
product authentication method, the dynamic registrat ion parameters in the following example
are used:

mqttClientId: clientId+"|securemode=2,authType=xxxx,random=xxxx,signmethod=xxxx|"
mqttUserName: deviceName+"&"+productKey
mqttPassword: sign_hmac(productSecret,content)

Parameters:

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 42

https://www.alibabacloud.com/help/doc-detail/74006.htm#task-m1l-zqq-wfb
https://www.alibabacloud.com/help/doc-detail/74006.htm#task-m1l-zqq-wfb

mqttClientId

The following table describes the parameters that are included in the mqttClientId parameter.

Parameter Description

clientId
The ID of the client. The client ID must be 1 to 64 characters in length. We
recommend that you use the MAC address or serial number (SN) of the
device as the client ID.

securemode

The mode of security. Valid values:

2: the pre-registration unique-certificate-per-product authentication
method. For more information, see Unique-certificate-per-product
authentication.

-2: the preregistration-free unique-certificate-per-product
authentication method. For more information, see Unique-certificate-
per-product authentication.

authType

The authentication method. Different parameters are returned based on
the authentication method. Valid values:

register: the pre-registration unique-certificate-per-product
authentication method. For more information, see Unique-certificate-
per-product authentication. If you set the parameter to this value,
DeviceSecret is returned.

regnwl: the preregistration-free unique-certificate-per-product
authentication method. For more information, see Unique-certificate-
per-product authentication. If you set the parameter to this value,
DeviceToken and ClientID are returned.

random The random number. You can specify a random number.

signMethod
The signature algorithm. Valid values: hmacmd5, hmacsha1, and
hmacsha256.

instanceId
The ID of the instance. You can log on to the IoT Platform console
console, and view the instance ID on the Inst ance Overview page.

mqttUserName

Format: deviceName+"&"+productKey
Example: device1&al123456789

Device Access·Prot ocols for connec
t ing devices

物联网平台

43 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/74006.htm#task-m1l-zqq-wfb
https://www.alibabacloud.com/help/doc-detail/74006.htm#task-m1l-zqq-wfb
https://www.alibabacloud.com/help/doc-detail/74006.htm#task-m1l-zqq-wfb
https://www.alibabacloud.com/help/doc-detail/74006.htm#task-m1l-zqq-wfb
http://iot.console.aliyun.com/

mqttPassword

Calculat ion method: sign_hmac(productSecret,content)
The value of the content parameter is a concatenated string of the parameters and their
values that must be submitted to IoT Platform. These parameters include the deviceName,
productKey, and random. These parameters are sorted in alphabetical order and
concatenated without using concatenation operators. Then, the value of the content
parameter is encrypted based on the algorithm that is specified by signMethod in the
mqttClientId parameter. The ProductSecret of the product is used as the secret key of the
algorithm.

Example: hmac_sha1(h1nQFYPZS0mW****, deviceNamedevice1productKeyal123456789random123
)

2. IoT Platform returns a CONNECT ACK message.

If 0 is returned, the connection is established and the dynamic registrat ion is successful.

If the connection fails, you must identify the cause based on the error code that is returned in the
ACK message.

The following table describes the response codes that may be returned after the device sends a
connection request to IoT Platform.

Response code Message Description

0 CONNECTION_ACCEPTED The dynamic registration is successful.

2 IDENTIFIER_REJECTED

One or more parameters are invalid. This
error may occur due to one of the following
causes:

One or more required parameters are not
specified or are in invalid formats.

You have established a direct TCP
connection for registration. Dynamic
registration supports only TLS-based
connections.

3 SERVER_UNAVAILABLE
An error has occurred in IoT Platform. Try
again later.

4 BAD_USERNAME_OR_PASSWORD

Dynamic registration has failed. The device
is not authenticated.

Check whether the values of the
mqttUserName and mqttPassword input
parameters are valid.

3. After the connection is established, IoT Platform uses the /ext/register topic to return different
authentication parameters based on the authType parameter in the CONNECT message.

Not e The device does not need to subscribe to the topic that is used to push the
cert if icate.

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 44

If you set the authType parameter to register, DeviceSecret is returned.

The message payload that is pushed by IoT Platform is in the following format:

{
 "productKey" : "xxx",
 "deviceName" : "xxx",
 "deviceSecret" : "xxx"
}

If you set the authType parameter to regnwl, ClientID and DeviceToken are returned.

The message payload that is pushed by IoT Platform is in the following format:

{
 "productKey" : "xxx",
 "deviceName" : "xxx",
 "clientId" : "xxx",
 "deviceToken" : "xxx"
}

4. The device receives and saves the DeviceSecret or a combination of ClientID and DeviceToken, and
ends the current MQTT connection.

The device can end the current connection by sending a DISCONNECT message or directly ending
the TCP connection.

If the device does not end the connection, IoT Platform disconnects the device after 15 seconds.

If you are using the Eclipse Paho MQTT client, use the MqttConnectOptions.setAutomaticReconnect(f
alse) funct ion to disable automatic reconnection. Otherwise, after the registrat ion succeeds and
the TCP connection is ended, a new request of dynamic registrat ion is generated based on the
reconnection logic.

5. The device uses the DeviceSecret or a combination of ClientID and DeviceToken to re-init iate a
request to establish an MQTT connection between the device and IoT Platform for message
communication. For more information, see Establish MQTT connections over TCP.

IoT Platform supports MQTT over WebSocket connections. You can first use the WebSocket protocol to
establish a connection, and then use the MQTT protocol to communicate over the WebSocket
connection.

Context
WebSocket provides the following benefits:

Allows browser-based applications to establish persistent connections with the server.

Uses port 433, which allows messages to pass through most firewalls.

Procedure
1. Prepare a cert if icate.

7.1.4. Establish MQTT over WebSocket
connections

Device Access·Prot ocols for connec
t ing devices

物联网平台

45 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/73742.htm#concept-mhv-ghm-b2b

The WebSocket protocol includes WebSocket and WebSocket Secure. WebSocket and WebSocket
Secure are used for unencrypted and encrypted connections, respectively. Transport Layer Security
(TLS) is used in WebSocket Secure connections. Like a TLS connection, a WebSocket Secure
connection requires a root cert if icate.

2. Develop a client.

IoT Platform provides MQTT SDK for Java. You can use this client SDK and replace the URL with a URL
that is used by WebSocket. For information about how to obtain MQTT SDKs for other
programming languages or customize MQTT SDKs, see Open source MQTT client. Before you use
MQTT SDKs, read the instruct ions and check whether WebSocket is supported.

3. Establish a connection with IoT Platform.

An MQTT over WebSocket connection has a different protocol and port number in the URL from an
MQTT over TCP connection. An MQTT over WebSocket connection has the same parameters as an
MQTT over TCP connection. Set the securemode parameter to 2 when you use WebSocket Secure.
Set the securemode parameter to 3 when you use WebSocket.

Endpoint:

The endpoint of a public instance is ${YourProductKey}.iot-as-mqtt. ${YourRegionId}.aliyuncs.co
m format.

${YourRegionId}: Replace this variable with your region ID. For more information, see Regions
and zones.

Port number: 443.

Variable header: Keep Alive.

The Keep Alive parameter must be included in the CONNECT packet. Valid values of the keep-
alive t ime: 30 to 1,200 seconds. If the value of the Keep Alive parameter is not in this range, IoT
Platform rejects the connection. We recommend that you set the keep-alive period to a value
that is greater than 300 seconds. If the network connection is unstable, we recommend that you
set the keep-alive period to a higher value.

In a keep-alive interval, the device must send at least one message, including ping requests.

If IoT Platform does not receive a message in a keep-alive interval, the device is disconnected
from IoT Platform and must reconnect to the server.

An MQTT Connect packet contains the following parameters:

mqttClientId: clientId+"|securemode=3,signmethod=hmacsha1,timestamp=132323232|"
mqttUsername: deviceName+"&"+productKey
mqttPassword: sign_hmac(deviceSecret,content)sign. Sort the content parameters in alphabetical o
rder and sign them by using the signature method.
content=Parameters sent to the server (productKey,deviceName,timestamp,clientId). Sort these par
ameters in alphabetical order and splice the parameters and parameter values.

Parameters:

clientId: the ID of the client. The client ID can be up to 64 characters in length. We recommend
that you use a MAC address or serial number (SN).

t imestamp: optional. The current t ime in milliseconds.

mqttClientId: Parameters within the vert ical bars (||) are extended parameters.

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 46

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt?spm=5176.doc30539.2.4.aalCo6&file=root.crt
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iotx-sdk-java/iotx-sdk-mqtt-java-20170526.zip?spm=5176.doc42648.2.18.7iyFfe&file=iotx-sdk-mqtt-java-20170526.zip
https://github.com/mqtt/mqtt.github.io/wiki/libraries?spm=5176.doc30539.2.5.aalCo6
https://www.alibabacloud.com/help/doc-detail/40654.htm

mqttClientId: Parameters within the vert ical bars (||) are extended parameters.

signmethod: the signature algorithm.

securemode: the secure mode. Valid values: 2 (WebSocket Secure) and 3 (WebSocket).

The following examples show MQTT Connect packets with predefined parameter values:

clientId=12345, deviceName=device, productKey=pk, timestamp=789, signmethod=hmacsha1, deviceSe
cret=secret
For a WebSocket connection:

Endpoint

ws://pk.iot-as-mqtt.cn-shanghai.aliyuncs.com:443
Connection parameters

mqttclientId=12345|securemode=3,signmethod=hmacsha1,timestamp=789|
mqttUsername=device&pk
mqttPasswrod=hmacsha1("secret","clientId12345deviceNamedeviceproductKeypktimestamp789
").toHexString();

For a WebSocket Secure connection:

Endpoint

wss://pk.iot-as-mqtt.cn-shanghai.aliyuncs.com:443
Connection parameters

mqttclientId=12345|securemode=2,signmethod=hmacsha1,timestamp=789|
mqttUsername=device&pk
mqttPasswrod=hmacsha1("secret","clientId12345deviceNamedeviceproductKeypktimestamp789
").toHexString();

We recommend that you use Link SDK to connect devices to IoT Platform. For information about
how to develop a custom device SDK for connection, see Examples of creating signatures for MQTT
connections.

This art icle provides sample signature code for you to develop your device. This way, your device can
communicate with IoT Platform over MQTT without using a device SDK that is provided by IoT Platform.

Description
We recommend that you use a device SDK that is provided IoT Platform. If a device SDK for any
programming language is used, you do not need to configure your own signature mechanism. For
information about how to obtain the SDK download URL, see Download device SDKs.

If you use other methods to connect your devices with IoT Platform, take note of the following
information:

You must ensure connection stability and maintain the keepalive and reconnection mechanisms for

7.1.5. Examples of creating signatures for MQTT
connections

Device Access·Prot ocols for connec
t ing devices

物联网平台

47 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/116333.htm#concept-188639
https://www.alibabacloud.com/help/doc-detail/42648.htm#concept-jlk-mjl-vdb

MQTT connections.

Alibaba Cloud does not provide technical support for any possible connection issues.

If you want to use IoT Platform features, such as OTA, TSL models, and unique-cert if icate-per-
product authentication, you must compile your own code to implement these features. This may
consume a lot of development t ime and bug fixing t ime.

Sample code for signature calculation
If you do not use a device SDK that is provided by IoT Platform, click the following links to view the
sample code.

sign_mqtt.c: the sample code that is used to implement the signature function.

sign_api.h: the sample code that defines the data structure of the signature function.

sign_sha256.c: the sample code that defines the algorithm of the signature function. If you already
implement the HMACSHA256 algorithm on your own platform, you do not need to compile this code
file. However, you must provide the utils_hmac_sha256() funct ion that can be called by the sign_mq
tt.c function.

Sample code: that sample code that is used to test the signature function.

Description of the signature function

Syntax

int32_t IOT_Sign_MQTT(iotx_mqtt_region_types_t region,
 iotx_dev_meta_info_t *meta,
 iotx_sign_mqtt_t *signout);

Description

Obtains the information that are required to connect a device with IoT Platform
based on the specified device identity information. The connection information
includes the endpoint, MQTT client ID, MQTT username, and MQTT password.
Then, you can provide the information for the MQTT client to connect with IoT
Platform.

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 48

https://code.aliyun.com/edward.yangx/public-docs/raw/master/docs/sign_mqtt.c
https://code.aliyun.com/edward.yangx/public-docs/raw/master/docs/sign_api.h
https://code.aliyun.com/edward.yangx/public-docs/raw/master/docs/sign_sha256.c

Input parameters

The following input parameters are included:

region: the IoT Platform endpoint to which the device connects.

Example:

typedef enum {
 IOTX_CLOUD_REGION_SHANGHAI, /* Shanghai */
 IOTX_CLOUD_REGION_SINGAPORE, /* Singapore */
 IOTX_CLOUD_REGION_JAPAN, /* Japan */
 IOTX_CLOUD_REGION_USA_WEST, /* America */
 IOTX_CLOUD_REGION_GERMANY, /* Germany */
 IOTX_CLOUD_REGION_CUSTOM, /* Custom setting */
 IOTX_CLOUD_DOMAIN_MAX /* Maximum number of domain */
} iotx_mqtt_region_types_t;

meta: the identity information of the device.

Not e You must allocate memory for the meta parameter when
you call the function.

Example:

typedef struct _iotx_dev_meta_info {
 char product_key[IOTX_PRODUCT_KEY_LEN + 1];
 char product_secret[IOTX_PRODUCT_SECRET_LEN + 1];
 char device_name[IOTX_DEVICE_NAME_LEN + 1];
 char device_secret[IOTX_DEVICE_SECRET_LEN + 1];
} iotx_dev_meta_info_t;

Parameters:

product_key: the ProductKey of the product to which the device belongs.

product_secret: the ProductSecret of the product to which the device
belongs.

device_name: the DeviceName of the device.

device_secret: the DeviceSecret of the device.

Device Access·Prot ocols for connec
t ing devices

物联网平台

49 > Document Version: 20210312

Output parameters

signout: the output data. The data is used to establish an MQTT connection.

Example:

typedef struct {
 char hostname[DEV_SIGN_HOSTNAME_MAXLEN];
 uint16_t port;
 char clientid[DEV_SIGN_CLIENT_ID_MAXLEN];
 char username[DEV_SIGN_USERNAME_MAXLEN];
 char password[DEV_SIGN_PASSWORD_MAXLEN];
} iotx_sign_mqtt_t;

Parameters:

hostname: the complete endpoint of the IoT Platform server.

port: the port number of the IoT Platform server.

clientid: the client ID that must be specified to establish an MQTT connection.
We recommend that you use the MAC address or serial number (SN) of the
device. The client ID can be a maximum of 64 characters in length.

username: the username that must be specified to establish an MQTT
connection. The username consists of the DeviceName, Ampersand (&), and
ProductKey. Format: deviceName+"&"+productKey . Example: Device1&al
SseIs**** .

password: the password that must be specified to establish an MQTT
connection. After you sort the parameters that are submitted to the server by
using a dictionary and splice the parameters, use the hmacsha256 method
and the DeviceSecret of the device to generate a password.

For more information, see Establish MQTT connections over TCP.

Response codes
0: indicates that the call was successful.

-1: indicates that the call failed because the input parameters are invalid.

Example of using the signature function
In this example, the sample code in sign_test.c is used.

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 50

https://www.alibabacloud.com/help/doc-detail/73742.htm#concept-mhv-ghm-b2b

#include <stdio.h>
#include <string.h>
#include "sign_api.h" //Defines all data structures that are used in the signature function.
//The following macros are used to define the device identity information: ProductKey, ProductSecret, Devic
eName, and DeviceSecret.
//In actual product development, the device identity information must be encrypted by the device manufact
urer and stored in the flash of the device or a file.
//These macros are read and used after the device is powered on.
#define EXAMPLE_PRODUCT_KEY "a1X2bEn****"
#define EXAMPLE_PRODUCT_SECRET "7jluWm1zql7b****"
#define EXAMPLE_DEVICE_NAME "example1"
#define EXAMPLE_DEVICE_SECRET "ga7XA6KdlEeiPXQPpRbAjOZXwG8y****"
int main(int argc, char *argv[])
{
 iotx_dev_meta_info_t meta_info;
 iotx_sign_mqtt_t sign_mqtt;
 memset(&meta_info, 0, sizeof(iotx_dev_meta_info_t));
 //Use the following code to copy the previously defined device identity information to meta_info.
 memcpy(meta_info.product_key, EXAMPLE_PRODUCT_KEY, strlen(EXAMPLE_PRODUCT_KEY));
 memcpy(meta_info.product_secret, EXAMPLE_PRODUCT_SECRET, strlen(EXAMPLE_PRODUCT_SECRET));
 memcpy(meta_info.device_name, EXAMPLE_DEVICE_NAME, strlen(EXAMPLE_DEVICE_NAME));
 memcpy(meta_info.device_secret, EXAMPLE_DEVICE_SECRET, strlen(EXAMPLE_DEVICE_SECRET));
 //Call the signature function to generate the data that is required to establish an MQTT connection.
 IOT_Sign_MQTT(IOTX_CLOUD_REGION_SHANGHAI, &meta_info, &sign_mqtt);
 ...
}

You can establish IPv6-based MQTT connections to connect devices to IoT Platform.

Context
Only the China (Shanghai) region supports IPv6-based MQTT connections.

During environment tests, you can use the following domain name and port to establish MQTT
connections with IoT Platform.

Domain name: ipv6.itls.cn-shanghai.aliyuncs.com
Port: 1883

Encryption protocol: TLSv1.2

Not e Do not use the test domain name in production environment.

Connect devices to IoT Platform
In production environment, you must use the official MQTT domain name of a product to connect the
devices of the product to IoT Platform.

1. Log on to the t icketing system, and submit a t icket to act ivate the AAAA record of the official
MQTT domain name.

The official MQTT domain name of a product: ${YourProductKey}.iot-as-mqtt.cn-shanghai.aliyuncs.c

7.1.6. IPv6-based MQTT connections

Device Access·Prot ocols for connec
t ing devices

物联网平台

51 > Document Version: 20210312

https://selfservice.console.aliyun.com/ticket/createIndex

The official MQTT domain name of a product: ${YourProductKey}.iot-as-mqtt.cn-shanghai.aliyuncs.c
om . Replace ${YourProductKey} with the PorductKey of your product.

2. Download the root cert if icate that is used for TLS encryption.

3. Develop your device to configure an MQTT connection.

We recommend that you use the device SDKs provided by Alibaba Cloud to connect to IoT
Platform. If you use custom device SDKs, you must configure a signature mechanism. For more
information, see Examples of creating signatures for MQTT connections.

The following table lists the fields to be specified.

Field Description

Domain name and port
 ${YourProductKey}.iot-as-mqtt.cn-shanghai.aliyuncs.com:1883

Replace ${YourProductKey} with the PorductKey of your product.

Variable header: keep-
alive

The CONNECT command must include a keep-alive t ime. Valid values of the
keep-alive t ime: 30 to 1,200 seconds. If no response is received from a
device before the keep-alive t ime expires, IoT Platform rejects the
connection request. We recommend that you set a value that is greater than
300 seconds. If a network is intermittent, set the keep-alive t ime to a value
that is close to 1,200 seconds.

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 52

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt
https://www.alibabacloud.com/help/doc-detail/116333.htm#concept-188639

Parameters in an MQTT
CONNECT packet

mqttClientId: clientId+"|securemode=3,signmethod=hmacsha1,timesta
mp=132323232|"
mqttUsername: deviceName+"&"+productKey
mqttPassword: sign_hmac(deviceSecret,content)

mqttPassword: the password. Calculation method: Alphabetically sort the
parameters that are submitted to the server and encrypt the parameters
based on the specified signature algorithm.

content: a concatenated string of the parameters that are submitted to the
server. These parameters include productKey, deviceName, t imestamp, and
clientId. The parameters are sorted in alphabetical order and concatenated
without delimiters.

clientId: the ID of the client. We recommend that you use the MAC address
or serial number (SN) of the device as the client ID. The client ID cannot
exceed 64 characters in length.

timestamp: the current t ime, in milliseconds. This parameter is optional.

mqttClientId: Extended parameters are placed between vertical bars (|).

signmethod: the signature algorithm. Valid values: hmacmd5, hmacsha1,
hmacsha256, and sha256. Default value: hmacmd5.

securemode: the current security mode. Valid values: 2 (direct TLS
connection) and 3 (direct TCP connection).

Example

Assume that the following values are specified: clientId=12345, deviceNam
e=device, productKey=pk, timestamp=789, signmethod=hmacsha1, deviceS
ecret=secret . The following code shows the parameters in an MQTT
CONNECT message that is sent over TCP:

mqttclientId=12345|securemode=3,signmethod=hmacsha1,timestamp=
789|
mqttUsername=device&pk
mqttPassword=hmacsha1("secret","clientId12345deviceNamedevicepro
ductKeypktimestamp789").toHexString();

The encrypted password is a hexadecimal string that is converted from a
binary string. The following code shows the result:

FAFD82A3D602B37FB0FA8B7892F24A477F85****

Field Description

For information about how to establish TCP-based MQTT connections, see Establish MQTT connections
over TCP.

Device Access·Prot ocols for connec
t ing devices

物联网平台

53 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/73742.htm#concept-mhv-ghm-b2b

This art icle describes Constrained Application Protocol (CoAP) that is supported by IoT Platform.

Protocol version
IoT Platform supports RFC 7252 Constrained Application Protocol. For more information, see RFC 7252.

Channel security
IoT Platform uses Datagram Transport Layer Security (DTLS) Version 1.2 to ensure channel security. For
more information, see DTLS v1.2.

Open-source clients
For more information, see coap technology.

Not e Alibaba Cloud does not provide technical support for third-party code.

Limits
The communication over CoAP feature is available only in the China (Shanghai) regions.

Resource discovery is not supported.

Only UDP is supported. DTLS and symmetric encryption are used to ensure data security.

Description
You can use the Uniform Resource Identifier (URI) resources of CoAP in the same way as that for the
URI resources of Message Queuing Telemetry Transport (MQTT). For more information, see MQTT
standard.

You can use CoAP topics in the same way as that for MQTT topics. Replace ${topic} in the coap://ho
st:port/topic/${topic} topic syntax with a real topic name. This topic name can also be used for
message communication over MQTT.

If a client passes authentication, IoT Platform returns a token. The client caches the token and uses
the token to make requests.

The size of transmitted data changes based on the specified maximum transmission unit (MTU). We
recommend that set the MTU to a maximum of 1 KB.

If IoT Platform identifies that a device reports data once or more over CoAP in the last 10 minutes,
the device is in the Online state. The status appears in the IoT Platform console.

You can connect devices to IoT Platform over the Constrained Application Protocol (CoAP). CoAP is
used for low-power and resource-constrained devices, such as NB-IoT devices. This art icle describes
how to connect a device to IoT Platform over CoAP. It also describes how to authenticate the device
by using Datagram Transport Layer Security (DTLS) or symmetric encryption.

7.2. Use CoAP protocol
7.2.1. CoAP standard

7.2.2. Connect devices to IoT Platform over
CoAP

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 54

http://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc6347
https://coap.technology/impls.html
https://www.alibabacloud.com/help/doc-detail/30540.htm#concept-jfq-vjw-vdb

Procedure
The following figure shows how to connect an NB-IoT device to IoT Platform.

Procedure:

1. Integrate an IoT Platform SDK into the NB-IoT module of a device. A device provider applies for the
device cert if icate in the IoT Platform console and burns the device cert if icate to the device.

2. Connect the NB-IoT device to IoT Platform over the mobile network of a carrier. You must contact
your local carrier to make sure that the NB-IoT network is available in the region where your device
resides.

3. Use the machine-to-machine (M2M) platform of the carrier to manage data traffic and fees. The
M2M platform capabilit ies are provided by the carrier.

4. Collect data in real t ime and submit the data to IoT Platform over CoAP or UDP. IoT Platform allows
you to establish secure connections with hundreds of millions of devices and manage a large
amount of device data. IoT Platform also allows you to transmit data to mult iple Alibaba Cloud
services for further processing. These services include big data services, database services, and
Tablestore.

5. Use the data access-related API operations and message pushing services that are provided by IoT
Platform to forward data to business servers and integrate devices and applications.

Connect devices by using symmetric encryption
1. Connect to the CoAP server.Endpoint:

The endpoint of the public instance in the China (Shanghai) region is ${YourProductKey}.coap.cn-s
hanghai.link.aliyuncs.com:${port} .

Replace the ${port} variable with your port number. Port 5682 is used for symmetric
encryption.

2. Authenticate the device.

Sample request:

Device Access·Prot ocols for connec
t ing devices

物联网平台

55 > Document Version: 20210312

POST /auth
Host: ${YourEndpoint}
Port: 5682
Accept: application/json or application/cbor
Content-Format: application/json or application/cbor
payload: {"productKey":"a1NUjcV****","deviceName":"ff1a11e7c08d4b3db2b1500d8e0e55","clientId":"
a1NUjcV****&ff1a11e7c08d4b3db2b1500d8e0e55","sign":"F9FD53EE0CD010FCA40D14A9FE******", "seq
":"10"}

Parameters of device authentication

Parameter Description

Method The request method. Valid value: POST.

URL The URL. Valid value: /auth.

Host The endpoint.

Port The port number. Valid value: 5682.

Accept
The MIME type of the data that is received by the device. Valid values: applic
ation/json and application/cbor.

Content-Format
The MIME type of the data that the device submits to IoT Platform. Valid
values: application/json and application/cbor.

payload
The JSON-formatted device information for authentication. For more
information, see the following table.

Parameters of device information

Field Required Description

productKey Yes

The ProductKey in the device certificate. The ProductKey is a
globally unique identifier (GUID) that is issued by IoT
Platform to the product. You can log on to the IoT Platform
consoleand view the ProductKey on the Device Det ails
page.

deviceName Yes

The DeviceName in the device certificate. The DeviceName is
the system-defined or custom device name when you
register the device. You can log on to the IoT Platform
consoleand view the DeviceName on the Device Det ails
page.

ackMode No

The communication mode. Valid values:

0: IoT Platform returns response data and an ACK
message at the same time.

1: IoT Platform returns an ACK message and then returns
response data.

Default value: 0.

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 56

sign Yes

The signature.

You can use the signmethod(DeviceSecret,content)
function to calculate a signature. Then, you can specify the
signature for the sign parameter. The hmacmd5 and
hmacsha1 signature methods are supported.

Required parameters:

signmethod: the signature algorithm. The value must be
the same as the value of the specified signmethod
parameter.

DeviceSecret: the DeviceSecret of the device. You can log
on to the IoT Platform consoleand view the DeviceSecret
on the Device Det ails page.

content: all parameters that are submitted to IoT
Platform, except for the version, sign, resources, and
signmethod parameters. The values are spliced in
sequence based on the alphabetical order of these
parameters. No splicing symbol is used to separate these
values.

Not e The parameter values that are used to
calculate the signature must be the same as the
parameter values that you specify in the request of
device authentication.

Example:

hmac_md5(mRPVdzSMu2nVBxzK77ERPIMxSYIv****, clien
tIda1NUjcV****&ff1a11e7c08d4b3db2b1500d8e0e55devi
ceNameff1a11e7c08d4b3db2b1500d8e0e55productKeya
1NUjcV****seq10timestamp1524448722000)

signmethod No
The signature algorithm. Valid values: hmacmd5 and
hmacsha1. Default value: hmacmd5.

clientId Yes
The client ID. The client ID must be 1 to 64 characters in
length. We recommend that you use the MAC address or SN
of the device as the value of the clientId parameter.

t imestamp No The timestamp. IoT Platform does not verify the t imestamp.

Field Required Description

Sample response:

{"random":"ad2b3a5eb51d6****","seqOffset":1,"token":"MZ8m37hp01w1SSqoDFzo001050****.ad2b"}

Response parameters

Device Access·Prot ocols for connec
t ing devices

物联网平台

57 > Document Version: 20210312

Field Description

random The key that is used to encrypt upstream and downstream data.

seqOffset The init ial offset of the seq parameter.

token The token returned if the device is authenticated.

3. Submit data.

Sample request:

POST /topic/${topic}
Host: ${YourEndpoint}
Port: 5682
Accept: application/json or application/cbor
Content-Format: application/json or application/cbor
payload: ${your_data}
CustomOptions: number:2088(token), 2089(seq)

Parameters

Field Required Description

Method Yes The request method. Valid value: POST.

URL Yes
The URL of the topic. Format: /topic/${topic} .
Replace the ${topic} variable with the topic to
which the data is sent.

Host Yes The endpoint.

Port Yes The port number. Valid value: 5682.

Accept Yes
The MIME type of the data that is received. Valid
values: application/json and application/cbor.

Content-Format Yes
The MIME type of the upstream data. IoT Platform
does not verify the data. Valid values: application
/json and application/cbor.

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 58

payload Yes

The AES-encrypted upstream data.

Not e If you use AES to encrypt data,
set the Transform parameter to AES/CBC/P
KCS5Padding and the IV parameter to 543
yhjy97ae7fyfg . A key is generated by using
the SHA-256 algorithm.

Example:

If the request is deviceSecret=zPwChiLh0EaifR8
09D5Rc6LDIC6A**** , the response is random=8
fe3c8d50e10**** .

i. Combine the values of the deviceSecret and
random parameters to form a string in the
${deviceSecret},${random} format.

zPwChiLh0EaifR809D5Rc6LDIC6A****,8fe
3c8d50e10****

ii. IoT Platform encodes the preceding string by
using the UTF-8 format, encrypts the
encoded string by using the SHA-256
algorithm, and then converts the string into a
hexadecimal string.

59ea5ac1cb092e5910c405821119959e529
7516d185b71e344735cf3f268****

iii. IoT Platform uses the subString(16,48)
function to extract a sub-string of 32
characters from the preceding string to form
a key. The extraction starts from the 17th
character of the string.

10c405821119959e5297516d185b71e3

Field Required Description

Device Access·Prot ocols for connec
t ing devices

物联网平台

59 > Document Version: 20210312

CustomOptions Yes

The custom option. Valid values:

2088: the token parameter. Use the value of
the token parameter that is returned after the
device is authenticated.

Not e Each time the device submits
data, the token parameter is required. If
the token expires, you must authenticate
the device again and obtain another token.

2089: the seq parameter. The value must be
greater than the value of the seqOffset
parameter. The value must be a random digit
that is unique during the validity period of
authentication. We recommend that you use a
value that is incremented based on the seq
parameter in each request packet and perform
AES encryption on the value.

Sample response:

number:2090 (IoT Platform message ID)
You can specify the token and seq parameters in
the CustomOptions or URL parameter, for
example, /topic/${topic}? token=xxxx&seq=xxxxx
 . If you specify the token and seq parameters for
the CustomOptions and URL parameters at the
same time, the CustomOptions parameter is used.

Field Required Description

After a message is sent to IoT Platform, a status code that indicates a successful request and a
message ID that is generated by IoT Platform are returned.

Connect devices to IoT Platform over DTLS
1. Connect to the CoAP server. Endpoint:

The endpoint of the public instance in the China (Shanghai) region is ${YourProductKey}.coap.cn-s
hanghai.link.aliyuncs.com:${port} .

Replace the ${port} variable with your port number. Default port number for DTLS is 5684.

2. If you use an official device SDK, DTLS uses the PSK algorithm to secure channels by default .If you
use a third-party device SDK, you must download the root cert if icate for DTLS secure channels.
Then, you can use the DTLS libraries to connect the device to IoT Platform.

psk_id: "${authType}" + "|" + "${signMethod}" + "|" + "${productKey}" + "&" + "${deviceName}" + "timest
amp"
psk: signMethod(DeviceSecret, "${productKey}" + "&" + "${deviceName}" + "${timestamp}")

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 60

https://www.alibabacloud.com/help/doc-detail/42648.htm#concept-jlk-mjl-vdb
https://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt?spm=5176.doc30539.2.1.1MRvV5&file=root.crt

Fields

Field Required Description

authType Yes
The authentication type. Valid
value: devicename.

signMethod Yes
The signature algorithm. Valid
values: hmacmd5, hmacsha1,
and hmacsha256.

productKey Yes
The ProductKey of the product
to which the device belongs.

deviceName Yes The DeviceName of the device.

DeviceSecret Yes The DeviceSecret of the device.

timestamp Yes The timestamp.

3. Authenticate the device. You can use the auth operation to authenticate the device and obtain a
token. Each t ime the device submits data to IoT Platform, the token parameter is required.

Sample request:

POST /auth
Host: ${YourEndpoint}
Port: 5684
Accept: application/json or application/cbor
Content-Format: application/json or application/cbor
payload: {"productKey":"ZG1EvTE****","deviceName":"NlwaSPXsCpTQuh8FxBGH","clientId":"mylight1
000002","sign":"bccb3d2618afe74b3eab12b94042****"}

For more information about the required parameters and payload parameters except for the Port
parameter, see Connect devices by using symmetric encryption.

Sample response:

response: {"token":"f13102810756432e85dfd351eeb4****"}

Response codes

Code Description Payload Remarks

2.05 Content

Token if the
device passes
the
authentication.

The request is valid.

4.00 Bad Request no payload The payload in the request is invalid.

4.01 Unauthorized no payload The request is unauthorized.

4.03 Forbidden no payload The request is forbidden.

Device Access·Prot ocols for connec
t ing devices

物联网平台

61 > Document Version: 20210312

4.04 Not Found no payload The requested URL does not exist.

4.05
Method Not
Allowed

no payload The request method is not allowed.

4.06
Not
Acceptable

no payload The Accept parameter is invalid.

4.15
Unsupported
Content-
Format

no payload The requested content is invalid.

5.00
Internal Server
Error

no payload
The request failed because a t imeout issue or
an error occurs on the authentication server.

Code Description Payload Remarks

4. Submit data.

The device sends data to a topic. Only custom topics with the Publish permission are supported.

For example, the topic format is /${YourProductKey}/${YourDeviceName}/pub . If the DeviceName is
device and the ProductKey is a1GFjLP ****, you can use the a1GFjLP****.coap.cn-shanghai.link.aliyunc
s.com:5684/topic/a1GFjLP****/device/pub topic to submit data.

Sample request:

POST /topic/${topic}
Host: ${YourEndpoint}
Port: 5684
Accept: application/json or application/cbor
Content-Format: application/json or application/cbor
payload: ${your_data}
CustomOptions: number:2088(token)

Parameters

Parameter Required Description

Method Yes The request method. Valid value: POST.

URL Yes /topic/${topic} . Replace the ${topic} variable with the
topic to which the data is sent.

Host Yes The endpoint.

Port Yes The port number. Valid value: 5684.

Accept Yes
The MIME type of the data that is received. Valid values: appl
ication/json and application/cbor.

Content-Format Yes
The MIME type of the upstream data. IoT Platform does not
verify the data. Valid values: application/json and applicatio
n/cbor.

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 62

CustomOptions Yes

number: 2088.

token: the token that is returned from the authentication
service.

Not e Each time the device submits data, the
token parameter is required. If the token expires, you
must re-authenticate the device and obtain another
token.

Parameter Required Description

IoT Platform supports HTTPS. This art icle describes the HTTP standard that is supported by IoT
Platform.

HTTP versions
IoT Platform supports HTTP/1.0. For more information, see RFC 1945

IoT Platform supports HTTP/1.1. For more information, see RFC 2616

Channel security
IoT Platform uses HTTPS to ensure channel security.

Not e

IoT Platform supports TLS 1.0, TLS 1.1, and TLS 1.2. IoT Platform will soon not support TLS
1.0 due to security risks. We recommend that you use TLS 1.2 to authenticate your device.

TLS 1.2 is integrated with Link SDKs by default . You do not need to configure the TLS
feature.

Limits
Only HTTPS is supported.

Request parameters cannot be specified after a question mark (?).

The resource discovery feature is not supported.

Description
The HTTP standard is consistent with the MQTT standard. For more information, see MQTT standard.

If IoT Platform identifies that a device reports data once or more over CoAP in the last 10 minutes,
the device is in the Online state. The status appears in the IoT Platform.

7.3. Use HTTP protocol
7.3.1. HTTP standard

7.3.2. Establish connections over HTTP

Device Access·Prot ocols for connec
t ing devices

物联网平台

63 > Document Version: 20210312

https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc2616
https://www.alibabacloud.com/help/doc-detail/96627.htm
https://www.alibabacloud.com/help/doc-detail/30540.htm#concept-jfq-vjw-vdb

You can connect a device to IoT Platform over HTTP. Only HTTPS is supported. This art icle describes
how to connect a device to IoT Platform over HTTP.

Limits
You can establish connections over HTTP only in the China (Shanghai) region.

Only HTTPS is supported.

Connections over HTTP are used for devices to submit data. A device can submit a maximum of 128
KB of data at a t ime.

The standards of HTTP topics and MQTT topics are the same. If you connect a device to IoT Platform
over HTTP, you can use MQTT topics for message communication between the device and IoT
Platform. When you connect a device to IoT Platform over HTTP, the device submits data to a topic
in the ${endpoint}/topic/${topic} format. You cannot specify a parameter by using the ? query_Strin
g=xxx format.

Only the POST request method is supported.

The token that is returned during device authentication expires after a specified period. The current
validity period is seven days. Make sure that you specify the logic to process expired tokens.

Procedure
You must authenticate a device to obtain the device token, and then use the token to submit data.

1. Authenticate the device to obtain the device token. Endpoint:

The endpoint of the public instance that resides in the China (Shanghai) region is https://iot-as-ht
tp.cn-shanghai.aliyuncs.com .

Authentication request:

POST /auth HTTP/1.1
Host: ${YourEndpoint}
Content-Type: application/json
body: {"version":"default","clientId":"mylight1000002","signmethod":"hmacsha1","sign":"4870141D40
67227128CBB4377906C3731CAC221C","productKey":"ZG1EvTE****","deviceName":"NlwaSPXsCpTQuh
8FxBGH","timestamp":"1501668289957"}

Parameters

Parameter Description

Method The request method. Valid value: POST.

URL The URL. Only HTTPS is supported. Valid value: /auth.

Host The endpoint.

Content-Type
The MIME type of upstream data that the device submits to IoT Platform.
Valid value: application/json. If another MIME type is specified, an error
occurs.

body
The device information for authentication, in JSON format. For more
information, see body parameters.

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 64

https://www.alibabacloud.com/help/doc-detail/30540.htm#concept-jfq-vjw-vdb
https://www.alibabacloud.com/help/doc-detail/58034.htm#concept-djd-vt5-wdb/table-p10-cdu-knj

body parameters

Parameter Required Description

productKey Yes
The ProductKey of the product to which the device belongs.
You can log on to the IoT Platform consoleand view the
ProductKey on the Device Det ails page.

deviceName Yes
The DeviceName of the device. You can log on to the IoT
Platform consoleand view the DeviceName on the Device
Det ails page.

clientId Yes
The ID of the client. The client ID must be 1 to 64 characters
in length. We recommend that you use the MAC address or
SN of the device as the value of the clientId parameter.

t imestamp No

The timestamp. A request is valid within 15 minutes after the
timestamp is created. The timestamp is in the numeric
format. This value is a UNIX timestamp representing the
number of milliseconds that have elapsed since the epoch
time January 1, 1970, 00:00:00 UTC.

Device Access·Prot ocols for connec
t ing devices

物联网平台

65 > Document Version: 20210312

sign Yes

The signature value.

The signature is calculated by using the hmacmd5(deviceS
ecret,content) function.

The value of content is a string that contains all the
parameters to be submitted to IoT Platform, except for the
version, sign, and signmethod parameters. These
parameters are sorted in alphabetical order and spliced
without a splicing symbol.

Example:

If the clientId parameter is set to 127.0.0.1, the deviceName
parameter is set to http_test, the productKey parameter is
set to a1FHTWxQ****, the t imestamp parameter is set to
1567003778853, the signmethod parameter is set to
hmacmd5, and the deviceSecret parameter is set to
89VTJylyMRFuy2T3sywQGbm5Hmk1****, use the following
function to calculate the signature:

 hmacmd5("89VTJylyMRFuy2T3sywQGbm5Hmk1****","clie
ntId127.0.0.1deviceNamehttp_testproductKeya1FHTWxQ**
**timestamp1567003778853").toHexString();
The toHexString() method is used to convert a set of
four-bit binary digits that form the binary result into a
hexadecimal string. The hexadecimal string is case-
insensit ive. For example, an array that includes the result in
the decimal format is [60 68 -67 -7 -17 99 30 69 117 -54 -58 -
58 103 -23 113 71]. After the array is converted into a
hexadecimal string, it is
3C44BDF9EF631E4575CAC6C667E97147.

signmethod No

The signature algorithm. Valid values: hmacmd5 and
hmacsha1.

Default value: hmacmd5.

version No The version number. Default value: default.

Parameter Required Description

Sample response:

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 66

body:
{
 "code": 0,
 "message": "success",
 "info": {
 "token": "6944e5bfb92e4d4ea3918d1eda39****"
 }
}

Not e

Cache the returned token on the device.

The token is required each t ime the device submits data to IoT Platform. If the token
expires, you must re-authenticate the device to obtain another token.

Error codes

code message Remarks

10000 common error
The error message returned because an unknown
error occurred.

10001 param error
The error message returned because one or more
parameters are invalid.

20000 auth check error
The error message returned because the device
failed to be authenticated.

20004 update session error
The error message returned because the device
failed to be updated.

40000 request too many
The error message returned because IoT Platform
cannot process this number of requests. The
throttling policy is applied.

2. Submit data.

The device sends data to a topic. Only custom topics with the Publish permission are supported.

For example, the topic is /${YourProductKey}/${YourDeviceName}/pub . Assume that the
DeviceName is device123 and the ProductKey is a1GFjLP ****. You can use the https://iot-as-http.cn-
shanghai.aliyuncs.com/topic/a1GFjLP****/device123/pub URL to submit data.

Sample request:

POST /topic/${topic} HTTP/1.1
Host: ${YourEndpoint}
password:${token}
Content-Type: application/octet-stream
body: ${your_data}

Parameters

Device Access·Prot ocols for connec
t ing devices

物联网平台

67 > Document Version: 20210312

Parameter Description

Method The request method. Valid value: POST.

URL /topic/${topic} . Replace the ${topic} variable with the topic to which
data is sent. Only HTTPS is supported.

Host The endpoint.

password
This parameter is included in the request header. Set this parameter to the
token that is returned after you call the auth operation to authenticate the
device.

Content-Type
The MIME type of upstream data that the device submits to IoT Platform.
Valid value: application/octet-stream. If another MIME type is specified, an
error occurs.

body The data that is sent to the specified topic.

Sample response:

body:
{
 "code": 0,
 "message": "success",
 "info": {
 "messageId": 892687627916247040,
 }
}

Error codes

code message Remarks

10000 common error
The error message returned because an unknown
error occurred.

10001 param error
The error message returned because one or more
parameters are invalid.

20001 token is expired

The error message returned because the token
has expired. You must call the auth operation to
re-authenticate the device and obtain another
token.

20002 token is null
The error message returned because no token is
specified in the request header.

20003 check token error

The error message returned because IoT
Platform failed to obtain the device identity
information based on the token. You must call
the auth operation to re-authenticate the device
and obtain another token.

物联网平台 Device Access·Prot ocols for connec
t ing devices

> Document Version: 20210312 68

30001 publish message error
The error message returned because the device
failed to submit data.

40000 request too many
The error message returned because IoT
Platform cannot process this number of
requests. The throttling policy is applied.

code message Remarks

Device Access·Prot ocols for connec
t ing devices

物联网平台

69 > Document Version: 20210312

Alibaba Cloud IoT Platform supports communication over MQTT, CoAP, or HTTP. Other types of
protocols, such as the fire protect ion agreement GB/T 26875.3-2011, Modbus, and JT808, are not
supported. In some scenarios where devices cannot be directly connected to IoT Platform, you can use
the IoT as Bridge SDK to deploy a bridging service and establish connections between the devices and
IoT Platform.

Not e The IoT as Bridge SDK is supported only in the following regions: China (Shanghai),
Germany (Frankfurt), and US (Virginia).

Architecture
The IoT as Bridge SDK is a self-adaptive protocol framework. This SDK is used to deploy a bridging
service and achieve communication between IoT Platform and your devices.

Scenarios
Your device cannot be directly connected to IoT Platform due to network or hardware limits.

Your device uses a protocol that is unsupported by IoT Platform.

A connection is already established between your device and a bridge server. You want to connect
the device to IoT Platform without modifying the device and protocol.

Your device is connected to a server and needs to be updated.

The device needs to use IoT Platform capabilit ies, such as the OTA update feature.

The device needs to be integrated into an IoT Platform-based solut ion.

The device needs addit ional processing logic to meet business requirements.

Features
The IoT as Bridge SDK enables a bridge server to communicate with IoT Platform.

Basic features:

Allows you to manage configurations by using a configuration file.

8.Generic protocol SDK
8.1. What is the IoT as Bridge SDK?

物联网平台 Device Access·Generic prot ocol SDK

> Document Version: 20210312 70

Allows you to manage device connections.

Provides upstream communication capabilit ies.

Provides downstream communication capabilit ies.

Advanced features:

Allows you to manage configurations by using API operations.

Provides API operations to submit one or more propert ies and events, update tags, set propert ies,
and call services.

Terms

Term Description

device
The device in a real IoT scenario that cannot directly communicate with IoT Platform
by using a supported protocol.

bridge server
The server to which the device is connected. This server uses a specific protocol to
communicate with the device and uses the IoT as Bridge SDK to communicate with
IoT Platform.

original protocol
The specific protocol that is used between the device and the bridge server. The
IoT as Bridge SDK does not involve the definit ion and implementation of the original
protocol.

original device
identifier

The unique identifier that is used by the device to communicate with the bridge
server over the original protocol. The IoT as Bridge SDK provides the originalIdentity
parameter to specify the identifier of the device.

device certificate

The device certificate that is obtained after you register the device in IoT Platform.
The certificate information includes ProductKey, DeviceName, and DeviceSecret.
When you use the IoT as Bridge SDK, you do not need to burn the device certificate
on the device. Instead, you must configure the devices.conf file. The bridge maps
the originalIdentity parameter of the device to the device certificate.

bridge certificate
The device certificate that is returned after you register the bridge device in IoT
Platform. The certificate information includes ProductKey, DeviceName, and
DeviceSecret. The bridge certificate uniquely identifies the bridge in IoT Platform.

Develop and deploy a bridging service
1. Log on to the IoT Platform console, create a product and device, and then obtain the cert if icate of

the bridge device.

For more information, see Create a product, Create a device, and Create multiple devices at a t ime.

You must specify the cert if icate of the bridge device when you configure the IoT as Bridge SDK.

Not e The bridge is a virtual device. You can use any device cert if icate as the cert if icate
of the bridge.

2. Configure the IoT as Bridge SDK.

For more information, see Use the basic features and Use the advanced features.

Device Access·Generic prot ocol SDK 物联网平台

71 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/73728.htm#task-lxd-pnl-vdb
https://www.alibabacloud.com/help/doc-detail/73729.htm#task-yk1-rnl-vdb
https://www.alibabacloud.com/help/doc-detail/89261.htm#task-av2-fcw-y2b
https://www.alibabacloud.com/help/doc-detail/86113.htm#concept-jly-vcm-42b
https://www.alibabacloud.com/help/doc-detail/86869.htm#concept-187338

Not e The IoT as Bridge SDK supports only the Java programming language. Only JDK 1.8
and later versions are supported.

3. Deploy the developed bridging service.

To ensure high scalability, you can use Alibaba Cloud services such as Elast ic Compute Service
(ECS) and Server Load Balancer (SLB) to deploy the bridging service in Alibaba Cloud.

You can also deploy the service on premises to ensure trusted communication.

The following figure shows the procedure of using ECS to deploy the bridging service.

Your device can connect to and communicate with Alibaba Cloud IoT Platform by using the bridging
service that is supported by the IoT as Bridge SDK. This art icle describes how to configure the IoT as
Bridge SDK to use the basic features. These features include device connection and disconnection, and
upstream and downstream message transmission.

For more information, see IoT as Bridge SDK.

Process
The following figure shows the process of connecting a device to IoT Platform by using the IoT as
Bridge SDK.

Deploy a development environment

8.2. Use the basic features

物联网平台 Device Access·Generic prot ocol SDK

> Document Version: 20210312 72

https://www.alibabacloud.com/help/doc-detail/25367.htm#concept-rhf-xgv-tdb
https://www.alibabacloud.com/help/doc-detail/27539.htm#concept-whs-lp4-tdb
https://github.com/aliyun/alibabacloud-iot-bridge-core-demo

Deploy a development environment to use the SDK for Java and add the following Maven dependency
to your project to import the IoT as Bridge SDK.

<dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>iot-as-bridge-sdk-core</artifactId>
 <version>2.3.5</version>
</dependency>

Init ialize the SDK
Init ialize the SDK.

Create a BridgeBootstrap object and call the bootstrap() method. When you call this method, the IoT
as Bridge SDK registers the DownlinkChannelHandler callback to receive downstream messages from
IoT Platform.

After the IoT as Bridge SDK is init ialized, the SDK reads the bridge information and sends a connection
request to IoT Platform for the bridge.

Sample code:

BridgeBootstrap bridgeBootstrap = new BridgeBootstrap();
bridgeBootstrap.bootstrap(new DownlinkChannelHandler() {
 @Override
 public boolean pushToDevice(Session session, String topic, byte[] payload) {
 // Receive messages from IoT Platform.
 String content = new String(bytes);
 log.info("Get DownLink message, session:{}, {}, {}", session, topic, content);
 return true;
 }
 @Override
 public boolean broadcast(String topic, byte[] payload) {
 return false;
 }
});

Specify the bridge information.

By default , a bridge is configured by using a configuration file. The application.conf configuration file
is in the src/main/resources/ directory of the Java project. The file format is HOCON (a JSON superset).

The IoT as Bridge SDK uses the typesafe.config file to parse the configuration file.

You must dynamically register a bridge device and specify the parameters of the bridge device.

For more information about how to dynamically register bridge devices, see Dynamically register bridge
devices.

The following table describes the parameters of the bridge device.

Parameter Required Description

productKey Yes
The ProductKey of the product to which the bridge device
belongs.

deviceName Yes The DeviceName of the bridge device.

Device Access·Generic prot ocol SDK 物联网平台

73 > Document Version: 20210312

https://github.com/lightbend/config/blob/master/HOCON.md
https://www.alibabacloud.com/help/doc-detail/86869.htm#concept-187338/section-xmx-dyi-nok

deviceSecret Yes The DeviceSecret of the bridge device.

subDeviceConnect
Mode

No

The mode that devices use to connect with the bridge.

If this parameter is set to 3, a large-size bridge is created.
A maximum of 500,000 devices can connect with the
bridge.

If this parameter is not specified, a small-size bridge is
created. A maximum of 15,00 devices can connect with the
bridge.

Large-size bridges and small-size bridges use different
policies to disconnect devices. For more information, see
Disconnect a device from IoT Platform.

http2Endpoint Yes

The endpoint of the HTTP/2 gateway. The bridge and IoT
Platform establish a persistent connection over the HTTP/2
protocol.

Endpoint format:

Public instance: https://${productKey}.iot-as-http2. ${Reg
ionId}.aliyuncs.com:443 .

Replace ${productKey} with the ProductKey of the product
to which your bridge device belongs.

Replace ${RegionId} with the ID of the region where you
purchased the IoT Platform service. For information about
region IDs, see Regions and zones.

For example, if the ProductKey of a bridge device is
a1abcab**** and the IoT Platform service is purchased in
the China (Shanghai) region, the endpoint is https://a1abc
ab****.iot-as-http2.cn-shanghai.aliyuncs.com:443 .

Enterprise Edition instance: https://${IotInstanceId}.http2.
iothub.aliyuncs.com:443 .

Replace ${IotInstanceId} with the ID of the purchased
instance.

For example, if the instance ID is iot-cn-g06kwb****, the
endpoint is https://iot-cn-g06kwb****.http2.iothub.aliyu
ncs.com:443 .

Parameter Required Description

物联网平台 Device Access·Generic prot ocol SDK

> Document Version: 20210312 74

https://www.alibabacloud.com/help/doc-detail/86113.htm#concept-jly-vcm-42b/section-dx9-225-h22
https://www.alibabacloud.com/help/doc-detail/40654.htm#concept-2459516

authEndpoint Yes

The endpoint of the device authentication server.

Endpoint format:

Public instance: https://iot-auth. .${RegionId}.aliyuncs.co
m/auth/bridge .

Replace ${RegionId} with the ID of the region where you
purchased the IoT Platform service. For information about
region IDs, see Regions and zones.

For example, if the IoT Platform service is purchased in the
China (Shanghai) region, the endpoint is https://iot-auth.c
n-shanghai.aliyuncs.com/auth/bridge .

Enterprise Edition instance: https://${IotInstanceId}.auth.i
othub.aliyuncs.com/auth/bridge .

Replace ${IotInstanceId} with the ID of the purchased
instance.

For example, if the instance ID is iot-cn-g06kwb****, the
endpoint is https://iot-cn-g06kwb****.auth.iothub.aliyun
cs.com/auth/bridge .

Parameter Required Description

The following example shows how to configure a small-size bridge device. The public instance is
used in the example.

The endpoint of the server.
http2Endpoint = "https://a1tN7***.iot-as-http2.cn-shanghai.aliyuncs.com:443"
authEndpoint = "https://iot-auth.cn-shanghai.aliyuncs.com/auth/bridge"
The information of the bridge device.
productKey = ${bridge-ProductKey-in-Iot-Plaform}
deviceName = ${bridge-DeviceName-in-Iot-Plaform}
deviceSecret = ${bridge-DeviceSecret-in-Iot-Plaform}

Authenticate a device and connect the device to IoT Platform
Connect a device to the bridge.

The following example shows how to connect a device to the bridge by using the IoT as Bridge SDK:

/**
 * Authenticate the device.
 * @param newSession: the device session information that is returned in a downstream callback.
 * @param originalIdentity: the original identifier of the device.
 * @return
 */
public boolean doOnline(Session newSession, String originalIdentity);

When the device is connected to the bridge, the device must pass the Session parameter. The
Session parameter is returned to the bridge by using a callback function of a downstream message.
The bridge determines the device that sends the message by using the originalIdentity field in the
Session parameter.

Device Access·Generic prot ocol SDK 物联网平台

75 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/40654.htm#concept-2459516

The Session parameter includes the optional channel field that carries the information about the
device connection. For example, your bridge server is built based on Netty. You can use the channel
field to carry the channel object that corresponds to the persistent connection of the device. When a
downstream message is sent, the bridge can obtain the channel object from the Session parameter.

The IoT as Bridge SDK does not process the data of the channel field. You can also use the channel
field to carry the device-related information.

Sample code:

UplinkChannelHandler uplinkHandler = new UplinkChannelHandler();
// Create a session.
Object channel = new Object();
Session session = Session.newInstance(originalIdentity, channel);
// Connect a device to the bridge.
boolean success = uplinkHandler.doOnline(session, originalIdentity);
if (success) {
 // If the device is connected, the bridge accepts subsequent communication requests from the device.
} else {
 // If the device connection fails, the bridge rejects subsequent communication requests, such as disconn
ection requests.
}

You must configure the mappings between device cert if icates and original device identifiers.

By default , you can configure the sett ings by using a configuration file. The application.conf
configuration file is in the src/main/resources/ directory of the Java project. The file format is HOCON
(a JSON superset).

The IoT as Bridge SDK uses the typesafe.config file to parse the configuration file.

You must specify the following parameters in the file:

${device-originalIdentity} {
 productKey : ${device-ProductKey-in-Iot-Plaform}
 deviceName : ${device-DeviceName-in-Iot-Platform}
 deviceSecret : ${device-DeviceSceret-in-Iot-Platform}
}

Parameter Required Description

productKey Yes The ProductKey of the product to which the device belongs.

deviceName Yes The name of the device.

deviceSecret Yes The DeviceSecret of the device.

Send data from a device to IoT Platform
The following example shows how to send data from a device to IoT Platform by using the IoT as
Bridge SDK:

物联网平台 Device Access·Generic prot ocol SDK

> Document Version: 20210312 76

https://github.com/lightbend/config/blob/master/HOCON.md

/**
 * Send a message from the device by using a synchronous call.
 * @param originalIdentity: the original identifier of the device.
 * @param protocolMsg: the message to be sent, including the topic, payload, and quality of service (QoS) in
formation.
 * @param timeout: the timeout period. Unit: seconds.
 * @return: indicates whether the message is sent within the timeout period.
 */
boolean doPublish(String originalIdentity, ProtocolMessage protocolMsg, int timeout);
/**
 * Send a message from the device by using an asynchronous call.
 * @param originalIdentity: the original identifier of the device.
 * @param protocolMsg: the message to be sent, including the topic, payload, and QoS information.
 * @return: After this method is called, the CompletableFuture parameter is immediately returned and avail
able for subsequent use.
 */
CompletableFuture<ProtocolMessage> doPublishAsync(String originalIdentity,
 ProtocolMessage protocolMsg);

Sample code:

DeviceIdentity deviceIdentity =
 ConfigFactory.getDeviceConfigManager().getDeviceIdentity(originalIdentity);
ProtocolMessage protocolMessage = new ProtocolMessage();
protocolMessage.setPayload("Hello world".getBytes());
protocolMessage.setQos(0);
protocolMessage.setTopic(String.format("/%s/%s/update",
 deviceIdentity.getProductKey(), deviceIdentity.getDeviceName()));
// Synchronous sending.
int timeoutSeconds = 3;
boolean success = upLinkHandler.doPublish(originalIdentity, protocolMessage, timeoutSeconds);
// Asynchronous sending.
upLinkHandler.doPublishAsync(originalIdentity, protocolMessage);

Push data from IoT Platform to a device
When the bridge calls the bootstrap() method, the IoT as Bridge SDK registers the
DownlinkChannelHandler callback. When the IoT as Bridge SDK receives a message from IoT Platform, it
calls the pushToDevice() method in DownlinkChannelHandler.

You can modify the pushToDevice() method to enable the bridge to process the downstream message.

Not e

After a device is connected to IoT Platform by using the IoT as Bridge SDK, the device can
receive downstream messages without subscribing to topics.

Do not implement a t ime-consuming logic in the pushToDevice() method. Otherwise, the
thread that receives downstream messages are blocked. If a t ime-consuming logic or I/O
logic is required, implement the logic in an asynchronous manner. For example, if a bridge
uses a persistent connection to forward downstream messages to a device, you can
implement the logic in an asynchronous manner.

Device Access·Generic prot ocol SDK 物联网平台

77 > Document Version: 20210312

Sample code:

private static ExecutorService executorService = new ThreadPoolExecutor(
 Runtime.getRuntime().availableProcessors(),
 Runtime.getRuntime().availableProcessors() * 2,
 60, TimeUnit.SECONDS,
 new LinkedBlockingQueue<>(1000),
 new ThreadFactoryBuilder().setDaemon(true).setNameFormat("bridge-downlink-handle-%d").build(),
 new ThreadPoolExecutor.AbortPolicy());
public static void main(String args[]) {
 // By default, application.conf and devices.conf are used.
 bridgeBootstrap = new BridgeBootstrap();
 bridgeBootstrap.bootstrap(new DownlinkChannelHandler() {
 @Override
 public boolean pushToDevice(Session session, String topic, byte[] payload) {
 // Receive messages from IoT Platform.
 executorService.submit(() -> handleDownLinkMessage(session, topic, payload));
 return true;
 }
 @Override
 public boolean broadcast(String s, byte[] bytes) {
 return false;
 }
 });
}
private static void handleDownLinkMessage(Session session, String topic, byte[] payload) {
 String content = new String(payload);
 log.info("Get DownLink message, session:{}, topic:{}, content:{}", session, topic, content);
 Object channel = session.getChannel();
 String originalIdentity = session.getOriginalIdentity();
}

Parameter Description

session
When you call the doOnline operation, pass the session parameter. This
parameter is used to determine the device to which the downstream message is
sent.

topic The topic of the downstream message.

payload
The message body of the downstream message. The message body is in the
binary format.

Disconnect a device from IoT Platform
The following points describe the scenarios of device disconnection:

If a small-size bridge is disconnected from IoT Platform, all devices that are connected to the bridge
are automatically disconnected from IoT Platform.

If a large-size bridge is disconnected from IoT Platform, the devices that are connected to the bridge
are not disconnected from IoT Platform. After the bridge is reconnected to IoT Platform, you can
update the status of a sub-device by calling the doOffline operation.

物联网平台 Device Access·Generic prot ocol SDK

> Document Version: 20210312 78

The status of a sub-device indicates whether the sub-device is connected to a gateway. The
gateway reports the status of sub-devices to IoT Platform. If the gateway cannot report the status
of the sub-device to IoT Platform, the status that is displayed in the IoT Platform console remains
unchanged.

Assume that a sub-device is connected to IoT Platform by using a gateway and the status of the
sub-device is online. If the gateway is disconnected from IoT Platform, the gateway cannot report
the status of the sub-device to IoT Platform. Therefore, the status of the sub-device remains online.

If small-size and large-size bridges are connected to IoT Platform, they can send a request to
disconnect a device from IoT Platform.

The following example shows how to send a disconnection request:

/**
 * Send a request to disconnect a device from IoT Platform.
 * @param originalIdentity: the original identifier of the device.
 * @return: indicates whether the disconnection request is sent.
 */
boolean doOffline(String originalIdentity);

Sample code:

upLinkHandler.doOffline(originalIdentity);

A bridge ends and re-establishes a connection with IoT Platform
A bridge can use the BridgeBootstrap object and call the disconnectBridge and reconnectBridge
operations to end and re-establish a connection with IoT Platform.

Not e The reconnectBridge operation is used for reconnection and cannot be used for first
connection.

Sample code:

// End the connection with IoT Platform.
bridgeBootstrap.disconnectBridge();
Thread.sleep(1000);
// Check whether the bridge is connected to IoT Platform.
boolean isConnected = bridgeBootstrap.isBridgeConnected();
// Re-establish a connection with IoT Platform.
bridgeBootstrap.reconnectBridge();
Thread.sleep(1000);
isConnected = bridgeBootstrap.isBridgeConnected();

This art icle describes how to use the advanced features of the IoT as Bridge SDK. The advanced
features allow you to specify the configuration file paths, dynamically register bridge devices, and call
the specified operations that are encapsulated in the IoT as Bridge SDK to submit propert ies, events,
and tags.

Specify configuration file paths

8.3. Use the advanced features

Device Access·Generic prot ocol SDK 物联网平台

79 > Document Version: 20210312

By default , the configuration file of a bridge device is application.conf, and the configuration file of
the device cert if icate mapping is devices.conf.

The IoT as Bridge SDK allows you to specify paths. Before you call the bootstrap() method, you must
call the ConfigFactory.init() method to specify the path of a configuration file. You can also create an
instance and configure the API operations as needed.

Sample code:

ConfigFactory.init(
 ConfigFactory.getBridgeConfigManager("application-self-define.conf"),
 selfDefineDeviceConfigManager);
bridgeBootstrap.bootstrap();
private static DeviceConfigManager selfDefineDeviceConfigManager = new DeviceConfigManager() {
 @Override
 public DeviceIdentity getDeviceIdentity(String originalIdentity) {
 return devicesMap.get(originalIdentity);
 }
 @Override
 public String getOriginalIdentity(String productKey, String deviceName) {
 return null;
 }
};

Dynamically register bridge devices
When you deploy bridges on a large number of servers, the deployment process is complex if you
specify different bridge devices for different bridge servers. You can edit the bridge configuration file
application.conf to dynamically register the bridge devices.

You must specify the productKey and popClientProfile parameters of each bridge device in the
configuration file. Then, the IoT as Bridge SDK calls an IoT Platform operation to register the bridge
devices and uses the MAC addresses of the servers as the device names.

Not e

To dynamically register the bridge devices, you only need to edit the bridge configuration
file. For information about the sample code, see Use the basic features.

All parameters in the popClientprofile file must be specified. If a MAC address is used by an
exist ing device, the device is used as a bridge device.

The deviceName parameter and deviceSecret parameters must be left empty. If you have
specified the information about a bridge device, the device cannot be dynamically
registered.

We recommend that you use dedicated test devices for debugging. Do not debug programs
on local machines to prevent possible impacts on production environment.

If you debug the programs on the local machines, the MAC addresses of the machines are
registered as bridge names. The bridges are associated with all devices in the devices.conf
file.

Parameters

物联网平台 Device Access·Generic prot ocol SDK

> Document Version: 20210312 80

https://www.alibabacloud.com/help/doc-detail/86113.htm#concept-jly-vcm-42b

Parameter Required Description

productKey Yes
The ProductKey of the product to which the bridge device
belongs.

subDeviceConnect
Mode

No

The mode that devices use to connect with the bridge.

If this parameter is set to 3, a large-size bridge is created. A
maximum of 500,000 devices can connect with the bridge.

If this parameter is not specified, a small-size bridge is
created. A maximum of 15,00 devices can connect with the
bridge.

Large-size bridges and small-size bridges use different policies
to disconnect devices. For more information, see Disconnect a
device from IoT Platform.

http2Endpoint Yes

The endpoint of the HTTP/2 gateway. The bridge and IoT
Platform establish a persistent connection over the HTTP/2
protocol.

Endpoint format:

Public instance: https://${productKey}.iot-as-http2. ${Regio
nId}.aliyuncs.com:443 .

Replace ${productKey} with the ProductKey of the product to
which your bridge device belongs.

Replace ${RegionId} with the ID of the region where you
purchased the IoT Platform service. For information about
region IDs, see Regions and zones.

For example, if the ProductKey of a bridge device is
a1abcab**** and the IoT Platform service is purchased in the
China (Shanghai) region, the endpoint is https://a1abcab***
*.iot-as-http2.cn-shanghai.aliyuncs.com:443 .

Enterprise Edition instance: https://${IotInstanceId}.http2.i
othub.aliyuncs.com:443 .

Replace ${IotInstanceId} with the ID of the purchased
instance.

For example, if the instance ID is iot-cn-g06kwb****, the
endpoint is https://iot-cn-g06kwb****.http2.iothub.aliyunc
s.com:443 .

Device Access·Generic prot ocol SDK 物联网平台

81 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/86113.htm#concept-jly-vcm-42b/section-dx9-225-h22
https://www.alibabacloud.com/help/doc-detail/40654.htm#concept-2459516

authEndpoint Yes

The endpoint of the device authentication server.

Endpoint format:

Public instance: https://iot-auth. .${RegionId}.aliyuncs.com
/auth/bridge .

Replace ${RegionId} with the ID of the region where you
purchased the IoT Platform service. For information about
region IDs, see Regions and zones.

For example, if the IoT Platform service is purchased in the
China (Shanghai) region, the endpoint is https://iot-auth.cn-
shanghai.aliyuncs.com/auth/bridge .

Enterprise Edition instance: https://${IotInstanceId}.auth.io
thub.aliyuncs.com/auth/bridge .

Replace ${IotInstanceId} with the ID of the purchased
instance.

For example, if the instance ID is iot-cn-g06kwb****, the
endpoint is https://iot-cn-g06kwb****.auth.iothub.aliyuncs
.com/auth/bridge .

popClientProfile Yes

If you specify this parameter, the IoT as Bridge SDK calls the
related IoT Platform API operation to create a bridge device.

The following table describes the parameters of
popClientProfile.

Parameter Required Description

popClientProfile

Parameter Required Description

accessKey Yes

The AccessKey ID of your Alibaba Cloud account.

To create or view an AccessKey pair, log on to the IoT Platform
console, move the pointer over your profile picture, and then
click AccessKey Management . On the Security Management
page, you can create or view an AccessKey pair.

accessSecret Yes The AccessKey secret of you Alibaba Cloud account.

name Yes The ID of the region to which the bridge device belongs.

For more information about region IDs, see Regions and zones.
region Yes

product Yes The name of the product. Set the value to Iot.

物联网平台 Device Access·Generic prot ocol SDK

> Document Version: 20210312 82

https://www.alibabacloud.com/help/doc-detail/40654.htm#concept-2459516
http://iot.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/40654.htm#concept-2459516

endpoint Yes

The endpoint of the APIs in the specified region. Format: iot.
${RegionId}.aliyuncs.com .

Replace ${RegionId} with the ID of the region where you
purchased the IoT Platform service. For information about
region IDs, see Regions and zones.

For example, if the region is China (Shanghai), the endpoint is
 iot.cn-shanghai.aliyuncs.com .

Parameter Required Description

In this example, a public instance is used to dynamically register a small-size bridge device.

The endpoint of the server.
http2Endpoint = "https://${YourProductKey}.iot-as-http2.cn-shanghai.aliyuncs.com:443"
authEndpoint = "https://iot-auth.cn-shanghai.aliyuncs.com/auth/bridge"
The information of the bridge device.
productKey = ${YourProductKey}
popClientProfile = {
 accessKey = ${YourAliyunAccessKey}
 accessSecret = ${YourAliyunAccessSecret}
 name = cn-shanghai
 region = cn-shanghai
 product = Iot
 endpoint = iot.cn-shanghai.aliyuncs.com
}

Call the operations to submit Thing Specification Language (TSL)
data
The IoT as Bridge SDK encapsulates the operations to submit data. You can call the reportProperty
operation to submit propert ies, call the fireEvent operation to submit events, and call the
updateDeviceTag operation to update tags.

Not e

Before you call the reportProperty() and fireEvent() operations, you must define propert ies
and events in the IoT Platform console. Log on to the IoT Platform console and go to the
Product Det ails page. Then, you can define propert ies and events on the Def ine Feat ure
tab. For more information, see Add a TSL feature.

If a tag already exists when you call the updateDeviceTag operation, the tag value is
updated. To view exist ing tags, go to the Device Det ails page of the IoT Platform console.
If a tag does not exist , IoT Platform automatically creates the tag.

Sample code:

Device Access·Generic prot ocol SDK 物联网平台

83 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/40654.htm#concept-2459516
http://iot.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/88241.htm#task-qhm-d3j-w2b

TslUplinkHandler tslUplinkHandler = new TslUplinkHandler();
// Submit a property.
// The testProp property is defined.
String requestId = String.valueOf(random.nextInt(1000));
// The timestamp is not included in the submitted property data.
tslUplinkHandler.reportProperty(requestId, originalIdentity, "testProp", random.nextInt(100));
// The timestamp is included in the submitted property data.
//tslUplinkHandler.reportProperty(requestId, originalIdentity, "testProp", random.nextInt(100), System.cur
rentTimeMillis());
// Submit an event.
// The testEvent event is defined.
requestId = String.valueOf(random.nextInt(1000));
HashMap<String, Object> params = new HashMap<String, Object>();
params.put("testEventParam", 123);
// The timestamp is not included in the submitted event data.
tslUplinkHandler.fireEvent(originalIdentity, "testEvent", ThingEventTypes.INFO, params);
// The timestamp is included in the submitted event data.
//tslUplinkHandler.fireEvent(originalIdentity, "testEvent", ThingEventTypes.INFO, params, System.currentT
imeMillis());
// Update a device tag.
// The key of the tag is set to testDeviceTag.
requestId = String.valueOf(random.nextInt(1000));
tslUplinkHandler.updateDeviceTag(requestId, originalIdentity, "testDeviceTag", String.valueOf(random.nex
tInt(1000)));

The following table describes the parameters.

Parameter Description

requestId The ID of the request.

originalIdentity The original identifier of the device.

testProp
The identifier of the property. In this example, the identifier of the defined
property is testProp. The testProp property is submitted to IoT Platform.

random.nextInt(100)
The value of the property. When you define a property, you can set a value
range. In this example, random.nextInt(100) indicates a random integer
that is less than 100.

testEvent
The identifier of the event. In this example, the identifier of a defined event
is testEvent. In this example, the testEvent event is submitted to IoT
Platform.

ThingEventTypes.INFO

The type of the event. ThingEventTypes specifies the event type. A value of
INFO indicates that the event type is Info.

In this example, the event type is set to INFO when the testEvent event is
defined in the IoT Platform console.

If the event type is ERROR, set this parameter to ThingEventTypes.ERROR .

物联网平台 Device Access·Generic prot ocol SDK

> Document Version: 20210312 84

params

The output parameters of the event. The identifiers, data types, and value
ranges of the output parameters are defined in the IoT Platform console. In
this example, the ident if ier of the output parameter is testEventParam, and
the value is 123.

testDeviceTag
The key of the tag. The data type is string. In this example, the key is
testDeviceTag. Set the key of the tag as instructed based on your business
requirements. For more information, see Device tags.

String.valueOf(random.nextI
nt(1000))

The value of the tag. The data type is string. In this example,
 String.valueOf(random.nextInt(1000)) indicates a random integer that is

less than 1000. Set the value of the tag as instructed based on your business
requirements. For more information, see Device tags.

System.currentT imeMillis() The current system time, in milliseconds.

Parameter Description

Calls the operations to submit multiple properties and events at the
same time
The IoT as Bridge SDK encapsulates the operations to submit mult iple propert ies and events at the
same t ime. You must create the BatchPostEventPropertyMessage object and call the addProperty() and
addEvent() methods to add property and event data. Then, create the TslUplinkHandler object and call
the BatchPostEventPropertyMessage() method to submit data.

Not e

Before you call the reportProperty() and fireEvent() operations, you must define propert ies and
events in the IoT Platform console. Log on to the IoT Platform console and go to the Product
Det ails page. Then, you can define propert ies and events on the Def ine Feat ure tab. For more
information, see Add a TSL feature.

Sample code:

Device Access·Generic prot ocol SDK 物联网平台

85 > Document Version: 20210312

https://www.alibabacloud.com/help/doc-detail/73733.htm#concept-m3c-jnl-vdb
https://www.alibabacloud.com/help/doc-detail/73733.htm#concept-m3c-jnl-vdb
http://iot.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/88241.htm#task-qhm-d3j-w2b

TslUplinkHandler tslUplinkHandler = new TslUplinkHandler();
// Submit multiple properties and events at the same time.
String requestId = String.valueOf(random.nextInt(1000));
long startTime = System.currentTimeMillis() - 3000;
// Create a message to submit data.
BatchPostEventPropertyMessage batchPostEventPropertyMessage = new BatchPostEventPropertyMessage
();
Map<String, Object> aiEventParams = new HashMap<>();
aiEventParams.put("EventContent", "hello world");
batchPostEventPropertyMessage
 .addProperty("PowerConsumption", 1000, startTime)
 .addProperty("PowerConsumption", 123, startTime + 1000)
 .addProperty("LightAdjustLevel", 23, startTime)
 .addProperty("LightAdjustLevel", 44, startTime + 1000)
 .addProperty("LightAdjustLevel", 47, startTime + 2000)
 .addEvent("AIEvent", aiEventParams, startTime);
batchPostEventPropertyMessage.setId(requestId);
// Submit the data.
tslUplinkHandler.batchPostEventPropertyMessage(originalIdentity, batchPostEventPropertyMessage);

The following table describes the parameters.

Parameter Description

requestId The ID of the request.

startT ime
The timestamps of the properties and events to be submitted. Unit:
milliseconds. The time is displayed in UTC. You can customize this parameter
based on your business requirements.

aiEventParams The information about the event.

PowerConsumption The identifiers of the properties. In this example, the identifiers of the
defined properties include PowerConsumption and LightAdjustLevel. The
values of the two properties at different t ime points are submitted.LightAdjustLevel

AIEvent
The identifier of the event. In this example, the identifier of the defined
event is AIEvent. The AIEvent event is submitted.

originalIdentity The original identifier of the device.

Call the operations to set properties and call services
The IoT as Bridge SDK encapsulates the PropertySetHandler operation to set propert ies and the
ServiceInvokeHandler operation to call services. Devices can receive commands from IoT Platform and
update data.

Sample code:

物联网平台 Device Access·Generic prot ocol SDK

> Document Version: 20210312 86

BridgeBootstrap bridgeBootstrap = new BridgeBootstrap();
// Set properties.
bridgeBootstrap.setPropertySetHandler(new PropertySetHandler() {
 @Override
 public void onPropertySet(PropertySetMessage msg) {
 log.info("on property set, {}", msg.getParams());
 // If you call the replySuccess() method, the SDK sends the /property/set_reply message to IoT Platform.
The response code is 200.
 msg.replySuccess();
 // If you call the replyFail() method, the SDK sends the /property/set_reply message to IoT Platform. You
can specify the response code as needed.
 //msg.replyFail(400);
 }
});
// Call services.
bridgeBootstrap.setServiceInvokeHandler(new ServiceInvokeHandler() {
 @Override
 public void onServiceInvoke(ServiceInvokeMessage message) {
 log.info("on service invoke, {}", message.getParams());
 // If you call the replySuccess() method, the SDK sends the /service/{service.identifier}_reply message to I
oT Platform. The response code is 200.
 message.replySuccess();
 // If you call the replyFail() method, the SDK sends the /service/{service.identifier}_reply message to IoT P
latform. You can specify the response code as needed.
 //msg.replyFail(400);
 }
});

The IoT as Bridge SDK 2.1.3 and later support over-the-air (OTA) updates for firmware. This art icle
describes how to use the IoT as Bridge SDK to update the firmware of a device over the air.

Background information

Not e Only the IoT as Bridge SDK 2.1.3 and later support OTA updates.

The following figure shows the process of an OTA update.

8.4. OTA updates

Device Access·Generic prot ocol SDK 物联网平台

87 > Document Version: 20210312

For more information about how to push an update package from IoT Platform to devices, see
Overview.

For more information about the update process and how to specify topics and data formats for
firmware updates, see Update devices by using OTA.

Call operations for OTA updates
The IoT as Bridge SDK encapsulates the operations that are related to OTA updates. To achieve OTA
updates, you must use the SDK to call the following three operations:

The operation that is used to submit versions of device firmware

After a device is enabled and updated, the device must submit the current version of the firmware to
the following topic: /ota/device/inform/${YourProductKey}/${YourDeviceName} .

To enable a device to submit a firmware version, you must call the
TslUplinkHandler.reportFirmwareVersion operation. Syntax:

/**
 * The device submits the firmware version to IoT Platform.
 * @param requestId: the ID of the request
 * @param originalIdentity: the original identifier of the device
 * @param version: the firmware version to be submitted
 * @ return: The value true is returned if the firmware version is submitted.
*/
boolean reportOtaVersion(String requestId, String originalIdentity, String version)

Example

TslUplinkHandler tslUplinkHandler = new TslUplinkHandler();
tslUplinkHandler.doOnline(session, originalIdentity);
tslUplinkHandler.reportOtaVersion("12345", originalIdentity, "1.0.1");

The operation that is used to push update notificat ions from IoT Platform to devices

物联网平台 Device Access·Generic prot ocol SDK

> Document Version: 20210312 88

https://www.alibabacloud.com/help/doc-detail/58328.htm#task-prw-fzz-xdb
https://www.alibabacloud.com/help/doc-detail/85700.htm#concept-sgj-yts-zdb

After you add update packages to IoT Platform and init iate OTA updates for mult iple devices, IoT
Platform pushes update notificat ions to the devices. The devices must subscribe to the following
topic to retrieve update notificat ions: /ota/device/upgrade/${YourProductKey}/${YourDeviceName} .

To enable a device to receive the OTA update notificat ion that is pushed from IoT Platform, you can
call the BridgeBootStrap.setOtaUpgradeHandler() operation and configure a callback. Syntax:

/**
 * Configure a callback to receive the OTA update notifications that are pushed from IoT Platform.
 * @ param otaUpgradeHandler: the callback that is set.
*/
public void setOtaUpgradeHandler(OtaUpgradeHandler otaUpgradeHandler) {
 this.callback.setOtaUpgradeHandler(otaUpgradeHandler);
}
public interface OtaUpgradeHandler {
 /**
 * Push OTA update notifications from IoT Platform.
 * @param requestId: the ID of the request
 * @param firmwareInfo: the information about OTA updates
 * @param session: the current session
 * @return
 */
 boolean onUpgrade(String requestId, OtaFirmwareInfo firmwareInfo, Session session);
}
public class OtaFirmwareInfo {
 /**
 * The size of the update package.
 */
 private long size;
 /**
 * Valid signature methods: MD5 and SHA256.
 */
 private String signMethod;
 /**
 * The signature of the update package.
 */
 private String sign;
 /**
 * The version of the update package.
 */
 private String version;
 /**
 * The download URL of the update package.
 */
 private String url;
}

Example

Device Access·Generic prot ocol SDK 物联网平台

89 > Document Version: 20210312

bridgeBootstrap.setOtaUpgradeHandler(new OtaUpgradeHandler() {
 @Override
 public boolean onUpgrade(String requestId, OtaFirmwareInfo firmwareInfo, Session session) {
 log.info("ota onUpgrade, requestId:{}, firmware:{}, identity:{}",
 requestId, firmwareInfo, session.getOriginalIdentity());
 // Implement the OTA update.
 return true;
 }
});

The operation that is used to submit the update progress

After a firmware update starts, a device must submit the update progress to the following topic: /o
ta/device/progress/${YourProductKey}/${YourDeviceName} .

To enable a device to submit the update progress, you can call the
TslUplinkHandler.reportOtaProgress operation. Syntax:

/**
 * Submit the OTA update progress.
 * @param requestId: the ID of the request
 * @param originalIdentity: the original identifier of the device
 * @param step: the current progress
 * @param desc: the description
 * @return
*/
boolean reportOtaProgress(String requestId, String originalIdentity, String step, String desc)

Example

tslUplinkHandler.reportOtaProgress("7979", session.getOriginalIdentity(), "100", "ota success");

物联网平台 Device Access·Generic prot ocol SDK

> Document Version: 20210312 90

	1.Create a product
	2.Create devices
	2.1. Create a device
	2.2. Create multiple devices at a time
	2.3. Manage devices

	3.Download device SDKs
	4.Authenticate devices
	4.1. Overview
	4.2. Unique-certificate-per-device authentication
	4.3. Unique-certificate-per-product authentication

	5.Devices retrieve certificates
	5.1. Overview
	5.2. Burn certificates on devices
	5.3. Devices retrieve certificates from the cloud

	6.Topics
	6.1. What is a topic?
	6.2. Edit a topic category
	6.3. Automatic topic subscription

	7.Protocols for connecting devices
	7.1. Use MQTT protocol
	7.1.1. MQTT standard
	7.1.2. Establish MQTT connections over TCP
	7.1.3. MQTT-based dynamic registration
	7.1.4. Establish MQTT over WebSocket connections
	7.1.5. Examples of creating signatures for MQTT connections
	7.1.6. IPv6-based MQTT connections

	7.2. Use CoAP protocol
	7.2.1. CoAP standard
	7.2.2. Connect devices to IoT Platform over CoAP

	7.3. Use HTTP protocol
	7.3.1. HTTP standard
	7.3.2. Establish connections over HTTP

	8.Generic protocol SDK
	8.1. What is the IoT as Bridge SDK?
	8.2. Use the basic features
	8.3. Use the advanced features
	8.4. OTA updates

