Alibaba Cloud

Alibaba Cloud Service Mesh

Best Practices

Document Version: 20220712

(-] Alibaba Cloud



Alibaba Cloud Service Mesh Best Practices-Legal disclaimer

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be deemed
as your total acceptance of this legal disclaimer.

1.

You shall download and obt ain this document from the Alibaba Cloud website or other Alibaba Cloud-
aut horized channels, and use this document for your own legal business activities only. The content of
this document is considered confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided to any third party for
use wit hout the prior written consent of Alibaba Cloud.

. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminated by

any organization, company or individual in any form or by any means without the prior written consent of
Alibaba Cloud.

. The content of this document may be changed because of product version upgrade, adjustment, or

other reasons. Alibaba Cloud reserves the right to modify the content of this document without notice
and an updated version of this document will be released through Alibaba Cloud-aut horized channels
from time to time. You should pay attention to the version changes of this document as they occur and
download and obt ain the most up-to-date version of this document from Alibaba Cloud-aut horized
channels.

. This document serves only as a reference guide for your use of Alibaba Cloud products and services.

Alibaba Cloud provides this document based onthe "status quo", "being defective", and "existing
functions" of its products and services. Alibaba Cloud makes every effort to provide relevant operational
guidance based on existing technologies. However, Alibaba Cloud hereby makes a clear statement that
it in no way guarantees the accuracy, integrity, applicability, and reliability of the content of this
document, either explicitly or implicitly. Alibaba Cloud shall not take legal responsibility for any errors or
lost profits incurred by any organization, company, or individual arising from download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, take responsibility for any indirect,
consequential, punitive, contingent, special, or punitive damages, including lost profits arising from t he
use or trust inthis document (evenif Alibaba Cloud has been notified of the possibility of such a loss).

. By law, allthe contents in Alibaba Cloud documents, including but not limited to pictures, architecture

design, page layout, and text description, are intellectual property of Alibaba Cloud and/or its
affiliates. This intellect ual property includes, but is not limited to, trademark rights, patent rights,
copyrights, and trade secrets. No part of this document shall be used, modified, reproduced, publicly
transmitted, changed, disseminated, distributed, or published wit hout the prior written consent of
Alibaba Cloud and/or its affiliates. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for marketing, advertising, promotion, or ot her purposes wit hout the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited to, "Alibaba Cloud",
"Aliyun", "HiChina", and other brands of Alibaba Cloud and/or its affiliates, which appear separately or in
combination, as well as the auxiliary signs and patterns of the preceding brands, or anyt hing similar to
the company names, trade names, trademarks, product or service names, domain names, patterns,
logos, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates.

. Please directly contact Alibaba Cloud for any errors of this document.

> Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices-Document conventio
ns

Document conventions

Style

/\ Danger

warning

) Notice

@ Note

Bold

Courier font

Italic

(1 or [alb]

{} or {a|b}

Description

A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

A note indicates supplemental
instructions, best practices, tips, and
other content.

Closing angle brackets are used to
indicate a multi-level menu cascade.

Bold formatting is used for buttons ,
menus, page names, and other Ul
elements.

Courier font is used for commands

ltalic formatting is used for parameters
and variables.

This format is used for an optional value,
where only one item can be selected.

This format is used for a required value,
where only one item can be selected.

Example

& Danger:

Resetting will result in the loss of user
configuration data.

warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

p Notice:

If the weight is set to 0, the server no
longer receives new requests.

@ Note:

You can use Ctrl + A to select all files.

Click Settings> Network> Set network
type.

Click OK.

Runthe cd /d C:/window command to
enter the Windows system folder.

bae log list --instanceid

Instance_ID

ipconfig [-all|-t]

switch {active|stand}

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Table of Contents

Table of Contents

T.Workloads B s s e S e R e s S e 05
1.1. Use an ingress gateway to access a gRPC service in an AS...--—-—- 05
1.2. Implement auto scaling for workloads by using ASM metri...--——--- 12

2.Traffic Management == e e e 20
2.1. Use ASM to deploy an application in blue-green release m...-——----- 20
2.2. Use ASM and Wasm to implement end-to-end A/B testing...-——- 25
2.3. Use ASM and KubeVela to implement a canary release —-——————- 38
2.4. Use an ASM instance of a commercial edition to implemen..-———- 46

3.5ecurity s st st s e L e e 64
3.1. Implement CORS in ASM - 64
3.2. Enable Multi-Buffer for TLS acceleration oo 66

4.Use gRPC in ASM el e e e e e 70
4.1. Design principle of the gRPC practice - 70
4.2. Implement the communication models of gRPC - 73
4.3. Implement load balancing among gRPC servers -——-—---------mmmmmmmmv 86
4.4. Shape traffic to gRPC servers -—————-==mmmmmmmmm e 93
4.5. Redirect traffic for gRPC-based applications ———————————————- 98

5.Use Flagger in ASM ——ini o 104
5.1. Use Mixerless Telemetry to observe ASM instances ——————————— 104
5.2. Use Mixerless Telemetry to scale the pods of an applicatio...——— 108
5.3. Use Mixerless Telemetry to implement a canary release ———————— 114

6.Authorize and control services in namespaces -—--—--—--——-—-——----m-——-—- 121
6.1. Use an authorization policy to control service access acros...--—--- 121
6.2. Use an authorization policy to control access traffic from ...-—--— 126

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Workloads

1.Workloads
1.1. Use an ingress gateway to access

a gRPC service in an ASM instance
over HTTP

Ingress gateways in an Alibaba Cloud Service Mesh (ASM) instance support protocol transcoding. This
feature allows you to send HTTP requests that use the JSON data format from your browser or client to
access gRPC services in an ASM instance. This topic describes how to use an ingress gateway to access a
gRPC service in an ASM instance over HTTP.

Prerequisites

e The grpc-transcodertoolis installed. The tool is used to automatically generate Envoy filters. For
more information, visit the grpc-transcoder page on GitHub.

e Protocol Buffers is installed. For more information, visit the Protocol Buffers page on GitHub.

Context

Envoy is a proxy service that composes the data plane of an ASM instance. Envoy contains various built -
in HTTP filter extensions, including the gRPC-JSON transcoder. To enable the gRPC-JSON transcoder,
Envoy defines relevant filter protocols. For more information, see gRPC-)SON transcoder. Accordingly,
the control plane of an ASM instance must define an Envoy filter to declare the specific phase in which
the gRPC-JSON transcoder is enabled. Then, the defined Envoy filter is applied to enable the gRPC-JSON
transcoder in the specific phase.

Transcoding process

> Document Version: 20220712


https://github.com/AliyunContainerService/grpc-transcoder
https://github.com/protocolbuffers/protobuf/releases
https://www.envoyproxy.io/docs/envoy/latest/api-v2/config/filter/http/transcoder/v2/transcoder.proto#envoy-api-msg-config-filter-http-transcoder-v2-grpcjsontranscoder

Best Practices- Workloads Alibaba Cloud Service Mesh

Ingress gateways in an ASM instance can transcode HTTP/JSON to gRPC. The following figure shows the
transcoding process.

@j Alibabacloud ServiceMesh(ASM)

virtualService

/
e 1O) ®/

http —_| @ AS K/
ﬁm . 5|de|:ar

— Ingress Gateway

grpc

ASM
sidecar

grpc-servicel

roc ASM
arp sidecar

grpc-service2

@ Alibabacloud Kubernetes(ACK)

No. Description

The control plane of an ASM instance applies the following
configurations to an ingress gateway: an Envoy filter that is used for
gRPC transcoding, and an Istio gateway and a virtual service that are

1 used to configure rules to route traffic to a gRPC service port. After the
ingress gateway receives the configurations, the ingress gateway
immediately loads the configurations for the configurations to take
effect.

After an HTTP request is received from your browser or client, the

5 ingress gateway matches routing rules. Then, the ingress gateway
transcodes the HTTP request to a gRPC request and sends the request
to the destination gRPC service in the ASM instance.

After a gRPC response is received from the backend service, the ingress
3 gateway transcodes the gRPC response to an HTTP response and
returns the HTTP response to you.

Step 1: Add a transcoding declaration

6 > Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices- Workloads

To create a gRPC service, you must first define a .protofile in the Protocol Buffers format. The gRPC
service project encapsulates a gRPC API. You must build an image, compile a Deployment, and then
deploy the gRPC service as a pod to a Container Service for Kubernetes (ACK) cluster by using an ASM

instance.

.

grpc-service-deployment

grpc-service-image

grpc-service-project

ASM
sidecar

To enable transcoding from HTTP/JSON to gRPC, you must add the following transcoding declaration

to the method definition inthe .protofile:

option (google.api.http) = {
get: "/vl/talk/{data}/{meta}"
}i

The .protofile in the hello-servicemesh-grpc sample project is used as an example. The following code
shows the content of the .protofile to which a transcoding declaration is added. For more information,

visit the hello-servicemesh-grpc page on GitHub.

> Document Version: 20220712


https://github.com/AliyunContainerService/hello-servicemesh-grpc

Best Practices- Workloads Alibaba Cloud Service Mesh

import "google/api/annotations.proto";
service LandingService {
//Unary RPC
rpc talk (TalkRequest) returns (TalkResponse) {
option (google.api.http) = {
get: "/vl/talk/{data}/{meta}"
bi

}
message TalkRequest {
string data = 1;

string meta = 2;

Step 2: Generate a .proto-descriptor file

Run the following Protoc command in Protocol Buffers to generate the landing.proto-descriptorfile
fromthe landing.protofile:

# https://github.com/AliyunContainerService/hello-servicemesh-grpc
proto path={path/to/hello-servicemesh-grpc}/grpc/proto
# https://github.com/googleapis/googleapis/tree/master/
proto dep path={path/to/googleapis}
protoc \
--proto_path=${proto _path} \
--proto path=${proto dep path} \
--include imports \
--include source info \
—--descriptor set out=landing.proto-descriptor \

"S{proto path}"/landing.proto

Step 3: Generate a YAML file for creating an Envoy filter

Enter the following code in the command window on your computer to call the gRPC APL. Then, the
grpc-transcoder tool is automatically started to generate a YAML file for creating an Envoy filter.

grpc-transcoder \

--version 1.7 \

--service port 9996 \

--service name grpc-server-svc \
—--proto pkg org.feuyeux.grpc \
--proto_svc LandingService \

—--descriptor landing.proto-descriptor

® version :the Istio version of the ASMinstance.

® service port :the port of the gRPC service.

® service name :the name of the gRPC service.

® proto pkg :the definition of the package name forthe .protofile of the gRPC service.

e proto sve :thedefinition of the service name inthe .protofile of the gRPC service.

8 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Workloads

® descriptor :the path of the .proto-descrptorfile.

The following content for creating an Envoy filter is automatically generated after you run the
preceding code. Copy the following content to the groc-transcoder-envoyfilter.yamifile:

#Generated by ASM (http://servicemesh.console.aliyun.com)
#GRPC Transcoder EnvoyFilter([1l.7]
apiVersion: networking.istio.io/vlalpha3
kind: EnvoyFilter
metadata:
name: grpc-transcoder-grpc-server-svc
spec:
workloadSelector:
labels:
app: istio-ingressgateway
configPatches:
- applyTo: HTTP FILTER
match:
context: GATEWAY
listener:
portNumber: 9996
filterChain:
filter:
name: "envoy.filters.network.http connection manager"
subFilter:
name: "envoy.filters.http.router"
Proxy:
proxyVersion: ~1\.7.%*
patch:
operation: INSERT BEFORE
value:
name: envoy.grpc_json transcoder
typed config:
'@type': type.googleapis.com/envoy.extensions.filters.http.grpc json transcoder
.v3.GrpcdsonTranscoder
proto _descriptor bin: Ctl4ChVnb29nbGUvYXBpL2hOdHAucHJ. ..
services:
- org.feuyeux.grpc.LandingService
print options:
add whitespace: true
always print primitive fields: true
always print enums as ints: false

preserve proto field names: false

Step 4: Create the Envoy filter in the ASM console
1.

2
3
4.
5. Onthe Create page, select a namespace fromthe Namespace drop-down list and copy the
content of the grpc-transcoder-envoyfilter.yamifile that is edited in Step 3: Generate a YAMLfile

> Document Version: 20220712 9



Best Practices- Workloads Alibaba Cloud Service Mesh

forcreating an Envoy filter to the code editor. Then, click Create.

Step 5: Verify the Envoy configuration

Run the following commands in sequence to check whether the dynamic Envoy configuration contains
the gRPC-JSON transcoder:

# Obtain the name of the ingress gateway pod.
ingressgateway pod=$ (kubectl get pod -1 app="istio-ingressgateway" -n istio-system -o jsonp
ath="{.items[0] .metadata.name}"')
# Obtain the timestamp.
timestamp=$ (date "+%YImSd-$HSMSS")
# Obtain the dynamic Envoy configuration and save the configuration to the dynamic listener
s-"Stimestamp".json file.
kubectl -n istio-system exec $ingressgateway pod \
-c istio-proxy \
-- curl -s "http://localhost:15000/config dump?dynamic listeners" >dynamic listeners-"S$ti
mestamp".json
# Check whether the configuration contains the gRPC-JSON transcoder.

grep -B3 -A7 GrpcJsonTranscoder dynamic listeners-"Stimestamp".json

If the following content appears in the output, the dynamic Envoy configuration contains the gRPC-
JSON transcoder:

"name": "envoy.grpc_json_ transcoder",
"typed config": {
"@type": "type.googleapis.com/envoy.extensions.filters.http.grpc json transcoder.v3.Grp
cJsonTranscoder",
"services": [
"org.feuyeux.grpc.LandingService"
1,
"print options": ({
"add whitespace": true,
"always print primitive fields": true

bo

Step 6: Check whether the gRPC service in the ASM instance can be
accessed over HTTP
The .protofile defines the request APl and response declaration of the gRPC service. When you call the

gRPC service by using the request API, the defined response declaration is returned. The following
content shows the request APl and response declaration that are defined inthe .protofile:

e Request APIthat is defined in the .protofile:

rpc talk (TalkRequest) returns (TalkResponse) {
option(google.api.http) = {
get: "/vl/talk/{data}/{meta}"
}i

e Response declaration that is defined in the .protofile:

10 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Workloads

message TalkResponse {
int32 status = 1;
repeated TalkResult results = 2;
}
message TalkResult {
//timestamp
inte4 id = 1;
//enum
ResultType type = 2;
// id:result uuid
// 1idx:language index
// data: hello
// meta: serverside language
map<string, string> kv = 3;
}
enum ResultType {
OK = 0;
FAIL = 1;

Run the following commands to use an ingress gateway to call the gRPC service over HTTP:

# Obtain the IP address of the ingress gateway.

INGRESS IP=$(k -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadB
alancer.ingress([0] .ip}")

# Send an HTTP request to access port 9996 of the ingress gateway. The path is /vl/talk/{da
ta}/{meta}.

curl http://$INGRESS IP:9996/vl/talk/0/java

Expected output:

{

"status": 200,

"results": [
{
"id": "699882576081691",
"type": "OK",

"kv'": |

"data": "Hello",

"meta": "JAVA",

"id": "8cl75d5c-d8a3-4197-a7f8-6e3elablfe59",
"idx": "0"

If the return result is as expected after you use an ingress gateway to call the gRPC service over HTTP,
the call is successful, and transcoding from HTTP/JSON to gRPC is successful.

> Document Version: 20220712 11



Best Practices- Workloads Alibaba Cloud Service Mesh

1.2. Implement auto scaling for
workloads by using ASM metrics

Alibaba Cloud Service Mesh (ASM) collects telemetry data for Container Service for Kubernetes (ACK)
clusters in a non-intrusive manner, which makes the service communication in the clusters observable.
This telemetry feature makes service behaviors observable and helps O&M staff troubleshoot, maintain,
and optimize applications without increasing maintenance costs. Based on the four key monitoring
metrics, including latency, traffic, errors, and saturation, ASM generates a series of metrics forthe
services that it manages. This topic describes how to implement auto scaling for workloads by using
ASM metrics.

Prerequisites

e AnACK clusteris created. For more information, see Create an ACK managed cluster.
e An ASM instance is created. For more information, see Create an ASM instance.

e A Prometheus instance and a Grafana instance are deployed in the ACK cluster. For more information,
see Use Prometheus to monitor an ACK cluster.

e A Prometheus instance is deployed to monitor the ASM instance. For more information, see Deploy a
self-managed Prometheus instance to monitor ASM instances.

Context

ASM generates a series of metrics for the services that it manages. For more information, visit Istio
Standard Metrics.

Auto scaling is an approach that is used to automatically scale up or down workloads based on the
resource usage. In Kubernetes, two autoscalers are used to implement auto scaling.

e Cluster Autoscaler (CA): CAs are used to increase or decrease the number of nodes in a cluster.

e Horizontal Pod Autoscaler (HPA): HPAs are used to increase or decrease the number of pods that are
used to deploy applications.

12 > Document Version: 20220712


https://www.alibabacloud.com/help/doc-detail/95108.htm#task-skz-qwk-qfb
https://www.alibabacloud.com/help/doc-detail/152154.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/94622.htm#task-1597149
https://www.alibabacloud.com/help/doc-detail/184885.htm#task-1956912
https://istio.io/latest/docs/reference/config/metrics/

Alibaba Cloud Service Mesh Best Practices-Workloads

The aggregation layer of Kubemnetes allows third-party applications to extend the Kubernetes API by
registering themselves as APl add-ons. These add-ons can be used to implement the custom metrics
APl and allow HPAs to query any metrics. HPAs periodically query core metrics such as CPU utilization
and memory usage by using the resource metrics AP In addition, HPAs use the custom metrics APIto
query application-specific metrics, such as the observability metrics that are provided by ASM.

€

Metrics
Config by '@ Metrics Custom Metrics
using Server Adapter
Mixerless A 4
Telemetry
V2 Metrics
Aggregator

A

Deployment <—‘ HPA

e

rap
&

Pods Proxy

Step 1: Enable Prometheus monitoring for the ASM instance
1.

N

2

3.

4. Onthe details page of the ASMinstance, choose in the left-side navigation pane. On the Basic
Information page, click.

@ Note Make sure that the Istio version of the ASM instance is 1.6.8.4 or later.
5. Inthe Settings Update panel, select Enable Promet heus, select Enable Self-managed

Prometheus, enter the endpoint of the Prometheus instance, and then click OK.

After you enable Prometheus monitoring for the ASM instance, ASM automatically configures the
Envoy filters that are required for Prometheus.

Step 2: Deploy the adapter for the custom metrics API

1. Download the installation package of the adapter. For more information, visit kube-metrics-
adapter. Then, install and deploy the adapter for the custom metrics APl in the ACK cluster.

## Use Helm 3.
helm -n kube-system install asm-custom-metrics ./kube-metrics-adapter --set prometheus

.url=http://prometheus.istio-system.svc:9090

> Document Version: 20220712 13


https://github.com/banzaicloud/kube-metrics-adapter/tree/master/deploy/charts/kube-metrics-adapter

Best Practices- Workloads Alibaba Cloud Service Mesh

2. Afterthe installation is completed, run the following commands to check whether kube-metrics-
adapteris enabled.

o Checkwhetherthe autoscaling/v2beta APl group exists.

kubectl api-versions |grep "autoscaling/v2beta"
Expected output:
autoscaling/v2beta
o Checkthe status of the pod of kube-metrics-adapter.

kubectl get po -n kube-system |grep metrics-adapter

Expected output:

asm-custom-metrics-kube-metrics-adapter-85c6d5d865-2cm57 1/1 Running 0
19s

o Query the custom metrics that are provided by kube-metrics-adapter.

kubectl get --raw "/apis/external.metrics.k8s.io/vlbetal" | jqg .

Expected output:

"kind": "APIResourcelList",

"apiversion": "v1",
"groupVersion": "external.metrics.k8s.io/vlbetal",
"resources": []

Step 3: Deploy a sample application
1. Create a namespace named test. For more information, see Manage namespaces.
2. Enable automatic sidecar injection. For more information, see Install a sidecar proxy.
3. Deploy a sample application.

i. Create afile named podinfo.yami.

apiVersion: apps/vl
kind: Deployment
metadata:
name: podinfo
namespace: test
labels:
app: podinfo
spec:
minReadySeconds: 5
strategy:
rollingUpdate:
maxUnavailable: 0
type: RollingUpdate
selector:
matchLabels:

PN - D - YN

14 > Document Version: 20220712


https://www.alibabacloud.com/help/doc-detail/89265.htm#task-kms-ztx-b2b
https://www.alibabacloud.com/help/doc-detail/150540.htm#task-2391685

Alibaba Cloud Service Mesh

Best Practices- Workloads

dpp: pPOULIILO
template:
metadata:
annotations:
prometheus.io/scrape: "true"
labels:
app: podinfo
spec:
containers:
- name: podinfod
image: stefanprodan/podinfo:latest
imagePullPolicy: IfNotPresent
ports:
- containerPort: 9898
name: http
protocol: TCP
command:
- ./podinfo
- ——port=9898
- —-level=info
livenessProbe:
exec:
command :
- podcli
- check
- http
- localhost:9898/healthz
initialDelaySeconds: 5
timeoutSeconds: 5
readinessProbe:
exec:
command :
- podcli
- check
- http
- localhost:9898/readyz
initialDelaySeconds: 5

timeoutSeconds: 5

resources:
limits:
cpu: 2000m
memory: 512Mi
requests:
cpu: 100m

memory: 64Mi
apiVersion: vl
kind: Service
metadata:
name: podinfo
namespace: test
labels:
app: podinfo
spec:
tvne: ClusterTP

> Document Version: 20220712

15



Best Practices- Workloads Alibaba Cloud Service Mesh

ports
- name: http
port: 9898

targetPort: 9898
protocol: TCP
selector:

app: podinfo

ii. Deploy the podinfo application.

kubectl apply -n test -f podinfo.yaml

4. To trigger auto scaling, you must deploy a load testing service in the test namespace for triggering
requests.

i. Create afile named loadtester.yam.

apiVersion: apps/vl
kind: Deployment
metadata:
name: loadtester
namespace: test
labels:
app: loadtester
spec:
selector:
matchLabels:
app: loadtester
template:
metadata:
labels:
app: loadtester
annotations:
prometheus.io/scrape: "true"
spec:
containers:
- name: loadtester
image: weaveworks/flagger-loadtester:0.18.0
imagePullPolicy: IfNotPresent
ports:
- name: http
containerPort: 8080
command :
- ./loadtester
- —port=8080
- -log-level=info
- —timeout=1h
livenessProbe:
exec:
command:
- wget
- —-—quiet
- —-—tries=1
- —-—timeout=4

- —--spider

16 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Workloads

- http://localhost:8080/healthz
timeoutSeconds: 5
readinessProbe:
exec:
command:
- wget
- —-quiet
- ——tries=1
- —-—timeout=4
- —-spider
- http://localhost:8080/healthz
timeoutSeconds: 5
resources:
limits:
memory: "512Mi"
cpu: "1000m"
requests:
memory: "32Mi"
cpu: "10m"
securityContext:
readOnlyRootFilesystem: true
runAsUser: 10001
apiVersion: vl
kind: Service
metadata:
name: loadtester
namespace: test
labels:
app: loadtester
spec:
type: ClusterIP
selector:
app: loadtester

ports:
- name: http
port: 80

protocol: TCP
targetPort: http

ii. Deploy the load testing service.

kubectl apply -n test -f loadtester.yaml

5. Checkwhetherthe sample application and the load testing service are deployed.

i. Checkthe pod status.

kubectl get pod -n test

Expected output:

NAME READY STATUS RESTARTS AGE
loadtester-64df4846b9-nxhvv  2/2 Running 0 2m8s
podinfo-6d845cc8fc-26xbg 2/2 Running 0 11lm

> Document Version: 20220712

17



Best Practices- Workloads Alibaba Cloud Service Mesh

ii. Logonto the containerforload testing and run the hey command to generate loads.

export loadtester=$ (kubectl -n test get pod -1 "app=loadtester" -o jsonpath='{.item
s[0] .metadata.name}")

kubectl -n test exec -it ${loadtester} -c loadtester -- hey -z 5s -c 10 -g 2 http:/
/podinfo.test:9898

A load is generated, which indicates that the sample application and the load testing service
are deployed.

Step 4: Configure an HPA by using ASM metrics

Define an HPA to scale the workloads of the Podinfo application based on the number of requests that
the Podinfo application receives per second. When more than 10 requests are received per second on
average, the HPA increases the number of replicas.

1. Create afile named hpa.yaml and copy the following code to the file:

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: podinfo
namespace: test
annotations:
metric-config.external.prometheus-query.prometheus/processed-requests—-per-second: |
sum (
rate (
istio requests total{
destination workload="podinfo",
destination workload namespace="test",
reporter="destination"
} [1m]

spec:
maxReplicas: 10
minReplicas: 1
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: podinfo
metrics:
- type: External
external:
metric:
name: prometheus—-query
selector:
matchLabels:
query-name: processed-requests-per-second
target:
type: AverageValue

averageValue: "10"

2. Deploy the HPA.

18 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Workloads

kubectl apply -f hpa.yaml

3. Checkwhether the HPA is deployed.

Query the custom metrics that are provided by kube-metrics-adapter.

kubectl get --raw "/apis/external.metrics.k8s.io/vlbetal" | jq .

Expected output:

{
"kind": "APIResourcelList",
"apiVersion": "v1",
"groupVersion": "external.metrics.k8s.io/vlbetal",
"resources": [
{
"name": "prometheus-query",
"singularName": "",
"namespaced": true,
"kind": "ExternalMetricValuelList",
"verbs": [

"get"

The output contains the resource list of custom ASM metrics, which indicates that the HPA is
deployed.

Verify auto scaling
1. Log onto the container for load testing and run the hey command to generate loads.

kubectl -n test exec -it ${loadtester} -c loadtester -- sh
~ $ hey -z 5m -c 10 -g 5 http://podinfo.test:9898

2. View the effect of auto scaling.

(@ Note Metrics are synchronized every 30 seconds by default. The container can be scaled
only once in every 3 to 5 minutes. This way, the HPA can reserve time for automatic scaling
before the conflict strategy is executed.

watch kubectl -n test get hpa/podinfo

Expected output:

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
podinfo Deployment/podinfo 8308m/10 (avg) 1 10 6 124m

The HPA starts to scale up workloads in 1T minute until the number of requests per second
decreases under the specified threshold. After the load testing is completed, the number of
requests per second decreases to zero. Then, the HPA starts to decrease the number of pods. A
few minutes later, the number of replicas decreases from the value in the preceding output to one.

> Document Version: 20220712 19



Best Practices- Alibaba Cloud Service Mesh

2.Traffic Management
2.1. Use ASM to deploy an application

in blue-green release mode and
phased release mode

This topic describes how to use virtual services and destination rules of Alibaba Cloud Service Mesh
(ASM) to deploy an application in blue-green release mode and phased release mode.

Prerequisites

e At least one ASMinstance is created. For more information, see

e At least one Alibaba Cloud Container Service for Kubernetes (ACK) cluster is added to the ASM
instance. For more information, see

e The Bookinfo application is deployed in the ACK cluster that is added to the ASM instance. For more
information, see

e Aningress gateway is deployed forthe ACK cluster that is added to the ASM instance. For more
information, see

Create a destination rule

Create a destination rule for the Bookinfo application that is deployed in your ASM instance. For more
information, see . The following code shows the configuration of a sample
destination rule:

apiVersion: networking.istio.io/vlalpha3
kind: DestinationRule
metadata:
name: productpage
spec:
host: productpage
subsets:
- name: vl
labels:
version: vl
apiVersion: networking.istio.io/vlalpha3
kind: DestinationRule
metadata:
name: reviews
spec:
host: reviews
subsets:
- name: vl
labels:
version: vl
- name: v2
labels:

version: v2

— nama-. 73

20 Document Version: 20220712


https://www.alibabacloud.com/help/doc-detail/152154.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/148231.htm#task-2372122
https://www.alibabacloud.com/help/doc-detail/149547.htm#task-2375501
https://www.alibabacloud.com/help/doc-detail/149546.htm#task-2372970
https://www.alibabacloud.com/help/doc-detail/150503.htm#task-2390971

Alibaba Cloud Service Mesh Best Practices-Traffic Management

Lams . vo

labels:
version: v3
apiVersion: networking.istio.io/vlalpha3
kind: DestinationRule
metadata:
name: ratings
spec:
host: ratings
subsets:
- name: vl
labels:
version: vl
- name: v2
labels:
version: v2
- name: v2-mysqgl
labels:
version: v2-mysqgl
- name: v2-mysgl-vm
labels:
version: v2-mysgl-vm
apiVersion: networking.istio.io/vlalpha3
kind: DestinationRule
metadata:
name: details
spec:
host: details
subsets:
- name: vl
labels:
version: vl
- name: v2
labels:

version: v2

Create a virtual service

Create a virtual service for the Bookinfo application that is deployed in your ASM instance. For more
information, see Manage virtual services. The following code shows the configuration of a sample virtual
service:

> Document Version: 20220712 21


https://www.alibabacloud.com/help/doc-detail/150502.htm#task-2390969

Best Practices-Traffic Management

Alibaba Cloud Service Mesh

apiVersion: networking.istio.io/vlalpha3
kind: VirtualService
metadata:
name: productpage
spec:
hosts:
- productpage
http:
- route:
- destination:
host: productpage
subset: vl
apiVersion: networking.istio.io/vlalpha3
kind: VirtualService
metadata:
name: reviews
spec:
hosts:
- reviews
http:
- route:
- destination:
host: reviews
subset: vl
apiVersion: networking.istio.io/vlalpha3
kind: VirtualService
metadata:
name: ratings
spec:
hosts:
- ratings
http:
- route:
- destination:
host: ratings
subset: vl
apiVersion: networking.istio.io/vlalpha3
kind: VirtualService
metadata:
name: details
spec:
hosts:
- details
http:
= FOUt@s
- destination:
host: details
subset: vl

22

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices- Traffic Management

Deploy version 2 in blue-green release mode

Afterthe preceding destination rule and virtual service are created, version 2 of the reviews microservice
of the Bookinfo application is running. However, no traffic is routed to version 2. To route traffic to
version 2, you must deploy version 2 in blue-green release mode.

Create a virtual service to deploy version 2 of Bookinfo in blue-green release mode. For more
information, see Manage virtual services. The following code shows the configuration of a sample virtual
service:

apiVersion: networking.istio.io/vlalpha3
kind: VirtualService
metadata:

name: reviews
spec:

hosts:

- reviews

http:

- route:

- destination:
host: reviews

subset: v2

After the preceding virtual service is created, refresh the page of Bookinfo. The reviews microservice
displays ratings as black stars.

Deploy version 3 in phased release mode to handle traffic by weight

You can run both version 2 and version 3 online and route traffic to the two versions by weight, such as
50% to 50%.

Create a virtual service to deploy version 3 of Bookinfo in phased release mode. For more information,
see Manage virtual services. The following code shows the configuration of a sample virtual service:

apiVersion: networking.istio.io/vlalpha3
kind: VirtualService
metadata:

name: reviews
spec:

hosts:

- reviews

http:

- route:

- destination:
host: reviews
subset: v2

weight: 50

- destination:
host: reviews
subset: v3

weight: 50

> Document Version: 20220712 23


https://www.alibabacloud.com/help/doc-detail/150502.htm#task-2390969
https://www.alibabacloud.com/help/doc-detail/150502.htm#task-2390969

Best Practices-Traffic Management Alibaba Cloud Service Mesh

Afterthe preceding virtual service is created, refresh the page of Bookinfo. The reviews microservice
displays ratings by using version 2 or version 3 at random. T he reviews microservice of version 3 displays
ratings as red stars.

Deploy version 3 in phased release mode based on the request
content

Phased release based on the traffic weight cannot meet the requirements of all scenarios. You can also
deploy an application in phased release mode based on the user identity. This way, the application
displays different pages for different users.

Create a virtual service to deploy the Bookinfo application in phased release mode. For more
information, see Manage virtual services. The following code shows the configuration of a sample virtual
service:

apiVersion: networking.istio.io/vlalpha3
kind: VirtualService
metadata:
name: reviews
spec:
hosts:
- reviews
http:
- match:

- headers:

end-user:
exact: jason
route:

- destination:
host: reviews
subset: v3

- route:

- destination:

host: reviews

subset: v2

After the preceding virtual service is created, refresh the page of Bookinfo. Bookinfo always displays
ratings as black stars. You can click Sign in in the upper-right corner to log on to Bookinfo with the
username jason. The logon does not require a password. After you log on, you can find that Bookinfo
displays ratings as red stars.

@ Note When you log onto Bookinfo and access its backend microservices, your requests
containthe HTTP header end-user=xxx , which indicates the useridentity. If you log onto
Bookinfo with the username jason, the rule in the YAML file is matched and your requests are
directed to the reviews microservice of version 3.

24 > Document Version: 20220712


https://www.alibabacloud.com/help/doc-detail/150502.htm#task-2390969

Alibaba Cloud Service Mesh Best Practices- Traffic Management

2.2. Use ASM and Wasm to implement
end-to-end A/B testing in a non-
intrusive manner

Alibaba Cloud Service Mesh (ASM) allows you to manage the traffic of microservices in a non-intrusive
manner. However, to implement end-to-end A/B testing on a microservice in ASM without changes on
the code of the microservice, you must also use WebAssembly (Wasm). T his topic shows you how to use
ASM and Wasmto implement end-to-end A/B testing in a non-intrusive manner.

Prerequisites

e An ASM instance is created. For more information, see Create an ASM instance.
@ Note Make sure that the version of the ASMinstance is 1.8 or later.

e A Container Service for Kubernetes (ACK) cluster is added to the ASM instance. For more information,
see Add a clusterto an ASMinstance.

e Aningress gateway is deployed in the ACK cluster that is added to the ASMinstance. For more
information, see Deploy an ingress gateway service.

e Animage repository is created in Container Registry. The address of the image repository and the
information that is used to log on to the image repository are obtained. For more information, see
Use a Container Registry Enterprise Edition instance to push and pull images.

Context

Wasmis an effective and portable binary instruction format. You can use Wasmto extend the data
plane of an ASMinstance with new features. For more information about non-intrusive end-to-end A/B
testing and Wasm development, see Wasm-based non-intrusive end-to-end A/B testing.

@ Note The image repository in this topic is for reference only. Use an image script to build and
push images to your self-managed image repository. For more information about the image script,
visit hello-servicemesh-grpc.

Step 1: Enable Wasm-based ASM instance extension

1. Create a runtime-config.jsonfile that contains the following code:

> Document Version: 20220712 25


https://www.alibabacloud.com/help/doc-detail/147793.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/148231.htm#task-2372122
https://www.alibabacloud.com/help/doc-detail/150510.htm#task-2372970
https://www.alibabacloud.com/help/doc-detail/198690.htm#task-2023726
https://developer.aliyun.com/article/782181
https://github.com/aliyunContainerService/hello-servicemesh-grpc/tree/main/docker

Best Practices-Traffic Management Alibaba Cloud Service Mesh

"type": "envoy proxy",

"abiVersions": [
"v0-541b2c1155fffbl5ccde92b8324£3e38£733%ab",
"v0-097b7£f2e4cclfb490ccl1943d0d633655ac3c522f",
"v0-4689a30309abf3laee%9ae36e73d34b1bb182685f",
"v0.2.1"

1,

"config": {
"rootIds": [

"propaganda filter root"

2. Runthe following command to push a Wasmfilter to an image repository in Container Registry:

oras push ${WASM REGISTRY}/propagate header:0.0.1 \
--manifest-config \
-—runtime-config.json:application/vnd.module.wasm.config.vl+json \

${WASM IMAGE}:application/vnd.module.wasm.content.layer.vl+wasm

©  WASM REGISTRY :the address of the image repository.
o wasM 1MAcE :the file name of the Wasmfilter under the current path.
o0 runtime-config.json :the runtime configuration file underthe current path.
3. Enable Wasm-based ASM instance extension.
i. Runthe following command to checkthe version of Alibaba Cloud CLI:
The version of Alibaba Cloud CLI must be 3.0.73 or later.

aliyun version

ii. Runthe following command to enable Wasm-based ASM instance extension:

aliyun servicemesh UpdateMeshFeature --ServiceMeshId=xxxxxx --WebAssemblyFilterEnab
led=true

4. Runthe following command to check whether Wasm-based ASM instance extension is enabled:

aliyun servicemesh DescribeServiceMeshDetail \
--ServiceMeshId $MESH ID |
jg '.ServiceMesh.Spec.MeshConfig.WebAssemblyFilterDeployment'

The following output is expected:

"Enabled": true

5. Runthe following command to checkthe status of the asmwasm-cache DaemonSets:

After Wasm-based ASM instance extension is enabled, a DaemonSet that is named asmwasm-
cache is created for each node of the ACK cluster.

26 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Traffic Management

kubectl get daemonset -n istio-system

The following output is expected:

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR
AGE
asmwasm-cache 4 4 4 4 4 kubernetes.io/os=1

inux 34

Step 2: Deploy resources forimplementing A/B testing

1. Create a hello.yamifile that contains the following code in the kube directory:

The hello.yaml file defines the Hello1, Hello2, and Hello3 applications. Each application has two
versions, which are version 1 and version 2.

@ Note You can also obtain a YAML file that defines the Hello application from GitHub. For
more information, visit Kube.

apiVersion: apps/vl
kind: Deployment
metadata:
name: hellol-deploy-vl
labels:
app: hellol-deploy-vl
service: hellol-deploy
version: vl
spec:
replicas: 1
selector:
matchLabels:
app: hellol-deploy-vl
service: hellol-deploy
version: vl
template:
metadata:
labels:
app: hellol-deploy-vl
service: hellol-deploy
version: vl
spec:
serviceAccountName: http-hello-sa
containers:
- name: hello-vl-deploy
image: registry.cn-beijing.aliyuncs.com/asm repo/http springboot v1:1.0.0
env:
- name: HTTP HELLO BACKEND
value: "hello2-svc"
ports:
- containerPort: 8001
apiVersion: apps/vl
kind: Deployment

metadata:

> Document Version: 20220712


https://github.com/AliyunContainerService/rust-wasm-4-envoy/tree/master/propagate-headers-filter/config/kube

Best Practices- Traffic Management

Alibaba Cloud Service Mesh

name: hellol-deploy-v2
labels:
app: hellol-deploy-v2
service: hellol-deploy
version: v2
spec:
replicas: 1
selector:
matchLabels:
app: hellol-deploy-v2
service: hellol-deploy
version: v2
template:
metadata:
labels:
app: hellol-deploy-v2
service: hellol-deploy
version: v2

spec:

serviceAccountName: http-hello-sa

containers:

- name: hello-v2-deploy

image: registry.cn-beijing.aliyuncs.com/asm repo/http springboot v2:1.0.0

env:

— name: HTTP HELLO BACKEND

value: "hello2-svc"

ports:

- containerPort: 800lapiVersion: vl

kind: Service
metadata:
name: hellol-svc
labels:
app: hellol-svc

spec:
ports:
- port: 8001
name: http
selector:

service: hellol-deployapiVersion:

kind: Deployment
metadata:
name: hello2-deploy-vl
labels:
app: hello2-deploy-vl
service: hello2-deploy
version: vl
spec:
replicas: 1
selector:
matchLabels:
app: hello2-deploy-vl
service: hello2-deploy

version: vl

apps/vl

28

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Traffic Management

template:
metadata:
labels:
app: hello2-deploy-vl
service: hello2-deploy
version: vl
spec:
serviceAccountName: http-hello-sa
containers:
- name: hello-vl-deploy
image: registry.cn-beijing.aliyuncs.com/asm repo/http springboot v1:1.0.0
env:
- name: HTTP HELLO BACKEND
value: "hello3-svc"
ports:
- containerPort: 8001
apiVersion: apps/vl
kind: Deployment
metadata:
name: hello2-deploy-v2
labels:
app: hello2-deploy-v2
service: hello2-deploy
version: v2
spec:
replicas: 1
selector:
matchLabels:
app: hello2-deploy-v2
service: hello2-deploy
version: v2
template:
metadata:
labels:
app: hello2-deploy-v2
service: hello2-deploy
version: v2
spec:
serviceAccountName: http-hello-sa
containers:
- name: hello-v2-deploy
image: registry.cn-beijing.aliyuncs.com/asm repo/http springboot v2:1.0.0
env:
- name: HTTP HELLO BACKEND
value: "hello3-svc"
ports:
- containerPort: 800lapiVersion: vl
kind: Service
metadata:
name: hello2-svc
labels:
app: hello2-svc

> Document Version: 20220712

29



Best Practices-Traffic Management Alibaba Cloud Service Mesh

spec:
ports:
- port: 8001
name: http
selector:

service: hello2-deployapiVersion: apps/vl
kind: Deployment
metadata:
name: hello3-deploy-vl
labels:
app: hello3-deploy-vl
service: hello3-deploy
version: vl
spec:
replicas: 1
selector:
matchLabels:
app: hello3-deploy-vl
service: hello3-deploy
version: vl
template:
metadata:
labels:

app: hello3-deploy-vl

service: hello3-deploy

version: vl

spec:
serviceAccountName: http-hello-sa
containers:

- name: hello-vl-deploy
image: registry.cn-beijing.aliyuncs.com/asm repo/http springboot v1:1.0.0
ports:

- containerPort: 8001
apiVersion: apps/vl
kind: Deployment
metadata:
name: hello3-deploy-v2
labels:
app: hello3-deploy-v2
service: hello3-deploy
version: v2
spec:
replicas: 1
selector:
matchLabels:
app: hello3-deploy-v2
service: hello3-deploy
version: v2
template:
metadata:
labels:
app: hello3-deploy-v2

30 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices- Traffic Management

service: hello3-deploy
version: v2
spec:
serviceAccountName: http-hello-sa
containers:
- name: hello-v2-deploy
image: registry.cn-beijing.aliyuncs.com/asm repo/http springboot v2:1.0.0
ports:
- containerPort: 800lapiVersion: vl

kind: Service
metadata:
name: hello3-svc
labels:
app: hello3-svc
spec:
ports:
- port: 8001
name: http
selector:

service: hello3-deployapiVersion: vl

kind: ServiceAccount
metadata:
name: http-hello-sa
labels:
account: http-hello-deploy

2. Create a mesh.yamifile that contains the following code in the meshdirectory:

@ Note You can also obtain a YAML file that defines ingress gateways, destination rules,
and virtual services from GitHub. For more information, visit Mesh.

The mesh.yaml file defines an ingress gateway, three destination rules, and three virtual services.
The following subsets are defined in the destination rules:

o hello1v1: the version 1 of the Hello1 application. hello1v2: the version 2 of the Hello1
application.

o hello2v1: the version 1 of the Hello2 application. hello2v2: the version 2 of the Hello2
application.

o hello3v1: the version 1 of the Hello3 application. hello3v2: the version 2 of the Hello3
application.

The following routing rules are configured in the virtual services:

o Only requests whose headers contain route-v:v2 can be routed to hello1v2. Otherwise, requests
are routed to hello1v1.

o Only requests whose headers contain route-v:hello2v2 can be routed to hello2v2. Otherwise,
requests are routed to hello2v1.

o Only requests whose headers contain route-v:hello3v2 can be routed to hello3v2. Otherwise,
requests are routed to hello3v1.

apiVersion: networking.istio.io/vlalpha3

> Document Version: 20220712 31


https://github.com/AliyunContainerService/rust-wasm-4-envoy/tree/master/propagate-headers-filter/config/mesh

Best Practices- Traffic Management

Alibaba Cloud Service Mesh

kind: DestinationRule
metadata:
name: hellol-dr
spec:
host: hellol-svc
subsets:
- name: hellolvl
labels:
version: vl
- name: hellolv2
labels:

version: v2

apiVersion: networking.istio.io/vlalpha3

kind: Gateway
metadata:
name: hello-gateway
spec:
selector:
istio: ingressgateway
servers:
- port:
number: 8001
name: http
protocol: HTTP

hosts:

— nxn

# https://istio.io/latest/docs/reference/config/networking/virtual-service/

apiVersion: networking.istio.io/vlalpha3

kind: VirtualService
metadata:

name: hellol-vs

spec:
hosts:
— nxn
gateways:
- hello-gateway
# - mesh
http:
- name: hellol-vl-route
match:
- headers:
route-v:
exact: v2
route:
- destination:
host: hellol-svc
subset: hellolv2
= route:
- destination:

host: hellol-svc
subset: hellolvl

32

> Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices- Traffic Management

apiVersion: networking.istio.io/vlalpha3
kind: DestinationRule
metadata:
name: hello2-dr
spec:
host: hello2-svc
subsets:
- name: hello2vl
labels:
version: vl
- name: hello2v2
labels:
version: v2
apiVersion: networking.istio.io/vlalpha3
kind: VirtualService
metadata:
name: hello2-vs
spec:
hosts:
- hello2-svc
http:
- name: hello2-v2-route
match:
- headers:
route-v:
exact: hello2v2
route:
- destination:
host: hello2-svc
subset: hello2v2
- route:
- destination:
host: hello2-svc
subset: hello2vl
apiVersion: networking.istio.io/vlalpha3
kind: DestinationRule
metadata:

name: hello3-dr

spec:
host: hello3-svc
subsets:

- name: hello3vl
labels:
version: vl
- name: hello3vl
labels:
version: v2
- name: hello3v2
labels:
version: v2

apiVersion: networking.istio.io/vlalpha3

TramAe T73 v+a1121 CAnvrra A~

> Document Version: 20220712

33



Best Practices-Traffic Management Alibaba Cloud Service Mesh

RLllU. VLILLUGLOSLVLICE
metadata:
name: hello3-vs
spec:
hosts:
- hello3-svc
http:
- match:
- headers:
route-v:
exact: hello3v2
route:
- destination:
host: hello3-svc
subset: hello3v2
- route:
- destination:
host: hello3-svc
subset: hello3vl

3. Runthe following command to deploy the Hello application, ingress gateway, virtual services, and
destination rules:

alias k="kubectl --kubeconfig SUSER CONFIG"
alias m="kubectl --kubeconfig SMESH CONFIG"
k -n "SNS" apply -f kube/kube.yaml
m -n "SNS" apply -f mesh/mesh.yaml

Step 3: Deploy a custom ASMFilterDeployment resource
1. Create a secret forthe ACK cluster to access the image repository.
For more information about the secrets of ACK clusters, see Secret.

i. Create a myconfig.jsonfile that contains the following code:

{
"auths": {
"kxxxxxxxx* cn-hangzhou.cr.aliyuncs.com": {
"username" :"*****ysername***x*",

"password" :"*F***F*pagswordr FAx A"

B xxxxxkkkkx cn-hangzhou.cr.aliyuncs.com :the address of the image repository.
m  username :the username of the image repository.

®m  password :the password of the image repository.

34 > Document Version: 20220712


https://kubernetes.io/zh/docs/concepts/configuration/secret/

Alibaba Cloud Service Mesh Best Practices-Traffic Management

ii. Runthe following command to create a secret:

@ Note The secret must be named asmwasm-cache and reside in the ist i0-system
namespace.

kubectl create secret generic asmwasm-cache -n istio-system —--from-file=.dockerconf

igjson=myconfig.json --type=kubernetes.io/dockerconfigjson

2. Deploy the ASMFilterDeployment resource.

i. Create a hello1-afd.yamifile that contains the following code:

apiVersion: istio.alibabacloud.com/vlbetal
kind: ASMFilterDeployment
metadata:
name: hellol-propagate-header
spec:
workload:
kind: Deployment
labels:
app: hellol-deploy-v2

version: v2

filter:
patchContext: 'SIDECAR OUTBOUND'
parameters: '{"head tag name": "route-v", "head tag value": "hello2v2"}'

image: 'wasm-repo-registry.cn-beijing.cr.aliyuncs.com/asm wasm/propagate header
20,017
rootID: 'propaganda filter root'

id: 'hellol-propagate-header'

m Parametersin  workload
a. kind :thetype of the workload.
b. 1abels :thefilter conditions.
m Parametersin  filter
a. patchContext :the context that takes effect.
b. parameters :the parametersthat are required for running the Wasmfilter.
C. image :the address of the image repository to which the Wasmfilter is pushed.
d. rootip :theroot ID of the Wasmfilter.

e. id :theunique ID of the Wasmfilter.

> Document Version: 20220712 35



Best Practices-Traffic Management Alibaba Cloud Service Mesh

ii. Create a hello2-afd.yamifile that contains the following code:

apiVersion: istio.alibabacloud.com/vlbetal
kind: ASMFilterDeployment
metadata:
name: hello2-propagate-header
spec:
workload:
kind: Deployment
labels:
app: hello2-deploy-v2
version: v2
filter:
patchContext: 'SIDECAR OUTBOUND'
parameters: '{"head tag name": "route-v", "head tag value": "hello3v2"}'
image: 'wasm-repo-registry.cn-beijing.cr.aliyuncs.com/asm wasm/propagate header
20,017
rootID: 'propaganda filter root'

id: 'hello2-propagate-header'

m Parametersin  workload
a. kind :thetype of the workload.
b. 1abels :thefilter conditions.
m Parametersin filter
a. patchContext :the context that takes effect.
b. parameters :the parametersthat are required for running the Wasmfilter.
C. image :the address of the image repository to which the Wasmfilter is pushed.
d. rootip :theroot ID of the Wasmfilter.
e. id :the unique ID of the Wasmfilter.

iii. Runthe following command to deploy the ASMFilterDeployment resource:

alias m="kubectl --kubeconfig S$MESH CONFIG"
m apply -f hellol-afd.yaml -n "S$NS"
m apply -f hello2-afd.yaml -n "S$NS"

3. Runthe following command to checkthe deployment of the ASMFilterDeployment resource:

After the ASMFilterDeployment resource is deployed, ASM automatically generates an Envoy filter.

alias m="kubectl --kubeconfig SMESH CONFIG"
m get envoyfilter -n "S$SNS"
m get ASMFilterDeployment -n "S$NS"

The following output is expected:

36 > Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices- Traffic Management

NAME
hellol-propagate-header
hello2-propagate-header
NAME
hellol-propagate-header
hello2-propagate-header

Implement A/B testing

AGE

1s

Os

STATUS
Available
Available

REASON AGE
1ls
1s

Run the following command to implement A/B testing:

alias k="kubectl --kubeconfig SUSER CONFIG"

ingressGatewayIp=$(k -n istio-system get service istio-ingressgateway -o jsonpath='{.status

.loadBalancer.ingress[0] .ip}")

for j in {1..3}; do

curl -H "route-v:v2" "http://$ingressGatewayIp:8001/hello/eric"

echo

done

The following output is expected:

Bonjour eric@hellol:172.17.68.239<Bonjour eric@hello2:172.17.68.209<Bonjour eric@hello3:172

.17.68.208

Bonjour eric@hellol:172.17.68.239<Bonjour eric@hello2:172.17.68.209<Bonjour eric@hello3:172

.17.68.208

Bonjour eric@hellol:172.17.68.239<Bonjour eric@hello2:172.17.68.209<Bonjour eric@hello3:172

.17.68.208

The output indicates that if the headers of the request contain route-v:v2, the request can be routed
to hello1v2, hello2v2, and hello3v2.

Troubleshooting

If the expected output is not returned, you can run the following script code to checkthe logs of

workloads.

e Check Envoy access logs

alias k="kubectl --kubeconfig SUSER CONFIG"

hellol v2 pod=$(k get pod -1 app=hellol-deploy-v2 -n "$NS" -o jsonpath={.items..metadata.

name})

# Change the level of Envoy access logs to info.
k -n "SNS" exec "S$hellol v2 pod" -c istio-proxy -- curl -XPOST -s "http://localhost:15000

/logging?level=info"

# Display Envoy access logs.

k -n "SNS" logs -f deployment/hellol-deploy-v2 -c istio-proxy

e Checkthe logs of the Hello application

lias k="kubectl --kubeconfig SUSER CONFIG"
k -n "SNS" logs -f deployment/hello2-deploy-vl -c hello-vl-deploy

> Document Version: 20220712

37



Best Practices-Traffic Management Alibaba Cloud Service Mesh

2.3. Use ASM and KubeVela to
implement a canary release

KubeVela is a modern and out-of-the-box platform used to deliver and manage applications. You can
use Alibaba Cloud Service Mesh (ASM) and KubeVela to implement canary releases for applications. In
canary releases, applications can be updated in a gradual manner. T his topic describes how to use ASM
and KubeVela to implement a canary release.

Prerequisites

e An ASM instance whose version is v1.9.7.93-g7910a454-aliyun or later is created. For more
information, see Create an ASM instance.

e The ACK clusteris connected by using kubectl. For more information, see Connect to ACK clusters by
using kubectl.

e KubeVela CLlis installed. For more information, see Installation.

e The Kubernetes APl of clusters on the data plane is allowed to access Istio resources. For more
information, see Use the Kubernetes API of clusters onthe data plane to access Istio resources.

Context

KubeVela is a modern and out-of-the-box platformthat makes it easier to deliver and manage
applications across hybrid environments. In addition, KubeVela is highly extensible and allows you to
deal with rapid business changes by updating applications with ease. The Open Application Model
(OAM) of KubeVela is designed and implemented with extreme extensibility. OAM provides
programmable delivery workflows and is application-oriented and independent of infrastructure. For
more information, see Progressive Rollout with Istio.

Cl Pipeline

o -~
P Y

J

Jenkins

Kubernetes

+

by
B

w
(1

Cl CD

Usage notes

38 > Document Version: 20220712


https://www.alibabacloud.com/help/doc-detail/152154.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/86494.htm#task-2076136
https://kubevela.io/zh/docs/install
https://www.alibabacloud.com/help/doc-detail/336919.htm#task-2130268
https://kubevela.io/zh/docs/case-studies/canary-blue-green

Alibaba Cloud Service Mesh Best Practices- Traffic Management

Before you start, you must download and decompress the asm kubevela package on your computer.
All required files are stored in the asm_kubevela folder.

The asm_kubevela folder contains the following files: application.yami, application rollbackyami,
application_rollout-v2.yami, canary-rollout-wf-def.yami, rollback-wf-def.yami, and traffic-trait-
def.yaml. Where:

e InStep 3, the canary-rollout-wf-def.yami, rollback-wf-def.yami, and traffic-trait-def.yamlfiles are
used.

e InStep 4, the gpplication.yamlfile is used.
e InStep 5, the application_rollout-v2.yamifile is used.
e InStep 6, the agpplication_rollback.yamifile is used.

Step 1: Install KubeVela

1.
2.
3. Onthe App Catalog page, search for ack-kubevela. Then, click ack-kubevela.

4. Onthe details page, click Deploy in the upper-right corner. In the Deploy panel, select a cluster, set
relevant parameters, and then click OK.

Step 2: Enable automatic sidecar injection
1.
2
3
4.
5. Onthe Global Namespace page, find the default namespace and clickEnable Automatic
Sidecar Injection inthe Automatic Sidecar Injection column.

6. Inthe Submit message, click OK.

Step 3: Deploy the configuration files of KubeVela

To integrate the traffic management rules of KubeVela with those of ASM, deploy the configuration
files of KubeVela.

@ Note Before you performthis operation, make sure that the Kubernetes API of clusters on
the data plane is allowed to access Istio resources. Otherwise, an error is reported. For more
information, see Use the Kubernetes API of clusters onthe data plane to access Istio resources.

Navigate to the asm_kubevela folder in the command prompt window. Then, run the following
commands to deploy the configuration files of KubeVela:
kubectl apply -f rollback-wf-def.yaml

kubectl apply -f canary-rollout-wf-def.yaml

kubectl apply -f traffic-trait-def.yaml

> Document Version: 20220712 39


https://aliware-images.oss-cn-hangzhou.aliyuncs.com/ASM/Istio%25E8%25B5%2584%25E6%25BA%2590%25E5%25AE%2589%25E8%25A3%2585%25E5%258C%2585/asm_kubevela.zip
https://www.alibabacloud.com/help/doc-detail/336919.htm#task-2130268

Best Practices-Traffic Management Alibaba Cloud Service Mesh

Step 4: Deploy an application and a gateway

1. Navigate to the asm_kubevela folder in the command prompt window. Then, run the following
command to deploy the Bookinfo application:

kubectl apply -f application.yaml

Inthe application.yamlfile, the type parameterinthe traits parameterof the reviews
application is set to canary-traffic. T his indicates that a canary release is configured.

2. Deploy a gateway and a virtual service in the ASM console.
i.
i
il
iv. Deploy a gateway.

a. Onthe details page of the ASMinstance, choose Traffic Management > Gateway in
the left-side navigation pane. On the Gateway page, click Create from YAML.

b. Onthe Create page, select default fromthe Namespace drop-down list, copy the
following content to the code editor, and then click Create.

apiVersion: networking.istio.io/vlalpha3
kind: Gateway
metadata:
name: bookinfo-gateway
spec:
selector:
istio: ingressgateway # use istio default controller
servers:
- port:
number: 80
name: http
protocol: HTTP

hosts:

— nxn

40 > Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices- Traffic Management

v. Deploy a virtual service.

a. Onthe details page of the ASMinstance, choose Traffic Management > VirtualService

in the left-side navigation pane. On the VirtualService page, click Create from YAML.

b. Onthe Create page, select default fromthe Namespace drop-down list, copy the
following content to the code editor, and then click Create.

apiVersion: networking.istio.io/vlalpha3

kind: VirtualService
metadata:

name: bookinfo
spec:

hosts:

— mxw

gateways:

- bookinfo-gateway

http:
- match:
- uri:
exact: /productpage
= WEils
prefix: /static
- uri:
exact: /login
- uri:
exact: /logout
- uri:
prefix: /api/vl/products
route:
- destination:

host: productpage
port:
number: 9080

> Document Version: 20220712

41



Best Practices-Traffic Management Alibaba Cloud Service Mesh

vi. Access the Bookinfo application.

a
b.

C.

Q

Onthe cluster details page, choose Network > Services in the left-side navigation pane.

Inthe upper part of the Services page, select istio-systemfromthe Namespace drop-
down list. Find istio-ingressgateway and view the external endpoint whose port number is
80 in the External Endpoint column. Then, enter /P address of the ingress gateway whose p
ort number is 80/productpage in the address bar of your browser to access the Bookinfo
application.

Refresh the page multiple times. You can see that black stars are displayed on the page.

The Comedy of Errors

Summary: Wikipedia Summary: The Comedy of Errors is one of William Shakespeare's early plays. It is his shortest and one of his most farcical comedies, with a major part of the humour coming from slapstick and
mistaken identity, in addition to puns and word play.

Book Details Book Reviews
Type: ) X .
paperback An extremely entertaining play by Shakespeare. The slapstick humour is
Pages: refreshing!
B oo Reviewer!
PublisherA * %k kK Kk
Language:
English
ISBN-10: Absolutely fun and entertaining. The play lacks thematic depth when compared
1234567800 to other plays by Shakespeare.
ISBN-13:
1231234567890 Reviewer2
* % Kk Kk %k

Step 5: Perform a canary release for an application

1. Navigate to the asm kubevela folder in the command prompt window. Then, run the following
command to update the reviews application and adjust the traffic routed to the application:

kubectl apply -f application rollout-v2.yaml

o The application_rollout-v2.yamlfile is used to update the reviews image fromV2 to V3. In
addition, the file specifies that two instances are updated one by one in two phases.

42

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices- Traffic Management

- name: reviews
type: webservice
properties:
image: docker.io/istio/examples-bookinfo-reviews-v3:1.16.2
port: 9080
volumes:

- name: wlp-output
type: emptyDir
mountPath: /opt/ibm/wlp/output

- name: tmp
type: emptyDir
mountPath: /tmp

traits:
- type: expose
properties:
port:
- 9080
- type: rollout
properties:
targetSize: 2
rolloutBatches:
- replicas: 1
- replicas: 1
- type: canary-traffic
properties:
port: 9080

m targetSize: the number of phases for updating instances.

m rolloutBatches: the number of instances to be updated in each phase.

o The application_rollout-v2.yaml file specifies the following workf lows:

a. The batchPartition parameter is set to 0. This specifies that only one of the two pods of the
reviews application is updated. The traffic.weightedTargets parameter is set to specify that
10% of the traffic is routed to the new reviews application, whereas 90% of the traffic is
routed to the earlier version.

b. The type parameter is set to suspend. T his specifies that the application release is
suspended after the first workflow is complete.

c. The batchPartition parameteris set to 1. This specifies that both pods of the reviews
applications are updated to V3. The traffic.weightedTargets parameter is set to specify
that all traffic is routed to the new reviews application.

> Document Version: 20220712 43



Best Practices-Traffic Management Alibaba Cloud Service Mesh

workflow:
steps:
- name: rollout-lst-batch
type: canary-rollout
properties:
# just upgrade first batch of component
batchPartition: 0
traffic:
weightedTargets:
- revision: reviews-vl
weight: 90 # 90% shift to new version
- revision: reviews-v2
weight: 10 # 10% shift to new version
# give user time to verify part of traffic shifting to newRevision
- name: manual-approval
type: suspend
- name: rollout-rest
type: canary-rollout
properties:
# upgrade all batches of component
batchPartition: 1
traffic:
weightedTargets:
- revision: reviews-v2

weight: 100 # 100% shift to new version

2. Enter /P address of the ingress gateway whose port number is 80/productpage in the address bar
of your browser to access the Bookinfo application.

44 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Traffic Management

Refresh the page multiple times. You can see red stars for 10% of the times and black stars for 90%
of the times.

»

The Comedy of Errors

Summary: Wikipedia Summary: The Comedy of Errors is one of William Shakespeare's early plays. It is his shortest and one of his most farcical comedies, with a major part of the humour coming from slapstick and
mistaken identity, in addition to puns and word play.

Book Details Book Reviews
Type: - ) .
paperback An extremely entertaining play by Shakespeare. The slapstick humour is
Pages: refreshing!
200
Reviewer1

Publisher:
PublisherA * x Kk Kk Kk
Language:
English
ISBN-10: Absolutely fun and entertaining. The play lacks thematic depth when compared
1234567890 to other plays by Shakespeare.
ISBN-13:
123-1234567890 Reviewer2

LB R .0 8-

The Comedy of Errors

Summary: Wikipedia Summary: The Comedy of Errors is one of William Shakespeare's early plays. It is his shortest and one of his most farcical comedies, with a major part of the humour coming from slapstick and
mistaken identity, in addition to puns and word play.

Book Details Book Reviews
Type: - : i
paperback An extremely entertaining play by Shakespeare. The slapstick humour is
Pages: refreshing!
PublisherA * % % %k
Language:
English
ISBN-10: Absolutely fun and entertaining. The play lacks thematic depth when compared
234567600 to other plays by Shakespeare.
ISBN-13:
123-1234567890 Reviewer2
%k ko

3. Runthe following command to continue the application release to update all images of the
reviews applicationto V3:

vela workflow resume book-info

4. Enter IP address of the ingress gateway whose port number is 80/productpage in the address bar
of your browser to access the Bookinfo application.

Refresh the page multiple times. The page displays only red stars. This indicates that the reviews
application is updated to V3.

The Comedy of Errors

Summary: Wikipedia Summary: The Comedy of Errors is one of William Shakespeare's early plays. It is his shortest and one of his most farcical comedies, with a major part of the humour coming from slapstick and
mistaken identity, in addition to puns and word play.

Book Details Book Reviews
Type: L : i
paperback An extremely entertaining play by Shakespeare. The slapstick humour is
Pages: refreshing!
i?llz)lisher- — Reviewer1
PublisherA * % %k Kk
Language:
English
ISBN-10: Absolutely fun and entertaining. The play lacks thematic depth when compared
frsderone to other plays by Shakespeare.
ISBN-13:
123-1234567890 Reviewer2
%* % %k kX

Step 6: (Optional) Roll back the application

> Document Version: 20220712 45



Best Practices-Traffic Management Alibaba Cloud Service Mesh

If you find that the new application does not meet your expectations, you can stop the application
release and roll back the application to the earlier version.

1. Runthe following command to roll back the application:

kubectl apply -f rollback.yaml

In the rollbackyaml file, the type parameter is set to canary-rollback. The following operations are
automatically performed:

o Updatethe targetRevisionName parameter of the applicationto the earlier version. Roll back
all instances of the new application to the earlier version and keep all earlier instances that are
not updated.

o Updatethe route parameter of the virtualservice to route alltraffic to the earlier version.

o Updatethe subset parameter of the destination rule to the earlier version.

workflow:
steps:
- name: rollback

type: canary-rollback
2. Enter /P address of the ingress gateway whose port number is 80/productpage in the address bar
of your browser to access the Bookinfo application.

Refresh the page multiple times. The page displays only black stars. This indicates that the reviews
applicationis rolled backto V2.

Bookinfo Sample

The Comedy of Errors
Summary: Wikipedia Summary: The Comedy of Errors is one of William Shakespeare's early plays. It is his shortest and one of his most farcical comedies, with a major part of the humour coming from slapstick and
mistaken identity, in addition to puns and word play.
Book Details Book Reviews

Type:

paperback An extremely entertaining play by Shakespeare. The slapstick humour is

Pages: refreshing!
200
Publisher: Bevowert
PublisherA * % %k Kk
Language:
English
ISBN-10: Absolutely fun and entertaining. The play lacks thematic depth when compared
1234567890 to other plays by Shakespeare.
ISBN-13:
123-1234567890 Feviewer2
* % % k%

2.4. Use an ASM instance of a
commercial edition to implement an
end-to-end canary release

46 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Traffic Management

If you need to implement an end-to-end canary release among multiple services, you can configure the
TrafficLabel custom resource definition (CRD) to identify traffic characteristics and divide the ingress
traffic of a gateway into reqular traffic and canary traffic. The canary traffic characteristics are passed
among the services that are used to process user requests. This way, an end-to-end canary release is
implemented. This topic uses a sample demo to describe how to use the TrafficLabel CRD to implement
an end-to-end canary release for microservices.

Prerequisites

e An Alibaba Cloud Service Mesh (ASM) instance of a commercial edition is created. The Istio version of
the ASMinstance is 1.10.5.40 or later. For more information, see Create an ASM instance.

e Tracing Analysis is enabled for the ASM instance. When you create the ASM instance, select Enable
Tracing Analysis in the Observability section. For more information, see Create an ASM instance.

e An ASM gateway is created. For more information, see Deploy an ingress gateway service.

e Application monitoring is enabled. For more information, see Monitor application performance.

@ Note Inthis example, the demo application is connected to Application Real-Time
Monitoring Service (ARMS) by using the ARMS agent for Java. For more information about how to
connect to ARMS by using agents for other programming languages, see Overview.

e A Container Service for Kubernetes (ACK) cluster is connected by using kubectl. For more information,
see Connect to ACK clusters by using kubectl.

e The ASM instance is connected by using kubectl. For more information, see Use kubect|to connect to
an ASM instance.

Context

Canary releases can be implemented in various ways. For example, you can use ASM and KubeVela to
implement a progressive canary release, and use ASM to implement a blue-green release and a canary
release for an application. For more information, see Use ASM and KubeVela to implement a canary release
and Use ASM to deploy an application in blue-green release mode and phased release mode. The preceding
two types of canary releases focus on the release of a single service by using the label-based routing
and weight-based traffic distribution of a VirtualService provided by Istio.

> Document Version: 20220712 47


https://www.alibabacloud.com/help/doc-detail/147793.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/147793.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/150510.htm#task-2372970
https://www.alibabacloud.com/help/doc-detail/125726.htm#cs-k8s-arms
https://www.alibabacloud.com/help/doc-detail/138833.htm#concept-2198561
https://www.alibabacloud.com/help/doc-detail/86494.htm#task-ubf-lhg-vdb
https://www.alibabacloud.com/help/doc-detail/150496.htm#task-2390744
https://www.alibabacloud.com/help/doc-detail/337899.htm#task-2130974
https://www.alibabacloud.com/help/doc-detail/178884.htm#task-1936250

Best Practices-Traffic Management Alibaba Cloud Service Mesh

In specific scenarios, the canary release only between two services cannot meet the requirements. For
example, the Cart and Order services both have canary release versions, as shown in the following
figure.

Normal traffic Canary traffic
tag=gray

—_ tag=gray
[ Cart ’
: tag=gray
Cart

When you verify the canary release in this scenario, you can find that: The ingress traffic includes regular
traffic and canary traffic, and the User service needs to identify the traffic characteristics of user
requests. The canary traffic is routed to the canary release version of the Cart service. In this scenario,
the system no longer simply distributes traffic to different backend versions at a specific traffic ratio.
Instead, the canary traffic characteristics are passed among all the services that are used to process
user requests.

The end-to-end canary release in ASMis implemented based on the traffic labeling and label-based
routing features. For more information, see Traffic labeling and label-based routing.

Demo

You can download the orchestration files and related configuration files of the demo.

The following figure shows the architecture of the demo.

x-asm-prefer-tag:
gray

Actor
Service A Service B

The Deployment orchestration file demo.yaml contains the following code:

apivVersion: vl
kind: Service
metadata:
name: spring-boot-istio-client

spec:

48 > Document Version: 20220712


https://www.alibabacloud.com/help/doc-detail/375313.htm#task-2160625
https://alibabacloudservicemesh.oss-cn-beijing.aliyuncs.com/asm-labs/trafficlabel/fulllink-gray-demo-v1.1.tar.gz

Alibaba Cloud Service Mesh

Best Practices- Traffic Management

type: ClusterIP

ports:
- name: http
port: 80

targetPort: 19090
selector:
app: spring-boot-istio-client
apiVersion: apps/vl
kind: Deployment
metadata:
name: spring-boot-istio-client
spec:
replicas: 2
selector:
matchLabels:
app: spring-boot-istio-client
version: base
template:
metadata:
annotations:
armsPilotAutoEnable: 'on'
armsPilotCreateAppName: spring-boot-istio-client
labels:
app: spring-boot-istio-client
version: base
spec:
containers:

- name: spring-boot-istio-client

image: registry.cn-hangzhou.aliyuncs.com/aliacs-app-catalog/spring-boot-istio-cli

ent :Abase
imagePullPolicy: Always
tty: true
ports:

- name: http
protocol: TCP
containerPort: 19090

apiVersion: vl
kind: Service
metadata:
name: spring-boot-istio-server
spec:

type: ClusterIP

ports:
- name: http
port: 18080

targetPort: 18080

- name: grpc

port: 18888
targetPort: 18888
selector:

app: spring-boot-istio-server

> Document Version: 20220712

49



Best Practices- Traffic Management

Alibaba Cloud Service Mesh

apiVersion: apps/vl
kind: Deployment
metadata:
name: spring-boot-istio-server
spec:
replicas: 2
selector:
matchLabels:
app: spring-boot-istio-server
version: base
template:
metadata:
annotations:

armsPilotAutoEnable: 'on'

armsPilotCreateAppName: spring-boot-istio-server

labels:
app: spring-boot-istio-server
version: base
spec:
containers:

- name: spring-boot-istio-server

image: registry.cn-hangzhou.aliyuncs.com/aliacs-app-catalog/spring-boot-istio-ser

ver:Bbase
imagePullPolicy: Always
tty: true
ports:
- name: http
protocol: TCP
containerPort: 18080
- name: grpc
protocol: TCP
containerPort: 18888
apiVersion: apps/vl
kind: Deployment
metadata:
name: spring-boot-istio-client-gray
spec:
replicas: 2
selector:
matchLabels:
app: spring-boot-istio-client
version: gray
template:
metadata:
annotations:

armsPilotAutoEnable: 'on'

armsPilotCreateAppName: spring-boot-istio-client

labels:
app: spring-boot-istio-client
version: gray
spec:
containers:

- name: spring-boot-istio-client

AmmAa~A~ e A~ At Am_hAanaAarhAars A1 A s

mme A /AT A A AA A~ +FalAa~x/crmrdinm~_lnAnt 4 A+ dA_~T A

50

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Traffic Management

Laye. LOYLdULLY « CLITHAIYALIUU . AL LY ULICS « CULL AL Latd app~Calaluy/ Sl Ly ioUuL = Lo LLUTCLL
ent:Agray
imagePullPolicy: Always
tty: true
ports:
- name: http
protocol: TCP
containerPort: 19090
apiVersion: apps/vl
kind: Deployment
metadata:
name: spring-boot-istio-server-gray
spec:
replicas: 2
selector:
matchLabels:
app: spring-boot-istio-server
version: gray
template:
metadata:
annotations:
armsPilotAutoEnable: 'on'
armsPilotCreateAppName: spring-boot-istio-server
labels:
app: spring-boot-istio-server
version: gray
spec:
containers:
- name: spring-boot-istio-server
image: registry.cn-hangzhou.aliyuncs.com/aliacs-app-catalog/spring-boot-istio-serve
r:Bgray
imagePullPolicy: Always
tty: true
ports:
- name: http
protocol: TCP
containerPort: 18080
- name: grpc
protocol: TCP
containerPort: 18888

The demo services are all Java applications that use the Spring Boot framework. In addition, ARMS
application monitoring is enabled to monitor the services. For more information, see Monitor application
performance.

The template metadata Of each Deployment inthe demo.yaml file contains configurations similar to
the following content:

template:
metadata:
annotations:
armsPilotAutoEnable: 'on'

armsPilotCreateAppName: spring-boot-istio-server

> Document Version: 20220712 51


https://www.alibabacloud.com/help/doc-detail/125726.htm#cs-k8s-arms

Best Practices-Traffic Management Alibaba Cloud Service Mesh

Step 1: Deploy the demo microservices in the ACK cluster

Run the following command to deploy the demo:

kubectl apply -f demo.yaml

Step 2: Configure simple routing
1. Use the following code to create the istio-config.yamifile:

apiVersion: networking.istio.io/vlbetal
kind: Gateway
metadata:
name: simple-springboot-gateway
spec:
selector:

istio: ingressgateway

servers:
- hosts:
— nxn
port:
name: http
number: 80

protocol: HTTP
apiVersion: networking.istio.io/vlbetal
kind: VirtualService
metadata:
name: springboot-istio-client-vs
spec:
gateways:
- simple-springboot-gateway
hosts:
— nxn
http:
- match:
- uri:
prefix: "/hello"
route:
- destination:
host: spring-boot-istio-client
apiVersion: networking.istio.io/vlbetal
kind: VirtualService
metadata:
name: springboot-istio-server-vs
spec:
hosts:
- spring-boot-istio-server
http:
- route:
- destination:

host: spring-boot-istio-server

52 > Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices- Traffic Management

apiVersion: networking.istio.io/vlbetal
kind: DestinationRule
metadata:
name: springboot-istio-client-dr
spec:
host: spring-boot-istio-client
trafficPolicy:
loadBalancer:
simple: ROUND ROBIN
subsets:
- labels:
version: base
name: version-base
- labels:
version: gray
name: version-gray
apiVersion: networking.istio.io/vlbetal
kind: DestinationRule
metadata:
name: springboot-istio-server-dr
spec:
host: spring-boot-istio-server
trafficPolicy:
loadBalancer:
simple: ROUND ROBIN
subsets:
- labels:
version: base
name: version-base
- labels:
version: gray

name: version-gray

2. Runthe following command to configure routing:

kubectl --kubeconfig <The kubeconfig file of the ASM instance> apply -f istio-config.ya

ml

3. Checkwhether a service can be accessed.

i. Obtain the public IP address of the ASM gateway in the and run the following command:

export ASM GATEWAY IP=xxx

> Document Version: 20220712

53



Best Practices- Traffic Management

Alibaba Cloud Service Mesh

Step 3: Configure traffic labels

1. Use the following code to create the traffic_label default.yamifile:

ii. Runthe following command to check whether a service can be accessed:

while true; do curl -H'x-asm-prefer-tag: gray'

ho;sleep 1;done

Expected output:

—--> HTTP A-Base —--> gRPC
--> HTTP A-Gray —--> gRPC
—-—> HTTP A-Base —--> gRPC
--> HTTP A-Gray —--> gRPC
—-—> HTTP A-Base —--> gRPC

B-Gray.
B-Base.
B-Gray.
B-Base.

B-Base.

http://${ASM GATEWAY IP}/hello ; ec

The traffic that flows fromthe gateway to Service A and thento Service B is an example of
traffic routing fromthe ASM gateway to the base and canary release versions of services in a

load balancing manner. In this case, the

x-asm-prefer-tag headerthat you set inthe curl

command takes effect only if the TrafficLabel CRD and corresponding label-based routing rule
are configured. By default, the istio-config.yamilfile is used to configure simple routing, and
subsets are not specified in the routing configuration under VirtualService.

54

> Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices- Traffic Management

apiVersion: istio.alibabacloud.com/vlbetal
kind: TrafficLabel
metadata:
name: examplel
namespace: default
spec:
rules:
- labels:
- name: userdefinelabell
valueFrom:
- SgetContext (x-b3-traceid)
- $locallabel
attachTo:

- opentracing

# The protocols that take effect. If you do not set the protocols parameter, no pro

tocol takes effect. If you set the protocols parameter to an asterisk (*), all protocol

s take effect.
protocols: "*"

hosts: # The services that take effect.

— nxn

apiVersion: istio.alibabacloud.com/vlbetal
kind: TrafficLabel
metadata:
name: ingressgateway
namespace: istio-system
spec:
hosts:
I
rules:
- attachTo:
- opentracing
labels:
- name: userdefinelabell
valueFrom:
- $getContext (x-b3-traceid)
- $locallabel
protocols: '*'
workloadSelector:
labels:

app: istio-ingressgateway

2. Runthe following command to use the kubeconfig file of the ASM instance for deployment:

kubectl --kubeconfig <The kubeconfig file of the ASM instance> apply -f traffic label d

efault.yaml

The TrafficLabel CRD applies to all services in the default namespace, including Service A and

Service B that are deployed by using the demo.yamifile.

> Document Version: 20220712

55



Best Practices-Traffic Management Alibaba Cloud Service Mesh

@ Note Inthis example, the demo is connected to ARMS that uses tracezda of the Zipkin
tracertype. Therefore,the getcontext parameterissetto x-b3-traceid

Step 4: Verify the TrafficLabel-based routing

1. Check whether the traffic routing from Service A to Service B meets the requirements. To be
specific, check whether the canary traffic of Service A is forwarded to the canary release version of
Service B, and whether the base traffic of Service A is forwarded to the base version of Service B.

Configure the TrafficLabel-based routing file b-vs-tf.yamlfor Service B and make the file take
effect for Service A. The following figure shows the corresponding traffic routing model.

» Base traffic
» Gray traffic

i. Use the following code to create the b-vs-tf.yamifile:

apiVersion: networking.istio.io/vlbetal
kind: VirtualService
metadata:
name: springboot-istio-server-vs
spec:
hosts:
- spring-boot-istio-server
http:
- route:
- destination:
host: spring-boot-istio-server

subset: $Suserdefinelabell

ii. Runthe following command forthe b-vs-tf.yamlfile to take effect for Service A:

kubectl -f <The kubeconfig file of the ASM instance> apply -f b-vs-tf.yaml

56 > Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices- Traffic Management

iii. Runthe following command to check whether the canary traffic of Service A is forwarded to
the canary release version of Service B:

while true; do curl -H'x-asm-prefer-tag: version-gray' http://${ASM GATEWAY IP}/he

llo ; echo;sleep 1;done

Expected output:

--> HTTP
--> HTTP
--> HTTP
--> HTTP
—--> HTTP
--> HTTP
--> HTTP
--> HTTP
--> HTTP
--> HTTP
--> HTTP
—--> HTTP

A-Gray
A-Base
A-Base
A-Base
A-Gray
A-Gray
A-Gray
A-Base
A-Base
A-Gray
A-Base

A-Base

-—>

-—>

-—>
-—>
-—>

gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC

B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.

iv. Runthe following command to check whether the base traffic of Service A is forwarded to the
base version of Service B:

while true; do curl -H'x-asm-prefer-tag: version-base' http://${ASM GATEWAY IP}/he

llo ; echo;sleep 1;done

Expected output:

—--> HTTP
--> HTTP
—--> HTTP
--> HTTP
—--> HTTP
--> HTTP
—--> HTTP
--> HTTP
--> HTTP
--> HTTP
--> HTTP
--> HTTP
--> HTTP

® Note

2. Check whether the traffic routing fromthe ASM gateway to Service A meets the requirements. To

A-Base
A-Base
A-Base
A-Gray
A-Gray
A-Gray
A-Base
A-Base
A-Base
A-Gray
A-Gray
A-Base

A-Gray

-—>

-—>

gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC

B-Base.
B-Base.
B-Base.
B-Base.
B-Base.
B-Base.
B-Base.
B-Base.
B-Base.
B-Base.
B-Base.
B-Base.

B-Base.

If the ingress traffic that passes Service A is not forwarded to the specified
version, you must configure the TrafficLabel-based routing file for Service A.

be specific, check whether the canary traffic of ingress requests is forwarded to the canary release
version of Service A, and whether the base traffic of ingress requests is first forwarded to the base
version of Service A and then to that of Service B.

Configure the TrafficLabel-based routing file a-vs-tf.yamifor Service A and make the file take
effect forthe ASM gateway.

> Document Version: 20220712

57



Best Practices- Traffic Management

Alibaba Cloud Service Mesh

@ Note ASM gateways also support TrafficLabel-based routing.

i. Use the following code to create the a-vs-tf.yamifile:

apiVersion: networking.istio.io/vlbetal
kind: VirtualService
metadata:
name: springboot-istio-client-vs
spec:
gateways:
- simple-springboot-gateway
hosts:
— nkn
http:
- match:
- uri:
prefix: "/hello"
route:
- destination:
host: spring-boot-istio-client

subset: $Suserdefinelabell

ii. Runthe following command forthe a-vs-tf.yamlfile to take effect forthe ASM gateway:

kubectl -f <The kubeconfig file of the ASM instance> apply

-f a-vs-tf.yaml

iii. Runthe following command to check whetherthe canary traffic of ingress requests is

forwarded to the canary release version of Service A:

while true; do curl -H'x-asm-prefer-tag: version-gray' h

ello ; echo;sleep 1l;done

Expected output:

—--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
—--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray —--> gRPC B-Gray.
—--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray —--> gRPC B-Gray.
—--> HTTP A-Gray --> gRPC B-Gray.

ttp://${ASM GATEWAY IP}/h

58

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Traffic Management

iv. Runthe following command to check whether the base traffic of ingress requests is first
forwarded to the base version of Service A and then to that of Service B:

while true; do curl -H'x-asm-prefer-tag: version-base' http://${ASM GATEWAY IP}/he
llo ; echo;sleep 1;done

Expected output:

—--> HTTP A-Base —--> gRPC B-Base.
--> HTTP A-Base —--> gRPC B-Base.
—--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base —--> gRPC B-Base.
—--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base —--> gRPC B-Base.
—--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base —--> gRPC B-Base.
—--> HTTP A-Base --> gRPC B-Base.

3. Checkwhether the weight-based traffic distribution that corresponds to the TrafficLabel-based
routing meets the requirements.

i. Use the following code to create the a-vs-tf-10-90.yamifile:

apiVersion: networking.istio.io/vlbetal
kind: VirtualService
metadata:
name: springboot-istio-client-vs
spec:
gateways:
- simple-springboot-gateway
hosts:
— nxn
http:
- match:
- uri:
prefix: "/hello"
route:
- destination:
host: spring-boot-istio-client
subset: Suserdefinelabell
weight: 10
- destination:
host: spring-boot-istio-client
subset: version-base
weight: 90

@ Note Only 10% of the canary or base traffic is forwarded to the corresponding
subset that you specify. The remaining traffic is forwarded to the version-base subset.

> Document Version: 20220712 59



Best Practices- Traffic Management

Alibaba Cloud Service Mesh

ii. Runthe following command forthe a-vs-tf-10-90.yamlfile to take effect forthe ASM

gateway:

kubectl --kubeconfig <The kubeconfig file of the ASM instance> apply -f a-vs-tf-10-

90.yaml

iii. Runthe following command to verify the canary traffic:

while true; do curl -H'x-asm-prefer-tag: version-gray'

ello ; echo;sleep 1l;done

Expected output:

—--> HTTP
--> HTTP
—--> HTTP
--> HTTP
--> HTTP
--> HTTP
--> HTTP
—--> HTTP
—--> HTTP
—--> HTTP
--> HTTP
--> HTTP
--> HTTP

Lane mode

A-Base -—>
A-Base -—>
A-Base -—>
A-Base -—>
A-Base -—>
A-Base -—>
A-Base ——>
A-Base -—>
A-Base —-—>
A-Base -—>
A-Base -—>
A-Gray —-->

A-Base -->

gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC
gRPC

B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.
B-Gray.

http://${ASM GATEWAY IP}/h

In specific scenarios, you may want to enable the lane mode. In this mode, the context traffic
characteristics are not passed among services. The context traffic characteristics are colored traffic
labels in which red is used to label the canary traffic and blue is used to label the base traffic. The
egress traffic is labeled by using local labels. The following figure shows the corresponding traffic
routing model in lane mode.

» Base traffic

» Gray traffic

In these scenarios, you need to only modify the TrafficLabel CRD. To do so, remove  $getContext (x-b3-
traceid) to disable the forwarding of traffic labels, and obtain colored labels from local labels.

The following code shows a sample cat traffic_label default swimlane.yamifile:

60

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices- Traffic Management

apiVersion: istio.alibabacloud.com/vlbetal
kind: TrafficLabel
metadata:
name: examplel
namespace: default
spec:
rules:
- labels:
- name: userdefinelabell
valueFrom:
- S$locallabel
attachTo:
- opentracing
# The protocols that take effect. If you do not set the protocols parameter, no protoco
1 takes effect. If you set the protocols parameter to an asterisk (*), all protocols take e
ffect.
protocols: "*"

hosts: # The services that take effect.

— Mxn

Canary traffic configuration at the ASM gateway

If you need to clarify the canary traffic in ingress traffic by using <gatewayIP>/hello ,you must use
the =x-asm-prefer-tag headerto specify atraffic label, as shown in the preceding a-vs-tf.yamifile. In
the preceding examples, the canary traffic is manually labeled by running the curl -H 'x-asm-prefer-
tag: xxx' command.

In actual business scenarios, a client application or user may use a browser for access without setting
the x-asm-prefer-tag header. In such scenarios, you can use the custom header feature of an ASM
gateway and the Lua plug-in to map the canary configurationto the x-asm-prefer-tag headerfor
standardized processing.

Forexample, you canuse an Envoy filter to specify the traffic that is generated by the users who
use iPhone 13 as canary traffic. Sample code:

> Document Version: 20220712 61



Best Practices-Traffic Management Alibaba Cloud Service Mesh

apiVersion: networking.istio.io/vlalpha3

kind: EnvoyFilter

metadata:

labels:
provider: "asm"
asm-system: "true"
name: gateway-lua-filter-add-x-asm-prefer-tag-header

namespace: istio-system

spec:

workloadSelector:
labels:
istio: ingressgateway
configPatches:
- applyTo: HTTP FILTER
match:
proxy:
proxyVersion: "~1.*"
context: GATEWAY
listener:
filterChain:
filter:
name: "envoy.filters.network.http connection manager"
subFilter:
name: "envoy.filters.http.router"
patch:
operation: INSERT BEFORE
value:
name: envoy.lua
typed config:
"@type": "type.googleapis.com/envoy.extensions.filters.http.lua.v3.Lua"
inlineCode: |
function envoy on request (request handle)
local user agent = request handle:headers () :get ("user-agent")
request handle:logInfo ("user agent:"..user agent)
if string.match(user agent,"”.*iPhonel3.*") then
request handle:headers () :add ("x-asm-prefer-tag", "version-gray")
elge
request handle:headers () :add ("x-asm-prefer-tag", "version-base")
end
end
function envoy on response (response_ handle)

end

FAQ

Why does an end-to-end canary release not take effect?

An end-to-end canary release takes effect for an application only if the tracing feature of the
application takes effect. The Spring Cloud services in this topic are connected to ARMS by using a non-
intrusive manner to implement the tracing feature. If the test result does not meet your expectations,
performthe following steps to check whether application monitoring is enabled:

62

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Traffic Management

Log onto the Tracing Analysis console. In the left-side navigation pane, click Global Topology. Onthe
Global Topology page, you can view the following trace: ingressgateway > springcloud-istio-client >
springcloud-istio-server. T his indicates that application monitoring is enabled.

If you enable application monitoring after you deploy the demo, you must redeploy the demo after you
enable application monitoring. For more information about how to enable application monitoring, see
Monitor application performance.

Related information

e Monitor application performance

e Traffic labeling and label-based routing

> Document Version: 20220712 63


https://tracing-sg.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/125726.htm#cs-k8s-arms
https://www.alibabacloud.com/help/doc-detail/125726.htm#cs-k8s-arms
https://www.alibabacloud.com/help/doc-detail/375313.htm#task-2160625

Best Practices-Security Alibaba Cloud Service Mesh

3.Security
3.1. Implement CORS in ASM

When a client from one domain accesses a service in a different domain or a service that resides in the
same domain but uses a different port fromthe client, the client initiates a cross-origin request. If the
service disallows cross-origin resource access, the client cannot access the service. In this case, you can
implement cross-origin resource sharing (CORS) to allow web application servers to access cross-origin
resources. T his topic describes how to configure a CORS policy in a virtual service of Alibaba Cloud
Service Mesh (ASM) to implement CORS.

CORS overview

For security reasons, browsers restrict cross-origin HTTP requests that are initiated from scripts. For
example, XMLHtt pRequest and the Fetch APIfollow the same-origin policy. This means that a web
application that uses these APIs can request only resources from the same origin in which the
application is loaded unless the response from ot her origins includes valid CORS headers.

CORS is a mechanism based on HTTP headers and allows a server to identify domains, schemes, or ports
otherthan its own fromwhich a browser permits loading resources.

The CORS mechanism supports two types of requests: simple requests and preflight requests.
e Simple request mode:

A browser sends a cross-origin request. The Origin header is specified in the request, which indicates
that the request is a cross-origin request. After the destination server receives the cross-origin
request, the server determines whether to allow the request based on configured CORS rules. In
response, the server returns the Access-Control-Allow-0Origin and Access-Control-Allow-Methods
headers to indicate whether the request is allowed.

e Preflight request mode:

A browser sends a preflight request, which is an HTTP OPTIONS request. The request is used to check
whether the destination server allows cross-origin requests fromthe current domain. If the
destination server allows cross-origin requests fromthe current domain, the browser sends an actual
cross-origin request.

The OPTIONS request contains the following headers: Origin, Access-Control-Request-Method, and
Access-Control-Request-Headers. After the destination server receives the OPTIONS request, the
server specifies the Access-Control-Allow-0Origin, Access-Control-Allow-Method, Access-Control-
Allow-Headers, and Access-Control-Max-Age headers in the response to indicate whether the
request is allowed. If the preflight request is allowed, the browser sends an actual cross-origin
request.

If a request meets the following three requirements, the CORS mechanism processes the request as a
simple request. Otherwise, the CORS mechanism processes the request as a preflight request.

e The request uses one of the following methods:
GET, HEAD, and POST

e The Content-Type header in the request is set to one of the following values:
ext/plain, application/x-www-form-urlencoded, and multipart/form-data

e The request uses one of the following CORS-safelisted headers that are defined by the Fetch
standard:

64 > Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices-Security

Accept, Accept-Language, Content-Language, and Content-Type. Note: The value of the Content-
Type header must be set to one of the values that are listed in the second requirement.

Configure a CORS policy in a virtual service

Browsers automatically implement CORS communication. To allow cross-origin requests that are
initiated to a service and implement CORS communication, you must set the corspolicy field inthe
virtual service that is defined for the service.

apiVersion: networking.istio.io/vlalpha3

kind: VirtualService
metadata:

name: ratings-route
spec:

hosts:

- ratings.prod.svc.cluster.local

http:
= FOUTES

- destination:

host: ratings.prod.svc.cluster.local

subset: vl
corsPolicy:

allowOrigins:

- exact: https://example.com

# - regex: * # You can use regular expressions to specify the addresses of the orig

ins.
allowMethods:
- POST
- GET

allowCredentials: false

allowHeaders:
- X-Foo-Bar
maxAge: "24h"

Parameter

allowOrigins

allowMethods

allowHeaders

exposeHeaders

maxAge

Description

The addresses of the origins that are allowed to access the service.
Regular expressions are supported. For requests without credentials,
the server can set this parameter to a wildcard (*) so that all origins are
allowed to access the service.

The HTTP methods that can be used to initiate cross-origin requests.

The headers that can be contained to initiate cross-origin requests. The
headers are used to precheck the responses to requests.

The whitelist of headers that the server allows browsers to access.

The maximum amount of time that browsers can cache the response
to a preflight request.

> Document Version: 20220712

65



Best Practices-Security

Alibaba Cloud Service Mesh

Parameter

allowCredentials

Specifies whether credentials are required to initiate cross-origin
requests. Only valid credentials can be used to initiate cross-origin

3.2. Enable Multi-Buffer for TLS

acceleration

Alibaba Cloud Service Mesh (ASM) Commercial Edition (Professional Edition) combines with Intel Multi-
Bufferto accelerate Transport Layer Security (TLS) processing in Envoy. T his topic describes how to

enable Multi-Buffer for TLS acceleration.

Prerequisites

e An ASM Commercial Edition (Professional Edition) instance of version 1.10 or later is created. For more

information, see Create an ASM instance.

e A Container Service for Kubernetes (ACK) cluster is created, and the instance families of nodes inthe
cluster support the Multi-Buffer CPU model, Intel Ice Lake. For more information, see Create an ACK

managed cluster.

The following table describes the instance families that support Intel Ice Lake.

(@ Note For more information about instance types, see Instance family.

Instance family

g7

c7

r7

Description

g7se, storage-enhanced general-purpose instance family
g7, general-purpose instance family

g7t, security-enhanced general-purpose instance family
c7, compute-optimized instance family

c7re, RDMA-enhanced instance family

c7se, storage-enhanced compute-optimized instance
family

C7t, security-enhanced compute-optimized instance
family

r7p, memory-optimized instance family

r7se, storage-enhanced memory-optimized instance
family

r7, memory-optimized instance family

66

> Document Version: 20220712


https://www.alibabacloud.com/help/doc-detail/152154.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/95108.htm#task-skz-qwk-qfb
https://www.alibabacloud.com/help/doc-detail/25378.htm#concept-sx4-lxv-tdb

Alibaba Cloud Service Mesh Best Practices-Security

Instance family Description

r7t, security-enhanced memory-optimized instance
family

re7p, high-memory instance family
vgn7i-vws, vGPU-accelerated instance family

gn7i, GPU-accelerated compute-optimized instance

family
Others

ebmgn7i, GPU-accelerated compute optimized ECS Bare
Metal Instance family
sccc7, compute-optimized SCC instance family
sccg7, general-purpose SCC instance family

[ ]

Context

With the development of network security technologies, TLS has become the cornerstone of network
communication. A TLS session is generally divided into the handshake phase and the data transmission
phase. The most important task in the handshake phase is to use asymmetric encryption to negotiate a
session key. In the data transmission phase, the session key is used to perform symmetric encryption on
the data before data transmission.

In microservice scenarios, Envoy needs to process a large number of TLS requests, whether Envoy serves
as an ingress gateway or as a proxy for microservices. Especially during the handshake phase,
asymmetric encryption and decryption consume a large amount of CPU resources. This may become a
bottleneckin large-scale microservice scenarios. ASM combines with Intel Multi-Buffer to accelerate TLS
processing in Envoy to alleviate the bottleneck.

Multi-Buffer uses Intel CPU AVX-512 to process multiple independent buffers at the same time. In other
words, multiple encryption and decryption operations can be simultaneously executed in one execution
cycle, which accelerates encryption and decryption. Multi-Buffer does not need additional hardware.
The CPU package must contain the AVX-512 instruction set. Alibaba Cloud has included the latest AVX-
512 instruction set in the Ice Lake processor.

Procedure

You can use one of the following methods to enable the Multi-Buffer feature:

e [f no ASMinstances exist, select Enable MultiBuffer-based TLS encryption and decryption
performance optimization when you create an ASMinstance. For more information, see Create an
ASM instance.

e [f an ASMinstance exists, select Enable MultiBuffer-based TLS encryption and decryption
performance optimization on the Basic Information page of the ASMinstance. The following
procedure describes how to enable Multi-Buffer if you already have an ASM instance.

> Document Version: 20220712 67


https://www.alibabacloud.com/help/doc-detail/152154.htm#task-2370657

Best Practices-Security Alibaba Cloud Service Mesh

3.
4.

5. Inthe Settings Update panel, select Enable MultiBuffer-based TLS encryption and
decryption performance optimization, and then click OK.

If you use the general-purpose instance family g7 as the instance family of the Kubernetes nodes,
the query per second (QPS) performance improves by 75% after Multi-Buffer is enabled. If you use
the ECS Bare Metal Instance, a more significant performance improvement can be obtained.

FAQ

What happens if Multi-Buffer is enabled on the control plane, but the nodes in the data-
plane Kubernetes cluster do not support Intel Ice Lake?

Alert logs are generated from Envoy, and Multi-Buffer does not take effect.

drain_duratio

plane_auth_policy:MUTUAL_TLS stat_name_lengt

status_port:15020 termination drain duration:<seconds:5 > m

tt1=23h59m59.730792927s

warning env g C ¢ .com/envoy .extensions.transpor 5 ret r Multi-buffer CPU instructi

warn ads ADS:SDS: ACK ERROR router~172.18.96.137~istio-ingressgatewayl-d7447cb55-khr8s.istio-system~istio-system.svc.cluster.local-2 Inter
s not available.

info Initiali. took 1.267025329s

info Envoy pri

warning envoy config gRPC config for type.googleapis.com/envoy.config.cluster.v3.Cluster rejected: Error adding/updating cluster(s) outbound|l

5021| |istio-ingressgatewayl.istio-system.svc.cluster.local: Multi-buffer CPU instructions not available., outbound|80||istio-ingressgatewayl.istio-system.svc.cluster.local: Mult

i-buffer CPU instructions not available., outbound|443||istio-ingressgatewayl.istio-system.svc.cluster.local: Multi-buffer CPU instructions not available.

ASM Commercial Edition (Prof essional Edition) 1.10 and later can automatically determine whether TLS
acceleration takes effect when TLS acceleration is enabled. If the node to which the business or
gateway pod is scheduled does not support Intel Ice Lake, ASM does not deliver the corresponding
acceleration configuration to the node. In this case, TLS acceleration does not take effect.

If a Kubernetes cluster does not support Multi-Buffer, how can the cluster use Multi-
Buffer?

1. Add a node that supports Intel Ice Lake to the Kubernetes cluster. For more information, see Add
existing ECS instances to an ACK cluster.

2. Addthe multibuffer-support:true labelto the newly added node. For more information, see
Manage node labels.

3. Add the following content to the YAML configuration of the ASM gateway. For more information,
see Modify an ingress gateway service.

You can increase node affinity to ensure that gateway instances are scheduled to the newly added
node that supports Multi-Buffer.

68 > Document Version: 20220712


https://www.alibabacloud.com/help/doc-detail/86919.htm#task-2548777
https://www.alibabacloud.com/help/doc-detail/86504.htm#task-1664343
https://www.alibabacloud.com/help/doc-detail/183271.htm#task-1948861

Alibaba Cloud Service Mesh

Best Practices-Security

spec:
affinity:
nodeAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

nodeSelectorTerms:
- matchExpressions:
- key: multibuffer-support
operator: In
values:

- true

4. Enable Multi-Buffer by following the preceding procedure.

Afteryou enable Multi-Buffer, the new node can use Multi-Bufferto accelerate TLS processing.

> Document Version: 20220712

69



Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

4.Use gRPC in ASM

4.1. Design principle of the gRPC
practice

Alibaba Cloud Service Mesh (ASM) allows you to manage applications that use the gRPC protocol. For
example, you can develop applications and add applications to containers and ASM instances. T his
topic describes the design principle of the gRPC practice that ASM provides.

Communication models of gRPC

Design principle

e The practice involves the four communication models of gRPC.

e The method names and parameter names that are used in the practice do not indicate any business
features. This way, you can focus on the technology.

Communication models and implementation methods

Communication model Implementation method
Unary RPC talk

Server streaming RPC talkOneAnswerMore
Client streaming RPC talkMoreAnswerOne
Bidirectional streaming RPC talkBidirectional

Protocol Buffers definition

service LandingService ({
//Unary RPC
rpc talk (TalkRequest) returns (TalkResponse) {
}
//Server streaming RPC
rpc talkOneAnswerMore (TalkRequest) returns (stream TalkResponse) {
}
//Client streaming RPC with random & sleep
rpc talkMoreAnswerOne (stream TalkRequest) returns (TalkResponse) {
}
//Bidirectional streaming RPC
rpc talkBidirectional (stream TalkRequest) returns (stream TalkResponse) {

}

Methods

e The mainline logic of the practice is simple. For example, the data parameter in the following figure
indicates a subscript of the hello array. When the gRPC server receives a request that contains the
data parameter, the gRPC server returns the corresponding value in the hello array to the gRPC client.

e The practice simplifies requests and responses. The practice uses only one method to encapsulate

70 > Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices-Use gRPC in ASM

each request and response, no matter whether the request or response contains one or more

messages.

o Allrequests are strings. If a request contains multiple messages, separate the messages with

commas (,).

o Allresponses are arrays. If a response contains only one message, the returned array contains only

one value.

e The gRPC client and server communicate with each other by using the programming language. The

traffic shaping configuration is displayed in the language that is specified by the

Talk
Unary RPC
data=0
I meta={lang} I
client status=200 server
(1]
id=timestamp
type=0K
kv
id: UUID
idx: O
data: hello
meta: {lang}
TalkOneAnswerMore

Server streaming RPC

data=0,1,2
meta={lang} —

<—status=200

Bl

client id=timestamp server
type=0K
kv
id: UuID
idx: {req_data}
data: hellol[i]
meta: {lang}

Protocols

Design principle

TalkMoreAnswerOne
Client streaming RPC

data=rnd(5) —»
meta={lang} —/—.

[3]: status=200

client [1]: server
id=timestamp
type=0K
kv
id: UUID
idx: {req_data}
data: helloli]
meta: {lang}
TalkBidirectional

Bidirectional streaming RPC

data=rnd(5)
meta={lang}

[*——— _ status=200
[17]:

client id=timestamp server
type=0K

kv

id: UUID

idx: {req_data}

data: hello[i]

meta: {lang}

lang Vvariable.

hello[]

3 CAIRSR
5  eHAsiM2
6 RiF

e The practice uses simple request parameters to facilitate debugging. At the same time, the request
parameters contain sufficient information.

e The response parameters in the practice support all the data types that are required for

demonstration.

Request protocol

> Document Version: 20220712

71



Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

The request parameters in the practice include data and meta. All the request parameters are strings.
The data parameter specifies the value of the subscript that you want to add to the hello array. The
meta parameter specifies the programming language.

message TalkRequest {
//language index
string data = 1;
//clientside language

string meta = 2;

Response protocol

e The response parameters in the practice contain only the status parameter and the T alkResult
parameter. The value of the status parameter is an integer, which indicates a status code. The value
of the TalkResult parameter is an array.

e The array of the Talkresult parameter supports values of multiple data types, including the big
integer, enumeration, and key-value pair types. The generic type of key-value pairs is string.

message TalkResponse {
int32 status = 1;
repeated TalkResult results = 2;
}
message TalkResult {
//timestamp
int64 id = 1;
//enum
ResultType type = 2;
// result uuid
// language index
// data hello
// meta serverside language (It's not good here,
// but ok since I feel like to keep the response)
map<string, string> kv = 3;
}
enum ResultType {
OK = 0;
FAIL = 1;

Functions
Function Description

The practice provides the GRC_SERVER variable for the gRPC client. In
local development and debugging, the value of this variable is
localhost. You must specify domain names of the gRPC services of the

Environment variable pod that you want to access. When the pod of the gRPC client starts,
the value of the GRC_SERVER variable changes to the domain name of
an active gRPC service. This way, the gRPC client can call the gRPC
service.

72 > Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices-Use gRPC in ASM

Function

Random number

Timestamp

uuiD

Sleep

Description

For the client streaming remote procedure call (RPC) and bidrectional
streaming RPC models, the gRPC client needs to call the random
number function to generate a random integer value, which must be
one of the subscripts of the hello array.

TalkResult.id is a unique identifier of the int64 type. The value is a
timestamp that is generated by the timestamp function.

TalkResult.kv[id] is a unique identifier of the string type. The value is a
UUID that is generated by the UUID function.

For the models excluding unary RPC, you can call the sleep function to
set the interval between requests. This way, you can better observe
the sequence of messages between the gRPC client and server.

4.2. Implement the communication
models of gRPC

This topic describes how to use Java, Go, Node.js, and Python to implement gRPC communication
models. The models include unary remote procedure call (RPC), server streaming RPC, client streaming

RPC, and client streaming RPC.

Sample project

For information about the sample project of gRPC, see hello-servicemesh-grpc. The directories in this
topic are directories of hello-servicemesh-grpc.

Step 1: Convert code

1. Runthe following command to install gRPC and Protocol Buffers. In this example, gRPC and
Protocol Buffers are installed in the macQS operating system.

brew install grpc protobuf

2. Covert the Protocol Buffers definition to code in the programming languages that you use. In the
topic, Java, Go, Node.js, and Python are used:

@ Note Inthe sample project, the code directory of each language contains the proto
directory that stores the landing.protofile. The landing.proto file is a symbolic linkto the proto
/landing.protofile in the root directory of the sample project. This way, you can update the
Protocol Buffers definition in a unified manner.

o Java: Maven is a build automation tool for Java. Maven provides the protobuf-maven-plugin

plug-in to automatically convert code. You canrunthe mvn package command to use protoc-
gen-grpc-java to generate gRPC template code. For more information, see hello-groc-java/pom.
xmi.

Go: Runthe go get github.com/golang/protobuf/protoc-gen-go command to install protoc-
gen-go. Then, run the protoc command to generate gRPC code. For more information, see hello-
grpc-go/proto2go.sh.

> Document Version: 20220712 73


https://github.com/feuyeux/hello-servicemesh-grpc
https://github.com/AliyunContainerService/hello-servicemesh-grpc

Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

o Node.js: Runthe npm install -g grpc-tools command to install grpc_tools node_protoc.
Then, run the protoc command to generate gRPC code. For more information, see hello-grpc-no
dejs/proto2js.sh.

o Python: Runthe pip install grpcio-tools command to install grpcio-tools. Then, runthe
protoc command to generate gRPC code. For more information, see hello-groc-python/proto2p
y.sh.

Step 2: Set communication models
1. Set the hello array.
o Java:

private final List<String> HELLO LIST = Arrays.asList("Hello", "Bonjour", "Hola", "C
AICBIE", "ciaomw, "otdsiMIRM) ;
kv.put ("data", HELLO LIST.get (index));

o Go:
var hellolist = []string{"Hello", "Bonjour", "Hola", "CAIlZHBIE", "Ciao", "QHSINL"}
kv["data"] = helloList[index]

o Node.js:
let hellos = ["Hello", "Bonjour", "Hola", "CAIl_HEIE", "ciao", "QtESIMIR"]

kv.set ("data", hellos[index])

o Python:
hellos = ["Hello", "Bonjour", "Hola", "CAlcBIlE", "ciao", nOHASIM|R ]
result.kv["data"] = hellos[index]

2. Set the communication models.
o Set the unary RPC model.

m Java:

// Use the blocking stub to send a request to the server.
public TalkResponse talk(TalkRequest talkRequest) {
return blockingStub.talk (talkRequest) ;
}
// After the server processes the request, the onNext and onCompleted events of the
StreamObserver instance are triggered.

public void talk (TalkRequest request, StreamObserver<TalkResponse> responseObserver

) |

responseObserver.onNext (response) ;

responseObserver.onCompleted() ;

74 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use gRPC in ASM

m (o:

func talk(client pb.LandingServiceClient, request *pb.TalkRequest) {
r, err := client.Talk(context.Background(), request)

}
func (s *ProtoServer) Talk(ctx context.Context, request *pb.TalkRequest) (*pb.TalkR

esponse, error) {
return &pb.TalkResponse{

Status: 200,
Results: []*pb.TalkResult{s.buildResult (request.Data)},

}, nil

m Node.js:

function talk(client, request) {
client.talk (request, function (err, response) {

P

}
function talk(call, callback) {
const talkResult = buildResult (call.request.getData())

callback (null, response)

m Python:

def talk(stub) :
response = stub.talk(request)

def talk(self, request, context):
result = build result (request.data)

return response

o Set the server streaming RPC model.
m Java:

public List<TalkResponse> talkOneAnswerMore (TalkRequest request) {
Iterator<TalkResponse> talkResponses = blockingStub.talkOneAnswerMore (request) ;

talkResponses. forEachRemaining (talkResponseList: :add) ;
return talkResponselist;

}

public void talkOneAnswerMore (TalkRequest request, StreamObserver<TalkResponse> res
ponseObserver) {

String[] datas = request.getData().split(",");

for (String data : datas) {...}

talkResponses.forEach (responseObserver: :onNext) ;

responseObserver.onCompleted() ;

> Document Version: 20220712 75



Best Practices-Use gRPC in ASM

Alibaba Cloud Service Mesh

m (o:

func talkOneAnswerMore (client pb.LandingServiceClient,

request *pb.TalkRequest) {

stream, err := client.TalkOneAnswerMore (context.Background(), request)
for {
r, err := stream.Recv ()
if err == 10.EOF {
break

}

func (s *ProtoServer) TalkOneAnswerMore (request *pb.TalkRequest, stream pb.Landing.

.Server) error {
datas := strings.Split(request.Data, ",")
for , d := range datas ({

stream.Send (&pb.TalkResponse{...})

m Node,js:

function talkOneAnswerMore (client, request) {
let call = client.talkOneAnswerMore (request)

call.on('data', function (response) {

})
}
function talkOneAnswerMore (call) ({
let datas = call.request.getData() .split(",")

for (const data in datas) {

call.write (response)

}
call.end()

m Python:

def talk one answer more (stub) :
responses = stub.talkOneAnswerMore (request)
for response in responses:
logger.info (response)
def talkOneAnswerMore (self, request, context):
datas = request.data.split(",")
for data in datas:

yield response

o Set the client streaming RPC model.

76

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use gRPC in ASM

m Java:

public void talkMoreAnswerOne (List<TalkRequest> requests) throws InterruptedExcepti

on {
final CountDownLatch finishLatch = new CountDownLatch (1) ;
StreamObserver<TalkResponse> responseObserver = new StreamObserver<TalkResponse
>() |
@Override
public void onNext (TalkResponse talkResponse) {
log.info ("Response=\n{}", talkResponse);
}
@Override
public void onCompleted() {
finishLatch.countDown () ;
}
bi
final StreamObserver<TalkRequest> requestObserver = asyncStub.talkMoreAnswerOne
(responseObserver) ;

try {
requests. forEach (request —-> {

if (finishLatch.getCount ()
requestObserver.onNext (request) ;

> 0) {

1)
requestObserver.onCompleted() ;

}
public StreamObserver<TalkRequest> talkMoreAnswerOne (StreamObserver<TalkResponse> r
esponseObserver) {

return new StreamObserver<TalkRequest>() {

@Override
public void onNext (TalkRequest request) {

talkRequests.add (request) ;
}

@Override

public void onCompleted() {
responseObserver.onNext (buildResponse (talkRequests)) ;

responseObserver.onCompleted() ;

77

> Document Version: 20220712



Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

m (o:

func talkMoreAnswerOne (client pb.LandingServiceClient, requests []*pb.TalkRequest)
{
stream, err := client.TalkMoreAnswerOne (context.Background())
for , request := range requests {
stream.Send (request)
}
r, err := stream.CloseAndRecv ()

}

func (s *ProtoServer) TalkMoreAnswerOne (stream pb.LandingService TalkMoreAnswerOneS

erver) error {

for {
in, err := stream.Recv ()
if err == 10.EOF {

talkResponse := &pb.TalkResponse(
Status: 200,
Results: rs,
}
stream.SendAndClose (talkResponse)
return nil
}
rs = append(rs, s.buildResult (in.Data))

m Node,js:

function talkMoreAnswerOne (client, requests) {

let call = client.talkMoreAnswerOne (function (err, response) {

})
requests.forEach (request => {
call.write (request)
})
call.end()
}
function talkMoreAnswerOne (call, callback) {
let talkResults = []
call.on('data', function (request) {
talkResults.push (buildResult (request.getData()))
})
call.on('end', function () {
let response = new messages.TalkResponse ()
response.setStatus (200)
response.setResultsList (talkResults)

callback (null, response)

78 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use gRPC in ASM

m Python:

def talk more answer one (stub) :
response summary = stub.talkMoreAnswerOne (request iterator)
def generate request():
for in range (0, 3):
yield request
def talkMoreAnswerOne (self, request iterator, context):
for request in request iterator:
response.results.append (build result (request.data))

return response

o Set the bidirectional streaming RPC model.
m Java:

public void talkBidirectional (List<TalkRequest> requests) throws InterruptedExcepti
on {
final CountDownLatch finishLatch = new CountDownLatch (1) ;
StreamObserver<TalkResponse> responseObserver = new StreamObserver<TalkResponse
>0 |
@Override
public void onNext (TalkResponse talkResponse) {
log.info ("Response=\n{}", talkResponse) ;
}
@Override
public void onCompleted() {

finishLatch.countDown () ;

}i
final StreamObserver<TalkRequest> requestObserver = asyncStub.talkBidirectional
(responseObserver) ;
try {
requests.forEach (request -> {
if (finishLatch.getCount () > 0) {

requestObserver.onNext (request) ;

requestObserver.onCompleted() ;
}
public StreamObserver<TalkRequest> talkBidirectional (StreamObserver<TalkResponse> r
esponseObserver) {
return new StreamObserver<TalkRequest>() {
@Ooverride
public void onNext (TalkRequest request) {
responseObserver.onNext (TalkResponse.newBuilder ()
.setStatus (200)
.addResults (buildResult (request.getData())) .build()) ;
}
@Override
public void onCompleted() {
responseObserver.onCompleted() ;

> Document Version: 20220712 79



Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

m (o:

func talkBidirectional (client pb.LandingServiceClient, requests []*pb.TalkRequest)
{
stream, err := client.TalkBidirectional (context.Background())
waitc := make (chan struct{})
go func() {
for {
r, err := stream.Recv ()
if err == 10.EOF {
// read done.
close (waitc)

return

for , request := range requests {
stream.Send (request)
}
stream.CloseSend ()
<-waitc
}
func (s *ProtoServer) TalkBidirectional (stream pb.LandingService TalkBidirectionals

erver) error

for {
in, err := stream.Recv ()
if err == 10.EOF {

return nil

}

stream.Send (talkResponse)

m Node,js:

function talkBidirectional (client, requests) {
let call = client.talkBidirectional ()

call.on('data', function (response) {

})
requests.forEach (request => {

call.write (request)
})
call.end()
}
function talkBidirectional (call) {
call.on('data', function (request) {
call.write (response)
1)
call.on('end', function () {
call.end()
})

80 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use gRPC in ASM

m Python:

def talk bidirectional (stub) :
responses = stub.talkBidirectional (request iterator)
for response in responses:
logger.info (response)
def talkBidirectional (self, request iterator, context):
for request in request iterator:

yield response

Step 3: Implement functions

1. Implement the environment variable function.

o Java:

private static String getGrcServer () {
String server = System.getenv ("GRPC SERVER");
if (server == null) {
return "localhost";

}

return server;

o Go:

func grpcServer () string {
server := 0s.Getenv ("GRPC_ SERVER")
if len(server) == 0 {
return "localhost"
} else {

return server

o Node.js:

function grpcServer () {
let server = process.env.GRPC SERVER;
if (typeof server !== 'undefined' && server !== null) ({
return server
} else {

return "localhost"

o Python:

def grpc server():
server = os.getenv ("GRPC_ SERVER")
if server:
return server
else:

return "localhost"

2. Implement the random number function.

> Document Version: 20220712 81



Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

o Java:

public static String getRandomId () {
return String.valueOf (random.nextInt (5));

o Go:

func randomId(max int) string {

return strconv.Itoa (rand.Intn (max))

o Node.js:

function randomId (max) {
return Math.floor (Math.random() * Math.floor (max)) .toString()

o Python:

def random id(end) :

return str (random.randint (0, end))

3. Implement the timestamp function.

o Java:
TalkResult.newBuilder () .setId(System.nanoTime ())
o Go:
result.Id = time.Now () .UnixNano ()
o Node.js:
result.setId (Math.round (Date.now() / 1000))
o Python:
result.id = int ((time.time()))

4. Implement the UUID function.

o Java:

kv.put ("id", UUID.randomUUID() .toString());

o Go:
import (
"github.com/google/uuid"
)
kv["id"] = uuid.New () .String/()
o Node.js:

kv.set ("id", uuid.v1())

o Python:

82 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use gRPC in ASM

result.kv["id"] = str(uuid.uuidl())

5. Implement the sleep function.
o Java:
TimeUnit.SECONDS.sleep (1) ;
o Go:

time.Sleep (2 * time.Millisecond)

o Node.js:
let sleep = require('sleep')
sleep.msleep (2)

o Python:

time.sleep (random.uniform (0.5, 1.5))

Verify the results

Feature

Run the following commands to start the gRPC server on a terminal and the gRPC client on another
terminal. After you start the gRPC client and server, the gRPC client sends requests to the API
operations of the four communication models.

e Java:

mvn exec:java -Dexec.mainClass="org.feuyeux.grpc.server.ProtoServer"
mvn exec:java -Dexec.mainClass="org.feuyeux.grpc.client.ProtoClient"
e Go:
go run server.go
go run client/proto client.go
e Node.js:
node proto server.js
node proto client.js
e Python:
python server/protoServer.py
python client/protoClient.py

If no communication error occurs, the gRPC client and server are started.

Cross communication

> Document Version: 20220712 83



Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

Cross communication ensures that the gRPC client and server communicate with each other in the same
manner, no matter what language is used by the gRPC client and server. T his way, the response of a
request does not vary with the language version.

1. Start the gRPC server, for example, the Java gRPC server:

mvn exec:java -Dexec.mainClass="org.feuyeux.grpc.server.ProtoServer"

2. Runthe following commands to start the gRPC clients in Java, Go, Node.js, and Python:

mvn exec:java -Dexec.mainClass="org.feuyeux.grpc.client.ProtoClient"
go run client/proto client.go
node proto client.js

python client/protoClient.py
If no communication error occurs, cross communication is successful.

What to do next

Afteryou verify that the gRPC client and server can communicate as expected, you can build images for
the client and server.

Step 1: Build a project
Use four programming languages to build projects for the gRPC client and server.
® Java

Create JAR packages for the gRPC client and server. Then, copy the packages to the Docker directory.

mvn clean install -DskipTests -f server pom
cp target/hello-grpc-java.jar ../docker/
mvn clean install -DskipTests -f client pom

cp target/hello-grpc-java.jar ../docker/

e GO

The binary files that are compiled by using Go contain the configuration about the operating systems
and need to be deployed in Linux. Therefore, add the following content to the binary file: Then,
copy the binary files to the Docker directories.

env GOOS=linux GOARCH=amd64 go build -o proto server server.go

mv proto server ../docker/

env GOOS=linux GOARCH=amd64 go build -o proto client client/proto client.go
mv proto client ../docker/

e NodeJS

The Node.js project must be created in a Docker image to support all kinds of C++ dependencies that
are required for the runtime. Therefore, copy the file to the Docker directory.

84 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use gRPC in ASM

cp
cp
cp
cp
cp

../hello-grpc-nodejs/proto server.js node
../hello-grpc-nodejs/package.json node

-R ../hello-grpc-nodejs/common node

-R ../proto node

../hello-grpc-nodejs/* client.js node

e Python

Cop

cp
cp
cp
cp
cp
cp

y the Python file to the Docker directory without compilation.

-R ../hello-grpc-python/server py
../hello-grpc-python/start server.sh py
-R ../proto py
../hello-grpc-python/proto2py.sh py

-R ../hello-grpc-python/client py
../hello-grpc-python/start client.sh py

Step 2: Build images for the gRPC server and client

Afteryou build the project, all the files that are required by Dockerfile are saved in the Docker directory.
This section describes the major information about the Dockerfile.

e Select alpine as the basic image because its size is the smallest. In the example, the basic image of
Pythonis python v2.7. You can change the image version as needed.

e Node.js requires the installation of C++ and the compiler Make. The Npm package needs to be
installed with grpc-tools.

T his example shows how to build the image of the Node.js server.

1. Create the grpc-server-node.dockerfilefile.

FROM node:14.1l-alpine
RUN apk add --update \
python \
make \
g++ \
&& rm -rf /var/cache/apk/*
RUN npm config set registry http://registry.npmmirror.com && npm install -g node-pre-gy
p grpc-tools --unsafe-perm
COPY node/package.json .
RUN npm install --unsafe-perm
COPY node
ENTRYPOINT ["node","proto server.js"]

2. Build animage.

A

docker build -f grpc-server-node.dockerfile -t registry.cn-beijing.aliyuncs.com/asm rep

o/grpc_server node:1.0.0

total of eight images are built.

3. Runthe Push command to distribute the images to Container Registry.

docker push registry.cn-beijing.aliyuncs.com/asm repo/grpc server java:1.0.0

docker push registry.cn-beijing.aliyuncs.com/asm repo/grpc client java:1.0.0

> Document Version: 20220712 85



Best Practices-Use gRPC in ASM

Alibaba Cloud Service Mesh

docker push

docker push

docker push

docker push

docker push

docker push

registry.

registry.

registry.

registry.

registry.

registry.

cn-beijing.

cn-beijing.

cn-beijing.

cn-beijing.

cn-beijing.

cn-beijing.

aliyuncs

aliyuncs

aliyuncs.

aliyuncs

aliyuncs

aliyuncs

.com/asm_repo/grpc_server go:1.0.0

.com/asm repo/grpc client go:1.0.0

com/asm_repo/grpc_server node:1.0.0

.com/asm_repo/grpc_client node:1.0.0

.com/asm_repo/grpc_server python:1.0.0

.com/asm _repo/grpc client python:1.0.0

4.3. Implement load balancing among
gRPC servers

After gRPC clients send requests to access the grpc-server-svc.grpc-best.svc.cluster.local service that is
specified by the crrc servEr variable, Alibaba Cloud Service Mesh (ASM) can route the requests to
gRPC servers in round robin mode. This topic describes how to deploy a gRPC service in a Container
Service for Kubernetes (ACK) cluster to implement load balancing among gRPC servers. This topic also
describes how to verify the load balancing of the gRPC service.

Context

86

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use gRPC in ASM

In this topic, four gRPC clients and four gRPC servers in Java, Go, Node.js, and Python are used. For
example, the gRPC clients call the grpc-server-svc.grpc-best.svc.cluster.local service that is specified by
the Grec serveErR variable. When ASM receives the internal requests, ASM routes the requests to the
four gRPC servers in round robin mode. In addition, you can configure an ingress gateway to route
external requests to the four gRPC servers based on a load balancing policy.

<,

—_—
ASM ASM
sidecar sidecar
[

r
“m@
s
ASM ASM
sidecar sidecar
M

grpe-server

ASM
sidecar

!

grpe-server

s

[

ko
[
3

ASM
sidecar

Istio-ingressgateway

(1)

ASM
sidecar

)"

Y
ASM
sidecar

!

grpe-server

ASM
sidecar

BE. A0 BE

@ Alibabacloud Kubernetes(ACK)

Sample project

For information about the sample project of gRPC, download hello-servicemesh-grpc. The directories in
this topic are the directories of hello-servicemesh-grpc.

@ Note The image repository in this topic is for reference only. Use an image script to build and
push images to your self-managed image repository. For more information about the image script,
see hello-servicemesh-grpc.

Step 1: Create a gRPC service on the gRPC servers

In this example, a gRPC service named grpc-server-svcis created on all gRPC servers.
@ Note The value of the spec.ports.name parameter must start with grpc.

1. Create a YAML file named grpc-server-svc.

e

> Document Version: 20220712 87


https://alibabacloudservicemesh.oss-cn-beijing.aliyuncs.com/asm-hello-grpc/hello-servicemesh-grpc.zip
https://alibabacloudservicemesh.oss-cn-beijing.aliyuncs.com/asm-hello-grpc/hello-servicemesh-grpc.zip
https://alibabacloudservicemesh.oss-cn-beijing.aliyuncs.com/asm-hello-grpc/hello-servicemesh-grpc.zip

Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

apivVersion: vl
kind: Service
metadata:
namespace: grpc-best
name: grpc-server-svc
labels:
app: grpc-server-svc
spec:
ports:
- port: 9996
name: grpc-port
selector:

app: grpc-server-deploy
2. Runthe following command to create the gRPC service:

kubectl apply -f grpc-server-svc.yaml

Step 2: Create a Deployment on each gRPC server

In this step, you must create a Deployment on each of the four gRPC servers. The following example
shows you how to use the groc-server-node.yamifile of a Node.js-based gRPC serverto create a
Deployment on the gRPC server. For more information about all the Deployments for gRPC servers in
other languages, visit the kube/deployment page on GitHub.

® Note Youmust set the app labelto grpc-server-deploy forthe four Deploymentson
the gRPC servers to match the selector of the gRPC service that you create in Step 1. Each of the

Deployments on the four gRPC servers in different languages must have a unique version label.

1. Create a YAML file named grpc-server-node.

88 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use gRPC in ASM

apiVersion: apps/vl
kind: Deployment
metadata:
namespace: grpc-best
name: grpc-server-node
labels:
app: grpc-server-deploy
version: v3
spec:
replicas: 1
selector:
matchLabels:
app: grpc-server-deploy
version: v3
template:
metadata:
labels:
app: grpc-server-deploy
version: v3
spec:
containers:
- name: grpc-server-deploy
image: registry.cn-hangzhou.aliyuncs.com/aliacs—-app-catalog/asm-grpc-server-n
ode:1.0.0
imagePullPolicy: Always
ports:
- containerPort: 9996

name: grpc-port

2. Runthe following command to create the Deployment:

kubectl apply -f grpc-server-node.yaml

Step 3: Create a Deployment on each gRPC client
The Deployments for the gRPC clients and gRPC servers are different in the following aspects:

e The gRPC servers continuously run after they are started. The gRPC clients stop running when the
requests are complete. Therefore, an endless loop is required to keep client-side containers from
stopping.

e You must set the GRPC_SERVER variable on the gRPC clients. When the pod of a gRPC client is started,
the value of the GRPC_SERVER variable is passed to the gRPC client.

In this step, you must create a Deployment on each of the four gRPC clients. The following example
shows you how to use the groc-client-go.yamlfile of a Go-based gRPC client to create a Deployment
on the gRPC client.

1. Create a YAML file named grpc-client-go.

> Document Version: 20220712 89



Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

apiVersion: apps/vl
kind: Deployment
metadata:
namespace: grpc-best
name: grpc-client-go
labels:
app: grpc-client-go
spec:
replicas: 1
selector:
matchLabels:
app: grpc-client-go
template:
metadata:
labels:
app: grpc-client-go
spec:
containers:
- name: grpc-client-go
image: registry.cn-hangzhou.aliyuncs.com/aliacs-app-catalog/asm-grpc-client-g
0:1.0.0
command: ["/bin/sleep", "3650d"]
env:
- name: GRPC_SERVER
value: "grpc-server-svc.grpc-best.svc.cluster.local"
imagePullPolicy: Always

2. Runthe following command to create the Deployment:

kubectl apply -f grpc-client-go.yaml

The command: ["/bin/sleep”, "3650d4"] line keeps the container running in sleep mode afterthe
pod of the Go-based gRPC client is started. The GRPC_SERVER variable in  env

svc.grpc-best.svc.cluster.local

issetto grpc-server-

Step 4: Deploy the gRPC service and the Deployments
1. Runthe following commands to create a namespace named grpc-best in the ACK cluster:

alias k="kubectl --kubeconfig SUSER CONFIG"
k create ns grpc-best

2. Runthe following command to enable automatic sidecar injection for the namespace:

k label ns grpc-best istio-injection=enabled

3. Runthe following commands to deploy the gRPC service and the eight Deployments:

90 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use gRPC in ASM

kubectl apply -f grpc-svc.yaml

kubectl apply -f deployment/grpc-server-java.yaml
kubectl apply -f deployment/grpc-server-python.yaml
kubectl apply -f deployment/grpc-server-go.yaml
kubectl apply -f deployment/grpc-server-node.yaml
kubectl apply -f deployment/grpc-client-java.yaml
kubectl apply -f deployment/grpc-client-python.yaml
kubectl apply -f deployment/grpc-client-go.yaml
kubectl apply -f deployment/grpc-client-node.yaml

Verify the result
Use pods to verify the load balancing of the gRPC service

You can check load balancing among gRPC servers by sending requests to the gRPC service on the gRPC
servers fromthe pods of the gRPC clients.

1. Runthe following commands to obtain the names of the pods of the four gRPC clients:

client java pod=$(k get pod -1 app=grpc-client-java -n grpc-best -o jsonpath={.items..m

etadata.name})

client go pod=$(k get pod -1 app=grpc-client-go -n grpc-best -o jsonpath={.items..metad

ata.name})

client node pod=$(k get pod -1 app=grpc-client-node -n grpc-best -o jsonpath={.items..m

etadata.name})

client python pod=$(k get pod -1 app=grpc-client-python -n grpc-best -o jsonpath={.item

s..metadata.name})

2. Runthe following commands to send requests from the pods of the gRPC clients to the gRPC
service on the four gRPC servers:

k exec "Sclient java pod" -c grpc-client-java -n grpc-best -- java -jar /grpc-client.ja
k exec "$Sclient go pod" -c grpc-client-go -n grpc-best -- ./grpc-client

k exec "$client node pod" -c grpc-client-node -n grpc-best -- node proto client.js

k exec "Sclient python pod" -c grpc-client-python -n grpc-best -- sh /grpc-client/start

_client.sh

3. Use a FOR loop to verify the load balancing among the gRPC servers. In this example, the Node.js-
based gRPC client is used.

for ((i = 1; i <= 100; i++)); do

kubectl exec "S$client node pod" -c grpc-client-node -n grpc-best -- node kube client.js
> kube result

done

sort kube result grep -v "“[[:space:]]1*$" unig -c sort -nrkl

Expected output:

> Document Version: 20220712 91



Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

26 Talk:PYTHON
25 Talk:NODEJS
25 Talk:GOLANG
24 Talk:JAVA

The output indicates that the four gRPC servers on which the gRPC service is deployed receive an
approximate number of requests. The load balancing result indicates that ASM can route external
requests to the four gRPC servers on which the gRPC service is deployed based on a load balancing
policy.

Use an ingress gateway to verify the load balancing of the gRPC service

You can verify load balancing among gRPC servers by using the Istio ingress gateway.

1.

6.

2
3.
4
5

Onthe Create page, select a namespace as required, copy the following content to the code
editor, and then click Create.

apiVersion: networking.istio.io/vlalpha3
kind: Gateway
metadata:
namespace: grpc-best
name: grpc-gateway
spec:
selector:
istio: ingressgateway
servers:
- port:
number: 9996
name: grpc
protocol: GRPC

hosts:

— M%n

Run the following command to obtain the IP address of the Istio ingress gateway:

INGRESS IP=$(k -n istio-system get service istio-ingressgateway -o jsonpath='{.status.l

oadBalancer.ingress([0] .ip} ")

7. Use a FOR loop to verify the load balancing among the gRPC servers.

docker run -d --name grpc client node -e GRPC SERVER="S${INGRESS IP}" registry.cn-hangzh
ou.aliyuncs.com/aliacs-app-catalog/asm-grpc-client-node:1.0.0 /bin/sleep 3650d

client node container=$ (docker ps -q)

docker exec -e GRPC_SERVER="S${INGRESS IP}" -it "$client node container" node kube clien
t.js

for ((i = 1; i <= 100; i++)); do

docker exec -e GRPC_SERVER="S${INGRESS IP}" -it "$client node container" node kube clien
t.js >> kube result

done

sort kube result grep -v "“[[:space:]]*$" wunig -c sort -nrkl

92

> Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices-Use gRPC in ASM

Expected output:

26 Talk:PYTHON
25 Talk:NODEJS
25 Talk:GOLANG
24 Talk:JAVA

The output indicates that the four gRPC servers on which the gRPC service is deployed receive an
approximate number of requests. The load balancing result indicates that ASM can route external
requests to the four gRPC servers on which the gRPC service is deployed based on a load balancing

policy.

4.4. Shape traffic to gRPC servers

This topic describes how to shape traffic to gRPC servers based on the gRPC version and gRPC APlin the

Alibaba Cloud Service Mesh (ASM) console.

Shape traffic to gRPC servers based on the gRPC version

A gRPC service is deployed on each of the Java, Go, Node.js, and Python gRPC servers. The following
example shows how to route requests from gRPC clients to the gRPC service that is deployed on the

Java gRPC server.

B
ll sidecar

Istio-ingressgateway

@ Alibabacloud Kubernetes(ACK)

ASM
sidecar

b

ASM
sidecar

!

grpc-server

ASM ASM
sidecar sidecar

ASM
sidecar

!

ASM
sidecar

grpc-server

> Document Version: 20220712

93



Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

1.
2.
3.
4. Inthe Control Plane section, click the DestinationRule tab and then Create.

5. Inthe Create panel, select the required namespace fromthe Namespaces drop-down list. Copy
the following content to the code editor. Then, click OK.

apiVersion: networking.istio.io/vlalpha3
kind: DestinationRule
metadata:
namespace: grpc-best
name: grpc-server-dr
spec:
host: grpc-server-svc
subsets:
- name: vl
labels:
version: vl
- name: v2
labels:
version: v2
- name: v3
labels:
version: v3
- name: v4
labels:

version: v4

6. Inthe Control Plane section, clickthe VirtualService tab and then Create.

7. Inthe Create panel, select the required namespace fromthe Namespaces drop-down list. Copy
the following content to the code editor. Then, click OK.

apiVersion: networking.istio.io/vlalpha3
kind: VirtualService
metadata:
namespace: grpc-best
name: grpc-server-vs
spec:
hosts:
— nkn
gateways:
- grpc-gateway
http:
- match:
- port: 9996
route:
- destination:
host: grpc-server-svc
subset: vl
weight: 100

Run the following command to check whether all the requests are routed to the Java gRPC service:

94 > Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices-Use gRPC in ASM

for i in {1..100}; do

docker exec -e GRPC_SERVER="${INGRESS IP}" -it "S$client node container" node mesh cli

ent.js >> mesh result

done

sort mesh result | grep -v "“[[:space:]]1*$"| unig -c | sort -nrkl

Expected output:

100 TalkOneAnswerMore:JAVA
100 TalkMoreAnswerOne:JAVA
100 TalkBidirectional:JAVA
100 Talk:JAVA

Shape traffic to gRPC servers by using the gRPC API operations

You can use the gRPC APl operations to shape traffic to gRPC servers in a fine-grained way. The gRPC
APl operations can be built for the communication models. For more information, see Implement the
communication models of gRPC. Four gRPC APl operations and four gRPC services in the following
programming languages are available: Java, Go, Node.js, and Python. The following example shows how
to set arouting rule to route the requests of a gRPC APl operation to the gRPC server that uses the

same language as the operation.

ASM
sidecar

Istio-ingressgateway

@ Alibabacloud Kubernetes(ACK)

Talk

TalkOneAnswerMore

TalkMoreAnswerOne

TalkBidirectional

< .

ASM
sidecar

grpc-server

—
ASM
sidecar

&

L

ASM
sidecar

grpc-client

O

(0]

asm
sidecar |

!

grpc-server

ASM
sidecar

»

ASM

asm B
sidecar

!

grpe-server

sidecar

> Document Version: 20220712

95


https://www.alibabacloud.com/help/doc-detail/187132.htm#task-1963084

Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

1.
2.
3.
4. Inthe Control Plane section, click the VirtualService tab and then Create.

5. Inthe Create panel, select the required namespace fromthe Namespaces drop-down list. Copy
the following content to the code editor. Then, click OK.

96 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use gRPC in ASM

apiVersion: networking.istio.io/vlalpha3
kind: VirtualService
metadata:
namespace: grpc-best
name: grpc-server-vs
spec:
hosts:
_ wxn
gateways:
- grpc-gateway
http:
- match:
- port: 9996
- uri:
exact: /org.feuyeux.grpc.LandingService/talk
route:
- destination:
host: grpc-server-svc
subset: vl
weight: 100
- match:
- port: 9996
- uri:
exact: /org.feuyeux.grpc.LandingService/talkOneAnswerMore
route:
- destination:
host: grpc-server-svc
subset: v2
weight: 100
- match:
- port: 9996
- uri:
exact: /org.feuyeux.grpc.LandingService/talkMoreAnswerOne
route:
- destination:
host: grpc-server-svc
subset: v3
weight: 100
- match:
- port: 9996
- uri:
exact: /org.feuyeux.grpc.LandingService/talkBidirectional
route:
- destination:
host: grpc-server-svc
subset: v4
weight: 100

Run the following command to check whether the requests of each gRPC APl operation are
directed to the gRPC server that uses the same language as the operation:

> Document Version: 20220712

97



Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

for i in {1..100}; do

docker exec -e GRPC_SERVER:"${INGRESS_IP}" -it "$client_node_container" node mesh cli
ent.js >> mesh result
done

sort mesh result | grep -v "“[[:space:]]1*$"| unig -c | sort -nrkl

Expected output:

100 TalkOneAnswerMore:GOLANG
100 TalkMoreAnswerOne:NODEJS
100 TalkBidirectional:PYTHON
100 Talk:JAVA

4.5. Redirect traffic for grRPC-based
applications

Alibaba Cloud Service Mesh (ASM) allows you to set matching conditions for the keys and values of
headers. T his way, ASM can dynamically redirect traffic based on request headers. This topic describes
how to redirect the traffic of applications in ASM based on headers.

Obtain headers on the gRPC server and client

Obtain headers on the gRPC server

e Basic methods

o Use Java to implement the basic method to obtain headers on the gRPC server.

Inwﬂernentthe interceptCall (ServerCall<ReqT, RespT> call,final Metadata m, ServerCallHandl
er<ReqT, RespT> h) Mmethod of the serverInterceptor operation.Then,runthe string v =

m.get (k) command to obtain headers on the server. The type of the input parameter of the ge

t() methodis Metadata.Key<String>

o Use Go to implement the basic method to obtain headers on the gRPC server.

Implement the metadata.FromIncomingContext (ctx) (md MD, ok bool) method.The format of
MD is map[string] []string

o Use Node.js to implement the basic method to obtain headers on the gRPC server.

Implement the call.metadata.getmap() method.The type of the returned valueis [key: stri
ng]: MetadataValue .Tfmatype of Metadatavalue IS string/Buffer

o Use Python to implement the basic method to obtain headers on the gRPC server.

Implement the context.invocation metadata() method. The returned value is a two-tuple array

inthe format of ('kx','v') .The key-value pair can be obtained from m.key, m.value
e Unary RPC
o Use Java to implement the unary remote procedure call (RPC) method to obtain headers onthe
server.

The headers are intercepted.

98 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use gRPC in ASM

o Use Go to implement the unary RPC method to obtain headers on the server.

Call metadata.FromIncomingContext (ctx) inthe method. The value of the ctx parameter is
obtained fromthe input parameter of the Talk method.

o Use Node.js to implement the unary RPC method to obtain headers on the server.
Call call.metadata.getMap() inthe method.

o Use Pythonto implement the unary RPC method to obtain headers on the server.
Call context.invocation metadata() inthe method.

e Server streaming RPC

o Use Java to implement the server streaming RPC method to obtain headers on the server.
The headers are intercepted.

o Use Go to implement the server streaming RPC method to obtain headers on the server.

Call metadata.FromIncomingContext (ctx) inthe method. You cancallthe stream.context ()
method to obtain the value of the ctx parameterfromthe input parameter stream of the
TalkOneAnswerMore method.

o Use Node.js to implement the server streaming RPC method to obtain headers on the server.
Call call.metadata.getMap() inthe method.

o Use Python to implement the server streaming RPC method to obtain headers on the server.
Call context.invocation metadata() inthe method.

e C(lient streaming RPC

o Use Javato implement the client streaming RPC method to obtain headers on the server.
The headers are intercepted.

o Use Go to implement the client streaming RPC method to obtain headers on the server.

Call metadata.FromIncomingContext (ctx) inthe method. Youcancallthe stream.context ()
method to obtain the value of the ctx parameter fromthe input parameter stream of the
TalkMoreAnswerOne method.

o Use Node.js to implement the client streaming RPC method to obtain headers on the server.
Call call.metadata.getMap() inthe method.

o Use Python to implement the client streaming RPC method to obtain headers on the server.
Call context.invocation metadata() inthe method.

e Bidirectional streaming RPC

o Use Java to implement the bidirectional streaming RPC method to obtain headers on the server.
The headers are intercepted.

o Use Go to implement the bidirectional streaming RPC method to obtain headers on the server.

Call metadata.FromIncomingContext (ctx) inthe method. Youcancallthe stream.context ()
method to obtain the value of the ctx parameter fromthe input parameter stream of the
TalkBidirectional method.

> Document Version: 20220712 99



Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

o

o

Use Node.js to implement the bidirectional streaming RPC method to obtain headers on the server.
Call call.metadata.getMap() inthe method.
Use Python to implement the bidirectional streaming RPC method to obtain headers on the server.

Call context.invocation metadata () in the method.

Send headers from the client

e Basic methods

o

Use Java to implement the basic method to send headers fromthe client.

Inwﬂernentthe interceptCall (MethodDescriptor<ReqT, RespT> m, CallOptions o, Channel c)
method of the clientInterceptor operation.Implement the start((Listener<RespT> 1, Meta
data h)) method of the clientCall<ReqT, RespT> type.Then,run n.put(k, v) tosend
headers on the client. The type of the input parameter x of put IS Metadata.Key<String> |,
and that of the input parameter v is string

Use Go to implement the basic method to send headers fromthe client.

metadata.AppendToOutgoingContext (ctx, kv ...) context.Context

Use Node.js to implement the basic method to send headers fromthe client.
metadata=call.metadata.getMap ()metadata.add (key, headers[key])

Use Python to implement the basic method to send headers fromthe client.

Set the variable inthe metadata dict = {} command inthe following format: metadata dict|
c.key] = c.value .Convertthetype of datainthe metadata dict arrayto 1ist tuple by
using 1list (metadata dict.items())

e Unary RPC

o

Use Java to implement the unary RPC method to send headers fromthe client.

The headers are intercepted.

o Use Go to implement the unary RPC method to send headers on the client.

Call metadata.AppendToOutgoingContext (ctx, kv) inthe method.

o Use Node.js to implement the unary RPC method to send headers fromthe client.

Call the basic method.

o Use Python to implement the unary RPC method to send headers fromthe client.

Call the basic method.

e Server streaming RPC

o Use Java to implement the server streaming RPC method to send headers fromthe client.

The headers are intercepted.

o Use Go to implement the server streaming RPC method to send headers fromthe client.

Call metadata.AppendToOutgoingContext (ctx, kv) inthe method.

o Use Node.js to implement the server streaming RPC method to send headers fromthe client.

Call the basic method.

100

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use gRPC in ASM

o Use Python to implement the server streaming RPC method to send headers fromthe client.
Call the basic method.
e C(lient streaming RPC
o Use Java to implement the client streaming RPC method to send headers fromthe client.
The headers are intercepted.
o Use Go to implement the client streaming RPC method to send headers fromthe client.
Call metadata.AppendToOutgoingContext (ctx, kv) inthe method.
o Use Node.js to implement the client streaming RPC method to send headers fromthe client.
Call the basic method.
o Use Python to implement the client streaming RPC method to send headers fromthe client.
Call the basic method.
e Bidirectional streaming RPC
o Use Java to implement the bidirectional streaming RPC method to send headers fromthe client.
The headers are intercepted.
o Use Go to implement the bidirectional streaming RPC method to send headers fromthe client.
Call metadata.AppendToOutgoingContext (ctx,kv) inthe method.
o Use Node.js to implement the bidirectional streaming RPC method to send headers fromthe client.
Call the basic method.
o Use Pythonto implement the bidirectional streaming RPC method to send headers fromthe client.

Call the basic method.

Propaganda Headers

In Tracing Analysis, upstream link metadata must be passed through to the downstreamto obtain the
complete information of atrace. Therefore, the tracing-related header information that is obtained on
the server must be passed through to the client that sends the request to the downstream.

The operations of the communication models that are implemented by using Go, Node.js, and Python
can receive headers. Therefore, the following three actions can be implemented in order by using the
operations of the four communication models: First, the server reads the headers. Then, the server
passes the headers. Last, the client sends the headers.

The operations of the communication models that are implemented by using Java cannot be used to
propaganda headers in an ordered process. This is because Java reads and writes headers by using two
interceptors. Only the read interceptor obtains the unique ID of the tracing. In addition, gRPC services
may receive and send requests at the same time. As a result, the two interceptors cannot be connected
by using caching, which is the most intuitive method to show traces.

> Document Version: 20220712 101



Best Practices-Use gRPC in ASM Alibaba Cloud Service Mesh

Java uses Metadata-Context Propagation to trace headers.

Context

Context

x-request-id x-request-id

1mmmm s Context B Lt ]

x-b3-traceid x-b3-traceid

Context

X-b3-spanid x-b3-spanid

x-b3-parentspanid current() current() }—' x-b3-parentspanid

X-b3-sampled X-b3-sampled

x-request-id x-b3-flags

x-b3-flags

X-ot-span-context x-b3-traceid xX-ot-span-context

X-b3-spanid
X-b3-parentspanid

X-b3-sampled

Serverinterceptor Clientinterceptor

x-b3-flags

X-ot-span-context

GRPC Method DownStream

Request

When the server interceptor reads headers, the headers are written into Context by using
ctx.withValue (key, metadata) .Thetype of the key parameteris context.Key<String> .Then,the

client interceptorreadsthe neaders fromContext by using key.get() .Bydefault,the get
method uses context.current () .Thisensuresthat the same context is used when headers are read
and written.

When headers can be propagandized, you can trace the request and response messages between the
gRPC client and server.

Deploy and verify the topology of an ASM instance

Before you can redirect traffic, you must deploy and verify the topology of the ASM instance in which
your application resides. Make sure that the topology of the ASM instance works as expected.

The tracing folder of the sample project contains deployment scripts in Java, Go, Node.js, and Python. In
this example, the Go deployment script is used to deploy and verify the topology of the ASM instance.

cd go

# Deploy the topology of the ASM instance.
sh apply.sh

# Verify the topology of the ASM instance.
sh test.sh

If no exceptions occur, the topology of the ASM instance works as expected.

102 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use gRPC in ASM

The following figure shows the deployed topology of the ASM instance.

ASM
sidecar

grpc-server-svcl grpc-server-svc2 grpc-server-svc3

Istio-ingressgateway

S
‘ ASM ‘ ‘ ASM ‘
sidecar ‘ sidecar sidecar

{E/ﬂ Alibabacloud Kubernetes(ACK)

Redirect traffic

You can create a virtual service in ASM to set matching conditions for the keys and values of headers.
This way, ASM can dynamically redirect traffic based on request headers. Furthermore, You can shape
the traffic of your application in a fine-grained way based on the gRPC version and gRPC API
operations. For more information, see Shape traffic to gRPC servers. The following example shows you
how to create a virtual service to direct all the requests of which the headers contain  server-
version=go to the Go-based gRPC server.

1.

2

3

4.

5. Onthe Create page, select a namespace as required, copy the following content to the code
editor, and then click Create.

apiVersion: networking.istio.io/vlalpha3
kind: VirtualService
metadata:
namespace: grpc-best
name: grpc-server-vs
spec:
hosts:
— nxn
gateways:
- grpc-gateway
http:
- match:
- headers:
server-version:
exact: go
route:
- destination:
host: grpc-server-svc
subset: v2
weight: 100

> Document Version: 20220712 103


https://www.alibabacloud.com/help/doc-detail/187134.htm#task-1963778

Best Practices-Use Flagger in ASM Alibaba Cloud Service Mesh

5.Use Flagger in ASM

5.1. Use Mixerless Telemetry to
observe ASM instances

The Mixerless Telemetry technology of Alibaba Cloud Service Mesh (ASM) allows you to obtain
telemetry data from containers in a non-intrusive manner. Telemetry data is collected by Prometheus
Service or self-managed Prometheus as monitoring metrics. You can use the telemetry data to observe
ASM instances. T his topic describes how to use ASMto obtain application monitoring metrics that are
collected by self-managed Promet heus to observe ASM instances.

Prerequisites

Step 1: Install Prometheus

1. Download and decompress the installation package of Istio. To download the installation package
of Istio, go to the Download Istio page.

2. Use kubectlto connect to the ACK cluster. For more information, see Connect to ACK clusters by using
kubectl.

3. Runthe following command to install Prometheus:

kubectl --kubeconfig <Path of the kubeconfig file> apply -f <Path to which the installa

tion package of Istio is decompressed>/samples/addons/prometheus.yaml

Step 2: Create a service entry
1.

vk wWwN

Inthe Settings Update panel, select Enable Prometheus and then Enable Self-managed
Prometheus. Inthe field that appears, enter a Prometheus endpoint. In this example, the def ault
endpoint http://prometheus:9090 is used. Then, click OK.

@ Note Inthis example, self-managed Prometheus is used. If you use Promet heus Service,
see Monitor service meshes based on ARMS Promet heus.

In the left-side navigation pane of the details page, choose Cluster & Workload Management >
. Onthe page that appears, you can view the created service entry.

Step 3: Configure Prometheus

1. Configure the monitoring metrics of Istio.

104 > Document Version: 20220712


https://istio.io/latest/docs/setup/getting-started/#download
https://www.alibabacloud.com/help/doc-detail/86494.htm#task-2076136
https://www.alibabacloud.com/help/doc-detail/169961.htm#task-2515721

Alibaba Cloud Service Mesh Best Practices-Use Flagger in ASM

v. Inthe upper part of the ConfigMap page, select istio-system from the Namespace drop-
down list. Find the item that is named prometheus and click Edit in the Actions column.

vi. Inthe Edit panel, enter configuration information in the Value field and click OK. To obtain
the configuration information, visit Git Hub.

2. Delete the pod of Prometheus to make Prometheus configurations take effect.
i.
i
il
iv.

v. Onthe Pods page, find the pod that is named Prometheus and click Delete inthe Actions
column.

vi. Inthe Delete Pod message, click Confirm.

3. Runthe following command to view job name inthe Prometheus configurations:

kubectl --kubeconfig <Path of the kubeconfig file> get cm prometheus -n istio-system -o

jsonpath={.data.prometheus\\.yml} | grep job name

Expected output:

- job name: 'istio-mesh'
- job name: 'envoy-stats'
- Jjob name: 'istio-policy'
- job name: 'istio-telemetry'
- job name: 'pilot'
- job name: 'sidecar-injector'
- job name: prometheus
job name: kubernetes-apiservers
job name: kubernetes-nodes
job name: kubernetes-nodes-cadvisor
- job name: kubernetes-service-endpoints
- job name: kubernetes-service-endpoints-slow
job name: prometheus-pushgateway
- Jjob name: kubernetes-services
- job _name: kubernetes-pods

- job name: kubernetes-pods-slow

Step 4: Generate monitoring data

1. Deploy the podinfo application inthe ACK cluster.

i. Download the required YAML files of the podinfo application. For more information, visit
GitHub.

> Document Version: 20220712 105


https://github.com/feuyeux/asm-best-practises/blob/master/mixerless/scrape_configs.yaml?spm=a2c6h.12873639.0.0.60c7727eBLdklU&file=scrape_configs.yaml
file:///home/admin/dita-files/output/21702202/task19031346/github.com/stefanprodan/podinfo

Best Practices-Use Flagger in ASM Alibaba Cloud Service Mesh

ii. Runthe following commands to deploy the podinfo application in the ACK cluster:

kubectl --kubeconfig <Path of the kubeconfig file> apply -f <Path of the podinfo ap
plication>/kustomize/deployment.yaml -n test
kubectl --kubeconfig <Path of the kubeconfig file> apply -f <Path of the podinfo ap

plication>/kustomize/service.yaml -n test

2. Runthe following command to request the podinfo application to generate monitoring data:

podinfo pod=$ (k get po -n test -1 app=podinfo -o jsonpath={.items..metadata.name})
for i in {1..10}; do
kubectl --kubeconfig "SUSER CONFIG" exec S$podinfo pod -c podinfod -n test -- curl -s
podinfo:9898/version
echo

done

3. Checkwhether monitoring data is generated in the Envoy container.

i. Runthe following command to request Envoy to check whether the monitoring data of the
istio_requests_total metric is generated:

kubectl --kubeconfig <Path of the kubeconfig file> exec S$podinfo pod -n test -c ist
io-proxy -- curl -s localhost:15090/stats/prometheus | grep istio requests total

Expected output:

istio requests total

# TYPE istio requests total counter

istio requests total{response code="200",reporter="destination", source workload="po
dinfo", source workload namespace="test",source principal="spiffe://cluster.local/ns
/test/sa/default", source app="podinfo", source version="unknown", source cluster="cl9
9d81d4e3104a5d90254b2a210914c8",destination workload="podinfo",destination workload
_namespace="test",destination principal="spiffe://cluster.local/ns/test/sa/default"
,destination app="podinfo",destination version="unknown",destination service="podin
fo.test.svc.cluster.local",destination service name="podinfo",destination service n
amespace="test",destination cluster="c199d81d4e3104a5d90254b2a210914c8", request pro
tocol="http", response flags="-",grpc response status="",connection security policy=
"mutual tls",source canonical service="podinfo",destination canonical service="podi
nfo",source canonical revision="latest",destination canonical revision="latest"} 10
istio requests total{response code="200", reporter="source",source workload="podinfo
",source workload namespace="test",source principal="spiffe://cluster.local/ns/test
/sa/default",source_app="podinfo",source_version="unknown",source_cluster="c199d81d
4e3104a5d90254b2a210914c8",destination workload="podinfo",destination workload name
space="test",destination principal="spiffe://cluster.local/ns/test/sa/default",dest
ination app="podinfo",destination version="unknown",destination service="podinfo.te
st.svc.cluster.local",destination service name="podinfo",destination service namesp
ace="test",destination cluster="c199d81d4e3104a5d90254b2a210914c8", request protocol
="http", response flags="-",grpc_response status="",connection security policy="unkn
own",source canonical service="podinfo",destination canonical service="podinfo", sou

rce canonical revision="latest",destination canonical revision="latest"} 10

106 > Document Version: 20220712



Alibaba Cloud Service Mesh

ii. Runthe following command to request Envoy to check whether the monitoring data of the

istio_request_duration metric is generated:

kubectl --kubeconfig <Path of the kubeconfig file> exec S$podinfo pod -n test -c ist

io-proxy -- curl -s localhost:15090/stats/prometheus | grep istio request duration

Expected output:

istio request duration

# TYPE istio request duration milliseconds histogram

istio request duration milliseconds bucket{response code="200", reporter="destinatio
n",source workload="podinfo",source workload namespace="test", source principal="spi
ffe://cluster.local/ns/test/sa/default", source app="podinfo", source version="unknow
n",source cluster="c199d81d4e3104a5d90254b2a210914c8",destination workload="podinfo
",destination workload namespace="test",destination principal="spiffe://cluster.loc
al/ns/test/sa/default"”,destination app="podinfo",destination version="unknown",dest
ination service="podinfo.test.svc.cluster.local",destination service name="podinfo"
,destination service namespace="test",destination cluster="c199d81d4e3104a5d90254b2
a210914c8", request protocol="http",response flags="-",grpc response status="", conne
ction security policy="mutual tls",source canonical service="podinfo",destination c
anonical service="podinfo",source canonical revision="latest",destination canonical
_revision="latest",le="0.5"} 10

istio request duration milliseconds bucket{response code="200",reporter="destinatio
n",source workload="podinfo",source workload namespace="test", source principal="spi
ffe://cluster.local/ns/test/sa/default", source app="podinfo", source version="unknow
n",source cluster="c199d81d4e3104a5d%90254b2a210914c8",destination workload="podinfo
",destination workload namespace="test",destination principal="spiffe://cluster.loc
al/ns/test/sa/default",destination_app:"podinfo",destination_version:"unknown",dest
ination service="podinfo.test.svc.cluster.local",destination service name="podinfo"
,destination service namespace="test",destination cluster="c199d81d4e3104a5d90254b2
a210914c8", request protocol="http",response flags="-",grpc response status="", conne
ction security policy="mutual tls",source canonical service="podinfo",destination c
anonical service="podinfo",source canonical revision="latest",destination canonical

_revision="latest",le="1"} 10

Verify the result

1. Expose Prometheus by using a Server Load Balancer (SLB) instance. For more information, see

2
3
4.
5
6.

7.

Best Practices-Use Flagger in ASM

Manage Services.

Onthe Services page, find the service that is named Prometheus and click the IP address in the

External Endpoint column.
On the Prometheus page, enteristio_requests_total in the search box and clickExecute.

The following figure shows that application monitoring metrics are collected by Prometheus.

> Document Version: 20220712

107


https://www.alibabacloud.com/help/doc-detail/86512.htm#task-1779995

Best Practices-Use Flagger in ASM Alibaba Cloud Service Mesh

Enable query history Use local time

Q |stio_requests_total Execute

Table Graph

Evaluation time

istio_requests_total {connection_security_policy="mutual_tis", destination_app="podinfo”, destination_canonical_revision="latest", 10
destination_canonical_service="podinfo", destination_cluster="c199d81d4e3104a5090254b2a210914¢cE", destination_principal="spiffe://cluster.local/ns/test/sa/default”,
destination_service="podinfo test.svc.cluster. local”, destination_service_name="podinfo", destination_service_namespace="{esi", destination_wersion="unknown",
destination_worklead="podinfo", destination_workload_namespace="test", instance="172.20.0.6:15090", job="envoy-stals", namespace="tesl", pod_name="podinfo-
5588bbf749-db9qq”, reporter="destination”, request_protocol="http", response_code="200", response_flags="-", source_app="podinfo",
source_canonical_revision="latest", source_canonical_service="podinfo", source_cluster="c19%d81d4e3104a5d30254b22210914c8",

source_principal="spiffe:|fcluster local/ns//test/sz/default”, source_version="unknown", source_workload="podinfc", source_workload_namespace="test"}

istio_requests_total{connection_security_policy="unknown", destination_app="podinfo", destination_canonical_revision="latest", 10
destination_canonical_service="podinfo", destination_cluster="c199d81d4e3104a5d90254b22210914c8", destination_principal="spiffe://cluster.localins/test/sajdefault”,
destination_service="podinfo.test.sve.cluster local”, destination_service_name="podinfc", destination_service, pace="tesl", destination_version="unknown",

destination_workload="podinfo®, destination_workload_namespace="test", instance="172.20.0.6:15090", job="emvoy-stats", namespace="test", pod_name="podinfo-
5588bbi749-db9qq", reporter="source”, request_protocol="http", response_code="200", response_flags="-", source_app="podinfo®,
source_canonical_revision="latest", source_canonical_service="podinfo”, source_cluster="c192d81d4e3104a5d20254b2a210814c8",
source_principal="spiffe:/jcluster. local/ns/test/sa/default”, source_version="unknown®, source_workload="podinfc", source_workload_namespace="test"}

Remove Pane

5.2. Use Mixerless Telemetry to scale
the pods of an application

The Mixerless Telemetry technology of Alibaba Cloud Service Mesh (ASM) allows you to obtain
telemetry data on containers in a non-intrusive manner. You can use Prometheus to collect the
monitoring metrics of an application, such as the number of requests, the average latency of requests,
and the P99 latency of requests. Then, a Horizontal Pod Autoscaler (HPA) automatically scales the
pods of the application based on the collected metrics. This topic describes how to use Mixerless
Telemetry to scale the pods of an application.

Prerequisites

Application monitoring metrics are collected by Prometheus. For more information, see Use Mixerless
Telemetry to observe ASM instances.

Step 1: Deploy a metrics adapter and a Flagger load tester

1. Use kubectlto connect to a Container Service for Kubernetes (ACK) cluster. For more information,
see Connect to ACK clusters by using kubectl.

2. Runthe following command to deploy a metrics adapter:

@ Note To obtainthe complete script of a metrics adapter, visit GitHub.

helm --kubeconfig <Path of the kubeconfig file> -n kube-system install asm-custom-metri
cs \ SKUBE METRICS ADAPTER SRC/deploy/charts/kube-metrics-adapter \

--set prometheus.url=http://prometheus.istio-system.svc:9090

3. Verify whether the metrics adapter is deployed as expected.

108 > Document Version: 20220712


https://www.alibabacloud.com/help/doc-detail/254054.htm#task-2081729
https://www.alibabacloud.com/help/doc-detail/86494.htm#task-2076136
https://github.com/feuyeux/asm-best-practises/blob/master/progressive_delivery/demo_hpa.sh?spm=a2c6h.12873639.0.0.a34263ebbBG94S&file=demo_hpa.sh

Alibaba Cloud Service Mesh Best Practices-Use Flagger in ASM

i. Runthe following command to view the pod of the metrics adapter:

kubectl --kubeconfig <Path of the kubeconfig file> get po -n kube-system | grep met

rics-adapter

Expected output:

asm-custom-metrics—-kube-metrics-adapter-6fb4949988-ht8pv 1/1 Running 0
30s

ii. Runthe following command to view the custom resource definitions (CRDs) of
autoscaling/v2beta:

kubectl --kubeconfig <Path of the kubeconfig file> api-versions | grep "autoscaling
/v2beta"

Expected output:

autoscaling/v2betal
autoscaling/v2beta2

iii. Runthe following command to view the metrics adapter:

kubectl --kubeconfig <Path of the kubeconfig file> get --raw "/apis/external.metric
s.k8s.io/vlbetal" | jg .

Expected output:

"kind": "APIResourcelList",
"apiVersion": "v1",
"groupVersion": "external.metrics.k8s.io/vlbetal",

"resources": []

4. Deploy a Flagger load tester.
i. Download the required YAML files of the Flagger load tester. For more information, visit Git Hub.

ii. Runthe following commands to deploy the Flagger load tester:

kubectl --kubeconfig <Path of the kubeconfig file> apply -f <Path of the Flagger lo
ad tester>/kustomize/tester/deployment.yaml -n test
kubectl --kubeconfig <Path of the kubeconfig file> apply -f <Path of the Flagger lo

ad tester>/kustomize/tester/service.yaml -n test

Step 2: Create different HPAs based on your business requirements

1. Create an HPA to scale the pods of an application based on the value of the istio_requests_total
parameter. The istio_requests_total parameter indicates the number of requests that are sent to
the application.

> Document Version: 20220712 109


https://github.com/fluxcd/flagger

Best Practices-Use Flagger in ASM Alibaba Cloud Service Mesh

i. Use the following content to create the requests total hpa.yamifile:

apiVersion: autoscaling/v2beta?2
kind: HorizontalPodAutoscaler
metadata:
name: podinfo-total
namespace: test
annotations:
metric-config.external .prometheus—-query.prometheus/processed-requests—-per—-secon
d: |
sum(rate (istio requests total{destination workload namespace="test", reporter=
"destination"} [1m]))
spec:
maxReplicas: 5
minReplicas: 1
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: podinfo
metrics:
- type: External
external:
metric:
name: prometheus—-query
selector:
matchLabels:
query-name: processed-requests-per-second
target:
type: AverageValue

averageValue: "10"

m annotations: Add annotations to configure the HPA to scale the pods of the application

based on the value of the istio_requests_total parameter.

m target: In this example, set the averageValue parameterto 10. If the average number of

requests that are sent to the application is greater than or equal to 10, the HPA
automatically scales out the pods of the application.

ii. Runthe following command to deploy the HPA:

kubectl --kubeconfig <Path of the kubeconfig file> apply -f resources hpa/requests
total hpa.yaml

110

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use Flagger in ASM

iii. Verify whetherthe HPA is deployed as expected.

kubectl --kubeconfig <Path of the kubeconfig file> get --raw "/apis/external.metric
s.k8s.io/vlbetal" | jq .

Expected output:

{
"kind": "APIResourcelList",
"apiVersion": "v1",
"groupVersion": "external.metrics.k8s.io/vlbetal",
"resources": [
{
"name": "prometheus-query",
"singularName": "",
"namespaced": true,
"kind": "ExternalMetricValuelList",
"verbs": [

"get"

2. Create an HPA to scale the pods of an application based on the value of the
istio_request_duration_milliseconds_sum parameter. The istio_request_duration_milliseconds_sum
parameter indicates the average latency of requests that are sent to the application. Use the
following content to create the podinfo-latency-avg.yaml file:

Repeat Substep b in Step 1 to deploy the HPA.

> Document Version: 20220712 111



Best Practices-Use Flagger in ASM Alibaba Cloud Service Mesh

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: podinfo-latency-avg
namespace: test
annotations:
metric-config.external.prometheus—-query.prometheus/latency-average: |
sum(rate (istio request duration milliseconds sum{destination workload namespace="
test", reporter="destination"} [1m]))
/sum(rate (istio request duration milliseconds count{destination workload namespac
e="test", reporter="destination"} [1m]))
spec:
maxReplicas: 5
minReplicas: 1
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: podinfo
metrics:
- type: External
external:
metric:
name: prometheus-query
selector:
matchLabels:
query-name: latency-average
target:
type: AverageValue

averageValue: "0.005"

o annotations: Add annotations to configure the HPA to scale the pods of the application based
onthe value of the istio_request_duration_milliseconds_sum parameter.

o target: In this example, set the averageValue parameterto 0.005. If the average latency of
requests that are sent to the application is greaterthan or equal to 0.005s, the HPA
automatically scales out the pods of the application.

3. Create an HPA to scale the pods of an application based on the value of the
istio_request_duration_milliseconds_bucket parameter. The
istio_request_duration_milliseconds_bucket parameter indicates the P95 latency of requests that
are sent to the application. Use the following content to create the podinfo-p95.yaml file:

Repeat Substep b in Step 1 to deploy the HPA.

112 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-Use Flagger in ASM

apiVersion: autoscaling/v2beta?2
kind: HorizontalPodAutoscaler
metadata:
name: podinfo-p95
namespace: test
annotations:
metric-config.external.prometheus—-query.prometheus/p95-latency: |
histogram gquantile (0.95,sum(irate(istio request duration milliseconds bucket{dest
ination workload namespace="test",destination canonical service="podinfo"}[5m]))by (le)
)
spec:
maxReplicas: 5
minReplicas: 1
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: podinfo
metrics:
- type: External
external:
metric:
name: prometheus—-query
selector:
matchLabels:
query-name: p95-latency
target:
type: AverageValue

averageValue: "4"

o annotations: Add annotations to configure the HPA to scale the pods of the application based
on the value of the istio_request_duration_milliseconds_bucket parameter.

o target: Inthis example, set the averageValue parameterto 4. If the average P95 latency of
requests that are sent to the application is greater than or equal to 4 ms, the HPA automatically
scales out the pods of the application.

Verify whether the pods of an application can be scaled as expected

In this example, verify the HPA that is deployed to scale the pods of an application based on the
number of requests sent to the application. Verify whether the HPA works as expected if the number of
requests that are sent to the application is greater than or equal to 10.

1. Runthe following command to initiate requests for 5 minutes. Set the number of requests per
second to 10 and the number of concurrent requests that are processed at a time to 2.

alias k="kubectl --kubeconfig S$USER CONFIG"

loadtester=$(k -n test get pod -1 "app=flagger-loadtester" -o Jsonpath='{.items..metada
ta.name} ')

k -n test exec -it ${loadtester} -c loadtester -- hey -z 5m -c 2 -q 10 http://podinfo:9
898

o -z :the duration within which requests are initiated.
o -c :the numberof concurrent requests that are processed at a time.

o -g :the numberof requests persecond.

> Document Version: 20220712 113



Best Practices-Use Flagger in ASM Alibaba Cloud Service Mesh

2. Runthe following command to check whether the pods are scaled out as expected:

watch kubectl --kubeconfig SUSER CONFIG -n test get hpa/podinfo-total

Expected output:

Every 2.0s: kubectl --kubeconfig /Users/han/shop config/ack zjk -n test get hpa/podinfo
East6Cl6G: Tue Jan 26 18:01:30 2021

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
podinfo Deployment/podinfo 10056m/10 (avg) 1 5 2 4m4d5s

A value of 2 appearsinthe Rrepricas column, which indicates that the current number of pods
of the application is 2.

3. Runthe following command to initiate requests for 5 minutes. Set the number of requests per
second to 15 and the number of concurrent requests that are processed at atime to 2.

alias k="kubectl --kubeconfig SUSER CONFIG"

loadtester=$(k -n test get pod -1 "app=flagger-loadtester" -o Jjsonpath='{.items..metada
ta.name} ')

k -n test exec -it ${loadtester} -c loadtester -- hey -z 5m -c 2 -q 15 http://podinfo:9
898

4. Runthe following command to check whether the pods are scaled out as expected:

watch kubectl --kubeconfig SUSER CONFIG -n test get hpa/podinfo-total

Expected output:

Every 2.0s: kubectl --kubeconfig /Users/han/shop config/ack zjk -n test get hpa/podinfo
East6Cl6G: Tue Jan 26 18:01:30 2021

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
podinfo Deployment/podinfo 10056m/10 (avg) 1 5 3 4m45s

A value of 3 appearsinthe repricas column, which indicates that the current number of pods
of the application is 3. The result shows that the pods of the application are scaled out when the
number of requests that are sent to the application increases. If you decrease the number of
requests that are sent to the application to a specific level, a value of 1 appearsinthe RreprLICAS
column. The result shows that the pods of the application are scaled in when the number of
requests that are sent to the application decreases.

5.3. Use Mixerless Telemetry to
implement a canary release

The Mixerless Telemetry technology of Alibaba Cloud Service Mesh (ASM) allows you to obtain
telemetry data on containers in a non-intrusive manner. Telemetry data is collected by Prometheus as
monitoring metrics. Flagger is a tool that automates the release process of applications. You can use
Flagger to monitor the metrics that are collected by Prometheus to manage traffic in canary releases.
This topic describes how to use Mixerless Telemetry to implement a canary release.

Prerequisites

Application monitoring metrics are collected by Prometheus. For more information, see Use Mixerless

114 > Document Version: 20220712


https://www.alibabacloud.com/help/doc-detail/254054.htm#task-2081729

Alibaba Cloud Service Mesh Best Practices-Use Flagger in ASM

Telemetry to observe ASM instances.

Procedure for implementing a canary release

1. Connect ASMto Prometheus to collect application monitoring metrics.
2. Deploy Flagger and an Istio gateway.

3. Deploy a Flagger load testerto detect traffic routing for the pods of an application in the canary
release.

4. Deploy an application. In this example, the podinfo application V3.1.0 is deployed.

5. Deploy a Horizontal Pod Autoscaler (HPA) to scale out the pods of the podinfo application if the
CPU utilization of the podinfo application reaches 99%.

6. Implement a canary resource to specify that the traffic routed to the podinfo application is
progressively increased by a fixed percentage of 10% if the P99 latency keeps being greater than
orequalto 500 ms for 30s.

7. Flagger copies the podinfo application and generates the podinfo-primary application. The
podinfo application is used as the deployment of the canary release version. The podinfo-primary
application is used as the deployment of the production version.

8. Update the podinfo applicationto V3.1.1.

9. Flagger monitors the metrics that are collected by Prometheus to manage traffic in the canary
release. Flagger progressively increases the traffic routed to the podinfo application V3.1.1 by a
fixed percentage of 10% if the P99 latency keeps being greater than or equal to 500 ms for 30s. In
addition, the HPA scales out the pods of the podinfo application and scales in the pods of the
podinfo-primary application based on the status of the canary release.

Procedure

1. Use kubectlto connect to a Container Service for Kubernetes (ACK) cluster. For more information,
see Connect to ACK clusters by using kubectl.

2. Runthe following commands to deploy Flagger:

alias k="kubectl --kubeconfig SUSER CONFIG"

alias h="helm --kubeconfig $USER CONFIG"

cp $MESH CONFIG kubeconfig

-n istio-system create secret generic istio-kubeconfig --from-file kubeconfig
-n istio-system label secret istio-kubeconfig istio/multiCluster=true

repo add flagger https://flagger.app

repo update

apply -f SFLAAGER SRC/artifacts/flagger/crd.yaml

SR = e el

upgrade -i flagger flagger/flagger --namespace=istio-system \
--set crd.create=false \
--set meshProvider=istio \
--set metricsServer=http://prometheus:9090 \
-—-set istio.kubeconfig.secretName=istio-kubeconfig \

--set istio.kubeconfig.key=kubeconfig

3. Use kubectlto connect to an ASM instance. For more information, see Use kubectl to connect to an
ASM instance.

4. Deploy an Istio gateway.

> Document Version: 20220712 115


https://www.alibabacloud.com/help/doc-detail/86494.htm#task-2076136
https://www.alibabacloud.com/help/doc-detail/150496.htm#task-2390744

Best Practices-Use Flagger in ASM Alibaba Cloud Service Mesh

i. Use the following content to create the public-gateway.yamifile:

apiVersion: networking.istio.io/vlalpha3
kind: Gateway
metadata:
name: public-gateway
namespace: istio-system
spec:
selector:
istio: ingressgateway
servers:
- port:
number: 80
name: http
protocol: HTTP

hosts:

— mxkmn

ii. Runthe following command to deploy the Istio gateway:

kubectl --kubeconfig <Path of the kubeconfig file of the ASM instance> apply -f res

ources canary/public-gateway.yaml

5. Runthe following command to deploy a Flagger load tester in the ACK cluster:

kubectl --kubeconfig <Path of the kubeconfig file of the ACK cluster> apply -k "https:/
/github.com/fluxcd/flagger//kustomize/tester?ref=main"

6. Runthe following command to deploy the podinfo application and an HPA in the ACK cluster:

kubectl --kubeconfig <Path of the kubeconfig file of the ACK cluster> apply -k "https:/
/github.com/fluxcd/flagger//kustomize/podinfo?ref=main"

7. Deploy a canary resource in the ACK cluster.
@ Note Formore information about a canary resource, see How it works.

i. Use the following content to create the podinfo-canary.yamifile:

apiVersion: flagger.app/vlbetal
kind: Canary
metadata:
name: podinfo
namespace: test
spec:
# deployment reference
targetRef:
apiVersion: apps/vl
kind: Deployment
name: podinfo
# the maximum time in seconds for the canary deployment
# to make progress before it is rollback (default 600s)
progressDeadlineSeconds: 60
# HPA reference (optional)

autoscalerRef:

aniVerainn+ antnacralina/w2heta?

116 > Document Version: 20220712


https://docs.flagger.app/usage/how-it-works?spm=a2c6h.12873639.0.0.167d6a951WIwYX

Alibaba Cloud Service Mesh

Best Practices-Use Flagger in ASM

[ O N L S LS ST IR Y v e e

kind: HorizontalPodAutoscaler
name: podinfo
service:

# service port number
port: 9898
# container port number or name (optional)
targetPort: 9898
# Istio gateways (optional)
gateways:
- public-gateway.istio-system.svc.cluster.local
# Istio virtual service host names (optional)
hosts:
— Tk
# Istio traffic policy (optional)
trafficPolicy:

tls:

# use ISTIO MUTUAL when mTLS is enabled
mode: DISABLE

# Istio retry policy (optional)
retries:

attempts: 3

perTryTimeout: 1s

retryOn: "gateway-error,connect-failure,refused-stream"

analysis:
# schedule interval (default 60s)
interval: 1m
# max number of failed metric checks before rollback
threshold: 5
# max traffic percentage routed to canary
# percentage (0-100)
maxWeight: 50
# canary increment step
# percentage (0-100)
stepWeight: 10
metrics:
- name: request-success-rate
# minimum req success rate (non 5xx responses)
# percentage (0-100)
thresholdRange:
min: 99
interval: 1m
- name: request-duration
# maximum req duration P99
# milliseconds
thresholdRange:
max: 500
interval: 30s
# testing (optional)
webhooks:
- name: acceptance-test
type: pre-rollout
url: http://flagger-loadtester.test/
timeout: 30s

metadata:

> Document Version: 20220712

117



Best Practices-Use Flagger in ASM

Alibaba Cloud Service Mesh

type: bash

cmd: "curl -sd 'test' http://podinfo-canary:9898/token | grep token"

- name: load-test
url: http://flagger-loadtester.test/
timeout: 5s

metadata:

cmd: "hey -z Im -g 10 -c 2 http://podinfo-canary.test:9898/"apiVersion: f

lagger.app/vlbetal
kind: Canary
metadata:
name: podinfo
namespace: test
spec:
# deployment reference
targetRef:
apiVersion: apps/vl
kind: Deployment

name: podinfo

# the maximum time in seconds for the canary deployment

# to make progress before it is rollback (default 600s)

progressDeadlineSeconds: 60
# HPA reference (optional)
autoscalerRef:
apiVersion: autoscaling/v2beta?2
kind: HorizontalPodAutoscaler
name: podinfo
service:
# service port number
port: 9898
# container port number or name (optional)
targetPort: 9898
# Istio gateways (optional)
gateways:
- public-gateway.istio-system.svc.cluster.local
# Istio virtual service host names (optional)
hosts:
— Tk
# Istio traffic policy (optional)
trafficPolicy:
tls:
# use ISTIO MUTUAL when mTLS is enabled
mode: DISABLE
# Istio retry policy (optional)
retries:
attempts: 3

perTryTimeout: 1s

retryOn: "gateway-error,connect-failure,refused-stream"

analysis:
# schedule interval (default 60s)
interval: 1m
# max number of failed metric checks before rollback
threshold: 5
# max traffic percentage routed to canary

# percentage (0-100)

118

> Document Version: 20220712



Alibaba Cloud Service Mesh

Best Practices-Use Flagger in ASM

maxWeight: 50
# canary increment step
# percentage (0-100)
stepWeight: 10
metrics:
- name: request-success-rate
# minimum req success rate (non 5xx responses)
# percentage (0-100)
thresholdRange:
min: 99
interval: 1m
- name: request-duration
# maximum req duration P99
# milliseconds
thresholdRange:
max: 500
interval: 30s
# testing (optional)
webhooks:
- name: acceptance-test
type: pre-rollout
url: http://flagger-loadtester.test/
timeout: 30s
metadata:

type: bash

cmd: "curl -sd 'test' http://podinfo-canary:9898/token | grep token"

- name: load-test
url: http://flagger-loadtester.test/
timeout: 5s

metadata:

cmd: "hey -z Im -g 10 -c 2 http://podinfo-canary.test:9898/"

m  stepWeight : the percentage by which the traffic routed to the applicationis to be

progressively increased. In this example, set the value to 10.

®  max :thevalue of P99 latency that triggers traffic routing.

m  interval :the duration of the value of P99 latency that triggers traffic routing.

ii. Runthe following command to deploy the canary resource:

kubectl --kubeconfig <Path of the kubeconfig file of the ACK cluster> apply -f reso

urces canary/podinfo-canary.yaml

8. Runthe following command to update the podinfo application fromV3.1.0to V3.1.1:

kubectl --kubeconfig <Path of the kubeconfig file of the ACK cluster> -n test set image

deployment/podinfo podinfod=stefanprodan/podinfo:3.1.1

Verify whether the canary release is implemented as expected

Run the following command to view the process of progressive traffic routing:

while true; do kubectl --kubeconfig <Path of the kubeconfig file of the ACK cluster> -n tes

t describe canary/podinfo; sleep 10s;done

> Document Version: 20220712

119



Best Practices-Use Flagger in ASM

Alibaba Cloud Service Mesh

Expected output:

Events:
Type
Warning

rollout to
Normal
Normal
Normal

st
Normal
Normal
Normal
Normal
Normal
Normal

Normal

Reason

Synced

finish:

Synced
Synced
Synced

Synced
Synced
Synced
Synced
Synced
Synced
Synced

Age

39m

From

flagger

Message

podinfo-primary.test not ready: waiting for

observed deployment generation less then desired generation

38m
38m
37m

36m
36m
36m
35m
34m
33m
29m

(x2 over 39m)

(x4 over 32m)

mpleted! Scaling down podinfo.test

flagger
flagger
flagger

flagger
flagger
flagger
flagger
flagger
flagger
flagger

all the metrics providers are available!
Initialization done! podinfo.test

New revision detected! Scaling up podinfo.te

Starting canary analysis for podinfo.test
Pre-rollout check acceptance-test passed
Advance podinfo.test canary weight 10
Advance podinfo.test canary weight 20
Advance podinfo.test canary weight 30
Advance podinfo.test canary weight 40

(combined from similar events): Promotion co

The result indicates that the traffic routed to the podinfo application V3.1.1 is progressively increased
from 10% to 40%.

120

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practices-

6.Authorize and control
services in namespaces

6.1. Use an authorization policy to
control service access across
namespaces

By default, services can access each other across namespaces in a Kubernetes cluster. For example,
services that are deployed to a namespace in a development environment can access services in a
production environment. The zero-trust security system of Alibaba Cloud Service Mesh (ASM) allows you
to dynamically configure authorization policies to prevent all services in one namespace from accessing
services in another namespace. This helps reduce risks. T his topic describes how to use an authorization
policy to control service access across namespaces. The demo-frontend and demo-server namespaces
are used in the example.

Prerequisites

Step 1: Enable automatic sidecar injection

You can enable automatic sidecar injection for a namespace so that you can authorize and manage
services in the namespace.

1. Create a namespace named demo-frontend and a namespace named demo-server.
i
i
il
iv.
v. Inthe Create Namespace panel, enter demo-frontend in the Name field, and then click OK.
vi. Repeat the preceding stepsto create a namespace named demo-server.
2. Enable automatic sidecar injection for the demo-frontend and demo-server namespaces.

i. Onthe page, find the demo-frontend namespace and clickEnable Automatic Sidecar
Injection inthe Automatic Sidecar Injection column.

ii. Inthe Submit message, click OK.
ii. Repeat the preceding steps to enable automatic sidecar injection for the demo-server

namespace.

Step 2: Create test services

Create a service named sleep in the demo-frontend namespace and a service named httpbininthe
demo-server namespace. T he sleep service is used to send requests to access the httpbin service.

1.

2. Create a service named sleep in the demo-frontend namespace.

Document Version: 20220712 121


https://www.alibabacloud.com/help/doc-detail/86494.htm#task-2076136

Best Practices-Authorize and contr
ol services in namespaces

Alibaba Cloud Service Mesh

i. Create a sleep.yamifile that contains the following content:

apiVersion: vl
kind: ServiceAccount
metadata:
name: sleep
apiVersion: vl
kind: Service
metadata:
name: sleep
labels:
app: sleep
service: sleep
spec:
ports:
- port: 80
name: http
selector:
app: sleep
apiVersion: apps/vl
kind: Deployment
metadata:
name: sleep
spec:
replicas: 1
selector:
matchLabels:
app: sleep
template:
metadata:
labels:
app: sleep
spec:
terminationGracePeriodSeconds: 0
serviceAccountName: sleep
containers:
- name: sleep
image: curlimages/curl
command: ["/bin/sleep", "3650d"]
imagePullPolicy: IfNotPresent
volumeMounts:
- mountPath: /etc/sleep/tls
name: secret-volume
volumes:
- name: secret-volume
secret:
secretName: sleep-secret

optional: true

122

> Document Version: 20220712



Alibaba Cloud Service Mesh Best Practlces-Aut hgnze and contr
ol services in namespaces

ii. Runthe following command to create the sleep service:

kubectl apply -f sleep.yaml -n demo-frontend

3. Create a service named httpbin in the demo-server namespace.

i. Create an Attpbin.yamlfile that contains the following content:

apiVersion: vl
kind: ServiceAccount
metadata:

name: httpbin
apiVersion: vl
kind: Service
metadata:

name: httpbin

labels:

app: httpbin

service: httpbin

spec:
ports:

- name: http

port: 8000

targetPort: 80
selector:
app: httpbin
apiVersion: apps/vl
kind: Deployment
metadata:
name: httpbin
spec:
replicas: 1
selector:
matchLabels:
app: httpbin

version: vl

template:
metadata:

labels:
app: httpbin
version: vl

spec:

serviceAccountName: httpbin

containers:

- image: docker.io/kennethreitz/httpbin
imagePullPolicy: IfNotPresent
name: httpbin
ports:

- containerPort: 80

ii. Runthe following command to create the httpbin service:

kubectl apply -f httpbin.yaml -n demo-server

> Document Version: 20220712 123



Best Practices- Authorize and contr

. . Alibaba Cloud Service Mesh
ol services in namespaces

4. Verify that a sidecar proxy is injected into the sleep and httpbin services.
i.
i
il
iv.
v. Onthe Pods page, click the pod name of the sleep service.

Onthe Container tab, a sidecar proxy named istio-proxy is displayed. This indicates that a
sidecar proxy is injected into the sleep service.

vi. Repeat the preceding steps to verify that a sidecar proxy is injected into the httpbin service.
Step 3: Create peer authentication policies

You can create a peer authentication policy for a namespace so that you can use an authorization
policy to authorize services in the namespace based on Transport Layer Security (TLS).

1.

Onthe page, click Create mTLS Mode.

o v A~ wWwN

Select demo-frontend fromthe Namespace drop-down list, enter a name in the Name field,
select STRICT - Strictly Enforce mTLS fromthe mTLS Mode (Namespace-wide) drop-down list,
and thenclick Create.

7. Repeat the preceding steps to create a peer authentication policy for the demo-server namespace
to enable mutual Transport Layer Security (mTLS) authentication.

Step 4: Verify that an authorization policy can be used to control
service access across namespaces

You can create an authorization policy and modify the action parameter in the authorization policy to
deny or allow access requests from services in the demo-frontend namespace to services in the demo-
server namespace. This way, you can control service access across hamespaces.

1. Create an authorization policy to deny access requests from the demo-frontend namespace to the
demo-server namespace.

iv.

124 > Document Version: 20220712



Best Practices-Authorize and contr
ol services in namespaces

Alibaba Cloud Service Mesh

v. Onthe Create page, set the parameters that are described in the following table and click
Create.

Parameter Description

The name of the namespace to which the
Namespace authorization policy belongs. In this example,
demo-server is selected.

Name The name of the authorization policy.
Policies The policy. In this example, RULES is selected.

The action on requests that meet specified
Action requirements. In this example, DENY is
selected.

Specifies whether to authenticate the sources
of requests. Turn on Request Source, click
Add Request Source to List, and then click

Request Source Add Request Source. Then, select
namespaces from the Request Source
Domain drop-down list and set the Value
parameter to demo-frontend.

2. Access the httpbin service.
i.
i
il
iv.

v. Onthe Pods page, find the pod name of the sleep service and click Terminal in the Actions
column. Then, click Container: sleep.

vi. Runthe following command on the terminal of the sleep containerto access the httpbin
service:

curl -I httpbin.demo-server.svc.cluster.local:8000

Expected output:

HTTP/1.1 403 Foribidden
The preceding output indicates that access requests to the httpbin service fail. Services in the
demo-frontend namespace fail to access services in the demo-server namespace.

3. Change the value of the action parameter in the authorization policy to ALLOW to allow access
requests fromthe demo-frontend namespace to the demo-server namespace.

iv.

> Document Version: 20220712 125



Best Practices- Alibaba Cloud Service Mesh

v. Onthe page, find the authorization policy that you want to manage and click YAML in the
Actions column.

vi. Inthe Edit panel, change the value of the action parameterto ALLOW, and then click OK.

4. Runthe following command on the terminal of the sleep containerto access the httpbin service:

curl -I httpbin.demo-server.svc.cluster.local:8000

Expected output:

HTTP/1.1 200 OK

The preceding output indicates that access requests to the httpbin service are successful. Services
in the demo-frontend namespace can access services in the demo-server namespace.

To sumup, if you specify the DENY action in the authorization policy, services in the demo-frontend
namespace fail to access services in the demo-server namespace. If you specify the ALLOW action in
the authorization policy, services in the demo-frontend namespace can access services in the
demo-server namespace. The test results indicate that an authorization policy can be used to
control service access across namespaces.

6.2. Use an authorization policy to
control access traffic from services in
a namespace to an external database

To secure a database, you need to restrict the services that are allowed to access the database. For
example, you can specify that only services in specific namespaces in a production environment are
allowed to access databases in the production environment. T his way, you can deny access traffic from
services in a development environment to the production environment. The zero-trust security system
of Alibaba Cloud Service Mesh (ASM) allows you to dynamically configure authorization policies to
control access traffic from services in a namespace to an external database. T his helps reduce risks. T his
topic describes how to use an authorization policy to control access traffic from services in a
namespace to an external ApsaraDB RDS database. The demo-server namespace is used in the example.

Prerequisites

Step 1: Enable automatic sidecar injection

You can enable automatic sidecar injection for a namespace so that you can authorize and manage
services in the namespace.

1. Create a namespace named demo-server.
i.
i
il
iv.
v. Inthe Create Namespace panel, enter demo-server in the Name field, and then click OK.

2. Enable automatic sidecar injection for the demo-server namespace.

126 Document Version: 20220712



Best Practices-Authorize and contr
ol services in namespaces

Alibaba Cloud Service Mesh

i. Onthe page, find the demo-server namespace and click Enable Automatic Sidecar
Injection in the Automatic Sidecar Injection column.

ii. Inthe Submit message, click OK.

Step 2: Create a database client

In the demo-server namespace, create a client that is used to send requests to connect to a specific
external database.

1. Open a ClLl on your on-premises PC and run the following command to encode the password that is
used to connect to the external database in Base64:

echo <Database connection password> base64

2. Connect to a Container Service for Kubernetes (ACK) cluster by using kubectl.
3. Create a MySQL client in the demo-server namespace.

i. Create a k8s-mysql.yamifile that contains the following content:

apiVersion: vl
data:
password: {yourPasswordBase64} # The database connection password that is encode
d in Base64.
kind: Secret
metadata:
name: mysqgl-pass
type: Opadque
apiVersion: apps/vl
kind: Deployment
metadata:
labels:
name: 1lbl-k8s-mysqgl
name: k8s-mysqgl
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 10
selector:
matchLabels:
name: lbl-k8s-mysqgl
strategy:
rollingUpdate:
maxSurge: 25%
maxUnavailable: 25%
type: RollingUpdate
template:
metadata:
labels:
name: lbl-k8s-mysql
spec:
containers:
- env:
- name: MYSQL ROOT PASSWORD

valueFrom:

> Document Version: 20220712 127


https://www.alibabacloud.com/help/doc-detail/86494.htm#task-2076136

Best Practices-Authorize and contr
ol services in namespaces

Alibaba Cloud Service Mesh

secretKeyRef:
key: password
name: mysgl-pass
image: 'mysqgl:latest'
imagePullPolicy: Always
name: mysql
ports:
- containerPort: 3306
name: mysql
protocol: TCP
resources:
limits:
cpu: 500m
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:
- mountPath: /var/lib/mysqgl
name: k8s-mysqgl-storage
dnsPolicy: ClusterFirst
restartPolicy: Always
schedulerName: default-scheduler
securityContext: {}
terminationGracePeriodSeconds: 30
volumes:
- emptyDir: {}

name: k8s-mysgl-storage

ii. Runthe following command to create the MySQL client:

kubectl apply -f k8s-mysqgl.yaml -n demo-server

4. Verify that a sidecar proxy is injected into the MySQL client.
i.
i
.
iv.
v. Onthe Pods page, clickthe pod name of the MySQL client.

Onthe Container tab, a sidecar proxy named istio-proxy is displayed. This indicates that a
sidecar proxy is injected into the MySQL client.

Step 3: Create an egress gateway

You can use an egress gateway to control access traffic from services in an ASM instance to an external
website. After you configure an authorization policy for an egress gateway, you can also specify
conditions to control whetherto allow access to an external database.

1.
2.
3.
4.
5.

Enter a name for the egress gateway that you want to create, select a cluster fromthe Cluster

128 > Document Version: 20220712



Best Practices-Authorize and contr
ol services in namespaces

Alibaba Cloud Service Mesh

drop-down list, and then select North-South EgressGateway fromthe Gateway types drop-
down list. Click Add Port next to Port Mapping and set the Protocol parameterto TCP and the
Service Port parameterto 13306. Then, click Create. In this example, the name of the egress
gateway is set to egressgateway.

Step 4: Create a peer authentication policy

You can create a peer authentication policy for a namespace so that you can use an authorization
policy to authorize services in the namespace based on Transport Layer Security (TLS).

1.

Onthe page, clickCreate mTLS Mode.

o v kA wWwN

Select demo-server fromthe Namespace drop-down list, enter a name in the Name field, select
STRICT - Strictly Enforce mTLS fromthe mTLS Mode (Namespace-wide) drop-down list, and
then click Create.

Step 5: Configure a policy for accessing external services

By default, services in an ASM instance are allowed to access all external services. To control access to
a specific external website, set the External Access Policy parameter to REGISTRY_ONLY for an ASM
instance in the ASM console. In this case, external services that are registered as service entries cannot
be accessed by services inthe ASMinstance.

1. Configure a policy for accessing external services.
i.
i.
.
iv.

v. Onthe Global tab, clickExternal service access strategy, set the External Access Policy
parameter to REGISTEY_ONLY, and then clickUpdate Settings.

2. Registerthe external database as a service entry.

> Document Version: 20220712 129



Best Practices- Authorize and contr

. . Alibaba Cloud Service Mesh
ol services in namespaces

ii. Onthe Create page, select istio-system fromthe Namespace drop-down list and copy the
following content to the code editor. Then, click Create.

apiVersion: networking.istio.io/vlbetal
kind: ServiceEntry
metadata:
name: demo-server-rds
namespace: demo-server
spec:
endpoints:
- address: rm-xxxxxxx.mysql.xxxx.rds.aliyuncs.com # The address of the extern
al database.
ports:
tcp: 3306
hosts:
- rm- .mysql. .rds.aliyuncs.com
location: MESH EXTERNAL

ports:
- name: tcp
number: 3306 # The port of the external database.
protocol: TCP # The protocol used by the external database.

resolution: DNS

Step 6: Create a traffic policy

Create an Istio gateway, a destination rule, and a virtual service to route traffic fromthe demo-server
namespace to port 13306 of the egress gateway and then to port 3306 of the external database.

1. Create anIstio gateway.
i.
i.

130 > Document Version: 20220712



Alibaba Cloud Service Mesh Best Practlces-Aut hgr|ze and contr
ol services in namespaces

v. Onthe Create page, select istio-systemfromthe Namespace drop-down list and copy the
following content to the code editor. Then, click Create.

apiVersion: networking.istio.io/vlbetal
kind: Gateway
metadata:
name: istio-egressgateway
namespace: istio-system
spec:
selector:
istio: egressgateway
servers:
- hosts:
— %1
port:
name: http-0
number: 13306
protocol: TLS
tls:
mode: ISTIO MUTUAL

Set the mode parameterto /ST/O_ MUTUALto enable mutual Transport Layer Security (mTLS)
authentication. This means that services in an ASM instance must pass TLS authentication
before they can access external websites.

2. Create a destination rule.
i.

ii. Onthe Create page, select demo-server fromthe Namespace drop-down list and copy the
following content to the code editor. Then, click Create.

apiVersion: networking.istio.io/vlbetal
kind: DestinationRule
metadata:
name: demo-server-egress-gateway
namespace: demo-server
spec:
host: istio-egressgateway.istio-system.svc.cluster.local
subsets:
- name: mysgl-gateway-mTLS
trafficPolicy:
loadBalancer:
simple: ROUND_ ROBIN
portLevelSettings:
- port:
number: 13306 # The port of the egress gateway.
tls:
mode: ISTIO MUTUAL

sni: rm-xxxxxxx.mysql.xxxx.rds.aliyuncs.com # The host address of th
e external database.

Set the mode parameterto /ST/O_MUTUALt0 enable mutual Transport Layer Security (mTLS)
authentication. This means that external websites must pass TLS authentication before they
can access setrvices in an ASM instance.

> Document Version: 20220712 131



ices- Aut hori d t . .
Best Pract@es HHHorze and contr Alibaba Cloud Service Mesh
ol services in namespaces

3. Create a virtual service.
i.
ii. Onthe Create page, select demo-server fromthe Namespace drop-down list and copy the
following content to the code editor. Then, click Create.

apiVersion: networking.istio.io/vlbetal
kind: VirtualService
metadata:

name: demo-server-through-egress-gateway

namespace: demo-server

spec:
exportTo:
- istio-system
- demo-server
gateways:

- mesh
- istio-system/istio-egressgateway
hosts:
- rm-xxxXxxxx.mysql.xxxx.rds.aliyuncs.com
tcp:
- match:
- gateways:
- mesh
port: 3306
route:
- destination:
host: istio-egressgateway.istio-system.svc.cluster.local
port:
number: 13306
subset: mysgl-gateway-mTLS
weight: 100
- match:
- gateways:

- istio-system/istio-egressgateway

port: 13306
route:
- destination:

host: rm-xxxxxxx.mysql.xxxx.rds.aliyuncs.com

port:
number: 3306
weight: 100

Inthe http section in the preceding code, two matching rules are configured. In the first
matching rule, the gateways parameter is set to mesh. This indicates that the first matching
rule applies to the sidecar proxy injected into the demo-server namespace and is used to route
traffic fromthe demo-server namespace to port 13306 of the egress gateway. Inthe second
matching rule, the gateways parameter is set to istio-system/istio-egressgateway. T his
indicates that the matching rule is used to route traffic fromthe egress gateway to port 3306
of the registered database.

132 > Document Version: 20220712



Best Practices-Authorize and contr
ol services in namespaces

Alibaba Cloud Service Mesh

Step 7: Verify that an authorization policy can be used to control
access traffic from services in the demo-server namespace to an
external database

You can create an authorization policy and modify the action parameter in the authorization policy to
deny or allow access traffic from services in the demo-server namespace to an external database. T his
way, you can control access to the external database.

1. Create an authorization policy to deny access traffic fromthe demo-server namespace to the
external database.

i.
i.
.
iv.

v. Onthe Create page, set the parameters that are described in the following table and click
Create.

Parameter Description

The name of the namespace to which the
Namespace authorization policy belongs. In this example,
demo-server is selected.

Name The name of the authorization policy.
Policies The policy. In this example, RULES is selected.

The action on requests that meet specified
Action requirements. In this example, DENY is
selected.

Specifies whether to enable workload label
selection. Turn on Workload Label Selection
Workload Label Selection and click Add Matching Label. Then, add a
label by setting the Name parameter to istio
and the Value parameter to egressgateway.

Specifies whether to authenticate the sources
of requests. Turn on Request Source, click
Add Request Source to List, and then click

Request Source Add Request Source. Then, select
namespaces from the Request Source
Domain drop-down list and set the Value
parameter to demo-server.

2. Access the external database.
i.
i.
.

iv.

> Document Version: 20220712 133



Best Practices-Authorize and contr
ol services in namespaces

Alibaba Cloud Service Mesh

v. Onthe Pods page, find the k8s-mysql container and click Terminal in the Actions column.
Then, click Container: mysql.

vi. Runthe following command on the terminal of the k8s-mysql container to access the external
database:

mysql --user=root --password=S$MYSQL ROOT PASSWORD --host rm-xxxxxxx.mysqgl.xxxx.rds.

aliyuncs.com

The ERROR 2013 erroris returned, which indicates that services in the demo-server
namespace fail to access the external database.

3. Change the value of the action parameter in the authorization policy to ALLOW to allow access
traffic fromthe demo-server namespace to the external database.

i.
i.
.
iv.

v. Onthe page, find the authorization policy that you want to manage and click YAML in the
Actions column.

vi. Inthe Edit panel, change the value of the action parameterto ALLOW, and then click OK.

4. Runthe following command on the terminal of the k8s-mysqgl container to access the external
database:

mysql --user=root --password=$MYSQL ROOT PASSWORD --host rm-xxxxxxx.mysql.xxxx.rds.aliy

uncs.com
The wWelcome to the MySQL monitor Mmessage is returned, which indicates that services inthe
demo-server namespace can access the external database.

The test results indicate that an authorization policy can be used to control access traffic from
services in a namespace to an external database.

134 > Document Version: 20220712



	1.Workloads
	1.1. Use an ingress gateway to access a gRPC service in an ASM instance over HTTP
	1.2. Implement auto scaling for workloads by using ASM metrics

	2.Traffic Management
	2.1. Use ASM to deploy an application in blue-green release mode and phased release mode
	2.2. Use ASM and Wasm to implement end-to-end A/B testing in a non-intrusive manner
	2.3. Use ASM and KubeVela to implement a canary release
	2.4. Use an ASM instance of a commercial edition to implement an end-to-end canary release

	3.Security
	3.1. Implement CORS in ASM
	3.2. Enable Multi-Buffer for TLS acceleration

	4.Use gRPC in ASM
	4.1. Design principle of the gRPC practice
	4.2. Implement the communication models of gRPC
	4.3. Implement load balancing among gRPC servers
	4.4. Shape traffic to gRPC servers
	4.5. Redirect traffic for gRPC-based applications

	5.Use Flagger in ASM
	5.1. Use Mixerless Telemetry to observe ASM instances
	5.2. Use Mixerless Telemetry to scale the pods of an application
	5.3. Use Mixerless Telemetry to implement a canary release

	6.Authorize and control services in namespaces
	6.1. Use an authorization policy to control service access across namespaces
	6.2. Use an authorization policy to control access traffic from services in a namespace to an external database


