
Alibaba Cloud

Alibaba Cloud Service Mesh
Best Practices

Document Version: 20220712

Alibaba Cloud

Alibaba Cloud Service Mesh
Best Practices

Document Version: 20220712

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

Alibaba Cloud Service Mesh Best Pract ices·Legal disclaimer

> Document Version: 20220712 I

Document conventions
St yle Descript ion Example

 Danger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:

Resetting will result in the loss of user
configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ings > Net work > Set net work
t ype .

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

Alibaba Cloud Service Mesh Best Pract ices·Document convent io
ns

> Document Version: 20220712 I

Table of Contents
1.Workloads

1.1. Use an ingress gateway to access a gRPC service in an ASM instance over HTTP …

1.2. Implement auto scaling for workloads by using ASM metrics …

2.Traffic Management

2.1. Use ASM to deploy an application in blue-green release mode and phased release mode …

2.2. Use ASM and Wasm to implement end-to-end A/B testing in a non-intrusive manner …

2.3. Use ASM and KubeVela to implement a canary release

2.4. Use an ASM instance of a commercial edition to implement an end-to-end canary release …

3.Security

3.1. Implement CORS in ASM

3.2. Enable Multi-Buffer for TLS acceleration

4.Use gRPC in ASM

4.1. Design principle of the gRPC practice

4.2. Implement the communication models of gRPC

4.3. Implement load balancing among gRPC servers

4.4. Shape traffic to gRPC servers

4.5. Redirect traffic for gRPC-based applications

5.Use Flagger in ASM

5.1. Use Mixerless Telemetry to observe ASM instances

5.2. Use Mixerless Telemetry to scale the pods of an application …

5.3. Use Mixerless Telemetry to implement a canary release

6.Authorize and control services in namespaces

6.1. Use an authorization policy to control service access across namespaces …

6.2. Use an authorization policy to control access traffic from services in a namespace to an external database …

05

05

12

20

20

25

38

46

64

64

66

70

70

73

86

93

98

104

104

108

114

121

121

126

Alibaba Cloud Service Mesh Best Pract ices·Table of Cont ent s

> Document Version: 20220712 I

Ingress gateways in an Alibaba Cloud Service Mesh (ASM) instance support protocol transcoding. This
feature allows you to send HTTP requests that use the JSON data format from your browser or client to
access gRPC services in an ASM instance. This topic describes how to use an ingress gateway to access a
gRPC service in an ASM instance over HTTP.

Prerequisites
The grpc-transcoder tool is installed. The tool is used to automatically generate Envoy filters. For
more information, visit the grpc-transcoder page on GitHub.

Protocol Buffers is installed. For more information, visit the Protocol Buffers page on GitHub.

Context
Envoy is a proxy service that composes the data plane of an ASM instance. Envoy contains various built-
in HTTP filter extensions, including the gRPC-JSON transcoder. To enable the gRPC-JSON transcoder,
Envoy defines relevant filter protocols. For more information, see gRPC-JSON transcoder. Accordingly,
the control plane of an ASM instance must define an Envoy filter to declare the specific phase in which
the gRPC-JSON transcoder is enabled. Then, the defined Envoy filter is applied to enable the gRPC-JSON
transcoder in the specific phase.

Transcoding process

1.Workloads
1.1. Use an ingress gateway to access
a gRPC service in an ASM instance
over HTTP

Alibaba Cloud Service Mesh Best Pract ices·Workloads

> Document Version: 20220712 5

https://github.com/AliyunContainerService/grpc-transcoder
https://github.com/protocolbuffers/protobuf/releases
https://www.envoyproxy.io/docs/envoy/latest/api-v2/config/filter/http/transcoder/v2/transcoder.proto#envoy-api-msg-config-filter-http-transcoder-v2-grpcjsontranscoder

Ingress gateways in an ASM instance can transcode HTTP/JSON to gRPC. The following figure shows the
transcoding process.

No. Description

1

The control plane of an ASM instance applies the following
configurations to an ingress gateway: an Envoy filter that is used for
gRPC transcoding, and an Istio gateway and a virtual service that are
used to configure rules to route traffic to a gRPC service port. After the
ingress gateway receives the configurations, the ingress gateway
immediately loads the configurations for the configurations to take
effect.

2

After an HTTP request is received from your browser or client, the
ingress gateway matches routing rules. Then, the ingress gateway
transcodes the HTTP request to a gRPC request and sends the request
to the destination gRPC service in the ASM instance.

3
After a gRPC response is received from the backend service, the ingress
gateway transcodes the gRPC response to an HTTP response and
returns the HTTP response to you.

Step 1: Add a transcoding declaration

Best Pract ices·Workloads Alibaba Cloud Service Mesh

6 > Document Version: 20220712

To create a gRPC service, you must first define a .proto file in the Protocol Buffers format. The gRPC
service project encapsulates a gRPC API. You must build an image, compile a Deployment, and then
deploy the gRPC service as a pod to a Container Service for Kubernetes (ACK) cluster by using an ASM
instance.

To enable transcoding from HTTP/JSON to gRPC, you must add the following transcoding declaration
to the method definit ion in the .proto file:

option(google.api.http) = {
 get: "/v1/talk/{data}/{meta}"
};

The .proto file in the hello-servicemesh-grpc sample project is used as an example. The following code
shows the content of the .proto file to which a transcoding declaration is added. For more information,
visit the hello-servicemesh-grpc page on GitHub.

Alibaba Cloud Service Mesh Best Pract ices·Workloads

> Document Version: 20220712 7

https://github.com/AliyunContainerService/hello-servicemesh-grpc

import "google/api/annotations.proto";
service LandingService {
 //Unary RPC
 rpc talk (TalkRequest) returns (TalkResponse) {
 option(google.api.http) = {
 get: "/v1/talk/{data}/{meta}"
 };
 }
...
}
message TalkRequest {
 string data = 1;
 string meta = 2;
}

Step 2: Generate a .proto-descriptor file
Run the following Protoc command in Protocol Buffers to generate the landing.proto-descriptor file
from the landing.proto file:

https://github.com/AliyunContainerService/hello-servicemesh-grpc
proto_path={path/to/hello-servicemesh-grpc}/grpc/proto
https://github.com/googleapis/googleapis/tree/master/
proto_dep_path={path/to/googleapis}
protoc \
 --proto_path=${proto_path} \
 --proto_path=${proto_dep_path} \
 --include_imports \
 --include_source_info \
 --descriptor_set_out=landing.proto-descriptor \
 "${proto_path}"/landing.proto

Step 3: Generate a YAML file for creating an Envoy filter
Enter the following code in the command window on your computer to call the gRPC API. Then, the
grpc-transcoder tool is automatically started to generate a YAML file for creating an Envoy filter.

grpc-transcoder \
--version 1.7 \
--service_port 9996 \
--service_name grpc-server-svc \
--proto_pkg org.feuyeux.grpc \
--proto_svc LandingService \
--descriptor landing.proto-descriptor

 version : the Ist io version of the ASM instance.

 service_port : the port of the gRPC service.

 service_name : the name of the gRPC service.

 proto_pkg : the definit ion of the package name for the .proto file of the gRPC service.

 proto_svc : the definit ion of the service name in the .proto file of the gRPC service.

Best Pract ices·Workloads Alibaba Cloud Service Mesh

8 > Document Version: 20220712

 descriptor : the path of the .proto-descriptor file.

The following content for creating an Envoy filter is automatically generated after you run the
preceding code. Copy the following content to the grpc-transcoder-envoyfilter.yaml file:

#Generated by ASM(http://servicemesh.console.aliyun.com)
#GRPC Transcoder EnvoyFilter[1.7]
apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:
 name: grpc-transcoder-grpc-server-svc
spec:
 workloadSelector:
 labels:
 app: istio-ingressgateway
 configPatches:
 - applyTo: HTTP_FILTER
 match:
 context: GATEWAY
 listener:
 portNumber: 9996
 filterChain:
 filter:
 name: "envoy.filters.network.http_connection_manager"
 subFilter:
 name: "envoy.filters.http.router"
 proxy:
 proxyVersion: ^1\.7.*
 patch:
 operation: INSERT_BEFORE
 value:
 name: envoy.grpc_json_transcoder
 typed_config:
 '@type': type.googleapis.com/envoy.extensions.filters.http.grpc_json_transcoder
.v3.GrpcJsonTranscoder
 proto_descriptor_bin: Ctl4ChVnb29nbGUvYXBpL2h0dHAucHJ...
 services:
 - org.feuyeux.grpc.LandingService
 print_options:
 add_whitespace: true
 always_print_primitive_fields: true
 always_print_enums_as_ints: false
 preserve_proto_field_names: false

Step 4: Create the Envoy filter in the ASM console
1.

2.

3.

4.

5. On the Create page, select a namespace from the Namespace drop-down list and copy the
content of the grpc-transcoder-envoyfilter.yaml file that is edited in Step 3: Generate a YAML file

Alibaba Cloud Service Mesh Best Pract ices·Workloads

> Document Version: 20220712 9

for creating an Envoy filter to the code editor. Then, click Creat e .

Step 5: Verify the Envoy configuration
Run the following commands in sequence to check whether the dynamic Envoy configuration contains
the gRPC-JSON transcoder:

Obtain the name of the ingress gateway pod.
ingressgateway_pod=$(kubectl get pod -l app="istio-ingressgateway" -n istio-system -o jsonp
ath='{.items[0].metadata.name}')
Obtain the timestamp.
timestamp=$(date "+%Y%m%d-%H%M%S")
Obtain the dynamic Envoy configuration and save the configuration to the dynamic_listener
s-"$timestamp".json file.
kubectl -n istio-system exec $ingressgateway_pod \
 -c istio-proxy \
 -- curl -s "http://localhost:15000/config_dump?dynamic_listeners" >dynamic_listeners-"$ti
mestamp".json
Check whether the configuration contains the gRPC-JSON transcoder.
grep -B3 -A7 GrpcJsonTranscoder dynamic_listeners-"$timestamp".json

If the following content appears in the output, the dynamic Envoy configuration contains the gRPC-
JSON transcoder:

{
 "name": "envoy.grpc_json_transcoder",
 "typed_config": {
 "@type": "type.googleapis.com/envoy.extensions.filters.http.grpc_json_transcoder.v3.Grp
cJsonTranscoder",
 "services": [
 "org.feuyeux.grpc.LandingService"
],
 "print_options": {
 "add_whitespace": true,
 "always_print_primitive_fields": true
 },
 ...

Step 6: Check whether the gRPC service in the ASM instance can be
accessed over HTTP
The .proto file defines the request API and response declaration of the gRPC service. When you call the
gRPC service by using the request API, the defined response declaration is returned. The following
content shows the request API and response declaration that are defined in the .proto file:

Request API that is defined in the .proto file:

rpc talk (TalkRequest) returns (TalkResponse) {
 option(google.api.http) = {
 get: "/v1/talk/{data}/{meta}"
 };
}

Response declaration that is defined in the .proto file:

Best Pract ices·Workloads Alibaba Cloud Service Mesh

10 > Document Version: 20220712

message TalkResponse {
 int32 status = 1;
 repeated TalkResult results = 2;
}
message TalkResult {
 //timestamp
 int64 id = 1;
 //enum
 ResultType type = 2;
 // id:result uuid
 // idx:language index
 // data: hello
 // meta: serverside language
 map<string, string> kv = 3;
}
enum ResultType {
 OK = 0;
 FAIL = 1;
}

Run the following commands to use an ingress gateway to call the gRPC service over HTTP:

Obtain the IP address of the ingress gateway.
INGRESS_IP=$(k -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadB
alancer.ingress[0].ip}')
Send an HTTP request to access port 9996 of the ingress gateway. The path is /v1/talk/{da
ta}/{meta}.
curl http://$INGRESS_IP:9996/v1/talk/0/java

Expected output:

{
 "status": 200,
 "results": [
 {
 "id": "699882576081691",
 "type": "OK",
 "kv": {
 "data": "Hello",
 "meta": "JAVA",
 "id": "8c175d5c-d8a3-4197-a7f8-6e3e0ab1fe59",
 "idx": "0"
 }
 }
]
}

If the return result is as expected after you use an ingress gateway to call the gRPC service over HTTP,
the call is successful, and transcoding from HTTP/JSON to gRPC is successful.

1.2. Implement auto scaling for

Alibaba Cloud Service Mesh Best Pract ices·Workloads

> Document Version: 20220712 11

Alibaba Cloud Service Mesh (ASM) collects telemetry data for Container Service for Kubernetes (ACK)
clusters in a non-intrusive manner, which makes the service communication in the clusters observable.
This telemetry feature makes service behaviors observable and helps O&M staff troubleshoot, maintain,
and optimize applications without increasing maintenance costs. Based on the four key monitoring
metrics, including latency, traffic, errors, and saturation, ASM generates a series of metrics for the
services that it manages. This topic describes how to implement auto scaling for workloads by using
ASM metrics.

Prerequisites
An ACK cluster is created. For more information, see Create an ACK managed cluster.

An ASM instance is created. For more information, see Create an ASM instance.

A Prometheus instance and a Grafana instance are deployed in the ACK cluster. For more information,
see Use Prometheus to monitor an ACK cluster.

A Prometheus instance is deployed to monitor the ASM instance. For more information, see Deploy a
self-managed Prometheus instance to monitor ASM instances.

Context
ASM generates a series of metrics for the services that it manages. For more information, visit Ist io
Standard Metrics.

Auto scaling is an approach that is used to automatically scale up or down workloads based on the
resource usage. In Kubernetes, two autoscalers are used to implement auto scaling.

Cluster Autoscaler (CA): CAs are used to increase or decrease the number of nodes in a cluster.

Horizontal Pod Autoscaler (HPA): HPAs are used to increase or decrease the number of pods that are
used to deploy applications.

1.2. Implement auto scaling for
workloads by using ASM metrics

Best Pract ices·Workloads Alibaba Cloud Service Mesh

12 > Document Version: 20220712

https://www.alibabacloud.com/help/doc-detail/95108.htm#task-skz-qwk-qfb
https://www.alibabacloud.com/help/doc-detail/152154.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/94622.htm#task-1597149
https://www.alibabacloud.com/help/doc-detail/184885.htm#task-1956912
https://istio.io/latest/docs/reference/config/metrics/

The aggregation layer of Kubernetes allows third-party applications to extend the Kubernetes API by
registering themselves as API add-ons. These add-ons can be used to implement the custom metrics
API and allow HPAs to query any metrics. HPAs periodically query core metrics such as CPU utilizat ion
and memory usage by using the resource metrics API. In addit ion, HPAs use the custom metrics API to
query application-specific metrics, such as the observability metrics that are provided by ASM.

Step 1: Enable Prometheus monitoring for the ASM instance
1.

2.

3.

4. On the details page of the ASM instance, choose in the left-side navigation pane. On the Basic
Information page, click .

Not e Make sure that the Ist io version of the ASM instance is 1.6.8.4 or later.

5. In the Set t ings Updat e panel, select Enable Promet heus , select Enable Self -managed
Promet heus , enter the endpoint of the Prometheus instance, and then click OK.

After you enable Prometheus monitoring for the ASM instance, ASM automatically configures the
Envoy filters that are required for Prometheus.

Step 2: Deploy the adapter for the custom metrics API
1. Download the installat ion package of the adapter. For more information, visit kube-metrics-

adapter. Then, install and deploy the adapter for the custom metrics API in the ACK cluster.

Use Helm 3.
helm -n kube-system install asm-custom-metrics ./kube-metrics-adapter --set prometheus
.url=http://prometheus.istio-system.svc:9090

Alibaba Cloud Service Mesh Best Pract ices·Workloads

> Document Version: 20220712 13

https://github.com/banzaicloud/kube-metrics-adapter/tree/master/deploy/charts/kube-metrics-adapter

2. After the installat ion is completed, run the following commands to check whether kube-metrics-
adapter is enabled.

Check whether the autoscaling/v2beta API group exists.

kubectl api-versions |grep "autoscaling/v2beta"

Expected output:

autoscaling/v2beta

Check the status of the pod of kube-metrics-adapter.

kubectl get po -n kube-system |grep metrics-adapter

Expected output:

asm-custom-metrics-kube-metrics-adapter-85c6d5d865-2cm57 1/1 Running 0
19s

Query the custom metrics that are provided by kube-metrics-adapter.

kubectl get --raw "/apis/external.metrics.k8s.io/v1beta1" | jq .

Expected output:

{
 "kind": "APIResourceList",
 "apiVersion": "v1",
 "groupVersion": "external.metrics.k8s.io/v1beta1",
 "resources": []
}

Step 3: Deploy a sample application
1. Create a namespace named test. For more information, see Manage namespaces.

2. Enable automatic sidecar inject ion. For more information, see Install a sidecar proxy.

3. Deploy a sample application.

i. Create a file named podinfo.yaml.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: podinfo
 namespace: test
 labels:
 app: podinfo
spec:
 minReadySeconds: 5
 strategy:
 rollingUpdate:
 maxUnavailable: 0
 type: RollingUpdate
 selector:
 matchLabels:
 app: podinfo

Best Pract ices·Workloads Alibaba Cloud Service Mesh

14 > Document Version: 20220712

https://www.alibabacloud.com/help/doc-detail/89265.htm#task-kms-ztx-b2b
https://www.alibabacloud.com/help/doc-detail/150540.htm#task-2391685

 app: podinfo
 template:
 metadata:
 annotations:
 prometheus.io/scrape: "true"
 labels:
 app: podinfo
 spec:
 containers:
 - name: podinfod
 image: stefanprodan/podinfo:latest
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 9898
 name: http
 protocol: TCP
 command:
 - ./podinfo
 - --port=9898
 - --level=info
 livenessProbe:
 exec:
 command:
 - podcli
 - check
 - http
 - localhost:9898/healthz
 initialDelaySeconds: 5
 timeoutSeconds: 5
 readinessProbe:
 exec:
 command:
 - podcli
 - check
 - http
 - localhost:9898/readyz
 initialDelaySeconds: 5
 timeoutSeconds: 5
 resources:
 limits:
 cpu: 2000m
 memory: 512Mi
 requests:
 cpu: 100m
 memory: 64Mi

apiVersion: v1
kind: Service
metadata:
 name: podinfo
 namespace: test
 labels:
 app: podinfo
spec:
 type: ClusterIP

Alibaba Cloud Service Mesh Best Pract ices·Workloads

> Document Version: 20220712 15

 type: ClusterIP
 ports:
 - name: http
 port: 9898
 targetPort: 9898
 protocol: TCP
 selector:
 app: podinfo

ii. Deploy the podinfo application.

kubectl apply -n test -f podinfo.yaml

4. To trigger auto scaling, you must deploy a load test ing service in the test namespace for triggering
requests.

i. Create a file named loadtester.yaml.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: loadtester
 namespace: test
 labels:
 app: loadtester
spec:
 selector:
 matchLabels:
 app: loadtester
 template:
 metadata:
 labels:
 app: loadtester
 annotations:
 prometheus.io/scrape: "true"
 spec:
 containers:
 - name: loadtester
 image: weaveworks/flagger-loadtester:0.18.0
 imagePullPolicy: IfNotPresent
 ports:
 - name: http
 containerPort: 8080
 command:
 - ./loadtester
 - -port=8080
 - -log-level=info
 - -timeout=1h
 livenessProbe:
 exec:
 command:
 - wget
 - --quiet
 - --tries=1
 - --timeout=4
 - --spider
 - http://localhost:8080/healthz

Best Pract ices·Workloads Alibaba Cloud Service Mesh

16 > Document Version: 20220712

 - http://localhost:8080/healthz
 timeoutSeconds: 5
 readinessProbe:
 exec:
 command:
 - wget
 - --quiet
 - --tries=1
 - --timeout=4
 - --spider
 - http://localhost:8080/healthz
 timeoutSeconds: 5
 resources:
 limits:
 memory: "512Mi"
 cpu: "1000m"
 requests:
 memory: "32Mi"
 cpu: "10m"
 securityContext:
 readOnlyRootFilesystem: true
 runAsUser: 10001

apiVersion: v1
kind: Service
metadata:
 name: loadtester
 namespace: test
 labels:
 app: loadtester
spec:
 type: ClusterIP
 selector:
 app: loadtester
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: http

ii. Deploy the load test ing service.

kubectl apply -n test -f loadtester.yaml

5. Check whether the sample application and the load test ing service are deployed.

i. Check the pod status.

kubectl get pod -n test

Expected output:

NAME READY STATUS RESTARTS AGE
loadtester-64df4846b9-nxhvv 2/2 Running 0 2m8s
podinfo-6d845cc8fc-26xbq 2/2 Running 0 11m

Alibaba Cloud Service Mesh Best Pract ices·Workloads

> Document Version: 20220712 17

ii. Log on to the container for load test ing and run the hey command to generate loads.

export loadtester=$(kubectl -n test get pod -l "app=loadtester" -o jsonpath='{.item
s[0].metadata.name}')
kubectl -n test exec -it ${loadtester} -c loadtester -- hey -z 5s -c 10 -q 2 http:/
/podinfo.test:9898

A load is generated, which indicates that the sample application and the load test ing service
are deployed.

Step 4: Configure an HPA by using ASM metrics
Define an HPA to scale the workloads of the Podinfo application based on the number of requests that
the Podinfo application receives per second. When more than 10 requests are received per second on
average, the HPA increases the number of replicas.

1. Create a file named hpa.yaml and copy the following code to the file:

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
 name: podinfo
 namespace: test
 annotations:
 metric-config.external.prometheus-query.prometheus/processed-requests-per-second: |
 sum(
 rate(
 istio_requests_total{
 destination_workload="podinfo",
 destination_workload_namespace="test",
 reporter="destination"
 }[1m]
)
)
spec:
 maxReplicas: 10
 minReplicas: 1
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: podinfo
 metrics:
 - type: External
 external:
 metric:
 name: prometheus-query
 selector:
 matchLabels:
 query-name: processed-requests-per-second
 target:
 type: AverageValue
 averageValue: "10"

2. Deploy the HPA.

Best Pract ices·Workloads Alibaba Cloud Service Mesh

18 > Document Version: 20220712

kubectl apply -f hpa.yaml

3. Check whether the HPA is deployed.

Query the custom metrics that are provided by kube-metrics-adapter.

kubectl get --raw "/apis/external.metrics.k8s.io/v1beta1" | jq .

Expected output:

{
 "kind": "APIResourceList",
 "apiVersion": "v1",
 "groupVersion": "external.metrics.k8s.io/v1beta1",
 "resources": [
 {
 "name": "prometheus-query",
 "singularName": "",
 "namespaced": true,
 "kind": "ExternalMetricValueList",
 "verbs": [
 "get"
]
 }
]
}

The output contains the resource list of custom ASM metrics, which indicates that the HPA is
deployed.

Verify auto scaling
1. Log on to the container for load test ing and run the hey command to generate loads.

kubectl -n test exec -it ${loadtester} -c loadtester -- sh
~ $ hey -z 5m -c 10 -q 5 http://podinfo.test:9898

2. View the effect of auto scaling.

Not e Metrics are synchronized every 30 seconds by default . The container can be scaled
only once in every 3 to 5 minutes. This way, the HPA can reserve t ime for automatic scaling
before the conflict strategy is executed.

watch kubectl -n test get hpa/podinfo

Expected output:

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
podinfo Deployment/podinfo 8308m/10 (avg) 1 10 6 124m

The HPA starts to scale up workloads in 1 minute until the number of requests per second
decreases under the specified threshold. After the load test ing is completed, the number of
requests per second decreases to zero. Then, the HPA starts to decrease the number of pods. A
few minutes later, the number of replicas decreases from the value in the preceding output to one.

Alibaba Cloud Service Mesh Best Pract ices·Workloads

> Document Version: 20220712 19

This topic describes how to use virtual services and dest ination rules of Alibaba Cloud Service Mesh
(ASM) to deploy an application in blue-green release mode and phased release mode.

Prerequisites
At least one ASM instance is created. For more information, see Create an ASM instance.

At least one Alibaba Cloud Container Service for Kubernetes (ACK) cluster is added to the ASM
instance. For more information, see Add a cluster to an ASM instance.

The Bookinfo application is deployed in the ACK cluster that is added to the ASM instance. For more
information, see Deploy an application in an ASM instance.

An ingress gateway is deployed for the ACK cluster that is added to the ASM instance. For more
information, see Deploy an ingress gateway service.

Create a destination rule
Create a dest ination rule for the Bookinfo application that is deployed in your ASM instance. For more
information, see Manage destination rules. The following code shows the configuration of a sample
destination rule:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: productpage
spec:
 host: productpage
 subsets:
 - name: v1
 labels:
 version: v1

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: reviews
spec:
 host: reviews
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 - name: v3

2.Traffic Management
2.1. Use ASM to deploy an application
in blue-green release mode and
phased release mode

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

20 > Document Version: 20220712

https://www.alibabacloud.com/help/doc-detail/152154.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/148231.htm#task-2372122
https://www.alibabacloud.com/help/doc-detail/149547.htm#task-2375501
https://www.alibabacloud.com/help/doc-detail/149546.htm#task-2372970
https://www.alibabacloud.com/help/doc-detail/150503.htm#task-2390971

 - name: v3
 labels:
 version: v3

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: ratings
spec:
 host: ratings
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 - name: v2-mysql
 labels:
 version: v2-mysql
 - name: v2-mysql-vm
 labels:
 version: v2-mysql-vm

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: details
spec:
 host: details
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2

Create a virtual service
Create a virtual service for the Bookinfo application that is deployed in your ASM instance. For more
information, see Manage virtual services. The following code shows the configuration of a sample virtual
service:

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 21

https://www.alibabacloud.com/help/doc-detail/150502.htm#task-2390969

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: productpage
spec:
 hosts:
 - productpage
 http:
 - route:
 - destination:
 host: productpage
 subset: v1

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v1

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: ratings
spec:
 hosts:
 - ratings
 http:
 - route:
 - destination:
 host: ratings
 subset: v1

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: details
spec:
 hosts:
 - details
 http:
 - route:
 - destination:
 host: details
 subset: v1

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

22 > Document Version: 20220712

Deploy version 2 in blue-green release mode
After the preceding dest ination rule and virtual service are created, version 2 of the reviews microservice
of the Bookinfo application is running. However, no traffic is routed to version 2. To route traffic to
version 2, you must deploy version 2 in blue-green release mode.

Create a virtual service to deploy version 2 of Bookinfo in blue-green release mode. For more
information, see Manage virtual services. The following code shows the configuration of a sample virtual
service:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v2

After the preceding virtual service is created, refresh the page of Bookinfo. The reviews microservice
displays rat ings as black stars.

Deploy version 3 in phased release mode to handle traffic by weight
You can run both version 2 and version 3 online and route traffic to the two versions by weight, such as
50% to 50%.

Create a virtual service to deploy version 3 of Bookinfo in phased release mode. For more information,
see Manage virtual services. The following code shows the configuration of a sample virtual service:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v2
 weight: 50
 - destination:
 host: reviews
 subset: v3
 weight: 50

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 23

https://www.alibabacloud.com/help/doc-detail/150502.htm#task-2390969
https://www.alibabacloud.com/help/doc-detail/150502.htm#task-2390969

After the preceding virtual service is created, refresh the page of Bookinfo. The reviews microservice
displays rat ings by using version 2 or version 3 at random. The reviews microservice of version 3 displays
ratings as red stars.

Deploy version 3 in phased release mode based on the request
content
Phased release based on the traffic weight cannot meet the requirements of all scenarios. You can also
deploy an application in phased release mode based on the user identity. This way, the application
displays different pages for different users.

Create a virtual service to deploy the Bookinfo application in phased release mode. For more
information, see Manage virtual services. The following code shows the configuration of a sample virtual
service:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 end-user:
 exact: jason
 route:
 - destination:
 host: reviews
 subset: v3
 - route:
 - destination:
 host: reviews
 subset: v2

After the preceding virtual service is created, refresh the page of Bookinfo. Bookinfo always displays
ratings as black stars. You can click Sign in in the upper-right corner to log on to Bookinfo with the
username jason. The logon does not require a password. After you log on, you can find that Bookinfo
displays rat ings as red stars.

Not e When you log on to Bookinfo and access its backend microservices, your requests
contain the HTTP header end-user=XXX , which indicates the user identity. If you log on to
Bookinfo with the username jason, the rule in the YAML file is matched and your requests are
directed to the reviews microservice of version 3.

2.2. Use ASM and Wasm to implement

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

24 > Document Version: 20220712

https://www.alibabacloud.com/help/doc-detail/150502.htm#task-2390969

Alibaba Cloud Service Mesh (ASM) allows you to manage the traffic of microservices in a non-intrusive
manner. However, to implement end-to-end A/B test ing on a microservice in ASM without changes on
the code of the microservice, you must also use WebAssembly (Wasm). This topic shows you how to use
ASM and Wasm to implement end-to-end A/B test ing in a non-intrusive manner.

Prerequisites
An ASM instance is created. For more information, see Create an ASM instance.

Not e Make sure that the version of the ASM instance is 1.8 or later.

A Container Service for Kubernetes (ACK) cluster is added to the ASM instance. For more information,
see Add a cluster to an ASM instance.

An ingress gateway is deployed in the ACK cluster that is added to the ASM instance. For more
information, see Deploy an ingress gateway service.

An image repository is created in Container Registry. The address of the image repository and the
information that is used to log on to the image repository are obtained. For more information, see
Use a Container Registry Enterprise Edit ion instance to push and pull images.

Context
Wasm is an effect ive and portable binary instruct ion format. You can use Wasm to extend the data
plane of an ASM instance with new features. For more information about non-intrusive end-to-end A/B
test ing and Wasm development, see Wasm-based non-intrusive end-to-end A/B test ing.

Not e The image repository in this topic is for reference only. Use an image script to build and
push images to your self-managed image repository. For more information about the image script,
visit hello-servicemesh-grpc.

Step 1: Enable Wasm-based ASM instance extension
1. Create a runtime-config.json file that contains the following code:

2.2. Use ASM and Wasm to implement
end-to-end A/B testing in a non-
intrusive manner

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 25

https://www.alibabacloud.com/help/doc-detail/147793.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/148231.htm#task-2372122
https://www.alibabacloud.com/help/doc-detail/150510.htm#task-2372970
https://www.alibabacloud.com/help/doc-detail/198690.htm#task-2023726
https://developer.aliyun.com/article/782181
https://github.com/aliyunContainerService/hello-servicemesh-grpc/tree/main/docker

{
 "type": "envoy_proxy",
 "abiVersions": [
 "v0-541b2c1155fffb15ccde92b8324f3e38f7339ba6",
 "v0-097b7f2e4cc1fb490cc1943d0d633655ac3c522f",
 "v0-4689a30309abf31aee9ae36e73d34b1bb182685f",
 "v0.2.1"
],
 "config": {
 "rootIds": [
 "propaganda_filter_root"
]
 }
}

2. Run the following command to push a Wasm filter to an image repository in Container Registry:

oras push ${WASM_REGISTRY}/propagate_header:0.0.1 \
 --manifest-config \
 --runtime-config.json:application/vnd.module.wasm.config.v1+json \
 ${WASM_IMAGE}:application/vnd.module.wasm.content.layer.v1+wasm

 WASM_REGISTRY : the address of the image repository.

 WASM_IMAGE : the file name of the Wasm filter under the current path.

 runtime-config.json : the runtime configuration file under the current path.

3. Enable Wasm-based ASM instance extension.

i. Run the following command to check the version of Alibaba Cloud CLI:

The version of Alibaba Cloud CLI must be 3.0.73 or later.

aliyun version

ii. Run the following command to enable Wasm-based ASM instance extension:

aliyun servicemesh UpdateMeshFeature --ServiceMeshId=xxxxxx --WebAssemblyFilterEnab
led=true

4. Run the following command to check whether Wasm-based ASM instance extension is enabled:

aliyun servicemesh DescribeServiceMeshDetail \
 --ServiceMeshId $MESH_ID |
 jq '.ServiceMesh.Spec.MeshConfig.WebAssemblyFilterDeployment'

The following output is expected:

{
 "Enabled": true
}

5. Run the following command to check the status of the asmwasm-cache DaemonSets:

After Wasm-based ASM instance extension is enabled, a DaemonSet that is named asmwasm-
cache is created for each node of the ACK cluster.

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

26 > Document Version: 20220712

kubectl get daemonset -n istio-system

The following output is expected:

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR
AGE
asmwasm-cache 4 4 4 4 4 kubernetes.io/os=l
inux 34

Step 2: Deploy resources for implementing A/B testing
1. Create a hello.yaml file that contains the following code in the kube directory:

The hello.yaml file defines the Hello1, Hello2, and Hello3 applications. Each application has two
versions, which are version 1 and version 2.

Not e You can also obtain a YAML file that defines the Hello application from GitHub. For
more information, visit Kube.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello1-deploy-v1
 labels:
 app: hello1-deploy-v1
 service: hello1-deploy
 version: v1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello1-deploy-v1
 service: hello1-deploy
 version: v1
 template:
 metadata:
 labels:
 app: hello1-deploy-v1
 service: hello1-deploy
 version: v1
 spec:
 serviceAccountName: http-hello-sa
 containers:
 - name: hello-v1-deploy
 image: registry.cn-beijing.aliyuncs.com/asm_repo/http_springboot_v1:1.0.0
 env:
 - name: HTTP_HELLO_BACKEND
 value: "hello2-svc"
 ports:
 - containerPort: 8001

apiVersion: apps/v1
kind: Deployment
metadata:

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 27

https://github.com/AliyunContainerService/rust-wasm-4-envoy/tree/master/propagate-headers-filter/config/kube

metadata:
 name: hello1-deploy-v2
 labels:
 app: hello1-deploy-v2
 service: hello1-deploy
 version: v2
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello1-deploy-v2
 service: hello1-deploy
 version: v2
 template:
 metadata:
 labels:
 app: hello1-deploy-v2
 service: hello1-deploy
 version: v2
 spec:
 serviceAccountName: http-hello-sa
 containers:
 - name: hello-v2-deploy
 image: registry.cn-beijing.aliyuncs.com/asm_repo/http_springboot_v2:1.0.0
 env:
 - name: HTTP_HELLO_BACKEND
 value: "hello2-svc"
 ports:
 - containerPort: 8001apiVersion: v1

kind: Service
metadata:
 name: hello1-svc
 labels:
 app: hello1-svc
spec:
 ports:
 - port: 8001
 name: http
 selector:
 service: hello1-deployapiVersion: apps/v1
kind: Deployment
metadata:
 name: hello2-deploy-v1
 labels:
 app: hello2-deploy-v1
 service: hello2-deploy
 version: v1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello2-deploy-v1
 service: hello2-deploy
 version: v1

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

28 > Document Version: 20220712

 version: v1
 template:
 metadata:
 labels:
 app: hello2-deploy-v1
 service: hello2-deploy
 version: v1
 spec:
 serviceAccountName: http-hello-sa
 containers:
 - name: hello-v1-deploy
 image: registry.cn-beijing.aliyuncs.com/asm_repo/http_springboot_v1:1.0.0
 env:
 - name: HTTP_HELLO_BACKEND
 value: "hello3-svc"
 ports:
 - containerPort: 8001

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello2-deploy-v2
 labels:
 app: hello2-deploy-v2
 service: hello2-deploy
 version: v2
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello2-deploy-v2
 service: hello2-deploy
 version: v2
 template:
 metadata:
 labels:
 app: hello2-deploy-v2
 service: hello2-deploy
 version: v2
 spec:
 serviceAccountName: http-hello-sa
 containers:
 - name: hello-v2-deploy
 image: registry.cn-beijing.aliyuncs.com/asm_repo/http_springboot_v2:1.0.0
 env:
 - name: HTTP_HELLO_BACKEND
 value: "hello3-svc"
 ports:
 - containerPort: 8001apiVersion: v1

kind: Service
metadata:
 name: hello2-svc
 labels:
 app: hello2-svc

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 29

spec:
 ports:
 - port: 8001
 name: http
 selector:
 service: hello2-deployapiVersion: apps/v1

kind: Deployment
metadata:
 name: hello3-deploy-v1
 labels:
 app: hello3-deploy-v1
 service: hello3-deploy
 version: v1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello3-deploy-v1
 service: hello3-deploy
 version: v1
 template:
 metadata:
 labels:
 app: hello3-deploy-v1
 service: hello3-deploy
 version: v1
 spec:
 serviceAccountName: http-hello-sa
 containers:
 - name: hello-v1-deploy
 image: registry.cn-beijing.aliyuncs.com/asm_repo/http_springboot_v1:1.0.0
 ports:
 - containerPort: 8001

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello3-deploy-v2
 labels:
 app: hello3-deploy-v2
 service: hello3-deploy
 version: v2
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello3-deploy-v2
 service: hello3-deploy
 version: v2
 template:
 metadata:
 labels:
 app: hello3-deploy-v2
 service: hello3-deploy

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

30 > Document Version: 20220712

 service: hello3-deploy
 version: v2
 spec:
 serviceAccountName: http-hello-sa
 containers:
 - name: hello-v2-deploy
 image: registry.cn-beijing.aliyuncs.com/asm_repo/http_springboot_v2:1.0.0
 ports:
 - containerPort: 8001apiVersion: v1

kind: Service
metadata:
 name: hello3-svc
 labels:
 app: hello3-svc
spec:
 ports:
 - port: 8001
 name: http
 selector:
 service: hello3-deployapiVersion: v1

kind: ServiceAccount
metadata:
 name: http-hello-sa
 labels:
 account: http-hello-deploy

2. Create a mesh.yaml file that contains the following code in the mesh directory:

Not e You can also obtain a YAML file that defines ingress gateways, dest ination rules,
and virtual services from GitHub. For more information, visit Mesh.

The mesh.yaml file defines an ingress gateway, three dest ination rules, and three virtual services.

The following subsets are defined in the dest ination rules:

hello1v1: the version 1 of the Hello1 application. hello1v2: the version 2 of the Hello1
application.

hello2v1: the version 1 of the Hello2 application. hello2v2: the version 2 of the Hello2
application.

hello3v1: the version 1 of the Hello3 application. hello3v2: the version 2 of the Hello3
application.

The following routing rules are configured in the virtual services:

Only requests whose headers contain route-v:v2 can be routed to hello1v2. Otherwise, requests
are routed to hello1v1.

Only requests whose headers contain route-v:hello2v2 can be routed to hello2v2. Otherwise,
requests are routed to hello2v1.

Only requests whose headers contain route-v:hello3v2 can be routed to hello3v2. Otherwise,
requests are routed to hello3v1.

apiVersion: networking.istio.io/v1alpha3

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 31

https://github.com/AliyunContainerService/rust-wasm-4-envoy/tree/master/propagate-headers-filter/config/mesh

kind: DestinationRule
metadata:
 name: hello1-dr
spec:
 host: hello1-svc
 subsets:
 - name: hello1v1
 labels:
 version: v1
 - name: hello1v2
 labels:
 version: v2

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: hello-gateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 8001
 name: http
 protocol: HTTP
 hosts:
 - "*"

https://istio.io/latest/docs/reference/config/networking/virtual-service/
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: hello1-vs
spec:
 hosts:
 - "*"
 gateways:
 - hello-gateway
 # - mesh
 http:
 - name: hello1-v1-route
 match:
 - headers:
 route-v:
 exact: v2
 route:
 - destination:
 host: hello1-svc
 subset: hello1v2
 - route:
 - destination:
 host: hello1-svc
 subset: hello1v1

apiVersion: networking.istio.io/v1alpha3

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

32 > Document Version: 20220712

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: hello2-dr
spec:
 host: hello2-svc
 subsets:
 - name: hello2v1
 labels:
 version: v1
 - name: hello2v2
 labels:
 version: v2

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: hello2-vs
spec:
 hosts:
 - hello2-svc
 http:
 - name: hello2-v2-route
 match:
 - headers:
 route-v:
 exact: hello2v2
 route:
 - destination:
 host: hello2-svc
 subset: hello2v2
 - route:
 - destination:
 host: hello2-svc
 subset: hello2v1

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: hello3-dr
spec:
 host: hello3-svc
 subsets:
 - name: hello3v1
 labels:
 version: v1
 - name: hello3v1
 labels:
 version: v2
 - name: hello3v2
 labels:
 version: v2

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 33

kind: VirtualService
metadata:
 name: hello3-vs
spec:
 hosts:
 - hello3-svc
 http:
 - match:
 - headers:
 route-v:
 exact: hello3v2
 route:
 - destination:
 host: hello3-svc
 subset: hello3v2
 - route:
 - destination:
 host: hello3-svc
 subset: hello3v1

3. Run the following command to deploy the Hello application, ingress gateway, virtual services, and
destination rules:

alias k="kubectl --kubeconfig $USER_CONFIG"
alias m="kubectl --kubeconfig $MESH_CONFIG"
k -n "$NS" apply -f kube/kube.yaml
m -n "$NS" apply -f mesh/mesh.yaml

Step 3: Deploy a custom ASMFilterDeployment resource
1. Create a secret for the ACK cluster to access the image repository.

For more information about the secrets of ACK clusters, see Secret.

i. Create a myconfig.json file that contains the following code:

{
 "auths":{
 "**********.cn-hangzhou.cr.aliyuncs.com":{
 "username":"*****username*****",
 "password":"*****password*****"
 }
 }
}

 **********.cn-hangzhou.cr.aliyuncs.com : the address of the image repository.

 username : the username of the image repository.

 password : the password of the image repository.

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

34 > Document Version: 20220712

https://kubernetes.io/zh/docs/concepts/configuration/secret/

ii. Run the following command to create a secret:

Not e The secret must be named asmwasm-cache and reside in the ist io-system
namespace.

kubectl create secret generic asmwasm-cache -n istio-system --from-file=.dockerconf
igjson=myconfig.json --type=kubernetes.io/dockerconfigjson

2. Deploy the ASMFilterDeployment resource.

i. Create a hello1-afd.yaml file that contains the following code:

apiVersion: istio.alibabacloud.com/v1beta1
kind: ASMFilterDeployment
metadata:
 name: hello1-propagate-header
spec:
 workload:
 kind: Deployment
 labels:
 app: hello1-deploy-v2
 version: v2
 filter:
 patchContext: 'SIDECAR_OUTBOUND'
 parameters: '{"head_tag_name": "route-v", "head_tag_value": "hello2v2"}'
 image: 'wasm-repo-registry.cn-beijing.cr.aliyuncs.com/asm_wasm/propagate_header
:0.0.1'
 rootID: 'propaganda_filter_root'
 id: 'hello1-propagate-header'

Parameters in workload :

a. kind : the type of the workload.

b. labels : the filter condit ions.

Parameters in filter :

a. patchContext : the context that takes effect.

b. parameters : the parameters that are required for running the Wasm filter.

c. image : the address of the image repository to which the Wasm filter is pushed.

d. rootID : the root ID of the Wasm filter.

e. id : the unique ID of the Wasm filter.

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 35

ii. Create a hello2-afd.yaml file that contains the following code:

apiVersion: istio.alibabacloud.com/v1beta1
kind: ASMFilterDeployment
metadata:
 name: hello2-propagate-header
spec:
 workload:
 kind: Deployment
 labels:
 app: hello2-deploy-v2
 version: v2
 filter:
 patchContext: 'SIDECAR_OUTBOUND'
 parameters: '{"head_tag_name": "route-v", "head_tag_value": "hello3v2"}'
 image: 'wasm-repo-registry.cn-beijing.cr.aliyuncs.com/asm_wasm/propagate_header
:0.0.1'
 rootID: 'propaganda_filter_root'
 id: 'hello2-propagate-header'

Parameters in workload :

a. kind : the type of the workload.

b. labels : the filter condit ions.

Parameters in filter :

a. patchContext : the context that takes effect.

b. parameters : the parameters that are required for running the Wasm filter.

c. image : the address of the image repository to which the Wasm filter is pushed.

d. rootID : the root ID of the Wasm filter.

e. id : the unique ID of the Wasm filter.

iii. Run the following command to deploy the ASMFilterDeployment resource:

alias m="kubectl --kubeconfig $MESH_CONFIG"
m apply -f hello1-afd.yaml -n "$NS"
m apply -f hello2-afd.yaml -n "$NS"

3. Run the following command to check the deployment of the ASMFilterDeployment resource:

After the ASMFilterDeployment resource is deployed, ASM automatically generates an Envoy filter.

alias m="kubectl --kubeconfig $MESH_CONFIG"
m get envoyfilter -n "$NS"
m get ASMFilterDeployment -n "$NS"

The following output is expected:

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

36 > Document Version: 20220712

NAME AGE
hello1-propagate-header 1s
hello2-propagate-header 0s
NAME STATUS REASON AGE
hello1-propagate-header Available 1s
hello2-propagate-header Available 1s

Implement A/B testing
Run the following command to implement A/B test ing:

alias k="kubectl --kubeconfig $USER_CONFIG"
ingressGatewayIp=$(k -n istio-system get service istio-ingressgateway -o jsonpath='{.status
.loadBalancer.ingress[0].ip}')
for j in {1..3}; do
 curl -H "route-v:v2" "http://$ingressGatewayIp:8001/hello/eric"
 echo
done

The following output is expected:

Bonjour eric@hello1:172.17.68.239<Bonjour eric@hello2:172.17.68.209<Bonjour eric@hello3:172
.17.68.208
Bonjour eric@hello1:172.17.68.239<Bonjour eric@hello2:172.17.68.209<Bonjour eric@hello3:172
.17.68.208
Bonjour eric@hello1:172.17.68.239<Bonjour eric@hello2:172.17.68.209<Bonjour eric@hello3:172
.17.68.208

The output indicates that if the headers of the request contain route-v:v2, the request can be routed
to hello1v2, hello2v2, and hello3v2.

Troubleshooting
If the expected output is not returned, you can run the following script code to check the logs of
workloads.

Check Envoy access logs

alias k="kubectl --kubeconfig $USER_CONFIG"
hello1_v2_pod=$(k get pod -l app=hello1-deploy-v2 -n "$NS" -o jsonpath={.items..metadata.
name})
Change the level of Envoy access logs to info.
k -n "$NS" exec "$hello1_v2_pod" -c istio-proxy -- curl -XPOST -s "http://localhost:15000
/logging?level=info"
Display Envoy access logs.
k -n "$NS" logs -f deployment/hello1-deploy-v2 -c istio-proxy

Check the logs of the Hello application

lias k="kubectl --kubeconfig $USER_CONFIG"
k -n "$NS" logs -f deployment/hello2-deploy-v1 -c hello-v1-deploy

2.3. Use ASM and KubeVela to

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 37

KubeVela is a modern and out-of-the-box platform used to deliver and manage applications. You can
use Alibaba Cloud Service Mesh (ASM) and KubeVela to implement canary releases for applications. In
canary releases, applications can be updated in a gradual manner. This topic describes how to use ASM
and KubeVela to implement a canary release.

Prerequisites
An ASM instance whose version is v1.9.7.93-g7910a454-aliyun or later is created. For more
information, see Create an ASM instance.

The ACK cluster is connected by using kubectl. For more information, see Connect to ACK clusters by
using kubectl.

KubeVela CLI is installed. For more information, see Installat ion.

The Kubernetes API of clusters on the data plane is allowed to access Ist io resources. For more
information, see Use the Kubernetes API of clusters on the data plane to access Ist io resources.

Context
KubeVela is a modern and out-of-the-box platform that makes it easier to deliver and manage
applications across hybrid environments. In addit ion, KubeVela is highly extensible and allows you to
deal with rapid business changes by updating applications with ease. The Open Application Model
(OAM) of KubeVela is designed and implemented with extreme extensibility. OAM provides
programmable delivery workflows and is application-oriented and independent of infrastructure. For
more information, see Progressive Rollout with Ist io.

Usage notes

2.3. Use ASM and KubeVela to
implement a canary release

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

38 > Document Version: 20220712

https://www.alibabacloud.com/help/doc-detail/152154.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/86494.htm#task-2076136
https://kubevela.io/zh/docs/install
https://www.alibabacloud.com/help/doc-detail/336919.htm#task-2130268
https://kubevela.io/zh/docs/case-studies/canary-blue-green

Before you start , you must download and decompress the asm_kubevela package on your computer.
All required files are stored in the asm_kubevela folder.

The asm_kubevela folder contains the following files: application.yaml, application_rollback.yaml,
application_rollout-v2.yaml, canary-rollout-wf-def.yaml, rollback-wf-def.yaml, and traffic-trait-
def.yaml. Where:

In Step 3, the canary-rollout-wf-def.yaml, rollback-wf-def.yaml, and traffic-trait-def.yaml files are
used.

In Step 4, the application.yaml file is used.

In Step 5, the application_rollout-v2.yaml file is used.

In Step 6, the application_rollback.yaml file is used.

Step 1: Install KubeVela
1.

2.

3. On the App Cat alog page, search for ack-kubevela. Then, click ack-kubevela.

4. On the details page, click Deploy in the upper-right corner. In the Deploy panel, select a cluster, set
relevant parameters, and then click OK.

Step 2: Enable automatic sidecar injection
1.

2.

3.

4.

5. On the Global Namespace page, find the default namespace and click Enable Aut omat ic
Sidecar Inject ion in the Aut omat ic Sidecar Inject ion column.

6. In the Submit message, click OK.

Step 3: Deploy the configuration files of KubeVela
To integrate the traffic management rules of KubeVela with those of ASM, deploy the configuration
files of KubeVela.

Not e Before you perform this operation, make sure that the Kubernetes API of clusters on
the data plane is allowed to access Ist io resources. Otherwise, an error is reported. For more
information, see Use the Kubernetes API of clusters on the data plane to access Ist io resources.

Navigate to the asm_kubevela folder in the command prompt window. Then, run the following
commands to deploy the configuration files of KubeVela:

kubectl apply -f rollback-wf-def.yaml

kubectl apply -f canary-rollout-wf-def.yaml

kubectl apply -f traffic-trait-def.yaml

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 39

https://aliware-images.oss-cn-hangzhou.aliyuncs.com/ASM/Istio%25E8%25B5%2584%25E6%25BA%2590%25E5%25AE%2589%25E8%25A3%2585%25E5%258C%2585/asm_kubevela.zip
https://www.alibabacloud.com/help/doc-detail/336919.htm#task-2130268

Step 4: Deploy an application and a gateway
1. Navigate to the asm_kubevela folder in the command prompt window. Then, run the following

command to deploy the Bookinfo application:

kubectl apply -f application.yaml

In the application.yaml file, the type parameter in the traits parameter of the reviews
application is set to canary-traffic. This indicates that a canary release is configured.

2. Deploy a gateway and a virtual service in the ASM console.

i.

ii.

iii.

iv. Deploy a gateway.

a. On the details page of the ASM instance, choose T raf f ic Management > Gat eway in
the left-side navigation pane. On the Gateway page, click Creat e f rom YAML .

b. On the Creat e page, select default from the Namespace drop-down list , copy the
following content to the code editor, and then click Creat e .

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: bookinfo-gateway
spec:
 selector:
 istio: ingressgateway # use istio default controller
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

40 > Document Version: 20220712

v. Deploy a virtual service.

a. On the details page of the ASM instance, choose T raf f ic Management > Virt ualService
in the left-side navigation pane. On the VirtualService page, click Creat e f rom YAML .

b. On the Creat e page, select default from the Namespace drop-down list , copy the
following content to the code editor, and then click Creat e .

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: bookinfo
spec:
 hosts:
 - "*"
 gateways:
 - bookinfo-gateway
 http:
 - match:
 - uri:
 exact: /productpage
 - uri:
 prefix: /static
 - uri:
 exact: /login
 - uri:
 exact: /logout
 - uri:
 prefix: /api/v1/products
 route:
 - destination:
 host: productpage
 port:
 number: 9080

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 41

vi. Access the Bookinfo application.

a.

b.

c.

d. On the cluster details page, choose Net work > Services in the left-side navigation pane.

e. In the upper part of the Services page, select ist io-system from the Namespace drop-
down list . Find ist io-ingressgateway and view the external endpoint whose port number is
80 in the External Endpoint column. Then, enter IP address of the ingress gateway whose p
ort number is 80/productpage in the address bar of your browser to access the Bookinfo
application.

Refresh the page mult iple t imes. You can see that black stars are displayed on the page.

Step 5: Perform a canary release for an application
1. Navigate to the asm_kubevela folder in the command prompt window. Then, run the following

command to update the reviews application and adjust the traffic routed to the application:

kubectl apply -f application_rollout-v2.yaml

The application_rollout-v2.yaml file is used to update the reviews image from V2 to V3. In
addit ion, the file specifies that two instances are updated one by one in two phases.

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

42 > Document Version: 20220712

...
 - name: reviews
 type: webservice
 properties:
 image: docker.io/istio/examples-bookinfo-reviews-v3:1.16.2
 port: 9080
 volumes:
 - name: wlp-output
 type: emptyDir
 mountPath: /opt/ibm/wlp/output
 - name: tmp
 type: emptyDir
 mountPath: /tmp
 traits:
 - type: expose
 properties:
 port:
 - 9080
 - type: rollout
 properties:
 targetSize: 2
 rolloutBatches:
 - replicas: 1
 - replicas: 1
 - type: canary-traffic
 properties:
 port: 9080
...

targetSize: the number of phases for updating instances.

rolloutBatches: the number of instances to be updated in each phase.

The application_rollout-v2.yaml file specifies the following workflows:

a. The batchPart it ion parameter is set to 0. This specifies that only one of the two pods of the
reviews application is updated. The traffic.weightedTargets parameter is set to specify that
10% of the traffic is routed to the new reviews application, whereas 90% of the traffic is
routed to the earlier version.

b. The type parameter is set to suspend. This specifies that the application release is
suspended after the first workflow is complete.

c. The batchPart it ion parameter is set to 1. This specifies that both pods of the reviews
applications are updated to V3. The traffic.weightedTargets parameter is set to specify
that all t raffic is routed to the new reviews application.

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 43

...
 workflow:
 steps:
 - name: rollout-1st-batch
 type: canary-rollout
 properties:
 # just upgrade first batch of component
 batchPartition: 0
 traffic:
 weightedTargets:
 - revision: reviews-v1
 weight: 90 # 90% shift to new version
 - revision: reviews-v2
 weight: 10 # 10% shift to new version
 # give user time to verify part of traffic shifting to newRevision
 - name: manual-approval
 type: suspend
 - name: rollout-rest
 type: canary-rollout
 properties:
 # upgrade all batches of component
 batchPartition: 1
 traffic:
 weightedTargets:
 - revision: reviews-v2
 weight: 100 # 100% shift to new version
...

2. Enter IP address of the ingress gateway whose port number is 80/productpage in the address bar
of your browser to access the Bookinfo application.

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

44 > Document Version: 20220712

Refresh the page mult iple t imes. You can see red stars for 10% of the t imes and black stars for 90%
of the t imes.

3. Run the following command to continue the application release to update all images of the
reviews application to V3:

vela workflow resume book-info

4. Enter IP address of the ingress gateway whose port number is 80/productpage in the address bar
of your browser to access the Bookinfo application.

Refresh the page mult iple t imes. The page displays only red stars. This indicates that the reviews
application is updated to V3.

Step 6: (Optional) Roll back the application

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 45

If you find that the new application does not meet your expectations, you can stop the application
release and roll back the application to the earlier version.

1. Run the following command to roll back the application:

kubectl apply -f rollback.yaml

In the rollback.yaml file, the type parameter is set to canary-rollback. The following operations are
automatically performed:

Update the targetRevisionName parameter of the application to the earlier version. Roll back
all instances of the new application to the earlier version and keep all earlier instances that are
not updated.

Update the route parameter of the virtual service to route all traffic to the earlier version.

Update the subset parameter of the dest ination rule to the earlier version.

 ...
 workflow:
 steps:
 - name: rollback
 type: canary-rollback

2. Enter IP address of the ingress gateway whose port number is 80/productpage in the address bar
of your browser to access the Bookinfo application.

Refresh the page mult iple t imes. The page displays only black stars. This indicates that the reviews
application is rolled back to V2.

2.4. Use an ASM instance of a
commercial edition to implement an
end-to-end canary release

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

46 > Document Version: 20220712

If you need to implement an end-to-end canary release among mult iple services, you can configure the
TrafficLabel custom resource definit ion (CRD) to identify traffic characterist ics and divide the ingress
traffic of a gateway into regular traffic and canary traffic. The canary traffic characterist ics are passed
among the services that are used to process user requests. This way, an end-to-end canary release is
implemented. This topic uses a sample demo to describe how to use the TrafficLabel CRD to implement
an end-to-end canary release for microservices.

Prerequisites
An Alibaba Cloud Service Mesh (ASM) instance of a commercial edit ion is created. The Ist io version of
the ASM instance is 1.10.5.40 or later. For more information, see Create an ASM instance.

Tracing Analysis is enabled for the ASM instance. When you create the ASM instance, select Enable
T racing Analysis in the Observability sect ion. For more information, see Create an ASM instance.

An ASM gateway is created. For more information, see Deploy an ingress gateway service.

Application monitoring is enabled. For more information, see Monitor application performance.

Not e In this example, the demo application is connected to Application Real-Time
Monitoring Service (ARMS) by using the ARMS agent for Java. For more information about how to
connect to ARMS by using agents for other programming languages, see Overview.

A Container Service for Kubernetes (ACK) cluster is connected by using kubectl. For more information,
see Connect to ACK clusters by using kubectl.

The ASM instance is connected by using kubectl. For more information, see Use kubectl to connect to
an ASM instance.

Context
Canary releases can be implemented in various ways. For example, you can use ASM and KubeVela to
implement a progressive canary release, and use ASM to implement a blue-green release and a canary
release for an application. For more information, see Use ASM and KubeVela to implement a canary release
and Use ASM to deploy an application in blue-green release mode and phased release mode. The preceding
two types of canary releases focus on the release of a single service by using the label-based routing
and weight-based traffic distribution of a VirtualService provided by Ist io.

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 47

https://www.alibabacloud.com/help/doc-detail/147793.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/147793.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/150510.htm#task-2372970
https://www.alibabacloud.com/help/doc-detail/125726.htm#cs-k8s-arms
https://www.alibabacloud.com/help/doc-detail/138833.htm#concept-2198561
https://www.alibabacloud.com/help/doc-detail/86494.htm#task-ubf-lhg-vdb
https://www.alibabacloud.com/help/doc-detail/150496.htm#task-2390744
https://www.alibabacloud.com/help/doc-detail/337899.htm#task-2130974
https://www.alibabacloud.com/help/doc-detail/178884.htm#task-1936250

In specific scenarios, the canary release only between two services cannot meet the requirements. For
example, the Cart and Order services both have canary release versions, as shown in the following
figure.

When you verify the canary release in this scenario, you can find that: The ingress traffic includes regular
traffic and canary traffic, and the User service needs to identify the traffic characterist ics of user
requests. The canary traffic is routed to the canary release version of the Cart service. In this scenario,
the system no longer simply distributes traffic to different backend versions at a specific traffic rat io.
Instead, the canary traffic characterist ics are passed among all the services that are used to process
user requests.

The end-to-end canary release in ASM is implemented based on the traffic labeling and label-based
routing features. For more information, see Traffic labeling and label-based routing.

Demo
You can download the orchestrat ion files and related configuration files of the demo.

The following figure shows the architecture of the demo.

The Deployment orchestrat ion file demo.yaml contains the following code:

apiVersion: v1
kind: Service
metadata:
 name: spring-boot-istio-client
spec:

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

48 > Document Version: 20220712

https://www.alibabacloud.com/help/doc-detail/375313.htm#task-2160625
https://alibabacloudservicemesh.oss-cn-beijing.aliyuncs.com/asm-labs/trafficlabel/fulllink-gray-demo-v1.1.tar.gz

 type: ClusterIP
 ports:
 - name: http
 port: 80
 targetPort: 19090
 selector:
 app: spring-boot-istio-client

apiVersion: apps/v1
kind: Deployment
metadata:
 name: spring-boot-istio-client
spec:
 replicas: 2
 selector:
 matchLabels:
 app: spring-boot-istio-client
 version: base
 template:
 metadata:
 annotations:
 armsPilotAutoEnable: 'on'
 armsPilotCreateAppName: spring-boot-istio-client
 labels:
 app: spring-boot-istio-client
 version: base
 spec:
 containers:
 - name: spring-boot-istio-client
 image: registry.cn-hangzhou.aliyuncs.com/aliacs-app-catalog/spring-boot-istio-cli
ent:Abase
 imagePullPolicy: Always
 tty: true
 ports:
 - name: http
 protocol: TCP
 containerPort: 19090

apiVersion: v1
kind: Service
metadata:
 name: spring-boot-istio-server
spec:
 type: ClusterIP
 ports:
 - name: http
 port: 18080
 targetPort: 18080
 - name: grpc
 port: 18888
 targetPort: 18888
 selector:
 app: spring-boot-istio-server

apiVersion: apps/v1

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 49

apiVersion: apps/v1
kind: Deployment
metadata:
 name: spring-boot-istio-server
spec:
 replicas: 2
 selector:
 matchLabels:
 app: spring-boot-istio-server
 version: base
 template:
 metadata:
 annotations:
 armsPilotAutoEnable: 'on'
 armsPilotCreateAppName: spring-boot-istio-server
 labels:
 app: spring-boot-istio-server
 version: base
 spec:
 containers:
 - name: spring-boot-istio-server
 image: registry.cn-hangzhou.aliyuncs.com/aliacs-app-catalog/spring-boot-istio-ser
ver:Bbase
 imagePullPolicy: Always
 tty: true
 ports:
 - name: http
 protocol: TCP
 containerPort: 18080
 - name: grpc
 protocol: TCP
 containerPort: 18888

apiVersion: apps/v1
kind: Deployment
metadata:
 name: spring-boot-istio-client-gray
spec:
 replicas: 2
 selector:
 matchLabels:
 app: spring-boot-istio-client
 version: gray
 template:
 metadata:
 annotations:
 armsPilotAutoEnable: 'on'
 armsPilotCreateAppName: spring-boot-istio-client
 labels:
 app: spring-boot-istio-client
 version: gray
 spec:
 containers:
 - name: spring-boot-istio-client
 image: registry.cn-hangzhou.aliyuncs.com/aliacs-app-catalog/spring-boot-istio-cli

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

50 > Document Version: 20220712

 image: registry.cn-hangzhou.aliyuncs.com/aliacs-app-catalog/spring-boot-istio-cli
ent:Agray
 imagePullPolicy: Always
 tty: true
 ports:
 - name: http
 protocol: TCP
 containerPort: 19090

apiVersion: apps/v1
kind: Deployment
metadata:
 name: spring-boot-istio-server-gray
spec:
 replicas: 2
 selector:
 matchLabels:
 app: spring-boot-istio-server
 version: gray
 template:
 metadata:
 annotations:
 armsPilotAutoEnable: 'on'
 armsPilotCreateAppName: spring-boot-istio-server
 labels:
 app: spring-boot-istio-server
 version: gray
 spec:
 containers:
 - name: spring-boot-istio-server
 image: registry.cn-hangzhou.aliyuncs.com/aliacs-app-catalog/spring-boot-istio-serve
r:Bgray
 imagePullPolicy: Always
 tty: true
 ports:
 - name: http
 protocol: TCP
 containerPort: 18080
 - name: grpc
 protocol: TCP
 containerPort: 18888

The demo services are all Java applications that use the Spring Boot framework. In addit ion, ARMS
application monitoring is enabled to monitor the services. For more information, see Monitor application
performance.

The template metadata of each Deployment in the demo.yaml file contains configurations similar to
the following content:

 template:
 metadata:
 annotations:
 armsPilotAutoEnable: 'on'
 armsPilotCreateAppName: spring-boot-istio-server

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 51

https://www.alibabacloud.com/help/doc-detail/125726.htm#cs-k8s-arms

Step 1: Deploy the demo microservices in the ACK cluster
Run the following command to deploy the demo:

kubectl apply -f demo.yaml

Step 2: Configure simple routing
1. Use the following code to create the ist io-config.yaml file:

apiVersion: networking.istio.io/v1beta1
kind: Gateway
metadata:
 name: simple-springboot-gateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - hosts:
 - "*"
 port:
 name: http
 number: 80
 protocol: HTTP

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
 name: springboot-istio-client-vs
spec:
 gateways:
 - simple-springboot-gateway
 hosts:
 - "*"
 http:
 - match:
 - uri:
 prefix: "/hello"
 route:
 - destination:
 host: spring-boot-istio-client

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
 name: springboot-istio-server-vs
spec:
 hosts:
 - spring-boot-istio-server
 http:
 - route:
 - destination:
 host: spring-boot-istio-server

apiVersion: networking.istio.io/v1beta1

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

52 > Document Version: 20220712

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: springboot-istio-client-dr
spec:
 host: spring-boot-istio-client
 trafficPolicy:
 loadBalancer:
 simple: ROUND_ROBIN
 subsets:
 - labels:
 version: base
 name: version-base
 - labels:
 version: gray
 name: version-gray

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: springboot-istio-server-dr
spec:
 host: spring-boot-istio-server
 trafficPolicy:
 loadBalancer:
 simple: ROUND_ROBIN
 subsets:
 - labels:
 version: base
 name: version-base
 - labels:
 version: gray
 name: version-gray

2. Run the following command to configure routing:

kubectl --kubeconfig <The kubeconfig file of the ASM instance> apply -f istio-config.ya
ml

3. Check whether a service can be accessed.

i. Obtain the public IP address of the ASM gateway in the and run the following command:

export ASM_GATEWAY_IP=xxx

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 53

ii. Run the following command to check whether a service can be accessed:

while true; do curl -H'x-asm-prefer-tag: gray' http://${ASM_GATEWAY_IP}/hello ; ec
ho;sleep 1;done

Expected output:

--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.

The traffic that flows from the gateway to Service A and then to Service B is an example of
traffic routing from the ASM gateway to the base and canary release versions of services in a
load balancing manner. In this case, the x-asm-prefer-tag header that you set in the curl
command takes effect only if the TrafficLabel CRD and corresponding label-based routing rule
are configured. By default , the ist io-config.yaml file is used to configure simple routing, and
subsets are not specified in the routing configuration under VirtualService.

Step 3: Configure traffic labels
1. Use the following code to create the traffic_label_default .yaml file:

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

54 > Document Version: 20220712

apiVersion: istio.alibabacloud.com/v1beta1
kind: TrafficLabel
metadata:
 name: example1
 namespace: default
spec:
 rules:
 - labels:
 - name: userdefinelabel1
 valueFrom:
 - $getContext(x-b3-traceid)
 - $localLabel
 attachTo:
 - opentracing
 # The protocols that take effect. If you do not set the protocols parameter, no pro
tocol takes effect. If you set the protocols parameter to an asterisk (*), all protocol
s take effect.
 protocols: "*"
 hosts: # The services that take effect.
 - "*"

apiVersion: istio.alibabacloud.com/v1beta1
kind: TrafficLabel
metadata:
 name: ingressgateway
 namespace: istio-system
spec:
 hosts:
 - '*'
 rules:
 - attachTo:
 - opentracing
 labels:
 - name: userdefinelabel1
 valueFrom:
 - $getContext(x-b3-traceid)
 - $localLabel
 protocols: '*'
 workloadSelector:
 labels:
 app: istio-ingressgateway

2. Run the following command to use the kubeconfig file of the ASM instance for deployment:

kubectl --kubeconfig <The kubeconfig file of the ASM instance> apply -f traffic_label_d
efault.yaml

The TrafficLabel CRD applies to all services in the default namespace, including Service A and
Service B that are deployed by using the demo.yaml file.

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 55

Not e In this example, the demo is connected to ARMS that uses traceId of the Zipkin
tracer type. Therefore, the getContext parameter is set to x-b3-traceid .

Step 4: Verify the TrafficLabel-based routing
1. Check whether the traffic routing from Service A to Service B meets the requirements. To be

specific, check whether the canary traffic of Service A is forwarded to the canary release version of
Service B, and whether the base traffic of Service A is forwarded to the base version of Service B.

Configure the TrafficLabel-based routing file b-vs-tf.yaml for Service B and make the file take
effect for Service A. The following figure shows the corresponding traffic routing model.

i. Use the following code to create the b-vs-tf.yaml file:

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
 name: springboot-istio-server-vs
spec:
 hosts:
 - spring-boot-istio-server
 http:
 - route:
 - destination:
 host: spring-boot-istio-server
 subset: $userdefinelabel1

ii. Run the following command for the b-vs-tf.yaml file to take effect for Service A:

kubectl -f <The kubeconfig file of the ASM instance> apply -f b-vs-tf.yaml

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

56 > Document Version: 20220712

iii. Run the following command to check whether the canary traffic of Service A is forwarded to
the canary release version of Service B:

while true; do curl -H'x-asm-prefer-tag: version-gray' http://${ASM_GATEWAY_IP}/he
llo ; echo;sleep 1;done

Expected output:

--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.

iv. Run the following command to check whether the base traffic of Service A is forwarded to the
base version of Service B:

while true; do curl -H'x-asm-prefer-tag: version-base' http://${ASM_GATEWAY_IP}/he
llo ; echo;sleep 1;done

Expected output:

--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Gray --> gRPC B-Base.
--> HTTP A-Gray --> gRPC B-Base.
--> HTTP A-Gray --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Gray --> gRPC B-Base.
--> HTTP A-Gray --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Gray --> gRPC B-Base.

Not e If the ingress traffic that passes Service A is not forwarded to the specified
version, you must configure the TrafficLabel-based routing file for Service A.

2. Check whether the traffic routing from the ASM gateway to Service A meets the requirements. To
be specific, check whether the canary traffic of ingress requests is forwarded to the canary release
version of Service A, and whether the base traffic of ingress requests is f irst forwarded to the base
version of Service A and then to that of Service B.

Configure the TrafficLabel-based routing file a-vs-tf.yaml for Service A and make the file take
effect for the ASM gateway.

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 57

Not e ASM gateways also support TrafficLabel-based routing.

i. Use the following code to create the a-vs-tf.yaml file:

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
 name: springboot-istio-client-vs
spec:
 gateways:
 - simple-springboot-gateway
 hosts:
 - "*"
 http:
 - match:
 - uri:
 prefix: "/hello"
 route:
 - destination:
 host: spring-boot-istio-client
 subset: $userdefinelabel1

ii. Run the following command for the a-vs-tf.yaml file to take effect for the ASM gateway:

kubectl -f <The kubeconfig file of the ASM instance> apply -f a-vs-tf.yaml

iii. Run the following command to check whether the canary traffic of ingress requests is
forwarded to the canary release version of Service A:

 while true; do curl -H'x-asm-prefer-tag: version-gray' http://${ASM_GATEWAY_IP}/h
ello ; echo;sleep 1;done

Expected output:

--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

58 > Document Version: 20220712

iv. Run the following command to check whether the base traffic of ingress requests is f irst
forwarded to the base version of Service A and then to that of Service B:

while true; do curl -H'x-asm-prefer-tag: version-base' http://${ASM_GATEWAY_IP}/he
llo ; echo;sleep 1;done

Expected output:

--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.
--> HTTP A-Base --> gRPC B-Base.

3. Check whether the weight-based traffic distribution that corresponds to the TrafficLabel-based
routing meets the requirements.

i. Use the following code to create the a-vs-tf-10-90.yaml file:

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
 name: springboot-istio-client-vs
spec:
 gateways:
 - simple-springboot-gateway
 hosts:
 - "*"
 http:
 - match:
 - uri:
 prefix: "/hello"
 route:
 - destination:
 host: spring-boot-istio-client
 subset: $userdefinelabel1
 weight: 10
 - destination:
 host: spring-boot-istio-client
 subset: version-base
 weight: 90

Not e Only 10% of the canary or base traffic is forwarded to the corresponding
subset that you specify. The remaining traffic is forwarded to the version-base subset.

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 59

ii. Run the following command for the a-vs-tf-10-90.yaml file to take effect for the ASM
gateway:

kubectl --kubeconfig <The kubeconfig file of the ASM instance> apply -f a-vs-tf-10-
90.yaml

iii. Run the following command to verify the canary traffic:

 while true; do curl -H'x-asm-prefer-tag: version-gray' http://${ASM_GATEWAY_IP}/h
ello ; echo;sleep 1;done

Expected output:

--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.
--> HTTP A-Gray --> gRPC B-Gray.
--> HTTP A-Base --> gRPC B-Gray.

Lane mode
In specific scenarios, you may want to enable the lane mode. In this mode, the context traffic
characterist ics are not passed among services. The context traffic characterist ics are colored traffic
labels in which red is used to label the canary traffic and blue is used to label the base traffic. The
egress traffic is labeled by using local labels. The following figure shows the corresponding traffic
routing model in lane mode.

In these scenarios, you need to only modify the TrafficLabel CRD. To do so, remove $getContext(x-b3-
traceid) to disable the forwarding of traffic labels, and obtain colored labels from local labels.

The following code shows a sample cat traffic_label_default_swimlane.yaml file:

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

60 > Document Version: 20220712

apiVersion: istio.alibabacloud.com/v1beta1
kind: TrafficLabel
metadata:
 name: example1
 namespace: default
spec:
 rules:
 - labels:
 - name: userdefinelabel1
 valueFrom:
 - $localLabel
 attachTo:
 - opentracing
 # The protocols that take effect. If you do not set the protocols parameter, no protoco
l takes effect. If you set the protocols parameter to an asterisk (*), all protocols take e
ffect.
 protocols: "*"
 hosts: # The services that take effect.
 - "*"

Canary traffic configuration at the ASM gateway
If you need to clarify the canary traffic in ingress traffic by using <gatewayIP>/hello , you must use
the x-asm-prefer-tag header to specify a traffic label, as shown in the preceding a-vs-tf.yaml file. In
the preceding examples, the canary traffic is manually labeled by running the curl -H 'x-asm-prefer-
tag: xxx' command.

In actual business scenarios, a client application or user may use a browser for access without sett ing
the x-asm-prefer-tag header. In such scenarios, you can use the custom header feature of an ASM
gateway and the Lua plug-in to map the canary configuration to the x-asm-prefer-tag header for
standardized processing.

For example, you can use an Envoy filter to specify the traffic that is generated by the users who
use iPhone 13 as canary traffic. Sample code:

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 61

apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:
 labels:
 provider: "asm"
 asm-system: "true"
 name: gateway-lua-filter-add-x-asm-prefer-tag-header
 namespace: istio-system
spec:
 workloadSelector:
 labels:
 istio: ingressgateway
 configPatches:
 - applyTo: HTTP_FILTER
 match:
 proxy:
 proxyVersion: "^1.*"
 context: GATEWAY
 listener:
 filterChain:
 filter:
 name: "envoy.filters.network.http_connection_manager"
 subFilter:
 name: "envoy.filters.http.router"
 patch:
 operation: INSERT_BEFORE
 value:
 name: envoy.lua
 typed_config:
 "@type": "type.googleapis.com/envoy.extensions.filters.http.lua.v3.Lua"
 inlineCode: |
 function envoy_on_request(request_handle)
 local user_agent = request_handle:headers():get("user-agent")
 request_handle:logInfo("user_agent:"..user_agent)
 if string.match(user_agent,"^.*iPhone13.*") then
 request_handle:headers():add("x-asm-prefer-tag","version-gray")
 else
 request_handle:headers():add("x-asm-prefer-tag","version-base")
 end
 end
 function envoy_on_response(response_handle)
 end

FAQ
Why does an end-t o-end canary release not t ake ef f ect ?

An end-to-end canary release takes effect for an application only if the tracing feature of the
application takes effect. The Spring Cloud services in this topic are connected to ARMS by using a non-
intrusive manner to implement the tracing feature. If the test result does not meet your expectations,
perform the following steps to check whether application monitoring is enabled:

Best Pract ices·Traffic Management Alibaba Cloud Service Mesh

62 > Document Version: 20220712

Log on to the Tracing Analysis console. In the left-side navigation pane, click Global T opology . On the
Global T opology page, you can view the following trace: ingressgateway > springcloud-ist io-client >
springcloud-ist io-server. This indicates that application monitoring is enabled.

If you enable application monitoring after you deploy the demo, you must redeploy the demo after you
enable application monitoring. For more information about how to enable application monitoring, see
Monitor application performance.

Related information
Monitor application performance

Traffic labeling and label-based routing

Alibaba Cloud Service Mesh Best Pract ices·Traffic Management

> Document Version: 20220712 63

https://tracing-sg.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/125726.htm#cs-k8s-arms
https://www.alibabacloud.com/help/doc-detail/125726.htm#cs-k8s-arms
https://www.alibabacloud.com/help/doc-detail/375313.htm#task-2160625

When a client from one domain accesses a service in a different domain or a service that resides in the
same domain but uses a different port from the client, the client init iates a cross-origin request. If the
service disallows cross-origin resource access, the client cannot access the service. In this case, you can
implement cross-origin resource sharing (CORS) to allow web application servers to access cross-origin
resources. This topic describes how to configure a CORS policy in a virtual service of Alibaba Cloud
Service Mesh (ASM) to implement CORS.

CORS overview
For security reasons, browsers restrict cross-origin HTTP requests that are init iated from scripts. For
example, XMLHttpRequest and the Fetch API follow the same-origin policy. This means that a web
application that uses these APIs can request only resources from the same origin in which the
application is loaded unless the response from other origins includes valid CORS headers.

CORS is a mechanism based on HTTP headers and allows a server to identify domains, schemes, or ports
other than its own from which a browser permits loading resources.

The CORS mechanism supports two types of requests: simple requests and preflight requests.

Simple request mode:

A browser sends a cross-origin request. The Origin header is specified in the request, which indicates
that the request is a cross-origin request. After the dest ination server receives the cross-origin
request, the server determines whether to allow the request based on configured CORS rules. In
response, the server returns the Access-Control-Allow-Origin and Access-Control-Allow-Methods
headers to indicate whether the request is allowed.

Preflight request mode:

A browser sends a preflight request, which is an HTTP OPTIONS request. The request is used to check
whether the dest ination server allows cross-origin requests from the current domain. If the
destination server allows cross-origin requests from the current domain, the browser sends an actual
cross-origin request.

The OPTIONS request contains the following headers: Origin, Access-Control-Request-Method, and
Access-Control-Request-Headers. After the dest ination server receives the OPTIONS request, the
server specifies the Access-Control-Allow-Origin, Access-Control-Allow-Method, Access-Control-
Allow-Headers, and Access-Control-Max-Age headers in the response to indicate whether the
request is allowed. If the preflight request is allowed, the browser sends an actual cross-origin
request.

If a request meets the following three requirements, the CORS mechanism processes the request as a
simple request. Otherwise, the CORS mechanism processes the request as a preflight request.

The request uses one of the following methods:

GET, HEAD, and POST

The Content-Type header in the request is set to one of the following values:

ext/plain, application/x-www-form-urlencoded, and mult ipart/form-data

The request uses one of the following CORS-safelisted headers that are defined by the Fetch
standard:

3.Security
3.1. Implement CORS in ASM

Best Pract ices·Securit y Alibaba Cloud Service Mesh

64 > Document Version: 20220712

Accept, Accept-Language, Content-Language, and Content-Type. Note: The value of the Content-
Type header must be set to one of the values that are listed in the second requirement.

Configure a CORS policy in a virtual service
Browsers automatically implement CORS communication. To allow cross-origin requests that are
init iated to a service and implement CORS communication, you must set the corsPolicy f ield in the
virtual service that is defined for the service.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: ratings-route
spec:
 hosts:
 - ratings.prod.svc.cluster.local
 http:
 - route:
 - destination:
 host: ratings.prod.svc.cluster.local
 subset: v1
 corsPolicy:
 allowOrigins:
 - exact: https://example.com
- regex: * # You can use regular expressions to specify the addresses of the orig
ins.
 allowMethods:
 - POST
 - GET
 allowCredentials: false
 allowHeaders:
 - X-Foo-Bar
 maxAge: "24h"

Parameter Description

allowOrigins

The addresses of the origins that are allowed to access the service.
Regular expressions are supported. For requests without credentials,
the server can set this parameter to a wildcard (*) so that all origins are
allowed to access the service.

allowMethods The HTTP methods that can be used to init iate cross-origin requests.

allowHeaders
The headers that can be contained to init iate cross-origin requests. The
headers are used to precheck the responses to requests.

exposeHeaders The whitelist of headers that the server allows browsers to access.

maxAge
The maximum amount of t ime that browsers can cache the response
to a preflight request.

Alibaba Cloud Service Mesh Best Pract ices·Securit y

> Document Version: 20220712 65

allowCredentials
Specifies whether credentials are required to init iate cross-origin
requests. Only valid credentials can be used to init iate cross-origin
requests.

Parameter Description

Alibaba Cloud Service Mesh (ASM) Commercial Edit ion (Professional Edit ion) combines with Intel Mult i-
Buffer to accelerate Transport Layer Security (TLS) processing in Envoy. This topic describes how to
enable Mult i-Buffer for TLS acceleration.

Prerequisites
An ASM Commercial Edit ion (Professional Edit ion) instance of version 1.10 or later is created. For more
information, see Create an ASM instance.

A Container Service for Kubernetes (ACK) cluster is created, and the instance families of nodes in the
cluster support the Mult i-Buffer CPU model, Intel Ice Lake. For more information, see Create an ACK
managed cluster.

The following table describes the instance families that support Intel Ice Lake.

Not e For more information about instance types, see Instance family.

Instance family Description

g7

g7se, storage-enhanced general-purpose instance family

g7, general-purpose instance family

g7t, security-enhanced general-purpose instance family

c7

c7, compute-optimized instance family

c7re, RDMA-enhanced instance family

c7se, storage-enhanced compute-optimized instance
family

c7t, security-enhanced compute-optimized instance
family

r7

r7p, memory-optimized instance family

r7se, storage-enhanced memory-optimized instance
family

r7, memory-optimized instance family

3.2. Enable Multi-Buffer for TLS
acceleration

Best Pract ices·Securit y Alibaba Cloud Service Mesh

66 > Document Version: 20220712

https://www.alibabacloud.com/help/doc-detail/152154.htm#task-2370657
https://www.alibabacloud.com/help/doc-detail/95108.htm#task-skz-qwk-qfb
https://www.alibabacloud.com/help/doc-detail/25378.htm#concept-sx4-lxv-tdb

r7t, security-enhanced memory-optimized instance
family

Others

re7p, high-memory instance family

vgn7i-vws, vGPU-accelerated instance family

gn7i, GPU-accelerated compute-optimized instance
family

ebmgn7i, GPU-accelerated compute optimized ECS Bare
Metal Instance family

sccc7, compute-optimized SCC instance family

sccg7, general-purpose SCC instance family

Instance family Description

Context
With the development of network security technologies, TLS has become the cornerstone of network
communication. A TLS session is generally divided into the handshake phase and the data transmission
phase. The most important task in the handshake phase is to use asymmetric encryption to negotiate a
session key. In the data transmission phase, the session key is used to perform symmetric encryption on
the data before data transmission.

In microservice scenarios, Envoy needs to process a large number of TLS requests, whether Envoy serves
as an ingress gateway or as a proxy for microservices. Especially during the handshake phase,
asymmetric encryption and decryption consume a large amount of CPU resources. This may become a
bott leneck in large-scale microservice scenarios. ASM combines with Intel Mult i-Buffer to accelerate TLS
processing in Envoy to alleviate the bott leneck.

Mult i-Buffer uses Intel CPU AVX-512 to process mult iple independent buffers at the same t ime. In other
words, mult iple encryption and decryption operations can be simultaneously executed in one execution
cycle, which accelerates encryption and decryption. Mult i-Buffer does not need addit ional hardware.
The CPU package must contain the AVX-512 instruct ion set. Alibaba Cloud has included the latest AVX-
512 instruct ion set in the Ice Lake processor.

Procedure
You can use one of the following methods to enable the Mult i-Buffer feature:

If no ASM instances exist , select Enable Mult iBuf f er-based T LS encrypt ion and decrypt ion
perf ormance opt imizat ion when you create an ASM instance. For more information, see Create an
ASM instance.

If an ASM instance exists, select Enable Mult iBuffer-based TLS encryption and decryption
performance optimization on the Basic Inf ormat ion page of the ASM instance. The following
procedure describes how to enable Mult i-Buffer if you already have an ASM instance.

1.

2.

Alibaba Cloud Service Mesh Best Pract ices·Securit y

> Document Version: 20220712 67

https://www.alibabacloud.com/help/doc-detail/152154.htm#task-2370657

3.

4.

5. In the Set t ings Updat e panel, select Enable Mult iBuf f er-based T LS encrypt ion and
decrypt ion perf ormance opt imizat ion , and then click OK.

If you use the general-purpose instance family g7 as the instance family of the Kubernetes nodes,
the query per second (QPS) performance improves by 75% after Mult i-Buffer is enabled. If you use
the ECS Bare Metal Instance, a more significant performance improvement can be obtained.

FAQ
What happens if Mult i-Buf f er is enabled on t he cont rol plane, but t he nodes in t he dat a-
plane Kubernet es clust er do not support Int el Ice Lake?

Alert logs are generated from Envoy, and Mult i-Buffer does not take effect.

ASM Commercial Edit ion (Professional Edit ion) 1.10 and later can automatically determine whether TLS
acceleration takes effect when TLS acceleration is enabled. If the node to which the business or
gateway pod is scheduled does not support Intel Ice Lake, ASM does not deliver the corresponding
acceleration configuration to the node. In this case, TLS acceleration does not take effect.

If a Kubernet es clust er does not support Mult i-Buf f er, how can t he clust er use Mult i-
Buf f er?

1. Add a node that supports Intel Ice Lake to the Kubernetes cluster. For more information, see Add
exist ing ECS instances to an ACK cluster.

2. Add the multibuffer-support:true label to the newly added node. For more information, see
Manage node labels.

3. Add the following content to the YAML configuration of the ASM gateway. For more information,
see Modify an ingress gateway service.

You can increase node affinity to ensure that gateway instances are scheduled to the newly added
node that supports Mult i-Buffer.

Best Pract ices·Securit y Alibaba Cloud Service Mesh

68 > Document Version: 20220712

https://www.alibabacloud.com/help/doc-detail/86919.htm#task-2548777
https://www.alibabacloud.com/help/doc-detail/86504.htm#task-1664343
https://www.alibabacloud.com/help/doc-detail/183271.htm#task-1948861

spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: multibuffer-support
 operator: In
 values:
 - true

4. Enable Mult i-Buffer by following the preceding procedure.

After you enable Mult i-Buffer, the new node can use Mult i-Buffer to accelerate TLS processing.

Alibaba Cloud Service Mesh Best Pract ices·Securit y

> Document Version: 20220712 69

Alibaba Cloud Service Mesh (ASM) allows you to manage applications that use the gRPC protocol. For
example, you can develop applications and add applications to containers and ASM instances. This
topic describes the design principle of the gRPC pract ice that ASM provides.

Communication models of gRPC
Design principle

The pract ice involves the four communication models of gRPC.

The method names and parameter names that are used in the pract ice do not indicate any business
features. This way, you can focus on the technology.

Communicat ion models and implement at ion met hods

Communication model Implementation method

Unary RPC talk

Server streaming RPC talkOneAnswerMore

Client streaming RPC talkMoreAnswerOne

Bidirectional streaming RPC talkBidirectional

Prot ocol Buf f ers def init ion

service LandingService {
 //Unary RPC
 rpc talk (TalkRequest) returns (TalkResponse) {
 }
 //Server streaming RPC
 rpc talkOneAnswerMore (TalkRequest) returns (stream TalkResponse) {
 }
 //Client streaming RPC with random & sleep
 rpc talkMoreAnswerOne (stream TalkRequest) returns (TalkResponse) {
 }
 //Bidirectional streaming RPC
 rpc talkBidirectional (stream TalkRequest) returns (stream TalkResponse) {
 }

Met hods

The mainline logic of the pract ice is simple. For example, the data parameter in the following figure
indicates a subscript of the hello array. When the gRPC server receives a request that contains the
data parameter, the gRPC server returns the corresponding value in the hello array to the gRPC client.

The pract ice simplifies requests and responses. The pract ice uses only one method to encapsulate

4.Use gRPC in ASM
4.1. Design principle of the gRPC
practice

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

70 > Document Version: 20220712

each request and response, no matter whether the request or response contains one or more
messages.

All requests are strings. If a request contains mult iple messages, separate the messages with
commas (,).

All responses are arrays. If a response contains only one message, the returned array contains only
one value.

The gRPC client and server communicate with each other by using the programming language. The
traffic shaping configuration is displayed in the language that is specified by the lang variable.

Protocols
Design principle

The pract ice uses simple request parameters to facilitate debugging. At the same t ime, the request
parameters contain sufficient information.

The response parameters in the pract ice support all the data types that are required for
demonstrat ion.

Request prot ocol

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 71

The request parameters in the pract ice include data and meta. All the request parameters are strings.
The data parameter specifies the value of the subscript that you want to add to the hello array. The
meta parameter specifies the programming language.

message TalkRequest {
 //language index
 string data = 1;
 //clientside language
 string meta = 2;
}

Response prot ocol

The response parameters in the pract ice contain only the status parameter and the TalkResult
parameter. The value of the status parameter is an integer, which indicates a status code. The value
of the TalkResult parameter is an array.

The array of the TalkResult parameter supports values of mult iple data types, including the big
integer, enumeration, and key-value pair types. The generic type of key-value pairs is string.

message TalkResponse {
 int32 status = 1;
 repeated TalkResult results = 2;
}
message TalkResult {
 //timestamp
 int64 id = 1;
 //enum
 ResultType type = 2;
 // result uuid
 // language index
 // data hello
 // meta serverside language (It's not good here,
 // but ok since I feel like to keep the response)
 map<string, string> kv = 3;
}
enum ResultType {
 OK = 0;
 FAIL = 1;
}

Functions

Function Description

Environment variable

The practice provides the GRC_SERVER variable for the gRPC client. In
local development and debugging, the value of this variable is
localhost. You must specify domain names of the gRPC services of the
pod that you want to access. When the pod of the gRPC client starts,
the value of the GRC_SERVER variable changes to the domain name of
an active gRPC service. This way, the gRPC client can call the gRPC
service.

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

72 > Document Version: 20220712

Random number

For the client streaming remote procedure call (RPC) and bidrectional
streaming RPC models, the gRPC client needs to call the random
number function to generate a random integer value, which must be
one of the subscripts of the hello array.

T imestamp
TalkResult.id is a unique identifier of the int64 type. The value is a
timestamp that is generated by the t imestamp function.

UUID
TalkResult.kv[id] is a unique identifier of the string type. The value is a
UUID that is generated by the UUID function.

Sleep
For the models excluding unary RPC, you can call the sleep function to
set the interval between requests. This way, you can better observe
the sequence of messages between the gRPC client and server.

Function Description

This topic describes how to use Java, Go, Node.js, and Python to implement gRPC communication
models. The models include unary remote procedure call (RPC), server streaming RPC, client streaming
RPC, and client streaming RPC.

Sample project
For information about the sample project of gRPC, see hello-servicemesh-grpc. The directories in this
topic are directories of hello-servicemesh-grpc.

Step 1: Convert code
1. Run the following command to install gRPC and Protocol Buffers. In this example, gRPC and

Protocol Buffers are installed in the macOS operating system.

brew install grpc protobuf

2. Covert the Protocol Buffers definit ion to code in the programming languages that you use. In the
topic, Java, Go, Node.js, and Python are used:

Not e In the sample project, the code directory of each language contains the proto
directory that stores the landing.proto file. The landing.proto file is a symbolic link to the proto
/landing.proto file in the root directory of the sample project. This way, you can update the
Protocol Buffers definit ion in a unified manner.

Java: Maven is a build automation tool for Java. Maven provides the protobuf-maven-plugin
plug-in to automatically convert code. You can run the mvn package command to use protoc-
gen-grpc-java to generate gRPC template code. For more information, see hello-grpc-java/pom.
xml.

Go: Run the go get github.com/golang/protobuf/protoc-gen-go command to install protoc-
gen-go. Then, run the protoc command to generate gRPC code. For more information, see hello-
grpc-go/proto2go.sh.

4.2. Implement the communication
models of gRPC

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 73

https://github.com/feuyeux/hello-servicemesh-grpc
https://github.com/AliyunContainerService/hello-servicemesh-grpc

Node.js: Run the npm install -g grpc-tools command to install grpc_tools_node_protoc.
Then, run the protoc command to generate gRPC code. For more information, see hello-grpc-no
dejs/proto2js.sh.

Python: Run the pip install grpcio-tools command to install grpcio-tools. Then, run the
protoc command to generate gRPC code. For more information, see hello-grpc-python/proto2p
y.sh.

Step 2: Set communication models
1. Set the hello array.

Java:

private final List<String> HELLO_LIST = Arrays.asList("Hello", "Bonjour", "Hola", "こ
んにちは", "Ciao", "안녕하세요");
kv.put("data", HELLO_LIST.get(index));

Go:

var helloList = []string{"Hello", "Bonjour", "Hola", "こんにちは", "Ciao", "안녕하세요"}
kv["data"] = helloList[index]

Node.js:

let hellos = ["Hello", "Bonjour", "Hola", "こんにちは", "Ciao", "안녕하세요"]
kv.set("data", hellos[index])

Python:

hellos = ["Hello", "Bonjour", "Hola", "こんにちは", "Ciao", "안녕하세요"]
result.kv["data"] = hellos[index]

2. Set the communication models.

Set the unary RPC model.

Java:

// Use the blocking stub to send a request to the server.
public TalkResponse talk(TalkRequest talkRequest) {
 return blockingStub.talk(talkRequest);
}
// After the server processes the request, the onNext and onCompleted events of the
StreamObserver instance are triggered.
public void talk(TalkRequest request, StreamObserver<TalkResponse> responseObserver
) {
 ...
 responseObserver.onNext(response);
 responseObserver.onCompleted();
}

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

74 > Document Version: 20220712

Go:

func talk(client pb.LandingServiceClient, request *pb.TalkRequest) {
 r, err := client.Talk(context.Background(), request)
}
func (s *ProtoServer) Talk(ctx context.Context, request *pb.TalkRequest) (*pb.TalkR
esponse, error) {
 return &pb.TalkResponse{
 Status: 200,
 Results: []*pb.TalkResult{s.buildResult(request.Data)},
 }, nil
}

Node.js:

function talk(client, request) {
 client.talk(request, function (err, response) {
 ...
 })
}
function talk(call, callback) {
 const talkResult = buildResult(call.request.getData())
 ...
 callback(null, response)
}

Python:

def talk(stub):
 response = stub.talk(request)
def talk(self, request, context):
 result = build_result(request.data)
 ...
 return response

Set the server streaming RPC model.

Java:

public List<TalkResponse> talkOneAnswerMore(TalkRequest request) {
 Iterator<TalkResponse> talkResponses = blockingStub.talkOneAnswerMore(request);
 talkResponses.forEachRemaining(talkResponseList::add);
 return talkResponseList;
}
public void talkOneAnswerMore(TalkRequest request, StreamObserver<TalkResponse> res
ponseObserver) {
 String[] datas = request.getData().split(",");
 for (String data : datas) {...}
 talkResponses.forEach(responseObserver::onNext);
 responseObserver.onCompleted();
}

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 75

Go:

func talkOneAnswerMore(client pb.LandingServiceClient, request *pb.TalkRequest) {
 stream, err := client.TalkOneAnswerMore(context.Background(), request)
 for {
 r, err := stream.Recv()
 if err == io.EOF {
 break
 }
 ...
 }
}
func (s *ProtoServer) TalkOneAnswerMore(request *pb.TalkRequest, stream pb.Landing.
.Server) error {
 datas := strings.Split(request.Data, ",")
 for _, d := range datas {
 stream.Send(&pb.TalkResponse{...})
}

Node.js:

function talkOneAnswerMore(client, request) {
 let call = client.talkOneAnswerMore(request)
 call.on('data', function (response) {
 ...
 })
}
function talkOneAnswerMore(call) {
 let datas = call.request.getData().split(",")
 for (const data in datas) {
 ...
 call.write(response)
 }
 call.end()
}

Python:

def talk_one_answer_more(stub):
 responses = stub.talkOneAnswerMore(request)
 for response in responses:
 logger.info(response)
def talkOneAnswerMore(self, request, context):
 datas = request.data.split(",")
 for data in datas:
 yield response

Set the client streaming RPC model.

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

76 > Document Version: 20220712

Java:

public void talkMoreAnswerOne(List<TalkRequest> requests) throws InterruptedExcepti
on {
 final CountDownLatch finishLatch = new CountDownLatch(1);
 StreamObserver<TalkResponse> responseObserver = new StreamObserver<TalkResponse
>() {
 @Override
 public void onNext(TalkResponse talkResponse) {
 log.info("Response=\n{}", talkResponse);
 }
 @Override
 public void onCompleted() {
 finishLatch.countDown();
 }
 };
 final StreamObserver<TalkRequest> requestObserver = asyncStub.talkMoreAnswerOne
(responseObserver);
 try {
 requests.forEach(request -> {
 if (finishLatch.getCount() > 0) {
 requestObserver.onNext(request);
 });
 requestObserver.onCompleted();
}
public StreamObserver<TalkRequest> talkMoreAnswerOne(StreamObserver<TalkResponse> r
esponseObserver) {
 return new StreamObserver<TalkRequest>() {
 @Override
 public void onNext(TalkRequest request) {
 talkRequests.add(request);
 }
 @Override
 public void onCompleted() {
 responseObserver.onNext(buildResponse(talkRequests));
 responseObserver.onCompleted();
 }
 };
}

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 77

Go:

func talkMoreAnswerOne(client pb.LandingServiceClient, requests []*pb.TalkRequest)
{
 stream, err := client.TalkMoreAnswerOne(context.Background())
 for _, request := range requests {
 stream.Send(request)
 }
 r, err := stream.CloseAndRecv()
}
func (s *ProtoServer) TalkMoreAnswerOne(stream pb.LandingService_TalkMoreAnswerOneS
erver) error {
 for {
 in, err := stream.Recv()
 if err == io.EOF {
 talkResponse := &pb.TalkResponse{
 Status: 200,
 Results: rs,
 }
 stream.SendAndClose(talkResponse)
 return nil
 }
 rs = append(rs, s.buildResult(in.Data))
 }
}

Node.js:

function talkMoreAnswerOne(client, requests) {
 let call = client.talkMoreAnswerOne(function (err, response) {
 ...
 })
 requests.forEach(request => {
 call.write(request)
 })
 call.end()
}
function talkMoreAnswerOne(call, callback) {
 let talkResults = []
 call.on('data', function (request) {
 talkResults.push(buildResult(request.getData()))
 })
 call.on('end', function () {
 let response = new messages.TalkResponse()
 response.setStatus(200)
 response.setResultsList(talkResults)
 callback(null, response)
 })
}

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

78 > Document Version: 20220712

Python:

def talk_more_answer_one(stub):
 response_summary = stub.talkMoreAnswerOne(request_iterator)
def generate_request():
 for _ in range(0, 3):
 yield request
def talkMoreAnswerOne(self, request_iterator, context):
 for request in request_iterator:
 response.results.append(build_result(request.data))
 return response

Set the bidirect ional streaming RPC model.

Java:

public void talkBidirectional(List<TalkRequest> requests) throws InterruptedExcepti
on {
 final CountDownLatch finishLatch = new CountDownLatch(1);
 StreamObserver<TalkResponse> responseObserver = new StreamObserver<TalkResponse
>() {
 @Override
 public void onNext(TalkResponse talkResponse) {
 log.info("Response=\n{}", talkResponse);
 }
 @Override
 public void onCompleted() {
 finishLatch.countDown();
 }
 };
 final StreamObserver<TalkRequest> requestObserver = asyncStub.talkBidirectional
(responseObserver);
 try {
 requests.forEach(request -> {
 if (finishLatch.getCount() > 0) {
 requestObserver.onNext(request);
 ...
 requestObserver.onCompleted();
}
public StreamObserver<TalkRequest> talkBidirectional(StreamObserver<TalkResponse> r
esponseObserver) {
 return new StreamObserver<TalkRequest>() {
 @Override
 public void onNext(TalkRequest request) {
 responseObserver.onNext(TalkResponse.newBuilder()
 .setStatus(200)
 .addResults(buildResult(request.getData())).build());
 }
 @Override
 public void onCompleted() {
 responseObserver.onCompleted();
 }
 };
}

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 79

Go:

func talkBidirectional(client pb.LandingServiceClient, requests []*pb.TalkRequest)
{
 stream, err := client.TalkBidirectional(context.Background())
 waitc := make(chan struct{})
 go func() {
 for {
 r, err := stream.Recv()
 if err == io.EOF {
 // read done.
 close(waitc)
 return
 }
 }
 }()
 for _, request := range requests {
 stream.Send(request)
 }
 stream.CloseSend()
 <-waitc
}
func (s *ProtoServer) TalkBidirectional(stream pb.LandingService_TalkBidirectionalS
erver) error {
 for {
 in, err := stream.Recv()
 if err == io.EOF {
 return nil
 }
 stream.Send(talkResponse)
 }
}

Node.js:

function talkBidirectional(client, requests) {
 let call = client.talkBidirectional()
 call.on('data', function (response) {
 ...
 })
 requests.forEach(request => {
 call.write(request)
 })
 call.end()
}
function talkBidirectional(call) {
 call.on('data', function (request) {
 call.write(response)
 })
 call.on('end', function () {
 call.end()
 })
}

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

80 > Document Version: 20220712

Python:

def talk_bidirectional(stub):
 responses = stub.talkBidirectional(request_iterator)
 for response in responses:
 logger.info(response)
def talkBidirectional(self, request_iterator, context):
 for request in request_iterator:
 yield response

Step 3: Implement functions
1. Implement the environment variable function.

Java:

private static String getGrcServer() {
 String server = System.getenv("GRPC_SERVER");
 if (server == null) {
 return "localhost";
 }
 return server;
}

Go:

func grpcServer() string {
 server := os.Getenv("GRPC_SERVER")
 if len(server) == 0 {
 return "localhost"
 } else {
 return server
 }
}

Node.js:

function grpcServer() {
 let server = process.env.GRPC_SERVER;
 if (typeof server !== 'undefined' && server !== null) {
 return server
 } else {
 return "localhost"
 }
}

Python:

def grpc_server():
 server = os.getenv("GRPC_SERVER")
 if server:
 return server
 else:
 return "localhost"

2. Implement the random number function.

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 81

Java:

public static String getRandomId() {
 return String.valueOf(random.nextInt(5));
}

Go:

func randomId(max int) string {
 return strconv.Itoa(rand.Intn(max))
}

Node.js:

function randomId(max) {
 return Math.floor(Math.random() * Math.floor(max)).toString()
}

Python:

def random_id(end):
 return str(random.randint(0, end))

3. Implement the t imestamp function.

Java:

TalkResult.newBuilder().setId(System.nanoTime())

Go:

result.Id = time.Now().UnixNano()

Node.js:

result.setId(Math.round(Date.now() / 1000))

Python:

result.id = int((time.time()))

4. Implement the UUID function.

Java:

kv.put("id", UUID.randomUUID().toString());

Go:

import (
 "github.com/google/uuid"
)
kv["id"] = uuid.New().String()

Node.js:

kv.set("id", uuid.v1())

Python:

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

82 > Document Version: 20220712

result.kv["id"] = str(uuid.uuid1())

5. Implement the sleep function.

Java:

TimeUnit.SECONDS.sleep(1);

Go:

time.Sleep(2 * time.Millisecond)

Node.js:

let sleep = require('sleep')
sleep.msleep(2)

Python:

time.sleep(random.uniform(0.5, 1.5))

Verify the results
Feat ure

Run the following commands to start the gRPC server on a terminal and the gRPC client on another
terminal. After you start the gRPC client and server, the gRPC client sends requests to the API
operations of the four communication models.

Java:

mvn exec:java -Dexec.mainClass="org.feuyeux.grpc.server.ProtoServer"

mvn exec:java -Dexec.mainClass="org.feuyeux.grpc.client.ProtoClient"

Go:

go run server.go

go run client/proto_client.go

Node.js:

node proto_server.js

node proto_client.js

Python:

python server/protoServer.py

python client/protoClient.py

If no communication error occurs, the gRPC client and server are started.

Cross communicat ion

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 83

Cross communication ensures that the gRPC client and server communicate with each other in the same
manner, no matter what language is used by the gRPC client and server. This way, the response of a
request does not vary with the language version.

1. Start the gRPC server, for example, the Java gRPC server:

mvn exec:java -Dexec.mainClass="org.feuyeux.grpc.server.ProtoServer"

2. Run the following commands to start the gRPC clients in Java, Go, Node.js, and Python:

mvn exec:java -Dexec.mainClass="org.feuyeux.grpc.client.ProtoClient"

go run client/proto_client.go

node proto_client.js

python client/protoClient.py

If no communication error occurs, cross communication is successful.

What to do next
After you verify that the gRPC client and server can communicate as expected, you can build images for
the client and server.

St ep 1: Build a project

Use four programming languages to build projects for the gRPC client and server.

Java

Create JAR packages for the gRPC client and server. Then, copy the packages to the Docker directory.

mvn clean install -DskipTests -f server_pom
cp target/hello-grpc-java.jar ../docker/
mvn clean install -DskipTests -f client_pom
cp target/hello-grpc-java.jar ../docker/

Go

The binary files that are compiled by using Go contain the configuration about the operating systems
and need to be deployed in Linux. Therefore, add the following content to the binary file: Then,
copy the binary files to the Docker directories.

env GOOS=linux GOARCH=amd64 go build -o proto_server server.go
mv proto_server ../docker/
env GOOS=linux GOARCH=amd64 go build -o proto_client client/proto_client.go
mv proto_client ../docker/

NodeJS

The Node.js project must be created in a Docker image to support all kinds of C++ dependencies that
are required for the runtime. Therefore, copy the file to the Docker directory.

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

84 > Document Version: 20220712

cp ../hello-grpc-nodejs/proto_server.js node
cp ../hello-grpc-nodejs/package.json node
cp -R ../hello-grpc-nodejs/common node
cp -R ../proto node
cp ../hello-grpc-nodejs/*_client.js node

Python

Copy the Python file to the Docker directory without compilat ion.

cp -R ../hello-grpc-python/server py
cp ../hello-grpc-python/start_server.sh py
cp -R ../proto py
cp ../hello-grpc-python/proto2py.sh py
cp -R ../hello-grpc-python/client py
cp ../hello-grpc-python/start_client.sh py

St ep 2: Build images f or t he gRPC server and client

After you build the project, all the files that are required by Dockerfile are saved in the Docker directory.
This sect ion describes the major information about the Dockerfile.

Select alpine as the basic image because its size is the smallest. In the example, the basic image of
Python is python v2.7. You can change the image version as needed.

Node.js requires the installat ion of C++ and the compiler Make. The Npm package needs to be
installed with grpc-tools.

This example shows how to build the image of the Node.js server.

1. Create the grpc-server-node.dockerfile file.

FROM node:14.11-alpine
RUN apk add --update \
 python \
 make \
 g++ \
 && rm -rf /var/cache/apk/*
RUN npm config set registry http://registry.npmmirror.com && npm install -g node-pre-gy
p grpc-tools --unsafe-perm
COPY node/package.json .
RUN npm install --unsafe-perm
COPY node .
ENTRYPOINT ["node","proto_server.js"]

2. Build an image.

docker build -f grpc-server-node.dockerfile -t registry.cn-beijing.aliyuncs.com/asm_rep
o/grpc_server_node:1.0.0 .

A total of eight images are built .

3. Run the Push command to distribute the images to Container Registry.

docker push registry.cn-beijing.aliyuncs.com/asm_repo/grpc_server_java:1.0.0

docker push registry.cn-beijing.aliyuncs.com/asm_repo/grpc_client_java:1.0.0

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 85

docker push registry.cn-beijing.aliyuncs.com/asm_repo/grpc_server_go:1.0.0

docker push registry.cn-beijing.aliyuncs.com/asm_repo/grpc_client_go:1.0.0

docker push registry.cn-beijing.aliyuncs.com/asm_repo/grpc_server_node:1.0.0

docker push registry.cn-beijing.aliyuncs.com/asm_repo/grpc_client_node:1.0.0

docker push registry.cn-beijing.aliyuncs.com/asm_repo/grpc_server_python:1.0.0

docker push registry.cn-beijing.aliyuncs.com/asm_repo/grpc_client_python:1.0.0

After gRPC clients send requests to access the grpc-server-svc.grpc-best.svc.cluster.local service that is
specified by the GRPC_SERVER variable, Alibaba Cloud Service Mesh (ASM) can route the requests to
gRPC servers in round robin mode. This topic describes how to deploy a gRPC service in a Container
Service for Kubernetes (ACK) cluster to implement load balancing among gRPC servers. This topic also
describes how to verify the load balancing of the gRPC service.

Context

4.3. Implement load balancing among
gRPC servers

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

86 > Document Version: 20220712

In this topic, four gRPC clients and four gRPC servers in Java, Go, Node.js, and Python are used. For
example, the gRPC clients call the grpc-server-svc.grpc-best.svc.cluster.local service that is specified by
the GRPC_SERVER variable. When ASM receives the internal requests, ASM routes the requests to the
four gRPC servers in round robin mode. In addit ion, you can configure an ingress gateway to route
external requests to the four gRPC servers based on a load balancing policy.

Sample project
For information about the sample project of gRPC, download hello-servicemesh-grpc. The directories in
this topic are the directories of hello-servicemesh-grpc.

Not e The image repository in this topic is for reference only. Use an image script to build and
push images to your self-managed image repository. For more information about the image script,
see hello-servicemesh-grpc.

Step 1: Create a gRPC service on the gRPC servers
In this example, a gRPC service named grpc-server-svc is created on all gRPC servers.

Not e The value of the spec.ports.name parameter must start with grpc.

1. Create a YAML file named grpc-server-svc.

e

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 87

https://alibabacloudservicemesh.oss-cn-beijing.aliyuncs.com/asm-hello-grpc/hello-servicemesh-grpc.zip
https://alibabacloudservicemesh.oss-cn-beijing.aliyuncs.com/asm-hello-grpc/hello-servicemesh-grpc.zip
https://alibabacloudservicemesh.oss-cn-beijing.aliyuncs.com/asm-hello-grpc/hello-servicemesh-grpc.zip

apiVersion: v1
kind: Service
metadata:
 namespace: grpc-best
 name: grpc-server-svc
 labels:
 app: grpc-server-svc
spec:
 ports:
 - port: 9996
 name: grpc-port
 selector:
 app: grpc-server-deploy

2. Run the following command to create the gRPC service:

kubectl apply -f grpc-server-svc.yaml

Step 2: Create a Deployment on each gRPC server
In this step, you must create a Deployment on each of the four gRPC servers. The following example
shows you how to use the grpc-server-node.yaml file of a Node.js-based gRPC server to create a
Deployment on the gRPC server. For more information about all the Deployments for gRPC servers in
other languages, visit the kube/deployment page on GitHub.

Not e You must set the app label to grpc-server-deploy for the four Deployments on
the gRPC servers to match the selector of the gRPC service that you create in Step 1. Each of the
Deployments on the four gRPC servers in different languages must have a unique version label.

1. Create a YAML file named grpc-server-node.

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

88 > Document Version: 20220712

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: grpc-best
 name: grpc-server-node
 labels:
 app: grpc-server-deploy
 version: v3
spec:
 replicas: 1
 selector:
 matchLabels:
 app: grpc-server-deploy
 version: v3
 template:
 metadata:
 labels:
 app: grpc-server-deploy
 version: v3
 spec:
 containers:
 - name: grpc-server-deploy
 image: registry.cn-hangzhou.aliyuncs.com/aliacs-app-catalog/asm-grpc-server-n
ode:1.0.0
 imagePullPolicy: Always
 ports:
 - containerPort: 9996
 name: grpc-port

2. Run the following command to create the Deployment:

kubectl apply -f grpc-server-node.yaml

Step 3: Create a Deployment on each gRPC client
The Deployments for the gRPC clients and gRPC servers are different in the following aspects:

The gRPC servers continuously run after they are started. The gRPC clients stop running when the
requests are complete. Therefore, an endless loop is required to keep client-side containers from
stopping.

You must set the GRPC_SERVER variable on the gRPC clients. When the pod of a gRPC client is started,
the value of the GRPC_SERVER variable is passed to the gRPC client.

In this step, you must create a Deployment on each of the four gRPC clients. The following example
shows you how to use the grpc-client-go.yaml file of a Go-based gRPC client to create a Deployment
on the gRPC client.

1. Create a YAML file named grpc-client-go.

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 89

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: grpc-best
 name: grpc-client-go
 labels:
 app: grpc-client-go
spec:
 replicas: 1
 selector:
 matchLabels:
 app: grpc-client-go
 template:
 metadata:
 labels:
 app: grpc-client-go
 spec:
 containers:
 - name: grpc-client-go
 image: registry.cn-hangzhou.aliyuncs.com/aliacs-app-catalog/asm-grpc-client-g
o:1.0.0
 command: ["/bin/sleep", "3650d"]
 env:
 - name: GRPC_SERVER
 value: "grpc-server-svc.grpc-best.svc.cluster.local"
 imagePullPolicy: Always

2. Run the following command to create the Deployment:

kubectl apply -f grpc-client-go.yaml

The command: ["/bin/sleep", "3650d"] line keeps the container running in sleep mode after the
pod of the Go-based gRPC client is started. The GRPC_SERVER variable in env is set to grpc-server-
svc.grpc-best.svc.cluster.local .

Step 4: Deploy the gRPC service and the Deployments
1. Run the following commands to create a namespace named grpc-best in the ACK cluster:

alias k="kubectl --kubeconfig $USER_CONFIG"
k create ns grpc-best

2. Run the following command to enable automatic sidecar inject ion for the namespace:

k label ns grpc-best istio-injection=enabled

3. Run the following commands to deploy the gRPC service and the eight Deployments:

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

90 > Document Version: 20220712

kubectl apply -f grpc-svc.yaml
kubectl apply -f deployment/grpc-server-java.yaml
kubectl apply -f deployment/grpc-server-python.yaml
kubectl apply -f deployment/grpc-server-go.yaml
kubectl apply -f deployment/grpc-server-node.yaml
kubectl apply -f deployment/grpc-client-java.yaml
kubectl apply -f deployment/grpc-client-python.yaml
kubectl apply -f deployment/grpc-client-go.yaml
kubectl apply -f deployment/grpc-client-node.yaml

Verify the result
Use pods t o verif y t he load balancing of t he gRPC service

You can check load balancing among gRPC servers by sending requests to the gRPC service on the gRPC
servers from the pods of the gRPC clients.

1. Run the following commands to obtain the names of the pods of the four gRPC clients:

client_java_pod=$(k get pod -l app=grpc-client-java -n grpc-best -o jsonpath={.items..m
etadata.name})

client_go_pod=$(k get pod -l app=grpc-client-go -n grpc-best -o jsonpath={.items..metad
ata.name})

client_node_pod=$(k get pod -l app=grpc-client-node -n grpc-best -o jsonpath={.items..m
etadata.name})

client_python_pod=$(k get pod -l app=grpc-client-python -n grpc-best -o jsonpath={.item
s..metadata.name})

2. Run the following commands to send requests from the pods of the gRPC clients to the gRPC
service on the four gRPC servers:

k exec "$client_java_pod" -c grpc-client-java -n grpc-best -- java -jar /grpc-client.ja
r

k exec "$client_go_pod" -c grpc-client-go -n grpc-best -- ./grpc-client

k exec "$client_node_pod" -c grpc-client-node -n grpc-best -- node proto_client.js

k exec "$client_python_pod" -c grpc-client-python -n grpc-best -- sh /grpc-client/start
_client.sh

3. Use a FOR loop to verify the load balancing among the gRPC servers. In this example, the Node.js-
based gRPC client is used.

for ((i = 1; i <= 100; i++)); do
kubectl exec "$client_node_pod" -c grpc-client-node -n grpc-best -- node kube_client.js
> kube_result
done
sort kube_result grep -v "^[[:space:]]*$" uniq -c sort -nrk1

Expected output:

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 91

 26 Talk:PYTHON
 25 Talk:NODEJS
 25 Talk:GOLANG
 24 Talk:JAVA

The output indicates that the four gRPC servers on which the gRPC service is deployed receive an
approximate number of requests. The load balancing result indicates that ASM can route external
requests to the four gRPC servers on which the gRPC service is deployed based on a load balancing
policy.

Use an ingress gat eway t o verif y t he load balancing of t he gRPC service

You can verify load balancing among gRPC servers by using the Ist io ingress gateway.

1.

2.

3.

4.

5. On the Create page, select a namespace as required, copy the following content to the code
editor, and then click Creat e .

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 namespace: grpc-best
 name: grpc-gateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 9996
 name: grpc
 protocol: GRPC
 hosts:
 - "*"

6. Run the following command to obtain the IP address of the Ist io ingress gateway:

INGRESS_IP=$(k -n istio-system get service istio-ingressgateway -o jsonpath='{.status.l
oadBalancer.ingress[0].ip}')

7. Use a FOR loop to verify the load balancing among the gRPC servers.

docker run -d --name grpc_client_node -e GRPC_SERVER="${INGRESS_IP}" registry.cn-hangzh
ou.aliyuncs.com/aliacs-app-catalog/asm-grpc-client-node:1.0.0 /bin/sleep 3650d
client_node_container=$(docker ps -q)
docker exec -e GRPC_SERVER="${INGRESS_IP}" -it "$client_node_container" node kube_clien
t.js
for ((i = 1; i <= 100; i++)); do
docker exec -e GRPC_SERVER="${INGRESS_IP}" -it "$client_node_container" node kube_clien
t.js >> kube_result
done
sort kube_result grep -v "^[[:space:]]*$" uniq -c sort -nrk1

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

92 > Document Version: 20220712

Expected output:

 26 Talk:PYTHON
 25 Talk:NODEJS
 25 Talk:GOLANG
 24 Talk:JAVA

The output indicates that the four gRPC servers on which the gRPC service is deployed receive an
approximate number of requests. The load balancing result indicates that ASM can route external
requests to the four gRPC servers on which the gRPC service is deployed based on a load balancing
policy.

This topic describes how to shape traffic to gRPC servers based on the gRPC version and gRPC API in the
Alibaba Cloud Service Mesh (ASM) console.

Shape traffic to gRPC servers based on the gRPC version
A gRPC service is deployed on each of the Java, Go, Node.js, and Python gRPC servers. The following
example shows how to route requests from gRPC clients to the gRPC service that is deployed on the
Java gRPC server.

4.4. Shape traffic to gRPC servers

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 93

1.

2.

3.

4. In the Cont rol Plane sect ion, click the Dest inat ionRule tab and then Creat e .

5. In the Creat e panel, select the required namespace from the Namespaces drop-down list . Copy
the following content to the code editor. Then, click OK.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 namespace: grpc-best
 name: grpc-server-dr
spec:
 host: grpc-server-svc
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 - name: v3
 labels:
 version: v3
 - name: v4
 labels:
 version: v4

6. In the Cont rol Plane sect ion, click the Virt ualService tab and then Creat e .

7. In the Creat e panel, select the required namespace from the Namespaces drop-down list . Copy
the following content to the code editor. Then, click OK.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 namespace: grpc-best
 name: grpc-server-vs
spec:
 hosts:
 - "*"
 gateways:
 - grpc-gateway
 http:
 - match:
 - port: 9996
 route:
 - destination:
 host: grpc-server-svc
 subset: v1
 weight: 100

Run the following command to check whether all the requests are routed to the Java gRPC service:

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

94 > Document Version: 20220712

for i in {1..100}; do
 docker exec -e GRPC_SERVER="${INGRESS_IP}" -it "$client_node_container" node mesh_cli
ent.js >> mesh_result
done
sort mesh_result | grep -v "^[[:space:]]*$"| uniq -c | sort -nrk1

Expected output:

 100 TalkOneAnswerMore:JAVA
 100 TalkMoreAnswerOne:JAVA
 100 TalkBidirectional:JAVA
 100 Talk:JAVA

Shape traffic to gRPC servers by using the gRPC API operations
You can use the gRPC API operations to shape traffic to gRPC servers in a fine-grained way. The gRPC
API operations can be built for the communication models. For more information, see Implement the
communication models of gRPC. Four gRPC API operations and four gRPC services in the following
programming languages are available: Java, Go, Node.js, and Python. The following example shows how
to set a routing rule to route the requests of a gRPC API operation to the gRPC server that uses the
same language as the operation.

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 95

https://www.alibabacloud.com/help/doc-detail/187132.htm#task-1963084

1.

2.

3.

4. In the Cont rol Plane sect ion, click the Virt ualService tab and then Creat e .

5. In the Creat e panel, select the required namespace from the Namespaces drop-down list . Copy
the following content to the code editor. Then, click OK.

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

96 > Document Version: 20220712

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 namespace: grpc-best
 name: grpc-server-vs
spec:
 hosts:
 - "*"
 gateways:
 - grpc-gateway
 http:
 - match:
 - port: 9996
 - uri:
 exact: /org.feuyeux.grpc.LandingService/talk
 route:
 - destination:
 host: grpc-server-svc
 subset: v1
 weight: 100
 - match:
 - port: 9996
 - uri:
 exact: /org.feuyeux.grpc.LandingService/talkOneAnswerMore
 route:
 - destination:
 host: grpc-server-svc
 subset: v2
 weight: 100
 - match:
 - port: 9996
 - uri:
 exact: /org.feuyeux.grpc.LandingService/talkMoreAnswerOne
 route:
 - destination:
 host: grpc-server-svc
 subset: v3
 weight: 100
 - match:
 - port: 9996
 - uri:
 exact: /org.feuyeux.grpc.LandingService/talkBidirectional
 route:
 - destination:
 host: grpc-server-svc
 subset: v4
 weight: 100

Run the following command to check whether the requests of each gRPC API operation are
directed to the gRPC server that uses the same language as the operation:

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 97

for i in {1..100}; do
 docker exec -e GRPC_SERVER="${INGRESS_IP}" -it "$client_node_container" node mesh_cli
ent.js >> mesh_result
done
sort mesh_result | grep -v "^[[:space:]]*$"| uniq -c | sort -nrk1

Expected output:

 100 TalkOneAnswerMore:GOLANG
 100 TalkMoreAnswerOne:NODEJS
 100 TalkBidirectional:PYTHON
 100 Talk:JAVA

Alibaba Cloud Service Mesh (ASM) allows you to set matching condit ions for the keys and values of
headers. This way, ASM can dynamically redirect traffic based on request headers. This topic describes
how to redirect the traffic of applications in ASM based on headers.

Obtain headers on the gRPC server and client
Obt ain headers on t he gRPC server

Basic methods

Use Java to implement the basic method to obtain headers on the gRPC server.

Implement the interceptCall(ServerCall<ReqT, RespT> call,final Metadata m,ServerCallHandl
er<ReqT, RespT> h) method of the ServerInterceptor operation. Then, run the String v =
m.get(k) command to obtain headers on the server. The type of the input parameter of the ge
t() method is Metadata.Key<String> .

Use Go to implement the basic method to obtain headers on the gRPC server.

Implement the metadata.FromIncomingContext(ctx)(md MD, ok bool) method. The format of
MD is map[string][]string .

Use Node.js to implement the basic method to obtain headers on the gRPC server.

Implement the call.metadata.getmap() method. The type of the returned value is [key: stri
ng]: MetadataValue . The type of MetadataValue is string/Buffer .

Use Python to implement the basic method to obtain headers on the gRPC server.

Implement the context.invocation_metadata() method. The returned value is a two-tuple array
in the format of ('k','v') . The key-value pair can be obtained from m.key, m.value .

Unary RPC

Use Java to implement the unary remote procedure call (RPC) method to obtain headers on the
server.

The headers are intercepted.

4.5. Redirect traffic for gRPC-based
applications

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

98 > Document Version: 20220712

Use Go to implement the unary RPC method to obtain headers on the server.

Call metadata.FromIncomingContext(ctx) in the method. The value of the ctx parameter is
obtained from the input parameter of the Talk method.

Use Node.js to implement the unary RPC method to obtain headers on the server.

Call call.metadata.getMap() in the method.

Use Python to implement the unary RPC method to obtain headers on the server.

Call context.invocation_metadata() in the method.

Server streaming RPC

Use Java to implement the server streaming RPC method to obtain headers on the server.

The headers are intercepted.

Use Go to implement the server streaming RPC method to obtain headers on the server.

Call metadata.FromIncomingContext(ctx) in the method. You can call the stream.Context()
method to obtain the value of the ctx parameter from the input parameter stream of the
TalkOneAnswerMore method.

Use Node.js to implement the server streaming RPC method to obtain headers on the server.

Call call.metadata.getMap() in the method.

Use Python to implement the server streaming RPC method to obtain headers on the server.

Call context.invocation_metadata() in the method.

Client streaming RPC

Use Java to implement the client streaming RPC method to obtain headers on the server.

The headers are intercepted.

Use Go to implement the client streaming RPC method to obtain headers on the server.

Call metadata.FromIncomingContext(ctx) in the method. You can call the stream.Context()
method to obtain the value of the ctx parameter from the input parameter stream of the
TalkMoreAnswerOne method.

Use Node.js to implement the client streaming RPC method to obtain headers on the server.

Call call.metadata.getMap() in the method.

Use Python to implement the client streaming RPC method to obtain headers on the server.

Call context.invocation_metadata() in the method.

Bidirect ional streaming RPC

Use Java to implement the bidirect ional streaming RPC method to obtain headers on the server.

The headers are intercepted.

Use Go to implement the bidirect ional streaming RPC method to obtain headers on the server.

Call metadata.FromIncomingContext(ctx) in the method. You can call the stream.Context()
method to obtain the value of the ctx parameter from the input parameter stream of the
TalkBidirect ional method.

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 99

Use Node.js to implement the bidirect ional streaming RPC method to obtain headers on the server.

Call call.metadata.getMap() in the method.

Use Python to implement the bidirect ional streaming RPC method to obtain headers on the server.

Call context.invocation_metadata() in the method.

Send headers f rom t he client

Basic methods

Use Java to implement the basic method to send headers from the client.

Implement the interceptCall(MethodDescriptor<ReqT, RespT> m, CallOptions o, Channel c)
method of the ClientInterceptor operation. Implement the start((Listener<RespT> l, Meta
data h)) method of the ClientCall<ReqT, RespT> type. Then, run h.put(k, v) to send
headers on the client. The type of the input parameter k of put is Metadata.Key<String> ,
and that of the input parameter v is String .

Use Go to implement the basic method to send headers from the client.

 metadata.AppendToOutgoingContext(ctx,kv ...) context.Context

Use Node.js to implement the basic method to send headers from the client.

 metadata=call.metadata.getMap()metadata.add(key, headers[key])

Use Python to implement the basic method to send headers from the client.

Set the variable in the metadata_dict = {} command in the following format: metadata_dict[
c.key] = c.value . Convert the type of data in the metadata_dict array to list tuple by
using list(metadata_dict.items()) .

Unary RPC

Use Java to implement the unary RPC method to send headers from the client.

The headers are intercepted.

Use Go to implement the unary RPC method to send headers on the client.

Call metadata.AppendToOutgoingContext(ctx,kv) in the method.

Use Node.js to implement the unary RPC method to send headers from the client.

Call the basic method.

Use Python to implement the unary RPC method to send headers from the client.

Call the basic method.

Server streaming RPC

Use Java to implement the server streaming RPC method to send headers from the client.

The headers are intercepted.

Use Go to implement the server streaming RPC method to send headers from the client.

Call metadata.AppendToOutgoingContext(ctx,kv) in the method.

Use Node.js to implement the server streaming RPC method to send headers from the client.

Call the basic method.

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

100 > Document Version: 20220712

Use Python to implement the server streaming RPC method to send headers from the client.

Call the basic method.

Client streaming RPC

Use Java to implement the client streaming RPC method to send headers from the client.

The headers are intercepted.

Use Go to implement the client streaming RPC method to send headers from the client.

Call metadata.AppendToOutgoingContext(ctx,kv) in the method.

Use Node.js to implement the client streaming RPC method to send headers from the client.

Call the basic method.

Use Python to implement the client streaming RPC method to send headers from the client.

Call the basic method.

Bidirect ional streaming RPC

Use Java to implement the bidirect ional streaming RPC method to send headers from the client.

The headers are intercepted.

Use Go to implement the bidirect ional streaming RPC method to send headers from the client.

Call metadata.AppendToOutgoingContext(ctx,kv) in the method.

Use Node.js to implement the bidirect ional streaming RPC method to send headers from the client.

Call the basic method.

Use Python to implement the bidirect ional streaming RPC method to send headers from the client.

Call the basic method.

Propaganda Headers

In Tracing Analysis, upstream link metadata must be passed through to the downstream to obtain the
complete information of a trace. Therefore, the tracing-related header information that is obtained on
the server must be passed through to the client that sends the request to the downstream.

The operations of the communication models that are implemented by using Go, Node.js, and Python
can receive headers. Therefore, the following three act ions can be implemented in order by using the
operations of the four communication models: First , the server reads the headers. Then, the server
passes the headers. Last, the client sends the headers.

The operations of the communication models that are implemented by using Java cannot be used to
propaganda headers in an ordered process. This is because Java reads and writes headers by using two
interceptors. Only the read interceptor obtains the unique ID of the tracing. In addit ion, gRPC services
may receive and send requests at the same t ime. As a result , the two interceptors cannot be connected
by using caching, which is the most intuit ive method to show traces.

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 101

Java uses Metadata-Context Propagation to trace headers.

When the server interceptor reads headers, the headers are writ ten into Context by using
 ctx.withValue(key, metadata) . The type of the key parameter is Context.Key<String> . Then, the

client interceptor reads the headers from Context by using key.get() . By default , the get
method uses Context.current() . This ensures that the same context is used when headers are read
and written.

When headers can be propagandized, you can trace the request and response messages between the
gRPC client and server.

Deploy and verify the topology of an ASM instance
Before you can redirect traffic, you must deploy and verify the topology of the ASM instance in which
your application resides. Make sure that the topology of the ASM instance works as expected.

The tracing folder of the sample project contains deployment scripts in Java, Go, Node.js, and Python. In
this example, the Go deployment script is used to deploy and verify the topology of the ASM instance.

cd go
Deploy the topology of the ASM instance.
sh apply.sh
Verify the topology of the ASM instance.
sh test.sh

If no exceptions occur, the topology of the ASM instance works as expected.

Best Pract ices·Use gRPC in ASM Alibaba Cloud Service Mesh

102 > Document Version: 20220712

The following figure shows the deployed topology of the ASM instance.

Redirect traffic
You can create a virtual service in ASM to set matching condit ions for the keys and values of headers.
This way, ASM can dynamically redirect traffic based on request headers. Furthermore, You can shape
the traffic of your application in a fine-grained way based on the gRPC version and gRPC API
operations. For more information, see Shape traffic to gRPC servers. The following example shows you
how to create a virtual service to direct all the requests of which the headers contain server-
version=go to the Go-based gRPC server.

1.

2.

3.

4.

5. On the Create page, select a namespace as required, copy the following content to the code
editor, and then click Creat e .

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 namespace: grpc-best
 name: grpc-server-vs
spec:
 hosts:
 - "*"
 gateways:
 - grpc-gateway
 http:
 - match:
 - headers:
 server-version:
 exact: go
 route:
 - destination:
 host: grpc-server-svc
 subset: v2
 weight: 100

Alibaba Cloud Service Mesh Best Pract ices·Use gRPC in ASM

> Document Version: 20220712 103

https://www.alibabacloud.com/help/doc-detail/187134.htm#task-1963778

The Mixerless Telemetry technology of Alibaba Cloud Service Mesh (ASM) allows you to obtain
telemetry data from containers in a non-intrusive manner. Telemetry data is collected by Prometheus
Service or self-managed Prometheus as monitoring metrics. You can use the telemetry data to observe
ASM instances. This topic describes how to use ASM to obtain application monitoring metrics that are
collected by self-managed Prometheus to observe ASM instances.

Prerequisites

Step 1: Install Prometheus
1. Download and decompress the installat ion package of Ist io. To download the installat ion package

of Ist io, go to the Download Ist io page.

2. Use kubectl to connect to the ACK cluster. For more information, see Connect to ACK clusters by using
kubectl.

3. Run the following command to install Prometheus:

kubectl --kubeconfig <Path of the kubeconfig file> apply -f <Path to which the installa
tion package of Istio is decompressed>/samples/addons/prometheus.yaml

Step 2: Create a service entry
1.

2.

3.

4.

5. In the Set t ings Updat e panel, select Enable Promet heus and then Enable Self -managed
Promet heus . In the field that appears, enter a Prometheus endpoint. In this example, the default
endpoint http://prometheus:9090 is used. Then, click OK.

Not e In this example, self-managed Prometheus is used. If you use Prometheus Service,
see Monitor service meshes based on ARMS Prometheus.

In the left-side navigation pane of the details page, choose Clust er & Workload Management >
. On the page that appears, you can view the created service entry.

Step 3: Configure Prometheus
1. Configure the monitoring metrics of Ist io.

i.

5.Use Flagger in ASM
5.1. Use Mixerless Telemetry to
observe ASM instances

Best Pract ices·Use Flagger in ASM Alibaba Cloud Service Mesh

104 > Document Version: 20220712

https://istio.io/latest/docs/setup/getting-started/#download
https://www.alibabacloud.com/help/doc-detail/86494.htm#task-2076136
https://www.alibabacloud.com/help/doc-detail/169961.htm#task-2515721

i.

ii.

iii.

iv.

v. In the upper part of the Conf igMap page, select ist io-system from the Namespace drop-
down list . Find the item that is named prometheus and click Edit in the Act ions column.

vi. In the Edit panel, enter configuration information in the Value field and click OK. To obtain
the configuration information, visit GitHub.

2. Delete the pod of Prometheus to make Prometheus configurations take effect.

i.

ii.

iii.

iv.

v. On the Pods page, find the pod that is named Prometheus and click Delet e in the Act ions
column.

vi. In the Delet e Pod message, click Conf irm .

3. Run the following command to view job_name in the Prometheus configurations:

kubectl --kubeconfig <Path of the kubeconfig file> get cm prometheus -n istio-system -o
jsonpath={.data.prometheus\\.yml} | grep job_name

Expected output:

- job_name: 'istio-mesh'
- job_name: 'envoy-stats'
- job_name: 'istio-policy'
- job_name: 'istio-telemetry'
- job_name: 'pilot'
- job_name: 'sidecar-injector'
- job_name: prometheus
 job_name: kubernetes-apiservers
 job_name: kubernetes-nodes
 job_name: kubernetes-nodes-cadvisor
- job_name: kubernetes-service-endpoints
- job_name: kubernetes-service-endpoints-slow
 job_name: prometheus-pushgateway
- job_name: kubernetes-services
- job_name: kubernetes-pods
- job_name: kubernetes-pods-slow

Step 4: Generate monitoring data
1. Deploy the podinfo application in the ACK cluster.

i. Download the required YAML files of the podinfo application. For more information, visit
GitHub.

Alibaba Cloud Service Mesh Best Pract ices·Use Flagger in ASM

> Document Version: 20220712 105

https://github.com/feuyeux/asm-best-practises/blob/master/mixerless/scrape_configs.yaml?spm=a2c6h.12873639.0.0.60c7727eBLdklU&file=scrape_configs.yaml
file:///home/admin/dita-files/output/21702202/task19031346/github.com/stefanprodan/podinfo

ii. Run the following commands to deploy the podinfo application in the ACK cluster:

kubectl --kubeconfig <Path of the kubeconfig file> apply -f <Path of the podinfo ap
plication>/kustomize/deployment.yaml -n test
kubectl --kubeconfig <Path of the kubeconfig file> apply -f <Path of the podinfo ap
plication>/kustomize/service.yaml -n test

2. Run the following command to request the podinfo application to generate monitoring data:

podinfo_pod=$(k get po -n test -l app=podinfo -o jsonpath={.items..metadata.name})
for i in {1..10}; do
 kubectl --kubeconfig "$USER_CONFIG" exec $podinfo_pod -c podinfod -n test -- curl -s
podinfo:9898/version
 echo
done

3. Check whether monitoring data is generated in the Envoy container.

i. Run the following command to request Envoy to check whether the monitoring data of the
ist io_requests_total metric is generated:

kubectl --kubeconfig <Path of the kubeconfig file> exec $podinfo_pod -n test -c ist
io-proxy -- curl -s localhost:15090/stats/prometheus | grep istio_requests_total

Expected output:

:::: istio_requests_total ::::
TYPE istio_requests_total counter
istio_requests_total{response_code="200",reporter="destination",source_workload="po
dinfo",source_workload_namespace="test",source_principal="spiffe://cluster.local/ns
/test/sa/default",source_app="podinfo",source_version="unknown",source_cluster="c19
9d81d4e3104a5d90254b2a210914c8",destination_workload="podinfo",destination_workload
_namespace="test",destination_principal="spiffe://cluster.local/ns/test/sa/default"
,destination_app="podinfo",destination_version="unknown",destination_service="podin
fo.test.svc.cluster.local",destination_service_name="podinfo",destination_service_n
amespace="test",destination_cluster="c199d81d4e3104a5d90254b2a210914c8",request_pro
tocol="http",response_flags="-",grpc_response_status="",connection_security_policy=
"mutual_tls",source_canonical_service="podinfo",destination_canonical_service="podi
nfo",source_canonical_revision="latest",destination_canonical_revision="latest"} 10
istio_requests_total{response_code="200",reporter="source",source_workload="podinfo
",source_workload_namespace="test",source_principal="spiffe://cluster.local/ns/test
/sa/default",source_app="podinfo",source_version="unknown",source_cluster="c199d81d
4e3104a5d90254b2a210914c8",destination_workload="podinfo",destination_workload_name
space="test",destination_principal="spiffe://cluster.local/ns/test/sa/default",dest
ination_app="podinfo",destination_version="unknown",destination_service="podinfo.te
st.svc.cluster.local",destination_service_name="podinfo",destination_service_namesp
ace="test",destination_cluster="c199d81d4e3104a5d90254b2a210914c8",request_protocol
="http",response_flags="-",grpc_response_status="",connection_security_policy="unkn
own",source_canonical_service="podinfo",destination_canonical_service="podinfo",sou
rce_canonical_revision="latest",destination_canonical_revision="latest"} 10

Best Pract ices·Use Flagger in ASM Alibaba Cloud Service Mesh

106 > Document Version: 20220712

ii. Run the following command to request Envoy to check whether the monitoring data of the
ist io_request_duration metric is generated:

kubectl --kubeconfig <Path of the kubeconfig file> exec $podinfo_pod -n test -c ist
io-proxy -- curl -s localhost:15090/stats/prometheus | grep istio_request_duration

Expected output:

:::: istio_request_duration ::::
TYPE istio_request_duration_milliseconds histogram
istio_request_duration_milliseconds_bucket{response_code="200",reporter="destinatio
n",source_workload="podinfo",source_workload_namespace="test",source_principal="spi
ffe://cluster.local/ns/test/sa/default",source_app="podinfo",source_version="unknow
n",source_cluster="c199d81d4e3104a5d90254b2a210914c8",destination_workload="podinfo
",destination_workload_namespace="test",destination_principal="spiffe://cluster.loc
al/ns/test/sa/default",destination_app="podinfo",destination_version="unknown",dest
ination_service="podinfo.test.svc.cluster.local",destination_service_name="podinfo"
,destination_service_namespace="test",destination_cluster="c199d81d4e3104a5d90254b2
a210914c8",request_protocol="http",response_flags="-",grpc_response_status="",conne
ction_security_policy="mutual_tls",source_canonical_service="podinfo",destination_c
anonical_service="podinfo",source_canonical_revision="latest",destination_canonical
_revision="latest",le="0.5"} 10
istio_request_duration_milliseconds_bucket{response_code="200",reporter="destinatio
n",source_workload="podinfo",source_workload_namespace="test",source_principal="spi
ffe://cluster.local/ns/test/sa/default",source_app="podinfo",source_version="unknow
n",source_cluster="c199d81d4e3104a5d90254b2a210914c8",destination_workload="podinfo
",destination_workload_namespace="test",destination_principal="spiffe://cluster.loc
al/ns/test/sa/default",destination_app="podinfo",destination_version="unknown",dest
ination_service="podinfo.test.svc.cluster.local",destination_service_name="podinfo"
,destination_service_namespace="test",destination_cluster="c199d81d4e3104a5d90254b2
a210914c8",request_protocol="http",response_flags="-",grpc_response_status="",conne
ction_security_policy="mutual_tls",source_canonical_service="podinfo",destination_c
anonical_service="podinfo",source_canonical_revision="latest",destination_canonical
_revision="latest",le="1"} 10
...

Verify the result
1. Expose Prometheus by using a Server Load Balancer (SLB) instance. For more information, see

Manage Services.

2.

3.

4.

5.

6. On the Services page, find the service that is named Prometheus and click the IP address in the
Ext ernal Endpoint column.

7. On the Prometheus page, enter ist io_requests_total in the search box and click Execut e .

The following figure shows that application monitoring metrics are collected by Prometheus.

Alibaba Cloud Service Mesh Best Pract ices·Use Flagger in ASM

> Document Version: 20220712 107

https://www.alibabacloud.com/help/doc-detail/86512.htm#task-1779995

The Mixerless Telemetry technology of Alibaba Cloud Service Mesh (ASM) allows you to obtain
telemetry data on containers in a non-intrusive manner. You can use Prometheus to collect the
monitoring metrics of an application, such as the number of requests, the average latency of requests,
and the P99 latency of requests. Then, a Horizontal Pod Autoscaler (HPA) automatically scales the
pods of the application based on the collected metrics. This topic describes how to use Mixerless
Telemetry to scale the pods of an application.

Prerequisites
Application monitoring metrics are collected by Prometheus. For more information, see Use Mixerless
Telemetry to observe ASM instances.

Step 1: Deploy a metrics adapter and a Flagger load tester
1. Use kubectl to connect to a Container Service for Kubernetes (ACK) cluster. For more information,

see Connect to ACK clusters by using kubectl.

2. Run the following command to deploy a metrics adapter:

Not e To obtain the complete script of a metrics adapter, visit GitHub.

helm --kubeconfig <Path of the kubeconfig file> -n kube-system install asm-custom-metri
cs \ $KUBE_METRICS_ADAPTER_SRC/deploy/charts/kube-metrics-adapter \
 --set prometheus.url=http://prometheus.istio-system.svc:9090

3. Verify whether the metrics adapter is deployed as expected.

5.2. Use Mixerless Telemetry to scale
the pods of an application

Best Pract ices·Use Flagger in ASM Alibaba Cloud Service Mesh

108 > Document Version: 20220712

https://www.alibabacloud.com/help/doc-detail/254054.htm#task-2081729
https://www.alibabacloud.com/help/doc-detail/86494.htm#task-2076136
https://github.com/feuyeux/asm-best-practises/blob/master/progressive_delivery/demo_hpa.sh?spm=a2c6h.12873639.0.0.a34263ebbBG94S&file=demo_hpa.sh

i. Run the following command to view the pod of the metrics adapter:

kubectl --kubeconfig <Path of the kubeconfig file> get po -n kube-system | grep met
rics-adapter

Expected output:

asm-custom-metrics-kube-metrics-adapter-6fb4949988-ht8pv 1/1 Running 0
30s

ii. Run the following command to view the custom resource definit ions (CRDs) of
autoscaling/v2beta:

kubectl --kubeconfig <Path of the kubeconfig file> api-versions | grep "autoscaling
/v2beta"

Expected output:

autoscaling/v2beta1
autoscaling/v2beta2

iii. Run the following command to view the metrics adapter:

kubectl --kubeconfig <Path of the kubeconfig file> get --raw "/apis/external.metric
s.k8s.io/v1beta1" | jq .

Expected output:

{
 "kind": "APIResourceList",
 "apiVersion": "v1",
 "groupVersion": "external.metrics.k8s.io/v1beta1",
 "resources": []
}

4. Deploy a Flagger load tester.

i. Download the required YAML files of the Flagger load tester. For more information, visit GitHub.

ii. Run the following commands to deploy the Flagger load tester:

kubectl --kubeconfig <Path of the kubeconfig file> apply -f <Path of the Flagger lo
ad tester>/kustomize/tester/deployment.yaml -n test
kubectl --kubeconfig <Path of the kubeconfig file> apply -f <Path of the Flagger lo
ad tester>/kustomize/tester/service.yaml -n test

Step 2: Create different HPAs based on your business requirements
1. Create an HPA to scale the pods of an application based on the value of the ist io_requests_total

parameter. The ist io_requests_total parameter indicates the number of requests that are sent to
the application.

Alibaba Cloud Service Mesh Best Pract ices·Use Flagger in ASM

> Document Version: 20220712 109

https://github.com/fluxcd/flagger

i. Use the following content to create the requests_total_hpa.yaml file:

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
 name: podinfo-total
 namespace: test
 annotations:
 metric-config.external.prometheus-query.prometheus/processed-requests-per-secon
d: |
 sum(rate(istio_requests_total{destination_workload_namespace="test",reporter=
"destination"}[1m]))
spec:
 maxReplicas: 5
 minReplicas: 1
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: podinfo
 metrics:
 - type: External
 external:
 metric:
 name: prometheus-query
 selector:
 matchLabels:
 query-name: processed-requests-per-second
 target:
 type: AverageValue
 averageValue: "10"

annotations: Add annotations to configure the HPA to scale the pods of the application
based on the value of the ist io_requests_total parameter.

target: In this example, set the averageValue parameter to 10. If the average number of
requests that are sent to the application is greater than or equal to 10, the HPA
automatically scales out the pods of the application.

ii. Run the following command to deploy the HPA:

kubectl --kubeconfig <Path of the kubeconfig file> apply -f resources_hpa/requests_
total_hpa.yaml

Best Pract ices·Use Flagger in ASM Alibaba Cloud Service Mesh

110 > Document Version: 20220712

iii. Verify whether the HPA is deployed as expected.

kubectl --kubeconfig <Path of the kubeconfig file> get --raw "/apis/external.metric
s.k8s.io/v1beta1" | jq .

Expected output:

{
 "kind": "APIResourceList",
 "apiVersion": "v1",
 "groupVersion": "external.metrics.k8s.io/v1beta1",
 "resources": [
 {
 "name": "prometheus-query",
 "singularName": "",
 "namespaced": true,
 "kind": "ExternalMetricValueList",
 "verbs": [
 "get"
]
 }
]
}

2. Create an HPA to scale the pods of an application based on the value of the
ist io_request_duration_milliseconds_sum parameter. The ist io_request_duration_milliseconds_sum
parameter indicates the average latency of requests that are sent to the application. Use the
following content to create the podinfo-latency-avg.yaml file:

Repeat Substep b in Step 1 to deploy the HPA.

Alibaba Cloud Service Mesh Best Pract ices·Use Flagger in ASM

> Document Version: 20220712 111

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
 name: podinfo-latency-avg
 namespace: test
 annotations:
 metric-config.external.prometheus-query.prometheus/latency-average: |
 sum(rate(istio_request_duration_milliseconds_sum{destination_workload_namespace="
test",reporter="destination"}[1m]))
 /sum(rate(istio_request_duration_milliseconds_count{destination_workload_namespac
e="test",reporter="destination"}[1m]))
spec:
 maxReplicas: 5
 minReplicas: 1
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: podinfo
 metrics:
 - type: External
 external:
 metric:
 name: prometheus-query
 selector:
 matchLabels:
 query-name: latency-average
 target:
 type: AverageValue
 averageValue: "0.005"

annotations: Add annotations to configure the HPA to scale the pods of the application based
on the value of the ist io_request_duration_milliseconds_sum parameter.

target: In this example, set the averageValue parameter to 0.005. If the average latency of
requests that are sent to the application is greater than or equal to 0.005s, the HPA
automatically scales out the pods of the application.

3. Create an HPA to scale the pods of an application based on the value of the
ist io_request_duration_milliseconds_bucket parameter. The
ist io_request_duration_milliseconds_bucket parameter indicates the P95 latency of requests that
are sent to the application. Use the following content to create the podinfo-p95.yaml file:

Repeat Substep b in Step 1 to deploy the HPA.

Best Pract ices·Use Flagger in ASM Alibaba Cloud Service Mesh

112 > Document Version: 20220712

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
 name: podinfo-p95
 namespace: test
 annotations:
 metric-config.external.prometheus-query.prometheus/p95-latency: |
 histogram_quantile(0.95,sum(irate(istio_request_duration_milliseconds_bucket{dest
ination_workload_namespace="test",destination_canonical_service="podinfo"}[5m]))by (le)
)
spec:
 maxReplicas: 5
 minReplicas: 1
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: podinfo
 metrics:
 - type: External
 external:
 metric:
 name: prometheus-query
 selector:
 matchLabels:
 query-name: p95-latency
 target:
 type: AverageValue
 averageValue: "4"

annotations: Add annotations to configure the HPA to scale the pods of the application based
on the value of the ist io_request_duration_milliseconds_bucket parameter.

target: In this example, set the averageValue parameter to 4. If the average P95 latency of
requests that are sent to the application is greater than or equal to 4 ms, the HPA automatically
scales out the pods of the application.

Verify whether the pods of an application can be scaled as expected
In this example, verify the HPA that is deployed to scale the pods of an application based on the
number of requests sent to the application. Verify whether the HPA works as expected if the number of
requests that are sent to the application is greater than or equal to 10.

1. Run the following command to init iate requests for 5 minutes. Set the number of requests per
second to 10 and the number of concurrent requests that are processed at a t ime to 2.

alias k="kubectl --kubeconfig $USER_CONFIG"
loadtester=$(k -n test get pod -l "app=flagger-loadtester" -o jsonpath='{.items..metada
ta.name}')
k -n test exec -it ${loadtester} -c loadtester -- hey -z 5m -c 2 -q 10 http://podinfo:9
898

 -z : the duration within which requests are init iated.

 -c : the number of concurrent requests that are processed at a t ime.

 -q : the number of requests per second.

Alibaba Cloud Service Mesh Best Pract ices·Use Flagger in ASM

> Document Version: 20220712 113

2. Run the following command to check whether the pods are scaled out as expected:

watch kubectl --kubeconfig $USER_CONFIG -n test get hpa/podinfo-total

Expected output:

Every 2.0s: kubectl --kubeconfig /Users/han/shop_config/ack_zjk -n test get hpa/podinfo
East6C16G: Tue Jan 26 18:01:30 2021
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
podinfo Deployment/podinfo 10056m/10 (avg) 1 5 2 4m45s

A value of 2 appears in the REPLICAS column, which indicates that the current number of pods
of the application is 2.

3. Run the following command to init iate requests for 5 minutes. Set the number of requests per
second to 15 and the number of concurrent requests that are processed at a t ime to 2.

alias k="kubectl --kubeconfig $USER_CONFIG"
loadtester=$(k -n test get pod -l "app=flagger-loadtester" -o jsonpath='{.items..metada
ta.name}')
k -n test exec -it ${loadtester} -c loadtester -- hey -z 5m -c 2 -q 15 http://podinfo:9
898

4. Run the following command to check whether the pods are scaled out as expected:

watch kubectl --kubeconfig $USER_CONFIG -n test get hpa/podinfo-total

Expected output:

Every 2.0s: kubectl --kubeconfig /Users/han/shop_config/ack_zjk -n test get hpa/podinfo
East6C16G: Tue Jan 26 18:01:30 2021
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
podinfo Deployment/podinfo 10056m/10 (avg) 1 5 3 4m45s

A value of 3 appears in the REPLICAS column, which indicates that the current number of pods
of the application is 3. The result shows that the pods of the application are scaled out when the
number of requests that are sent to the application increases. If you decrease the number of
requests that are sent to the application to a specific level, a value of 1 appears in the REPLICAS
column. The result shows that the pods of the application are scaled in when the number of
requests that are sent to the application decreases.

The Mixerless Telemetry technology of Alibaba Cloud Service Mesh (ASM) allows you to obtain
telemetry data on containers in a non-intrusive manner. Telemetry data is collected by Prometheus as
monitoring metrics. Flagger is a tool that automates the release process of applications. You can use
Flagger to monitor the metrics that are collected by Prometheus to manage traffic in canary releases.
This topic describes how to use Mixerless Telemetry to implement a canary release.

Prerequisites
Application monitoring metrics are collected by Prometheus. For more information, see Use Mixerless

5.3. Use Mixerless Telemetry to
implement a canary release

Best Pract ices·Use Flagger in ASM Alibaba Cloud Service Mesh

114 > Document Version: 20220712

https://www.alibabacloud.com/help/doc-detail/254054.htm#task-2081729

Telemetry to observe ASM instances.

Procedure for implementing a canary release
1. Connect ASM to Prometheus to collect application monitoring metrics.

2. Deploy Flagger and an Ist io gateway.

3. Deploy a Flagger load tester to detect traffic routing for the pods of an application in the canary
release.

4. Deploy an application. In this example, the podinfo application V3.1.0 is deployed.

5. Deploy a Horizontal Pod Autoscaler (HPA) to scale out the pods of the podinfo application if the
CPU utilizat ion of the podinfo application reaches 99%.

6. Implement a canary resource to specify that the traffic routed to the podinfo application is
progressively increased by a fixed percentage of 10% if the P99 latency keeps being greater than
or equal to 500 ms for 30s.

7. Flagger copies the podinfo application and generates the podinfo-primary application. The
podinfo application is used as the deployment of the canary release version. The podinfo-primary
application is used as the deployment of the production version.

8. Update the podinfo application to V3.1.1.

9. Flagger monitors the metrics that are collected by Prometheus to manage traffic in the canary
release. Flagger progressively increases the traffic routed to the podinfo application V3.1.1 by a
fixed percentage of 10% if the P99 latency keeps being greater than or equal to 500 ms for 30s. In
addit ion, the HPA scales out the pods of the podinfo application and scales in the pods of the
podinfo-primary application based on the status of the canary release.

Procedure
1. Use kubectl to connect to a Container Service for Kubernetes (ACK) cluster. For more information,

see Connect to ACK clusters by using kubectl.

2. Run the following commands to deploy Flagger:

alias k="kubectl --kubeconfig $USER_CONFIG"
alias h="helm --kubeconfig $USER_CONFIG"
cp $MESH_CONFIG kubeconfig
k -n istio-system create secret generic istio-kubeconfig --from-file kubeconfig
k -n istio-system label secret istio-kubeconfig istio/multiCluster=true
h repo add flagger https://flagger.app
h repo update
k apply -f $FLAAGER_SRC/artifacts/flagger/crd.yaml
h upgrade -i flagger flagger/flagger --namespace=istio-system \
 --set crd.create=false \
 --set meshProvider=istio \
 --set metricsServer=http://prometheus:9090 \
 --set istio.kubeconfig.secretName=istio-kubeconfig \
 --set istio.kubeconfig.key=kubeconfig

3. Use kubectl to connect to an ASM instance. For more information, see Use kubectl to connect to an
ASM instance.

4. Deploy an Ist io gateway.

Alibaba Cloud Service Mesh Best Pract ices·Use Flagger in ASM

> Document Version: 20220712 115

https://www.alibabacloud.com/help/doc-detail/86494.htm#task-2076136
https://www.alibabacloud.com/help/doc-detail/150496.htm#task-2390744

i. Use the following content to create the public-gateway.yaml file:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: public-gateway
 namespace: istio-system
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"

ii. Run the following command to deploy the Ist io gateway:

kubectl --kubeconfig <Path of the kubeconfig file of the ASM instance> apply -f res
ources_canary/public-gateway.yaml

5. Run the following command to deploy a Flagger load tester in the ACK cluster:

kubectl --kubeconfig <Path of the kubeconfig file of the ACK cluster> apply -k "https:/
/github.com/fluxcd/flagger//kustomize/tester?ref=main"

6. Run the following command to deploy the podinfo application and an HPA in the ACK cluster:

kubectl --kubeconfig <Path of the kubeconfig file of the ACK cluster> apply -k "https:/
/github.com/fluxcd/flagger//kustomize/podinfo?ref=main"

7. Deploy a canary resource in the ACK cluster.

Not e For more information about a canary resource, see How it works.

i. Use the following content to create the podinfo-canary.yaml file:

apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
 name: podinfo
 namespace: test
spec:
 # deployment reference
 targetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: podinfo
 # the maximum time in seconds for the canary deployment
 # to make progress before it is rollback (default 600s)
 progressDeadlineSeconds: 60
 # HPA reference (optional)
 autoscalerRef:
 apiVersion: autoscaling/v2beta2

Best Pract ices·Use Flagger in ASM Alibaba Cloud Service Mesh

116 > Document Version: 20220712

https://docs.flagger.app/usage/how-it-works?spm=a2c6h.12873639.0.0.167d6a951WIwYX

 apiVersion: autoscaling/v2beta2
 kind: HorizontalPodAutoscaler
 name: podinfo
 service:
 # service port number
 port: 9898
 # container port number or name (optional)
 targetPort: 9898
 # Istio gateways (optional)
 gateways:
 - public-gateway.istio-system.svc.cluster.local
 # Istio virtual service host names (optional)
 hosts:
 - '*'
 # Istio traffic policy (optional)
 trafficPolicy:
 tls:
 # use ISTIO_MUTUAL when mTLS is enabled
 mode: DISABLE
 # Istio retry policy (optional)
 retries:
 attempts: 3
 perTryTimeout: 1s
 retryOn: "gateway-error,connect-failure,refused-stream"
 analysis:
 # schedule interval (default 60s)
 interval: 1m
 # max number of failed metric checks before rollback
 threshold: 5
 # max traffic percentage routed to canary
 # percentage (0-100)
 maxWeight: 50
 # canary increment step
 # percentage (0-100)
 stepWeight: 10
 metrics:
 - name: request-success-rate
 # minimum req success rate (non 5xx responses)
 # percentage (0-100)
 thresholdRange:
 min: 99
 interval: 1m
 - name: request-duration
 # maximum req duration P99
 # milliseconds
 thresholdRange:
 max: 500
 interval: 30s
 # testing (optional)
 webhooks:
 - name: acceptance-test
 type: pre-rollout
 url: http://flagger-loadtester.test/
 timeout: 30s
 metadata:

Alibaba Cloud Service Mesh Best Pract ices·Use Flagger in ASM

> Document Version: 20220712 117

 metadata:
 type: bash
 cmd: "curl -sd 'test' http://podinfo-canary:9898/token | grep token"
 - name: load-test
 url: http://flagger-loadtester.test/
 timeout: 5s
 metadata:
 cmd: "hey -z 1m -q 10 -c 2 http://podinfo-canary.test:9898/"apiVersion: f
lagger.app/v1beta1
kind: Canary
metadata:
 name: podinfo
 namespace: test
spec:
 # deployment reference
 targetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: podinfo
 # the maximum time in seconds for the canary deployment
 # to make progress before it is rollback (default 600s)
 progressDeadlineSeconds: 60
 # HPA reference (optional)
 autoscalerRef:
 apiVersion: autoscaling/v2beta2
 kind: HorizontalPodAutoscaler
 name: podinfo
 service:
 # service port number
 port: 9898
 # container port number or name (optional)
 targetPort: 9898
 # Istio gateways (optional)
 gateways:
 - public-gateway.istio-system.svc.cluster.local
 # Istio virtual service host names (optional)
 hosts:
 - '*'
 # Istio traffic policy (optional)
 trafficPolicy:
 tls:
 # use ISTIO_MUTUAL when mTLS is enabled
 mode: DISABLE
 # Istio retry policy (optional)
 retries:
 attempts: 3
 perTryTimeout: 1s
 retryOn: "gateway-error,connect-failure,refused-stream"
 analysis:
 # schedule interval (default 60s)
 interval: 1m
 # max number of failed metric checks before rollback
 threshold: 5
 # max traffic percentage routed to canary
 # percentage (0-100)

Best Pract ices·Use Flagger in ASM Alibaba Cloud Service Mesh

118 > Document Version: 20220712

 maxWeight: 50
 # canary increment step
 # percentage (0-100)
 stepWeight: 10
 metrics:
 - name: request-success-rate
 # minimum req success rate (non 5xx responses)
 # percentage (0-100)
 thresholdRange:
 min: 99
 interval: 1m
 - name: request-duration
 # maximum req duration P99
 # milliseconds
 thresholdRange:
 max: 500
 interval: 30s
 # testing (optional)
 webhooks:
 - name: acceptance-test
 type: pre-rollout
 url: http://flagger-loadtester.test/
 timeout: 30s
 metadata:
 type: bash
 cmd: "curl -sd 'test' http://podinfo-canary:9898/token | grep token"
 - name: load-test
 url: http://flagger-loadtester.test/
 timeout: 5s
 metadata:
 cmd: "hey -z 1m -q 10 -c 2 http://podinfo-canary.test:9898/"

 stepWeight : the percentage by which the traffic routed to the application is to be
progressively increased. In this example, set the value to 10.

 max : the value of P99 latency that triggers traffic routing.

 interval : the duration of the value of P99 latency that triggers traffic routing.

ii. Run the following command to deploy the canary resource:

kubectl --kubeconfig <Path of the kubeconfig file of the ACK cluster> apply -f reso
urces_canary/podinfo-canary.yaml

8. Run the following command to update the podinfo application from V3.1.0 to V3.1.1:

kubectl --kubeconfig <Path of the kubeconfig file of the ACK cluster> -n test set image
deployment/podinfo podinfod=stefanprodan/podinfo:3.1.1

Verify whether the canary release is implemented as expected
Run the following command to view the process of progressive traffic routing:

while true; do kubectl --kubeconfig <Path of the kubeconfig file of the ACK cluster> -n tes
t describe canary/podinfo; sleep 10s;done

Alibaba Cloud Service Mesh Best Pract ices·Use Flagger in ASM

> Document Version: 20220712 119

Expected output:

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning Synced 39m flagger podinfo-primary.test not ready: waiting for
rollout to finish: observed deployment generation less then desired generation
 Normal Synced 38m (x2 over 39m) flagger all the metrics providers are available!
 Normal Synced 38m flagger Initialization done! podinfo.test
 Normal Synced 37m flagger New revision detected! Scaling up podinfo.te
st
 Normal Synced 36m flagger Starting canary analysis for podinfo.test
 Normal Synced 36m flagger Pre-rollout check acceptance-test passed
 Normal Synced 36m flagger Advance podinfo.test canary weight 10
 Normal Synced 35m flagger Advance podinfo.test canary weight 20
 Normal Synced 34m flagger Advance podinfo.test canary weight 30
 Normal Synced 33m flagger Advance podinfo.test canary weight 40
 Normal Synced 29m (x4 over 32m) flagger (combined from similar events): Promotion co
mpleted! Scaling down podinfo.test

The result indicates that the traffic routed to the podinfo application V3.1.1 is progressively increased
from 10% to 40%.

Best Pract ices·Use Flagger in ASM Alibaba Cloud Service Mesh

120 > Document Version: 20220712

By default , services can access each other across namespaces in a Kubernetes cluster. For example,
services that are deployed to a namespace in a development environment can access services in a
production environment. The zero-trust security system of Alibaba Cloud Service Mesh (ASM) allows you
to dynamically configure authorization policies to prevent all services in one namespace from accessing
services in another namespace. This helps reduce risks. This topic describes how to use an authorization
policy to control service access across namespaces. The demo-frontend and demo-server namespaces
are used in the example.

Prerequisites

Step 1: Enable automatic sidecar injection
You can enable automatic sidecar inject ion for a namespace so that you can authorize and manage
services in the namespace.

1. Create a namespace named demo-frontend and a namespace named demo-server.

i.

ii.

iii.

iv.

v. In the Creat e Namespace panel, enter demo-frontend in the Name field, and then click OK.

vi. Repeat the preceding steps to create a namespace named demo-server.

2. Enable automatic sidecar inject ion for the demo-frontend and demo-server namespaces.

i. On the page, find the demo-frontend namespace and click Enable Aut omat ic Sidecar
Inject ion in the Aut omat ic Sidecar Inject ion column.

ii. In the Submit message, click OK.

iii. Repeat the preceding steps to enable automatic sidecar inject ion for the demo-server
namespace.

Step 2: Create test services
Create a service named sleep in the demo-frontend namespace and a service named httpbin in the
demo-server namespace. The sleep service is used to send requests to access the httpbin service.

1. Connect to a Container Service for Kubernetes (ACK) cluster by using kubectl.

2. Create a service named sleep in the demo-frontend namespace.

6.Authorize and control
services in namespaces
6.1. Use an authorization policy to
control service access across
namespaces

Alibaba Cloud Service Mesh Best Pract ices·Aut horize and cont r
ol services in namespaces

> Document Version: 20220712 121

https://www.alibabacloud.com/help/doc-detail/86494.htm#task-2076136

i. Create a sleep.yaml file that contains the following content:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: sleep

apiVersion: v1
kind: Service
metadata:
 name: sleep
 labels:
 app: sleep
 service: sleep
spec:
 ports:
 - port: 80
 name: http
 selector:
 app: sleep

apiVersion: apps/v1
kind: Deployment
metadata:
 name: sleep
spec:
 replicas: 1
 selector:
 matchLabels:
 app: sleep
 template:
 metadata:
 labels:
 app: sleep
 spec:
 terminationGracePeriodSeconds: 0
 serviceAccountName: sleep
 containers:
 - name: sleep
 image: curlimages/curl
 command: ["/bin/sleep", "3650d"]
 imagePullPolicy: IfNotPresent
 volumeMounts:
 - mountPath: /etc/sleep/tls
 name: secret-volume
 volumes:
 - name: secret-volume
 secret:
 secretName: sleep-secret
 optional: true

Best Pract ices·Aut horize and cont r
ol services in namespaces

Alibaba Cloud Service Mesh

122 > Document Version: 20220712

ii. Run the following command to create the sleep service:

kubectl apply -f sleep.yaml -n demo-frontend

3. Create a service named httpbin in the demo-server namespace.

i. Create an httpbin.yaml file that contains the following content:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: httpbin

apiVersion: v1
kind: Service
metadata:
 name: httpbin
 labels:
 app: httpbin
 service: httpbin
spec:
 ports:
 - name: http
 port: 8000
 targetPort: 80
 selector:
 app: httpbin

apiVersion: apps/v1
kind: Deployment
metadata:
 name: httpbin
spec:
 replicas: 1
 selector:
 matchLabels:
 app: httpbin
 version: v1
 template:
 metadata:
 labels:
 app: httpbin
 version: v1
 spec:
 serviceAccountName: httpbin
 containers:
 - image: docker.io/kennethreitz/httpbin
 imagePullPolicy: IfNotPresent
 name: httpbin
 ports:
 - containerPort: 80

ii. Run the following command to create the httpbin service:

kubectl apply -f httpbin.yaml -n demo-server

Alibaba Cloud Service Mesh Best Pract ices·Aut horize and cont r
ol services in namespaces

> Document Version: 20220712 123

4. Verify that a sidecar proxy is injected into the sleep and httpbin services.

i.

ii.

iii.

iv.

v. On the Pods page, click the pod name of the sleep service.

On the Cont ainer tab, a sidecar proxy named ist io-proxy is displayed. This indicates that a
sidecar proxy is injected into the sleep service.

vi. Repeat the preceding steps to verify that a sidecar proxy is injected into the httpbin service.

Step 3: Create peer authentication policies
You can create a peer authentication policy for a namespace so that you can use an authorization
policy to authorize services in the namespace based on Transport Layer Security (TLS).

1.

2.

3.

4.

5. On the page, click Creat e mT LS Mode .

6. Select demo-frontend from the Namespace drop-down list , enter a name in the Name field,
select STRICT - Strict ly Enforce mTLS from the mT LS Mode (Namespace-wide) drop-down list ,
and then click Creat e .

7. Repeat the preceding steps to create a peer authentication policy for the demo-server namespace
to enable mutual Transport Layer Security (mTLS) authentication.

Step 4: Verify that an authorization policy can be used to control
service access across namespaces
You can create an authorization policy and modify the act ion parameter in the authorization policy to
deny or allow access requests from services in the demo-frontend namespace to services in the demo-
server namespace. This way, you can control service access across namespaces.

1. Create an authorization policy to deny access requests from the demo-frontend namespace to the
demo-server namespace.

i.

ii.

iii.

iv.

Best Pract ices·Aut horize and cont r
ol services in namespaces

Alibaba Cloud Service Mesh

124 > Document Version: 20220712

v. On the Create page, set the parameters that are described in the following table and click
Creat e .

Parameter Description

Namespace
The name of the namespace to which the
authorization policy belongs. In this example,
demo-server is selected.

Name The name of the authorization policy.

Policies The policy. In this example, RULES is selected.

Action
The action on requests that meet specified
requirements. In this example, DENY is
selected.

Request Source

Specifies whether to authenticate the sources
of requests. Turn on Request Source , click
Add Request Source t o List , and then click
Add Request Source . Then, select
namespaces from the Request Source
Domain drop-down list and set the Value
parameter to demo-frontend.

2. Access the httpbin service.

i.

ii.

iii.

iv.

v. On the Pods page, find the pod name of the sleep service and click T erminal in the Act ions
column. Then, click Cont ainer: sleep .

vi. Run the following command on the terminal of the sleep container to access the httpbin
service:

curl -I httpbin.demo-server.svc.cluster.local:8000

Expected output:

HTTP/1.1 403 Foribidden

The preceding output indicates that access requests to the httpbin service fail. Services in the
demo-frontend namespace fail to access services in the demo-server namespace.

3. Change the value of the act ion parameter in the authorization policy to ALLOW to allow access
requests from the demo-frontend namespace to the demo-server namespace.

i.

ii.

iii.

iv.

Alibaba Cloud Service Mesh Best Pract ices·Aut horize and cont r
ol services in namespaces

> Document Version: 20220712 125

v. On the page, find the authorization policy that you want to manage and click YAML in the
Act ions column.

vi. In the Edit panel, change the value of the act ion parameter to ALLOW, and then click OK.

4. Run the following command on the terminal of the sleep container to access the httpbin service:

curl -I httpbin.demo-server.svc.cluster.local:8000

Expected output:

HTTP/1.1 200 OK

The preceding output indicates that access requests to the httpbin service are successful. Services
in the demo-frontend namespace can access services in the demo-server namespace.

To sum up, if you specify the DENY act ion in the authorization policy, services in the demo-frontend
namespace fail to access services in the demo-server namespace. If you specify the ALLOW action in
the authorization policy, services in the demo-frontend namespace can access services in the
demo-server namespace. The test results indicate that an authorization policy can be used to
control service access across namespaces.

To secure a database, you need to restrict the services that are allowed to access the database. For
example, you can specify that only services in specific namespaces in a production environment are
allowed to access databases in the production environment. This way, you can deny access traffic from
services in a development environment to the production environment. The zero-trust security system
of Alibaba Cloud Service Mesh (ASM) allows you to dynamically configure authorization policies to
control access traffic from services in a namespace to an external database. This helps reduce risks. This
topic describes how to use an authorization policy to control access traffic from services in a
namespace to an external ApsaraDB RDS database. The demo-server namespace is used in the example.

Prerequisites

Step 1: Enable automatic sidecar injection
You can enable automatic sidecar inject ion for a namespace so that you can authorize and manage
services in the namespace.

1. Create a namespace named demo-server.

i.

ii.

iii.

iv.

v. In the Creat e Namespace panel, enter demo-server in the Name field, and then click OK.

2. Enable automatic sidecar inject ion for the demo-server namespace.

6.2. Use an authorization policy to
control access traffic from services in
a namespace to an external database

Best Pract ices·Aut horize and cont r
ol services in namespaces

Alibaba Cloud Service Mesh

126 > Document Version: 20220712

i. On the page, find the demo-server namespace and click Enable Aut omat ic Sidecar
Inject ion in the Aut omat ic Sidecar Inject ion column.

ii. In the Submit message, click OK.

Step 2: Create a database client
In the demo-server namespace, create a client that is used to send requests to connect to a specific
external database.

1. Open a CLI on your on-premises PC and run the following command to encode the password that is
used to connect to the external database in Base64:

echo <Database connection password> base64

2. Connect to a Container Service for Kubernetes (ACK) cluster by using kubectl.

3. Create a MySQL client in the demo-server namespace.

i. Create a k8s-mysql.yaml file that contains the following content:

apiVersion: v1
data:
 password: {yourPasswordBase64} # The database connection password that is encode
d in Base64.
kind: Secret
metadata:
 name: mysql-pass
type: Opaque

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 name: lbl-k8s-mysql
 name: k8s-mysql
spec:
 progressDeadlineSeconds: 600
 replicas: 1
 revisionHistoryLimit: 10
 selector:
 matchLabels:
 name: lbl-k8s-mysql
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate
 template:
 metadata:
 labels:
 name: lbl-k8s-mysql
 spec:
 containers:
 - env:
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:

Alibaba Cloud Service Mesh Best Pract ices·Aut horize and cont r
ol services in namespaces

> Document Version: 20220712 127

https://www.alibabacloud.com/help/doc-detail/86494.htm#task-2076136

 secretKeyRef:
 key: password
 name: mysql-pass
 image: 'mysql:latest'
 imagePullPolicy: Always
 name: mysql
 ports:
 - containerPort: 3306
 name: mysql
 protocol: TCP
 resources:
 limits:
 cpu: 500m
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 volumeMounts:
 - mountPath: /var/lib/mysql
 name: k8s-mysql-storage
 dnsPolicy: ClusterFirst
 restartPolicy: Always
 schedulerName: default-scheduler
 securityContext: {}
 terminationGracePeriodSeconds: 30
 volumes:
 - emptyDir: {}
 name: k8s-mysql-storage

ii. Run the following command to create the MySQL client:

kubectl apply -f k8s-mysql.yaml -n demo-server

4. Verify that a sidecar proxy is injected into the MySQL client.

i.

ii.

iii.

iv.

v. On the Pods page, click the pod name of the MySQL client.

On the Cont ainer tab, a sidecar proxy named ist io-proxy is displayed. This indicates that a
sidecar proxy is injected into the MySQL client.

Step 3: Create an egress gateway
You can use an egress gateway to control access traffic from services in an ASM instance to an external
website. After you configure an authorization policy for an egress gateway, you can also specify
condit ions to control whether to allow access to an external database.

1.

2.

3.

4.

5. Enter a name for the egress gateway that you want to create, select a cluster from the Clust er

Best Pract ices·Aut horize and cont r
ol services in namespaces

Alibaba Cloud Service Mesh

128 > Document Version: 20220712

drop-down list , and then select Nort h-Sout h EgressGat eway from the Gat eway t ypes drop-
down list . Click Add Port next to Port Mapping and set the Prot ocol parameter to T CP and the
Service Port parameter to 13306. Then, click Creat e . In this example, the name of the egress
gateway is set to egressgateway.

Step 4: Create a peer authentication policy
You can create a peer authentication policy for a namespace so that you can use an authorization
policy to authorize services in the namespace based on Transport Layer Security (TLS).

1.

2.

3.

4.

5. On the page, click Creat e mT LS Mode .

6. Select demo-server from the Namespace drop-down list , enter a name in the Name field, select
STRICT - Strict ly Enforce mTLS from the mT LS Mode (Namespace-wide) drop-down list , and
then click Creat e .

Step 5: Configure a policy for accessing external services
By default , services in an ASM instance are allowed to access all external services. To control access to
a specific external website, set the External Access Policy parameter to REGIST RY_ONLY for an ASM
instance in the ASM console. In this case, external services that are registered as service entries cannot
be accessed by services in the ASM instance.

1. Configure a policy for accessing external services.

i.

ii.

iii.

iv.

v. On the Global tab, click Ext ernal service access st rat egy , set the External Access Policy
parameter to REGIST EY_ONLY , and then click Updat e Set t ings .

2. Register the external database as a service entry.

i.

Alibaba Cloud Service Mesh Best Pract ices·Aut horize and cont r
ol services in namespaces

> Document Version: 20220712 129

ii. On the Create page, select ist io-syst em from the Namespace drop-down list and copy the
following content to the code editor. Then, click Creat e .

apiVersion: networking.istio.io/v1beta1
kind: ServiceEntry
metadata:
 name: demo-server-rds
 namespace: demo-server
spec:
 endpoints:
 - address: rm-xxxxxxx.mysql.xxxx.rds.aliyuncs.com # The address of the extern
al database.
 ports:
 tcp: 3306
 hosts:
 - rm-xxxxxxx.mysql.xxxx.rds.aliyuncs.com
 location: MESH_EXTERNAL
 ports:
 - name: tcp
 number: 3306 # The port of the external database.
 protocol: TCP # The protocol used by the external database.
 resolution: DNS

Step 6: Create a traffic policy
Create an Ist io gateway, a dest ination rule, and a virtual service to route traffic from the demo-server
namespace to port 13306 of the egress gateway and then to port 3306 of the external database.

1. Create an Ist io gateway.

i.

ii.

iii.

iv.

Best Pract ices·Aut horize and cont r
ol services in namespaces

Alibaba Cloud Service Mesh

130 > Document Version: 20220712

v. On the Create page, select ist io-system from the Namespace drop-down list and copy the
following content to the code editor. Then, click Creat e .

apiVersion: networking.istio.io/v1beta1
kind: Gateway
metadata:
 name: istio-egressgateway
 namespace: istio-system
spec:
 selector:
 istio: egressgateway
 servers:
 - hosts:
 - '*'
 port:
 name: http-0
 number: 13306
 protocol: TLS
 tls:
 mode: ISTIO_MUTUAL

Set the mode parameter to ISTIO_MUTUAL to enable mutual Transport Layer Security (mTLS)
authentication. This means that services in an ASM instance must pass TLS authentication
before they can access external websites.

2. Create a dest ination rule.

i.

ii. On the Create page, select demo-server from the Namespace drop-down list and copy the
following content to the code editor. Then, click Creat e .

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: demo-server-egress-gateway
 namespace: demo-server
spec:
 host: istio-egressgateway.istio-system.svc.cluster.local
 subsets:
 - name: mysql-gateway-mTLS
 trafficPolicy:
 loadBalancer:
 simple: ROUND_ROBIN
 portLevelSettings:
 - port:
 number: 13306 # The port of the egress gateway.
 tls:
 mode: ISTIO_MUTUAL
 sni: rm-xxxxxxx.mysql.xxxx.rds.aliyuncs.com # The host address of th
e external database.

Set the mode parameter to ISTIO_MUTUAL to enable mutual Transport Layer Security (mTLS)
authentication. This means that external websites must pass TLS authentication before they
can access services in an ASM instance.

Alibaba Cloud Service Mesh Best Pract ices·Aut horize and cont r
ol services in namespaces

> Document Version: 20220712 131

3. Create a virtual service.

i.

ii. On the Create page, select demo-server from the Namespace drop-down list and copy the
following content to the code editor. Then, click Creat e .

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
 name: demo-server-through-egress-gateway
 namespace: demo-server
spec:
 exportTo:
 - istio-system
 - demo-server
 gateways:
 - mesh
 - istio-system/istio-egressgateway
 hosts:
 - rm-xxxxxxx.mysql.xxxx.rds.aliyuncs.com
 tcp:
 - match:
 - gateways:
 - mesh
 port: 3306
 route:
 - destination:
 host: istio-egressgateway.istio-system.svc.cluster.local
 port:
 number: 13306
 subset: mysql-gateway-mTLS
 weight: 100
 - match:
 - gateways:
 - istio-system/istio-egressgateway
 port: 13306
 route:
 - destination:
 host: rm-xxxxxxx.mysql.xxxx.rds.aliyuncs.com
 port:
 number: 3306
 weight: 100

In the http sect ion in the preceding code, two matching rules are configured. In the first
matching rule, the gateways parameter is set to mesh. This indicates that the first matching
rule applies to the sidecar proxy injected into the demo-server namespace and is used to route
traffic from the demo-server namespace to port 13306 of the egress gateway. In the second
matching rule, the gateways parameter is set to ist io-system/ist io-egressgateway. This
indicates that the matching rule is used to route traffic from the egress gateway to port 3306
of the registered database.

Best Pract ices·Aut horize and cont r
ol services in namespaces

Alibaba Cloud Service Mesh

132 > Document Version: 20220712

Step 7: Verify that an authorization policy can be used to control
access traffic from services in the demo-server namespace to an
external database
You can create an authorization policy and modify the act ion parameter in the authorization policy to
deny or allow access traffic from services in the demo-server namespace to an external database. This
way, you can control access to the external database.

1. Create an authorization policy to deny access traffic from the demo-server namespace to the
external database.

i.

ii.

iii.

iv.

v. On the Create page, set the parameters that are described in the following table and click
Creat e .

Parameter Description

Namespace
The name of the namespace to which the
authorization policy belongs. In this example,
demo-server is selected.

Name The name of the authorization policy.

Policies The policy. In this example, RULES is selected.

Action
The action on requests that meet specified
requirements. In this example, DENY is
selected.

Workload Label Selection

Specifies whether to enable workload label
selection. Turn on Workload Label Select ion
and click Add Mat ching Label . Then, add a
label by setting the Name parameter to ist io
and the Value parameter to egressgateway.

Request Source

Specifies whether to authenticate the sources
of requests. Turn on Request Source , click
Add Request Source t o List , and then click
Add Request Source . Then, select
namespaces from the Request Source
Domain drop-down list and set the Value
parameter to demo-server.

2. Access the external database.

i.

ii.

iii.

iv.

Alibaba Cloud Service Mesh Best Pract ices·Aut horize and cont r
ol services in namespaces

> Document Version: 20220712 133

v. On the Pods page, find the k8s-mysql container and click T erminal in the Act ions column.
Then, click Cont ainer: mysql .

vi. Run the following command on the terminal of the k8s-mysql container to access the external
database:

mysql --user=root --password=$MYSQL_ROOT_PASSWORD --host rm-xxxxxxx.mysql.xxxx.rds.
aliyuncs.com

The ERROR 2013 error is returned, which indicates that services in the demo-server
namespace fail to access the external database.

3. Change the value of the act ion parameter in the authorization policy to ALLOW to allow access
traffic from the demo-server namespace to the external database.

i.

ii.

iii.

iv.

v. On the page, find the authorization policy that you want to manage and click YAML in the
Act ions column.

vi. In the Edit panel, change the value of the act ion parameter to ALLOW, and then click OK.

4. Run the following command on the terminal of the k8s-mysql container to access the external
database:

mysql --user=root --password=$MYSQL_ROOT_PASSWORD --host rm-xxxxxxx.mysql.xxxx.rds.aliy
uncs.com

The Welcome to the MySQL monitor message is returned, which indicates that services in the
demo-server namespace can access the external database.

The test results indicate that an authorization policy can be used to control access traffic from
services in a namespace to an external database.

Best Pract ices·Aut horize and cont r
ol services in namespaces

Alibaba Cloud Service Mesh

134 > Document Version: 20220712

	1.Workloads
	1.1. Use an ingress gateway to access a gRPC service in an ASM instance over HTTP
	1.2. Implement auto scaling for workloads by using ASM metrics

	2.Traffic Management
	2.1. Use ASM to deploy an application in blue-green release mode and phased release mode
	2.2. Use ASM and Wasm to implement end-to-end A/B testing in a non-intrusive manner
	2.3. Use ASM and KubeVela to implement a canary release
	2.4. Use an ASM instance of a commercial edition to implement an end-to-end canary release

	3.Security
	3.1. Implement CORS in ASM
	3.2. Enable Multi-Buffer for TLS acceleration

	4.Use gRPC in ASM
	4.1. Design principle of the gRPC practice
	4.2. Implement the communication models of gRPC
	4.3. Implement load balancing among gRPC servers
	4.4. Shape traffic to gRPC servers
	4.5. Redirect traffic for gRPC-based applications

	5.Use Flagger in ASM
	5.1. Use Mixerless Telemetry to observe ASM instances
	5.2. Use Mixerless Telemetry to scale the pods of an application
	5.3. Use Mixerless Telemetry to implement a canary release

	6.Authorize and control services in namespaces
	6.1. Use an authorization policy to control service access across namespaces
	6.2. Use an authorization policy to control access traffic from services in a namespace to an external database

