
Alibaba CloudAlibaba Cloud

AnalyticDB for PostgreSQL
Data

Document Version: 20220707

Alibaba CloudAlibaba Cloud

AnalyticDB for PostgreSQL
Data

Document Version: 20220707

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

Analyt icDB for Post greSQL Dat a··Legal disclaimer

> Document Version: 20220707 I

Document conventions
St yleSt yle Descript ionDescript ion ExampleExample

 DangerDanger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:Danger:

Resetting will result in the loss of user
configuration data.

 WarningWarning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not iceNot ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not eNot e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ingsSet t ings > Net workNet work> Set net workSet net work
t ypet ype.

BoldBold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OKOK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

Analyt icDB for Post greSQL Dat a··Document convent ions

> Document Version: 20220707 I

Table of Contents
1.Manage databases

2.Manage schemas

3.Manage tables

4.Define table distribution

5.Define table partitioning

6.Define storage models for tables

7.Manage indexes

8.Manage views

9.Manage materialized views

10.Real-time materialized views

11.Query rewrite for materialized views

12.Transaction management

13.Manage users and permissions

05

06

08

11

16

20

22

25

26

29

32

42

44

Analyt icDB for Post greSQL Dat a··Table of Cont ent s

> Document Version: 20220707 I

A database is a collect ion of tables, indexes, views, stored procedures, and operators. You can create
more than one database in an Analyt icDB for PostgreSQL instance. However, one client program can
only connect to and access one database at a t ime. This means that you cannot query data across
databases.

Create a databaseCreate a database
Execute the CREATE DATABASE statement to create a database. The syntax is as follows:

CREATE DATABASE <dbname> [[WITH] [OWNER [=] <dbowner>]]
 [ENCODING [=] <encoding>]

Paramet er descript ion:Paramet er descript ion:

<dbname>: the name of the database you want to create.

<dbowner>: the username of the account who owns the database. By default , the user who
executes the statement owns the database.

<encoding>: the character set encoding to use in the database. You must specify a string constant
(such as 'SQL_ASCII') and an integer code number (UTF-8 by default).

Example:Example:

CREATE DATABASE mygpdb;

Delete a databaseDelete a database
Execute the DROP DATABASE statement to delete a database. This statement deletes the metadata
of the database along with the directory of the database on the disk and the data contained in the
database. The syntax is as follows:

DROP DATABASE <dbname>

Paramet er descript ion:Paramet er descript ion:

<dbname>: the name of the database you want to delete.

Example:Example:

DROP DATABASE mygpdb;

ReferencesReferences
For more information, visit Pivotal Greenplum documentation.

1.Manage databases1.Manage databases

Analyt icDB for Post greSQL Dat a··Manage dat abases

> Document Version: 20220707 5

http://gpdb.docs.pivotal.io/43330/ref_guide/sql_commands/CREATE_DATABASE.html

A schema is the namespace of a database. It is a set of objects in a database. These objects include
tables, indexes, views, stored procedures, and operators. A schema is unique to each database. Each
database has a default schema named public.

If no schemas are created, objects are created in the public schema. All database roles (users) have
CREATE and USAGE permissions in the public schema.

Create a schemaCreate a schema
Execute the CREATE SCHEMA statement to create a schema. The syntax is as follows:

CREATE SCHEMA <schema_name> [AUTHORIZATION <username>]

Not eNot e

<schema_name>: the name of the schema.

<username>: the name of the role that owns the schema. If this parameter is not specified,
the role that executes the statement owns the schema.

Example:Example:

CREATE SCHEMA myschema;

Set a path to search for schemasSet a path to search for schemas
The search_path parameter specifies the order in which schemas are searched for.

You can use the ALTER DATABASE statement to set a search path. Example:

ALTER DATABASE mydatabase SET search_path TO myschema, public, pg_catalog;

You can also use the ALTER ROLE statement to set a search path for a specific role (user). Example:

ALTER ROLE sally SET search_path TO myschema, public, pg_catalog;

View the current schemaView the current schema
Execute the current_schema() funct ion to view the current schema. Example:

SELECT current_schema();

Execute the SHOW statement to view the current search path. Example:

SHOW search_path;

Delete a schemaDelete a schema

2.Manage schemas2.Manage schemas

Dat a··Manage schemas Analyt icDB for Post greSQL

6 > Document Version: 20220707

Execute the DROP SCHEMA statement to delete a schema. Example:

DROP SCHEMA myschema;

Not e Not e By default , you can only delete a schema if it is empty.

To delete a schema and all objects (such as tables, data, and functions) in it , execute the following
statement:

DROP SCHEMA myschema CASCADE;

ReferencesReferences
For more information, visit CREATE SCHEMA.

Analyt icDB for Post greSQL Dat a··Manage schemas

> Document Version: 20220707 7

https://gpdb.docs.pivotal.io/6-19/ref_guide/sql_commands/CREATE_SCHEMA.html

tables are similar to tables in relat ional databases, except that table rows are distributed across
compute nodes. The distribution of rows in a table is determined by the distribution policy of the table.

Create a standard tableCreate a standard table
The CREATE TABLE statement can be used to create a table. When you create a table, you can define
the following items:

Columns of the table and their Data types

Define constraints

Define table distribution

Storage model of the table

Part it ioning strategy of the table

Execute the CREATE TABLE statement to create a table. The following syntax is used:

CREATE TABLE table_name (
[{ column_name data_type [DEFAULT default_expr] -- Define a column for the table.
 [column_constraint [...] -- Define a constraint for the column.
]
 | table_constraint -- Define a constraint for the table.

])
 [WITH (storage_parameter=value [, ...]) -- Define the storage model for the ta
ble.
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY] -- Define a distribution k
ey for the table.
 [partition clause] -- Define a partitioning strategy for
the table.

Example:Example:

In this example, t rans_idt rans_id is used as the distribution key, and dat edat e-based range part it ioning is specified.

CREATE TABLE sales (
 trans_id int,
 date date,
 amount decimal(9,2),
 region text)
 DISTRIBUTED BY (trans_id)
 PARTITION BY RANGE(date)
 (start (date '2018-01-01') inclusive
 end (date '2019-01-01') exclusive every (interval '1 month'),
 default partition outlying_dates);

Create a temporary tableCreate a temporary table

3.Manage tables3.Manage tables

Dat a··Manage t ables Analyt icDB for Post greSQL

8 > Document Version: 20220707

https://www.alibabacloud.com/help/doc-detail/118165.htm#concept-263344
https://www.alibabacloud.com/help/doc-detail/120143.htm#concept-320755
https://www.alibabacloud.com/help/doc-detail/118168.htm#concept-263361
https://www.alibabacloud.com/help/doc-detail/118173.htm#concept-263404

Temporary tables are used to store temporary and intermediate data. They are automatically deleted
at the end of a session or deleted at the end of the current transaction based on user-defined
configurations. The following statement can be used to create a temporary table:

CREATE TEMPORARY TABLE table_name(...)
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]

Not e Not e You can use the ON COMMIT clause to determine the operation to be performed on a
table at the end of the current transaction.

PRESERVE ROWS: Data is retained at the end of the current transaction. This is the default
operation.

DELETE ROWS: All rows are deleted at the end of the current transaction.

DROP: Temporary tables are deleted at the end of the current transaction.

Example:Example:

Create a temporary table that is to be deleted at the end of the current transaction.

CREATE TEMPORARY TABLE temp_foo (a int, b text) ON COMMIT DROP;

Define constraintsDefine constraints
You can define table or column constraints to restrict data in your tables. When you define constraints,
take note of the following items:

CHECK constraints can reference only columns in the table on which the constraints are defined.

UNIQUE and PRIMARY KEY constraints must contain the distribution key. Such constraints are not
allowed on append-optimized (AO) or column-oriented tables.

FOREIGN KEY constraints are allowed but not enforced.

Constraints that you define on one part it ion of a table are also used for the other part it ions of the
table. Constraint definit ions cannot be limited to individual part it ions.

The following syntax is used:

UNIQUE (column_name [, ...])
 | PRIMARY KEY (column_name [, ...])
 | CHECK (expression)
 | FOREIGN KEY (column_name [, ...])
 REFERENCES table_name [(column_name [, ...])]
 [key_match_type]
 [key_action]
 [key_checking_mode]

CHECK constraintsCHECK constraints
You can use a CHECK constraint to specify a column that sat isfies a Boolean expression. Example:

Analyt icDB for Post greSQL Dat a··Manage t ables

> Document Version: 20220707 9

CREATE TABLE products
 (product_no integer,
 name text,
 price numeric CHECK (price > 0));

NOT NULL constraintsNOT NULL constraints
You can use a NOT NULL constraint to specify a column that does not contain NULL values. Example:

CREATE TABLE products
 (product_no integer NOT NULL,
 name text NOT NULL,
 price numeric);

UNIQUE constraintsUNIQUE constraints
You can use a UNIQUE constraint to ensure that the data contained in a column or a group of columns in
a table is unique among all the rows in the table. The table that contains a UNIQUE constraint must be
hash-distributed, and the constraint columns must contain the distribution key. Example:

CREATE TABLE products
 (product_no integer UNIQUE,
 name text,
 price numeric)
 DISTRIBUTED BY (product_no);

Not e Not e does not support UNIQUE constraints.

PRIMARY KEY constraintsPRIMARY KEY constraints
A PRIMARY KEY constraint consists of a UNIQUE constraint and a NOT NULL constraint. The table that
contains a PRIMARY KEY constraint must be hash-distributed, and the constraint columns must contain
the distribution key. By default , if a table has a primary key, the primary key column or columns are used
as the distribution key of the table. Example:

CREATE TABLE products
 (product_no integer PRIMARY KEY,
 name text,
 price numeric)
 DISTRIBUTED BY (product_no);

Not e Not e does not support primary keys.

ReferencesReferences
For more information, see the Pivotal Greenplum documentation.

Dat a··Manage t ables Analyt icDB for Post greSQL

10 > Document Version: 20220707

https://gpdb.docs.pivotal.io/6-20/ref_guide/sql_commands/CREATE_TABLE.html

Table distribution optionsTable distribution options
Analyt icDB for PostgreSQL provides three options to distribute the data of a table across compute
nodes: hash distribution, random distribution, and replicated distribution.

CREATE TABLE <table_name> (...) [DISTRIBUTED BY (<column> [,..]) | DISTRIBUTED RANDOMLY
| DISTRIBUTED REPLICATED]

Not e Not e Analyt icDB for PostgreSQL V4.3 only supports hash distribution and random
distribution. Replicated distribution is a new feature in Analyt icDB for PostgreSQL V6.0.

The CREATE TABLE statement supports the following clauses that specify table distribution options:

 DISTRIBUTED BY (column, [...]) : specifies hash distribution. The rows of the table are
distributed across compute nodes based on their hash values in the distribution column selected as
the distribution key. Each row is assigned to one compute node. Rows with identical values are
always assigned to the same compute node. You can choose a unique distribution key (for example,
the primary key of the table) to ensure even distribution of data. The default table distribution
option is hash distribution. If you do not specify a DISTRIBUTED clause, the table uses its primary key
or the first identified suitable distribution column as the distribution key. If no suitable distribution
column is identified, the system uses random distribution.

 DISTRIBUTED RANDOMLY : specifies random distribution. The rows of the table are evenly distributed
across all compute nodes by using a round-robin algorithm. Rows with identical values may be
assigned to different compute nodes. We recommend that you only use random distribution when no
suitable distribution column is identified.

 DISTRIBUTED REPLICATED : specifies replicated distribution. All data of the table is stored on all
compute nodes. This means that each compute node stores the same rows. If you want to join large
and small tables, you can specify replicated distribution for small tables to increase join performance.

Examples:Examples:

In the following example, a table that uses hash distribution is created. Each row is assigned to one
compute node based on its hash value.

CREATE TABLE products (name varchar(40),
 prod_id integer,
 supplier_id integer)
 DISTRIBUTED BY (prod_id);

4.Define table distribution4.Define table distribution

Analyt icDB for Post greSQL Dat a··Define t able dist ribut ion

> Document Version: 20220707 11

In the following example, a table that uses random distribution is created. The rows of the table are
distributed across all compute nodes by using a round-robin algorithm. If no suitable distribution
column is identified, we recommend that you use random distribution.

CREATE TABLE random_stuff (things text,
 doodads text,
 etc text)
 DISTRIBUTED RANDOMLY;

In the following example, a table that uses replicated distribution is created. All data of the table is
stored on all compute nodes.

CREATE TABLE replicated_stuff (things text,
 doodads text,
 etc text)
 DISTRIBUTED REPLICATED;

For simple queries that use a distribution key, Analyt icDB for PostgreSQL filters compute nodes based
on the distribution key before sending query requests to them. Such simple queries include those
init iated by UPDATE and DELETE statements. For example, if you query data from the products table
that uses prod_id as the distribution key, your query is only sent to the compute nodes whose values of
prod_id are 101. This increases your query performance.

select * from products where prod_id = 101;

Hash keysHash keys
To increase query performance, we recommend that you choose a distribution column as the
distribution key for a table based on the following rules:

Choose one or more distribution columns with data distributed evenly. If the distribution columns you
choose have unevenly distributed data, they may skew the data in the table. Tables with skewed
data have one or more compute nodes with a disproport ionate number of rows. In this situation,
some compute nodes finish their port ion of a parallel query before the others. However, based on
the Cannikin Law, the query cannot be completed until all compute nodes finish processing. As a
result , the query is only as fast as the slowest compute node. Therefore, we recommend that you do
not choose distribution columns with Boolean or date values.

Choose a distribution column that is frequently used in JOIN clauses. This way, you can join two tables
by using a collocat ed joincollocat ed join, as shown in the following figures. If the join key is the same as the
distribution key, the join can be completed within the associated compute nodes without data
movement. If you do not choose a distribution column that is frequently used in JOIN clauses, you
must redistribute (redist ribut e mot ionredist ribut e mot ion) the larger one of the two tables you want to join and then
perform a redist ribut ed joinredist ribut ed join. You also have the option to broadcast (broadcast mot ionbroadcast mot ion) the
smaller one of the two tables and then perform a broadcast joinbroadcast join. Bot h t he redist ribut e andBot h t he redist ribut e and
broadcast mot ions increase net work overheads.broadcast mot ions increase net work overheads.

Choose a frequently used query criterion as the distribution key. This enables Analyt icDB for
PostgreSQL to filter compute nodes based on the distribution key before it sends query requests to
them.

If you do not specify a distribution key, the primary key of the table is used as the distribution key. In
addit ion, if the table does not have a primary key, the first column is used as the distribution key.

Dat a··Define t able dist ribut ion Analyt icDB for Post greSQL

12 > Document Version: 20220707

The distribution key can be defined from one or more columns. Example:

create table t1(c1 int, c2 int) distributed by (c1,c2);

Exercise caution when you choose random distribution because it does not support collocated joins
or compute node filtering.

Collocated Join

Redistributed Join

Broadcast Join

Analyt icDB for Post greSQL Dat a··Define t able dist ribut ion

> Document Version: 20220707 13

Limits on distribution keysLimits on distribution keys
A column defined as the distribution key of a table cannot be updated.

The distribution key of a table must be either the primary key or a unique key. Example:

create table t1(c1 int, c2 int, primary key (c1)) distributed by (c2);

Not e Not e In this example, the primary key c1 differs from the distribution key c2. As a result , the
execution of the statement fails and the system reports the following error:

ERROR: PRIMARY KEY and DISTRIBUTED BY definitions incompatible

A column with Geometry values or any other custom data type cannot be used as the distribution key
of a table.

Troubleshooting for data skewTroubleshooting for data skew
If the query performance of a table is poor, check whether an inappropriate distribution key is specified.
Example:

create table t1(c1 int, c2 int) distributed by (c1);

For this example, execute the following statement to check for data skew in the table:

select gp_segment_id,count(1) from t1 group by 1 order by 2 desc;
 gp_segment_id | count
---------------+--------
 2 | 131191
 0 | 72
 1 | 68
(3 rows)

Dat a··Define t able dist ribut ion Analyt icDB for Post greSQL

14 > Document Version: 20220707

If you find that some compute nodes store more rows than the others, data skew occurs. We
recommend that you define a column with evenly distributed data as the distribution column. For the
following example, execute the ALTER TABLE statement to specify the c2 column as the distribution
column:

alter table t1 set distributed by (c2);

The distribution key of the t1 table is changed to the c2 column. After the t1 table is redistributed
based on the c2 column, its data is no longer skewed.

Analyt icDB for Post greSQL Dat a··Define t able dist ribut ion

> Document Version: 20220707 15

allows you to divide a large table into part it ions. When you use condit ions to query data, the system
scans only the part it ions that meet the specified condit ions. This prevents full table scans and improves
query performance.

Supported partit ioning typesSupported partit ioning types
Range part it ioningRange part it ioning: Data is divided based on a numeric range, such as date.

List part it ioningList part it ioning: Data is divided based on a list of values, such as city attributes.

Mult i-level part it ioningMult i-level part it ioning: Data is divided based on a numeric range and a list of values.

Create a range partit ioned tableCreate a range partit ioned table
You can have Analyt icDB for PostgreSQL automatically generate part it ions by specifying a START value,
an END value, and an EVERY clause that defines the interval within the range. By default , the START
value is inclusive and the END value is exclusive.

Create a table that is range-part it ioned by date. Sample statement:

CREATE TABLE sales (id int, date date, amt decimal(10,2))
DISTRIBUTED BY (id)
PARTITION BY RANGE (date)
(START (date '2016-01-01') INCLUSIVE
 END (date '2017-01-01') EXCLUSIVE
 EVERY (INTERVAL '1 day'));

Create a table that is range-part it ioned by number. For example, a column of the INT data type can be
used as the part it ion key. Sample statement:

CREATE TABLE rank (id int, rank int, year int, gender char(1), count int)
DISTRIBUTED BY (id)
PARTITION BY RANGE (year)
(START (2006) END (2016) EVERY (1),
 DEFAULT PARTITION extra);

Create a list partit ioned tableCreate a list partit ioned table
When you create a list part it ioned table, you can set the part it ion key to any column whose data type
allows value comparison, and you must declare a descript ion for each specified value of the part it ion
key.

Create a list part it ioned table. Sample statement:

CREATE TABLE rank (id int, rank int, year int, gender
char(1), count int)
DISTRIBUTED BY (id)
PARTITION BY LIST (gender)
(PARTITION girls VALUES ('F'),
 PARTITION boys VALUES ('M'),
 DEFAULT PARTITION other);

5.Define table partitioning5.Define table partitioning

Dat a··Define t able part it ioning Analyt icDB for Post greSQL

16 > Document Version: 20220707

Create a multi-level partit ioned tableCreate a multi-level partit ioned table
allows you to create a table that has mult i-level part it ions. The following example demonstrates how
to create a three-level part it ioned table. Data in level-1 part it ions is range-part it ioned by year, data in
level-2 part it ions is range-part it ioned by month, and data in level-3 part it ions is list-part it ioned by
region. The level-2 and level-3 part it ions are called subpart it ions.

CREATE TABLE sales (id int, year int, month int, day int,
region text)
DISTRIBUTED BY (id)
PARTITION BY RANGE (year)
 SUBPARTITION BY RANGE (month)
 SUBPARTITION TEMPLATE (
 START (1) END (13) EVERY (1),
 DEFAULT SUBPARTITION other_months)
 SUBPARTITION BY LIST (region)
 SUBPARTITION TEMPLATE (
 SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION europe VALUES ('europe'),
 SUBPARTITION asia VALUES ('asia'),
 DEFAULT SUBPARTITION other_regions)
(START (2002) END (2012) EVERY (1),
 DEFAULT PARTITION outlying_years);

Add a partit ionAdd a partit ion
You can execute an ALTER TABLE statement to add a part it ion to a part it ioned table. If a subpart it ion
template is used when the part it ioned table is created, the added part it ion is also subpart it ioned
accordingly. The following example demonstrates how to add a part it ion:

ALTER TABLE sales ADD PARTITION
 START (date '2017-02-01') INCLUSIVE
 END (date '2017-03-01') EXCLUSIVE;

If no subpart it ion template is used when the part it ioned table is created, you can define subpart it ions
when you add a part it ion. The following example demonstrates how to add a part it ion and define its
subpart it ions:

ALTER TABLE sales ADD PARTITION
 START (date '2017-02-01') INCLUSIVE
 END (date '2017-03-01') EXCLUSIVE
 (SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION asia VALUES ('asia'),
 SUBPARTITION europe VALUES ('europe'));

You can also use an ALTER TABLE statement to subpart it ion an exist ing part it ion. Sample statement:

ALTER TABLE sales ALTER PARTITION FOR (RANK(12))
 ADD PARTITION africa VALUES ('africa');

Analyt icDB for Post greSQL Dat a··Define t able part it ioning

> Document Version: 20220707 17

Not ice Not ice Part it ions cannot be added to a part it ioned table that has a default part it ion. To
add part it ions to such a part it ioned table, you can split the default part it ion. For more information,
see the "Split a part it ion" sect ion of this topic.

Split a partit ionSplit a partit ion
You can execute an ALTER TABLE statement to split a part it ion into two part it ions. Part it ion split t ing is
subject to the following limits:

If subpart it ions exist , only the lowest level of subpart it ions can be split .

The split value specified in the AT clause of the part it ion split t ing statement is assigned to the
second part it ion.

For example, assume that a part it ion that contains the data of January 2017 is split into two part it ions.
The first part it ion contains the data of January 1 to January 15 and the second part it ion contains the
data of January 16 to January 31. Sample statement:

ALTER TABLE sales SPLIT PARTITION FOR ('2017-01-01')
AT ('2017-01-16')
INTO (PARTITION jan171to15, PARTITION jan1716to31);

If your part it ioned table has a default part it ion, you can add a part it ion by split t ing the default
part it ion. In the INTO clause, you must specify the default part it ion as the second part it ion. Sample
statement:

ALTER TABLE sales SPLIT DEFAULT PARTITION
START ('2017-01-01') INCLUSIVE
END ('2017-02-01') EXCLUSIVE
INTO (PARTITION jan17, default partition);

Determine the partit ion granularityDetermine the partit ion granularity
When you use part it ioned tables, you need to determine the part it ion granularity. For example, to
part it ion a table by t ime, you may choose a granularity of day, week, or month. A finer granularity
results in less data in each part it ion but a larger number of part it ions. The number of part it ions is not
measured by an absolute standard. We recommend that you assign no more than 200 part it ions in each
table. A large number of part it ions may reduce database performance. For example, the query
optimizer takes a long t ime to generate execution plans or the VACUUM operation takes a long t ime to
complete.

Optimize partit ioned table queriesOptimize partit ioned table queries
supports part it ion pruning for part it ioned tables to improve query performance. When part it ion pruning
is enabled, the system scans only the required part it ions based on query condit ions, instead of scanning
the entire table. Example:

EXPLAIN
 SELECT * FROM sales
 WHERE year = 2008
 AND month = 1
 AND day = 3
 AND region = 'usa';

Dat a··Define t able part it ioning Analyt icDB for Post greSQL

18 > Document Version: 20220707

In the preceding example, the query condit ions fall on the level-3 part it ion usa in the level-2 part it ion 1
in the level-1 part it ion 2008. Therefore, only the data in the level-3 part it ion usa is scanned during the
query. The following execution plan shows that only one of the 468 level-3 part it ions needs to be
scanned.

Gather Motion 4:1 (slice1; segments: 4) (cost=0.00..431.00 rows=1 width=24)
 -> Sequence (cost=0.00..431.00 rows=1 width=24)
 -> Partition Selector for sales (dynamic scan id: 1) (cost=10.00..100.00 rows=25
width=4)
 Filter: year = 2008 AND month = 1 AND region = 'usa'::text
 Partitions selected: 1 (out of 468)
 -> Dynamic Table Scan on sales (dynamic scan id: 1) (cost=0.00..431.00 rows=1 wid
th=24)
 Filter: year = 2008 AND month = 1 AND day = 3 AND region = 'usa'::text

Query partit ion definit ionsQuery partit ion definit ions
You can execute the following SQL statement to query the definit ions of all part it ions in a table:

SELECT
 partitionboundary,
 partitiontablename,
 partitionname,
 partitionlevel,
 partitionrank
FROM pg_partitions
WHERE tablename='sales';

Maintain partit ioned tablesMaintain partit ioned tables
You can manage part it ions in part it ioned tables. For example, you can add, remove, rename, truncate,
exchange, and split part it ions. For more information, see Part it ioning Large Tables.

Analyt icDB for Post greSQL Dat a··Define t able part it ioning

> Document Version: 20220707 19

https://greenplum.docs.pivotal.io/6-20/admin_guide/ddl/ddl-partition.html

Analyt icDB for PostgreSQL supports two storage models for tables: row-oriented storage and column-
oriented storage.

Row-oriented tableRow-oriented table
By default , Analyt icDB for PostgreSQL uses the heap storage model in PostgreSQL to create row-
oriented heap tables. Row-oriented tables are used for data that needs to be updated at a high
frequency or writ ten in real t ime by using the INSERT statement. A row-oriented table with a B-tree
index provides high data retrieval performance when you query a small amount of data at a t ime.

Example:Example:

The following statement creates a row-oriented heap table:

CREATE TABLE foo (a int, b text) DISTRIBUTED BY (a);

Not e Not e When you use Data Transmission Service (DTS) to write data into your Analyt icDB for
PostgreSQL instance, the dest ination tables must be row-oriented tables. DTS allows data
synchronization in near real t ime. In addit ion to data inserted using the INSERT statement, DTS can
synchronize data updated using SQL statements such as UPDATE and DELETE.

Column-oriented tableColumn-oriented table
Data within a column-oriented table is stored by column. When you access data, only relevant columns
are read. Column-oriented tables are used in data warehousing scenarios such as data queries and
aggregations of a small number of columns. In these scenarios, column-oriented tables provide
efficient I/O. However, column-oriented tables are less efficient in scenarios that require frequent
update operations or a large number of INSERT operations. We recommend that you use a batch
loading method such as COPY to insert data into column-oriented tables. Column-oriented tables
provide a data compression rat io three to five t imes higher than that provided by row-oriented tables.

Example:Example:

Column-oriented tables must be append-optimized tables. This means that you must set the
appendonly parameter to true for the column-oriented table you want to create.

CREATE TABLE bar (a int, b text)
 WITH (appendonly=true, orientation=column)
 DISTRIBUTED BY (a);

Data compressionData compression
Data compression is used for column-oriented tables or for append-optimized row-oriented tables
whose appendonly parameter is set to true. There are two compression types:

Table-level compression.

Column-level compression. You can use a unique compression algorithm for each column.

6.Define storage models for6.Define storage models for
tablestables

Dat a··Define st orage models for t ab
les

Analyt icDB for Post greSQL

20 > Document Version: 20220707

Analyt icDB for PostgreSQL only supports the following compression algorithms:

Analyt icDB for PostgreSQL V4.3 supports zlib and RLE_TYPE.

Analyt icDB for PostgreSQL V6.0 supports Zstandard (zstd), zlib, RLE_TYPE, and lz4.

Not e Not e If you specify the QuickLZ compression algorithm, zlib is used instead. RLE_TYPE is only
used for column-oriented tables.

Examples:Examples:

Create a column-oriented table that uses the zlib compression algorithm with a compression level of 5.

CREATE TABLE foo (a int, b text)
 WITH (appendonly=true, orientation=column, compresstype=zlib, compresslevel=5);

Create a column-oriented table that uses the zstd compression algorithm with a compression level of 9.

CREATE TABLE foo (a int, b text)
 WITH (appendonly=true, orientation=column, compresstype=zstd, compresslevel=9);

Analyt icDB for Post greSQL Dat a··Define st orage models for t ab
les

> Document Version: 20220707 21

This topic describes the index types of and their related operations.

Not e Not e does not support indexes.

Index typesIndex types
supports the following index types:

B-tree index (default index type)

Bitmap index

Not eNot e

Bitmap indexes enable Analyt icDB for PostgreSQL to store bitmaps that each contain the values
of a key. Bitmap indexes serve the same purpose as a conventional index but occupy less storage
space. In scenarios where indexed columns consist of 100 to 100,000 dist inct values and are
frequently queried in conjunction with other indexed columns, bitmap indexes perform better
than other index types.

BRIN index (available only for of minor version 20210324 or later)

GIN index (available only for)

GiST index(available only for)

Not e Not e does not support hash indexes.

Principles for indexingPrinciples for indexing
Scenarios in which to create indexes:

Small datasets are returned from a query.

Indexes help increase the performance of queries on single data records or small datasets. Such
queries include online transaction processing (OLTP) queries.

Compressed tables are used.

On a compressed append-optimized (AO) table, indexes help increase the performance of queries
because only the involved rows are decompressed.

Methods to select index types:

Create a B-tree index on a column that has a high select ivity.

For example, in a table that has 1,000 rows, if you create an index on a column that has 800 dist inct
values, the select ivity of the index is 0.8. The select ivity of an index created on a column that has the
same value in all rows is always 1.0.

Create a bitmap index on a column that has a low select ivity.

In scenarios where indexed columns consist of 100 to 100,000 dist inct values, bitmap indexes perform
better than other index types.

Create a BRIN index if a large amount of data is sequentially distributed and if f ilter condit ions such

7.Manage indexes7.Manage indexes

Dat a··Manage indexes Analyt icDB for Post greSQL

22 > Document Version: 20220707

as < , <= , = , >= , and > are used to filter data.

When large datasets are involved, BRIN indexes can provide similar performance as B-tree indexes but
occupy less space.

Methods to select appropriate columns to create indexes:

Create an index on a column that is frequently used for joins with other tables.

For example, create an index on a column used as the foreign key. This enables the query optimizer
to use more join methods and therefore increases join performance.

Create an index on a column that is frequently referenced in predicates.

The most suitable column is the one that is frequently referenced in WHERE clauses.

Do not create an index on a frequently updated column.

If you create an index on a column that is updated frequently, the amount of data that needs to be
read and written for column updates increases.

Best pract ices for using indexes:

Do not create redundant indexes.

If an index is created on more than one column, indexes that have the same leading column are
redundant.

Delete indexes before you batch load data.

If you want to load a large amount of data to a table, we recommend that you delete all exist ing
indexes on the data, load the data, and then recreate indexes on the table. This is faster than
updating the indexes.

Test and compare the performance of queries that use and do not use indexes.

Create indexes only when the performance of queries on the indexed columns improves.

Execute the ANALYZE statement on a table after you create an index.

Create an indexCreate an index
You can execute the CREATE INDEX statement to create an index on a table. Examples:

B-tree index

Create a B-tree index on the gender column of the employee table.

CREATE INDEX gender_idx ON employee (gender);

Bitmap index

Create a bitmap index on the t it le column of the films table.

CREATE INDEX title_bmp_idx ON films USING bitmap (title);

BRIN index

Create a BRIN index on the c_custkey column of the customer table.

CREATE INDEX c_custkey_brin_idx ON customer USING brin(c_custkey) with(pages_per_range=2)
;

GIN index

Analyt icDB for Post greSQL Dat a··Manage indexes

> Document Version: 20220707 23

Create a GIN index on the l_comment column of the lineitem table. Only supports GIN indexes.

CREATE INDEX lineitem_idx ON lineitem USING gin(to_tsvector('english', l_comment));

GIN index

Create a GIN index on the intarray column of the arrayt table. Only supports GIN indexes.

CREATE INDEX arrayt_idx ON arrayt USING gin(intarray);

GiST index

Create a GiST index on the c_comment column of the customer table. Only supports GiST indexes.

CREATE INDEX customer_idx ON customer USING gist(to_tsvector('english', c_comment));

Recreate an indexRecreate an index
You can execute the REINDEX INDEX statement to recreate an index on a table. Examples:

Recreate the my_index index.

REINDEX INDEX my_index;

Recreate all indexes on the my_table table.

REINDEX TABLE my_table;

Delete an indexDelete an index
You can execute the DROP INDEX statement to delete an index from a table. For example, execute
the following statement to delete the t it le_idx index:

DROP INDEX title_idx;

Not e Not e If you want to load a large amount of data to a table, we recommend that you delete
all exist ing indexes on the data, load the data, and then recreate indexes on the table. This is
faster than updating the indexes.

Collect indexed dataCollect indexed data
You can execute the VACUUM statement to collect indexed data. For example, execute the following
statement to collect indexed data from the customer table:

VACUUM customer;

Not e Not e Indexed data collect ion is available only for BRIN indexes.

ReferencesReferences
For more information about indexes, see the Pivotal Greenplum documentation.

Dat a··Manage indexes Analyt icDB for Post greSQL

24 > Document Version: 20220707

https://gpdb.docs.pivotal.io/6-1/ref_guide/sql_commands/CREATE_INDEX.html

This topic describes how to manage views for both simple and complex queries in Analyt icDB for
PostgreSQL. Views are not stored on physical devices. Each view you access runs as a subquery.

Create a viewCreate a view
Execute a CREATE VIEW statement to create a view.

Example:Example:

CREATE VIEW myview AS SELECT * FROM products WHERE kind = 'food';

Not e Not e Operations specified by ORDER BY and SORT clauses in a view are ignored.

Delete a viewDelete a view
Execute a DROP VIEW statement to delete a view.

Example:Example:

DROP VIEW myview;

ReferencesReferences
For more information, visit Pivotal Greenplum documentation.

8.Manage views8.Manage views

Analyt icDB for Post greSQL Dat a··Manage views

> Document Version: 20220707 25

http://gpdb.docs.pivotal.io/43330/ref_guide/sql_commands/CREATE_VIEW.html

Materialized views are similar to views and allow you to save frequently used or complex queries.
Materialized views are different from views in that materialized views are based on physical storage.
You cannot write data to materialized views. When a query accesses a materialized view, the system
returns the data that is stored in the materialized view. Data in materialized views is not automatically
updated and may become obsolete. However, you can retrieve data stored in materialized views faster
than retrieving the same data by using base tables or views of the base tables. Therefore, materialized
views have significant performance advantages if you accept periodic data updates.

Create a materialized viewCreate a materialized view

Execute the CREATE MATERIALIZED VIEW statement to create a materialized view.

 CREATE MATERIALIZED VIEW my_materialized_view as
 SELECT * FROM people WHERE age > 40
 DISTRIBUTED BY (id);

SELECT * from my_materialized_view ORDER BY age;

The following result is returned:

 id | name | city | age
------------+------------+------------+-----
 004 | zhaoyi | zhenzhou | 44
 005 | xuliui | jiaxing | 54
 006 | maodi | shanghai | 55
(3 rows)

The query defined in a materialized view is used only to populate the materialized view. The only
difference between a materialized view and a table is that object identifiers (OIDs) are not
automatically generated in a materialized view. The DISTRIBUTED BY clause is optional when you create
a materialized view. If the DISTRIBUTED BY clause is not specified, the first column of the table is used as
the distribution key.

Not eNot e

If a materialized view query contains an ORDER BYORDER BY or SORTSORT clause, the data may not be ordered or
sorted.

Refresh or disable a materialized viewRefresh or disable a materialized view

Execute the REFRESH MATERIALIZED VIEW statement to update data in a materialized view.

INSERT INTO people VALUES('007','sunshen','shenzhen',60);

SELECT * from my_materialized_view ORDER BY age;

9.Manage materialized views9.Manage materialized views

Dat a··Manage mat erialized views Analyt icDB for Post greSQL

26 > Document Version: 20220707

The following result is returned:

 id | name | city | age
------------+------------+------------+-----
 004 | zhaoyi | zhenzhou | 44
 005 | xuliui | jiaxing | 54
 006 | maodi | shanghai | 55
(3 rows)

REFRESH MATERIALIZED VIEW my_materialized_view;

SELECT * from my_materialized_view ORDER BY age;

The following result is returned:

 id | name | city | age
------------+------------+------------+-----
 004 | zhaoyi | zhenzhou | 44
 005 | xuliui | jiaxing | 54
 006 | maodi | shanghai | 55
 007 | sunshen | shenzhen | 60
(4 rows)

If you include the WITH NO DATA clause in the REFRESH MATERIALIZED VIEW statement, the

materialized view is not populated with data and cannot be scanned after the statement is executed.
If a query attempts to access a materialized view that cannot be scanned, an error is returned.

REFRESH MATERIALIZED VIEW my_materialized_view With NO DATA;

SELECT * from my_materialized_view ORDER BY age;
ERROR: materialized view "my_materialized_view" has not been populated
HINT: Use the REFRESH MATERIALIZED VIEW command.

REFRESH MATERIALIZED VIEW my_materialized_view;

SELECT * from my_materialized_view ORDER BY age;

The following result is returned:

 id | name | city | age
------------+------------+------------+-----
 004 | zhaoyi | zhenzhou | 44
 005 | xuliui | jiaxing | 54
 006 | maodi | shanghai | 55
 007 | sunshen | shenzhen | 60
(4 rows)

Delete a materialized viewDelete a materialized view

Analyt icDB for Post greSQL Dat a··Manage mat erialized views

> Document Version: 20220707 27

Execute the DROP MATERIALIZED VIEW statement to delete a materialized view.

CREATE MATERIALIZED VIEW depend_materialized_view as
 SELECT * FROM my_materialized_view WHERE age > 50
 DISTRIBUTED BY (id);

DROP MATERIALIZED VIEW depend_materialized_view;

 DROP MATERIALIZED VIEW ... CASCADE allows you to delete all objects that depend on the

materialized view. If the materialized view that you want to delete has dependent views, the
materialized views are also deleted.

Not iceNot ice

You must specify the CASCADECASCADE option in the DROP MATERIALIZED VIEW statement when you delete
a materialized view that has dependent views. Otherwise, an error is returned.

CREATE MATERIALIZED VIEW depend_materialized_view as
 SELECT * FROM my_materialized_view WHERE age > 50
 DISTRIBUTED BY (id);

DROP MATERIALIZED VIEW my_materialized_view;
ERROR: cannot drop materialized view my_materialized_view because other objects depend on
it
DETAIL: materialized view depend_materialized_view depends on materialized view my_materia
lized_view
HINT: Use DROP ... CASCADE to drop the dependent objects too.

DROP MATERIALIZED VIEW my_materialized_view CASCADE;

ScenariosScenarios

Materialized views can be used for queries that are not t ime-sensit ive.

Materialized views can be used for frequently used or complex queries.

To implement fast queries and analysis, you can create materialized views based on external data
sources, such as the external tables of Object Storage Service (OSS) or MaxCompute. You can use the
materialized views to store external data to on-premises storage. You can also create indexes for the
materialized views.

ReferencesReferences

For more information, see the Pivotal Greenplum documentation.

Dat a··Manage mat erialized views Analyt icDB for Post greSQL

28 > Document Version: 20220707

https://gpdb.docs.pivotal.io/6-3/ref_guide/sql_commands/CREATE_MATERIALIZED_VIEW.html

provides real-t ime materialized views. Compared with non-real-t ime materialized views, real-t ime
materialized views can implement automatic refresh in response to data changes without the need to
execute REFRESH statements.

A real-t ime materialized view can be automatically updated with changes made to its base tables.
Real-t ime materialized views of support only statement-level automatic refresh. When an INSERT, COPY,
UPDATE, or DELETE statement is executed on a base table, real-t ime materialized views created on this
base table are updated in real t ime to ensure strong data consistency.

Not e Not e In this mode, the write performance of base tables may be reduced. We recommend
that you do not create more than five real-t ime materialized views on the same base table.

For more information about non-real-t ime materialized views, see Manage materialized views.

Statement-level refreshStatement-level refresh
When a statement is executed on a base table, real-t ime materialized views created on this base table
are updated in real t ime to ensure data consistency. Such statements include INSERT, COPY, UPDATE,
and DELETE. Real-t ime materialized views are updated based on the following logic:

The database engine first updates base tables, and then updates their materialized views. If base
tables fail to be updated, no data changes are made to their materialized views.

If materialized views fail to be updated, no data changes are made to their base tables, and an error
is returned for the executed statement.

For an explicit transaction that starts with the BEGIN TRANSACTION statement and ends with the
COMMIT statement, after base tables are updated, data changes are also made to their materialized
views in this transaction.

If uses the default READ COMMITTED isolat ion level, before this transaction is committed, updates of
materialized views are invisible to other transactions.

If this transaction is rolled back, base tables and their materialized views are also rolled back.

LimitsLimits
imposes the following limits on the query statements that are used to create real-t ime materialized
views:

If a query statement contains JOIN operations, only INNER JOIN can be used to join tables. OUTER JOIN
or SELF JOIN is not supported.

Query statements can contain most filtering and project ion operations.

Only the following aggregate operations are supported in a query statement: COUNT, SUM, AVG,
MAX, and MIN. The HAVING clause is not supported.

Complex statements such as those that contain subqueries and common table expressions (CTEs) are
not supported.

After you create a real-t ime materialized view on a base table, DDL statements that you execute on
the base table are subject to the following limits:

When you execute the TRUNCATE statement on the base table, the real-t ime materialized view is not
synchronously updated. You must manually refresh the real-t ime materialized view or create another
materialized view.

10.Real-time materialized views10.Real-time materialized views

Analyt icDB for Post greSQL Dat a··Real-t ime mat erialized views

> Document Version: 20220707 29

https://www.alibabacloud.com/help/doc-detail/172998.htm#topic-1913070

You must specify the CASCADE option to execute the DROP TABLE statement on the base table.

ALTER TABLE statements on the base table cannot be used to delete or modify fields referenced by
the materialized view.

The real-t ime materialized view feature has the following limits:

Real-t ime materialized views support only standard and part it ioned heap tables. Append-optimized
(AO) tables are not supported.

ScenariosScenarios
We recommend that you use real-t ime materialized views in the following scenarios:

The number of rows or columns in the query results is much smaller than that of the base tables. For
example, the query statement may contain a WHERE clause that effect ively narrows down the results
or may contain an aggregate function that consolidates mult iple values into a single value.

Large amounts of computations are required to obtain the query results of the following operations:

Semi-structured data analysis

Aggregate operations that take a long t ime to complete

Base tables are not frequently changed.

Real-t ime materialized views can be used in all scenarios where materialized views are suitable.
Compared with non-real-t ime materialized views, real-t ime materialized views are highly consistent with
their base tables. When a base table changes, its real-t ime materialized views synchronously change
with minimal performance cost. However, when you use non-real-t ime materialized views, you must
manually update them each t ime their base tables change. Therefore, when large amounts of data are
changed on a base table or a streaming update is performed, real-t ime materialized views have great
advantages over non-real-t ime materialized views.

Disadvantages of real-time materialized viewsDisadvantages of real-time materialized views
Real-t ime materialized views are similar to indexes maintained in real t ime. They can significantly
optimize query performance but also reduce write performance.

When you create a real-t ime materialized view that contains only a single table, the write performance
of the related database is reduced because the data in the materialized view must be synchronously
updated. The write latency can be up to three t imes longer compared with writ ing data to the base
table but not updating the materialized view. We recommend that you do not create more than five
real-t ime materialized views on the same base table.

Batch data writes help reduce the maintenance overhead of real-t ime materialized views. When you
execute COPY or INSERT statements, we recommend that you increase the number of batch processed
rows within a single statement. This significantly reduces the maintenance overhead of real-t ime
materialized views.

When the query statement used to create a real-t ime materialized view contains a JOIN clause to join
two tables, you must optimize the write performance of the real-t ime materialized view. If you do not
have relevant experience or encounter low performance when you test the execution, we recommend
that you use a real-t ime materialized view that contains only a single table. The following suggestions
are available in scenarios where two tables are joined:

Use the join key of each base table as their respective distribution keys.

Create an index for the join key of each base table.

Create or delete a real-time materialized viewCreate or delete a real-time materialized view

Dat a··Real-t ime mat erialized views Analyt icDB for Post greSQL

30 > Document Version: 20220707

Execute the following CREATE INCREMENTAL MATERIALIZED VIEW statement to create a real-t ime
materialized view named mv :

CREATE INCREMENTAL MATERIALIZED VIEW mv AS SELECT * FROM base WHERE id > 40;

Execute the following DROP MATERIALIZED VIEW statement to delete the mv materialized view:

DROP MATERIALIZED VIEW mv;

ExamplesExamples
1. Execute the following statement to create a base table:

CREATE TABLE test (a int, b int) DISTRIBUTED BY (a);

2. Execute the following statement to create a real-t ime materialized view:

CREATE INCREMENTAL MATERIALIZED VIEW mv AS SELECT * FROM TEST WHERE b > 40 DISTRIBUTED
BY (a);

3. Execute the following statement to insert data to the base table:

INSERT INTO test VALUES (1, 30), (2, 40), (3, 50), (4, 60);

4. Execute the following statement to view data in the base table:

SELECT * FROM test;

The following result is returned:

 a | b
---+----
 1 | 30
 2 | 40
 3 | 50
 4 | 60
(4 rows)

5. Execute the following statement to view data in the materialized view:

SELECT * FROM mv;

The following result is returned, which indicates that the materialized view is updated:

 a | b
---+----
 3 | 50
 4 | 60
(2 rows)

Analyt icDB for Post greSQL Dat a··Real-t ime mat erialized views

> Document Version: 20220707 31

provides the query rewrite feature for standard and real-t ime materialized views. This feature can
significantly improve performance for JOIN operations, aggregate functions, subqueries, common table
expressions (CTEs), and high-concurrency SQL statements.

Best pract ices: Use real-time materialized views to accelerate queries that contain variable parameters

FeaturesFeatures
Before query rewrite is supported, SELECT query statements must be manually modified to specify the
use of materialized views. After query rewrite is supported, SELECT query statements can be
automatically rewritten to use materialized views, even if the SELECT query statements reference base
tables but not materialized views. This accelerates the execution of SELECT query statements.

If a SELECT query statement is completely identical to the SELECT statement in a CREATE
MATERIALIZED VIEW statement, triggers query rewrite to accelerate the query by using data in the
materialized view. For more information, see the "Complete match" sect ion of this topic.

If a SELECT query statement is part ially identical to the SELECT statement in a CREATE MATERIALIZED
VIEW statement, query rewrite supplements the SELECT statement in the CREATE MATERIALIZED VIEW
statement. For more information, see the Query supplement" sect ion of this topic.

LimitsLimits
Query rewrite is not supported for the SELECT FOR UPDATE statement.

Query rewrite is not supported for statements that contain recursive CTEs.

Query rewrite is not supported for queries that contain random functions such as RANDOM() and N
OW() .

If a SELECT query statement is part ially identical to the SELECT statement in a CREATE MATERIALIZED
VIEW statement but the requirements for query supplement are not met, query rewrite is not
supported. For more information about query supplement, see the "Query supplement" sect ion of
this topic.

Query rewrite is supported only when the minor version of Analyt icDB for PostgreSQL is V6.3.6.0 or
later.

Not eNot e

For more information about how to view the minor version of an instance, see View the
minor engine version.

For more information about how to update the minor version of an instance, see Update
the minor engine version.

Enable or disable query rewriteEnable or disable query rewrite
Real-t ime materialized views

By default , query rewrite is enabled for real-t ime materialized views. You can execute the following
statement to disable the feature:

11.Query rewrite for11.Query rewrite for
materialized viewsmaterialized views

Dat a··Query rewrit e for mat erialized
views

Analyt icDB for Post greSQL

32 > Document Version: 20220707

https://www.alibabacloud.com/help/doc-detail/368343.htm#task-2143998
https://www.alibabacloud.com/help/doc-detail/277424.htm#concept-2096703
https://www.alibabacloud.com/help/doc-detail/139271.htm#task-2245828

SET enable_incremental_matview_query_rewrite TO off;

Standard materialized views

By default , query rewrite is disabled for standard materialized views. You can execute the following
statement to enable the feature:

SET enable_matview_query_rewrite TO on;

Not e Not e You cannot enable or disable this feature for specific instances. To enable or disable
query rewrite for a specific instance, .

Complete matchComplete match
In , query rewrite checks whether the syntax tree is a complete match between a SELECT query
statement and the SELECT statement in a CREATE MATERIALIZED VIEW statement regardless of spaces,
line breaks, comments, or aliases. If a SELECT query statement is completely identical to the SELECT
statement in a CREATE MATERIALIZED VIEW statement, the materialized view is preferentially used to
accelerate queries.

Query supplementQuery supplement
In , query rewrite can be used if a SELECT query statement is part ially identical to the SELECT statement
in a CREATE MATERIALIZED VIEW statement. In this scenario, query rewrite supplements the SELECT
statement in the CREATE MATERIALIZED VIEW statement and returns query results based on the
materialized view.

Query supplement is supported only for the following parts in a SELECT query statement: SELECT
columns, JOIN tables, GROUP BY columns, WHERE clause, HAVING clause, ORDER BY columns, and LIMIT
clause. To meet the requirements for query rewrite, make sure that other parts in a SELECT query
statement are completely identical to those in the SELECT statement of a CREATE MATERIALIZED VIEW
statement.

SELECT columnsSELECT columns

When the SELECT columns in a SELECT query statement are part ially identical to those in the SELECT
statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query rewrite:

Query rewrite is supported if the order of SELECT columns in a SELECT query statement is different
from that in the SELECT statement of a CREATE MATERIALIZED VIEW statement.

Query rewrite is supported if the SELECT columns in the SELECT statement of a CREATE
MATERIALIZED VIEW statement are not included in a SELECT query statement.

Query rewrite is supported if the SELECT columns in a SELECT query statement are not included in
the SELECT statement of a CREATE MATERIALIZED VIEW statement but can be calculated from
those in the SELECT statement of the CREATE MATERIALIZED VIEW statement.

Query rewrite is not supported if the SELECT columns in a SELECT query statement are not included
in the SELECT statement of a CREATE MATERIALIZED VIEW statement and cannot be calculated
from those in the SELECT statement of the CREATE MATERIALIZED VIEW statement.

GROUP BY columnsGROUP BY columns

When the GROUP BY columns in a SELECT query statement are part ially identical to those in the
SELECT statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query
rewrite:

Analyt icDB for Post greSQL Dat a··Query rewrit e for mat erialized
views

> Document Version: 20220707 33

The SELECT statement in a CREATE MATERIALIZED VIEW statement does not include GROUP BY
columns or aggregate functions:

Query rewrite is supported if a SELECT query statement includes aggregate functions.

Query rewrite is supported if a SELECT query statement includes GROUP BY columns.

Query rewrite is supported if a SELECT query statement includes GROUP BY columns and
aggregate functions.

The SELECT statement in a CREATE MATERIALIZED VIEW statement includes GROUP BY columns but
not aggregate functions:

Query rewrite is supported if the GROUP BY columns in the SELECT statement of a CREATE
MATERIALIZED VIEW statement are not included in a SELECT query statement.

Query rewrite is not supported if the GROUP BY columns in a SELECT query statement are not
included in the SELECT statement of a CREATE MATERIALIZED VIEW statement.

Query rewrite is supported if the aggregate function in a SELECT query statement is count(dist
inct) .

The SELECT statement in a CREATE MATERIALIZED VIEW statement does not include GROUP BY
columns but includes aggregate functions:

Query rewrite is not supported if a SELECT query statement includes GROUP BY columns.

The SELECT statement in a CREATE MATERIALIZED VIEW statement includes GROUP BY columns and
aggregate functions:

Query rewrite is supported if the GROUP BY columns in the SELECT statement of a CREATE
MATERIALIZED VIEW statement are not included in a SELECT query statement.

Query rewrite is not supported if the GROUP BY columns in a SELECT query statement are not
included in the SELECT statement of a CREATE MATERIALIZED VIEW statement.

Not eNot e

If a SELECT query statement includes fewer GROUP BY columns than the SELECT statement
in a CREATE MATERIALIZED VIEW statement, query rewrite supplements the SELECT
statement in the CREATE MATERIALIZED VIEW statement by performing re-aggregation on
aggregate functions. The following aggregate functions are supported for re-
aggregation: COUNT , SUM , MAX , MIN , and AVG . Query rewrite is not
supported if a SELECT query statement includes other aggregate functions.

If a SELECT query statement includes a HAVING clause, GROUP BY columns cannot be used
for supplement.

JOIN t ablesJOIN t ables

When the JOIN tables or condit ions in a SELECT query statement are part ially identical to those in the
SELECT statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query
rewrite:

INNER JOIN tables can be interchanged, and addit ional JOIN tables or condit ions can be used to
supplement the SELECT statement in a CREATE MATERIALIZED VIEW statement.

LEFT OUTER JOIN and RIGHT OUTER JOIN can be converted to each other, and the left and right
tables of FULL OUTER JOIN can be interchanged. Addit ional JOIN tables or condit ions cannot be
used to supplement the SELECT statement in a CREATE MATERIALIZED VIEW statement.

Dat a··Query rewrit e for mat erialized
views

Analyt icDB for Post greSQL

34 > Document Version: 20220707

When the JOIN tables in a SELECT query statement are completely identical to those in the SELECT
statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query rewrite:

INNER JOIN tables can be interchanged. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM a, b WHERE a.i = b.i;

SELECT query statements that support query rewrite:

SELECT * FROM b, a WHERE a.i = b.i;
SELECT * FROM a INNER JOIN b ON a.i = b.i;

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM a INNER JOIN b ON a.i = b.i;

SELECT query statement that supports query rewrite:

SELECT * FROM b INNER JOIN a ON a.i = b.i;

LEFT OUTER JOIN and RIGHT OUTER JOIN can be converted to each other. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM a LEFT JOIN b ON a.i = b.i;

SELECT query statement that supports query rewrite:

SELECT * FROM b RIGHT JOIN a ON b.i = a.i;

The left and right tables of FULL OUTER JOIN can be interchanged. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM a FULL OUTER JOIN b ON a.i = b.i;

SELECT query statement that supports query rewrite:

SELECT * FROM b FULL OUTER JOIN a ON b.i = a.i;

When the JOIN tables in a SELECT query statement are part ially identical to those in the SELECT
statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query rewrite:

Addit ional INNER JOIN tables can be supplemented. In this scenario, INNER JOIN or COMMON JOIN tables
can be interchanged, and INNER JOIN and COMMON JOIN can be converted to each other. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM a, b;

SELECT query statement that supports query rewrite:

SELECT * FROM a, b, c;

Analyt icDB for Post greSQL Dat a··Query rewrit e for mat erialized
views

> Document Version: 20220707 35

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM a INNER JOIN b ON a.i = b.i;

SELECT query statement that supports query rewrite:

SELECT * FROM a INNER JOIN b ON a.i = b.i INNER JOIN c ON a.i = c.i;

WHERE clauseWHERE clause

When the WHERE clause in a SELECT query statement is part ially identical to that in the SELECT
statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query rewrite:

Both a SELECT query statement and the SELECT statement in a CREATE MATERIALIZED VIEW
statement use AND to join mult iple WHERE condit ions:

Query rewrite is supported if the order of WHERE condit ions in a SELECT query statement is
different from that in the SELECT statement of a CREATE MATERIALIZED VIEW statement.
Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM t WHERE a > 100 AND a < 200;

SELECT query statement that supports query rewrite:

SELECT * FROM t WHERE a < 200 AND a > 100;

Query rewrite is supported if a WHERE clause in a SELECT query statement is not included in the
SELECT statement of a CREATE MATERIALIZED VIEW statement. In this scenario, query rewrite
supplements the missing WHERE clause. The columns referenced in the WHERE clause to be
supplemented must exist in the materialized view. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM t WHERE a > 100;

SELECT query statement that supports query rewrite:

SELECT * FROM t WHERE b > 200 AND a > 100;

Dat a··Query rewrit e for mat erialized
views

Analyt icDB for Post greSQL

36 > Document Version: 20220707

Both a SELECT query statement and the SELECT statement in a CREATE MATERIALIZED VIEW
statement use OR to join mult iple WHERE condit ions:

Query rewrite is supported if the order of WHERE condit ions in a SELECT query statement is
different from that in the SELECT statement of a CREATE MATERIALIZED VIEW statement. The
columns referenced in all WHERE clauses must exist in the materialized view. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM t WHERE a > 100 OR a < 200;

SELECT query statement that supports query rewrite:

SELECT * FROM t WHERE a < 200 OR a > 100;

Query rewrite is supported if a WHERE clause in a SELECT query statement is not included in the
SELECT statement of a CREATE MATERIALIZED VIEW statement. The columns referenced in all
WHERE clauses must exist in the materialized view. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM t WHERE a > 100 OR a < 200;

SELECT query statement that supports query rewrite:

SELECT * FROM t WHERE a < 200;

The WHERE clause in the SELECT statement of a CREATE MATERIALIZED VIEW statement includes
that in a SELECT query statement:

Query rewrite is supported if the WHERE clause in a SELECT query statement consists of an
equality condit ion but a range is specified in the WHERE clause in the SELECT statement of a
CREATE MATERIALIZED VIEW statement. The columns referenced in all WHERE clauses must exist in
the materialized view. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM t WHERE a < 200 AND a >= 100;

SELECT query statement that supports query rewrite:

SELECT * FROM t WHERE a = 102;

Query rewrite is supported if a range is specified in the WHERE clauses of both a SELECT query
statement and the SELECT statement in a CREATE MATERIALIZED VIEW statement. The columns
referenced in all WHERE clauses must exist in the materialized view. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM t WHERE a < 200 AND a >= 0;

SELECT query statement that supports query rewrite:

SELECT * FROM t WHERE a <= 100 AND a > 50;

HAVING clauseHAVING clause

Analyt icDB for Post greSQL Dat a··Query rewrit e for mat erialized
views

> Document Version: 20220707 37

When the HAVING clause in a SELECT query statement is part ially identical to that in the SELECT
statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query rewrite:

If GROUP BY columns do not need to be supplemented, query rewrite supplements the HAVING
clause in a manner similar to when it supplements the WHERE clause. In the SELECT statement of a
CREATE MATERIALIZED VIEW statement, missing AND condit ions can be supplemented, addit ional
OR condit ions can be removed, and the range can be narrowed down.

If GROUP BY columns need to be supplemented, query rewrite is supported in the scenario where a
SELECT query statement includes a HAVING clause but the SELECT statement in a CREATE
MATERIALIZED VIEW statement does not.

ORDER BY columnsORDER BY columns

Regardless of whether the SELECT statement in a CREATE MATERIALIZED VIEW statement includes
ORDER BY columns, query rewrite attempts to supplement ORDER BY columns. To meet the
requirements for query rewrite, make sure that ORDER BY columns of a SELECT query statement are
included in those of the SELECT statement in a CREATE MATERIALIZED VIEW statement.

LIMIT clauseLIMIT clause

If the SELECT statement in a CREATE MATERIALIZED VIEW statement does not include a LIMIT clause,
query rewrite supplements the LIMIT clause. If the SELECT statement in a CREATE MATERIALIZED VIEW
statement includes a LIMIT clause, the SELECT query statement must be completely identical to the
SELECT statement in the CREATE MATERIALIZED VIEW statement.

Expression supplementExpression supplement

If the ordinary expression or aggregate function expression in a SELECT query statement does not
match the expression in the SELECT statement of a CREATE MATERIALIZED VIEW statement, sub-
expressions in the SELECT query statement are used from the top down to find the closest match.
Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT a+b, c FROM t;

SELECT query statements that support query rewrite:

SELECT a+b, (a+b)+c, mod(a+b, c) FROM t;
SELECT sum((a+b)*c) FROM t;

If aggregate function expressions are included, the following rules apply to query rewrite:

Aggregate functions SUM() and COUNT() in the SELECT statement of a CREATE MATERIALIZED
VIEW statement can be calculated into an AVG() aggregate function.

Aggregate functions COUNT(*) and COUNT(1) can be interchanged between a SELECT query
statement and the SELECT statement in a CREATE MATERIALIZED VIEW statement.

Aggregate function expression examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT sum(a), count(a), count(*) FROM t;

SELECT query statement that supports query rewrite:

SELECT avg(a), count(1) FROM;

Dat a··Query rewrit e for mat erialized
views

Analyt icDB for Post greSQL

38 > Document Version: 20220707

CTEs and subqueriesCTEs and subqueries
If CTEs and subqueries are included, the following rules apply to query rewrite based on primary queries
and subqueries. A CTE in a WITH clause is equivalent to a subquery.

A SELECT query statement includes only a single subquery:

If the primary query and subquery in a SELECT query statement are completely identical to those in
the SELECT statement of a CREATE MATERIALIZED VIEW statement, query rewrite replaces the
SELECT statement of the CREATE MATERIALIZED VIEW statement by using the complete match
method.

If the subquery in a SELECT query statement is completely identical to that in the SELECT
statement of a CREATE MATERIALIZED VIEW statement but the primary query is different, query
rewrite supplements the SELECT statement of the CREATE MATERIALIZED VIEW statement. For more
information about query supplement, see the "Query supplement" sect ion of this topic.

A SELECT query statement includes a subquery but the SELECT statement in a CREATE
MATERIALIZED VIEW statement does not:

If the SELECT statement in a CREATE MATERIALIZED VIEW statement is identical to the primary
query in a SELECT query statement or can be supplemented, query rewrite supplements a
subquery to the SELECT statement of the CREATE MATERIALIZED VIEW statement. Associated
subqueries cannot be supplemented.

If the SELECT statement of a CREATE MATERIALIZED VIEW statement is identical to the subquery
in a SELECT query statement or can be supplemented, query rewrite replaces the subquery in the
SELECT query statement.

If the primary query or subquery in a SELECT query statement is replaced with a materialized
view, query rewrite continues to replace other parts of the SELECT query statement.

Query rewrite does not support replacement for recursive CTEs.

A SELECT query statement includes mult iple subqueries:

If the primary query or a subquery in a SELECT query statement is rewritten, query rewrite continues to
rewrite other parts of the SELECT query statement based on the preceding rules.

UNION, EXCEPT, and INTERSECTUNION, EXCEPT, and INTERSECT
If both a SELECT query statement and the SELECT statement in a CREATE MATERIALIZED VIEW
statement include UNION, EXCEPT, or INTERSECT, two queries before and after UNION or INTERSECT
can be interchanged, and the UNION or INTERSECT clause can be supplemented. The EXCEPT clause
can be supplemented, but two queries before and after EXCEPT cannot be interchanged.

If a SELECT query statement includes UNION, EXCEPT, or INTERSECT but the SELECT statement in a
CREATE MATERIALIZED VIEW statement does not, a UNION, EXCEPT, or INTERSECT clause can be
supplemented to join mult iple materialized views.

Match multiple materialized viewsMatch multiple materialized views
If a SELECT query statement matches mult iple materialized views, query rewrite selects materialized
views based on the following rules:

The materialized view that completely matches the SELECT query statement is preferentially
selected. If this materialized view does not exist , a materialized view that can be supplemented is
selected.

If mult iple materialized views that can be supplemented exist , the materialized view that matches
the most tables with those of the SELECT query statement is preferentially selected.

Analyt icDB for Post greSQL Dat a··Query rewrit e for mat erialized
views

> Document Version: 20220707 39

If mult iple materialized views that can be supplemented reference the same number of tables as the
SELECT query statement, the materialized view that references the least data is preferentially
selected.

ExamplesExamples
Example 1:

i. Execute the following statement to create a base table:

CREATE TABLE t1 (a int, b int) DISTRIBUTED BY (a);

ii. Execute the following statement to insert data to the base table:

INSERT INTO t1 VALUES (generate_series(1, 10), generate_series(1, 2));

iii. Execute the following statement to create a materialized view:

CREATE INCREMENTAL MATERIALIZED VIEW mv AS SELECT count(a), b FROM t1 GROUP BY b DIST
RIBUTED BY (b);

iv. Execute the following statement to run a query plan:

EXPLAIN SELECT count(a), b FROM t1 GROUP BY b;

The following result is returned. Query rewrite uses the complete match method to replace the
SELECT statement in the CREATE MATERIALIZED VIEW statement and returns the data of the
materialized view mv.

 QUERY PLAN

 Gather Motion 3:1 (slice1; segments: 3) (cost=0.00..2.02 rows=2 width=12)
 -> Seq Scan on mv (cost=0.00..2.02 rows=1 width=12)
 Optimizer: Postgres query optimizer
(3 rows)

Example 2:

i. Execute the following statements to create two base tables:

CREATE TABLE t1 (a int, b int) DISTRIBUTED BY (a);
CREATE TABLE t2 (i int, j int) DISTRIBUTED BY (i);

ii. Execute the following statements to insert data to the base tables:

INSERT INTO t1 VALUES (generate_series(1, 10), generate_series(1, 2));
INSERT INTO t2 VALUES (generate_series(1, 10), generate_series(1, 2));

iii. Execute the following statement to create a materialized view:

CREATE INCREMENTAL MATERIALIZED VIEW mv AS SELECT count(a), a, b FROM t1 GROUP BY a,
b DISTRIBUTED BY (a);

iv. Execute the following statement to run a query plan:

EXPLAIN SELECT count(a) FROM t1 JOIN t2 ON t1.a = t2.i WHERE b > 3 GROUP BY a;

The following result is returned. Query rewrite returns the data of the materialized view mv after
supplementing the JOIN and WHERE clauses and removing the GROUP BY clause.

Dat a··Query rewrit e for mat erialized
views

Analyt icDB for Post greSQL

40 > Document Version: 20220707

 QUERY PLAN
--

 Gather Motion 3:1 (slice1; segments: 3) (cost=0.00..437.00 rows=1 width=8)
 -> Result (cost=0.00..437.00 rows=1 width=8)
 -> GroupAggregate (cost=0.00..437.00 rows=1 width=8)
 Group Key: mv.a
 -> Sort (cost=0.00..437.00 rows=1 width=12)
 Sort Key: mv.a
 -> Hash Join (cost=0.00..437.00 rows=1 width=12)
 Hash Cond: (mv.a = t2.i)
 -> Index Scan using mv_index on mv (cost=0.00..6.00 r
ows=1 width=12)
 Index Cond: (b > 3)
 -> Hash (cost=431.00..431.00 rows=4 width=4)
 -> Seq Scan on t2 (cost=0.00..431.00 rows=4 wid
th=4)
 Optimizer: Pivotal Optimizer (GPORCA) version 3.86.0
(13 rows)

Analyt icDB for Post greSQL Dat a··Query rewrit e for mat erialized
views

> Document Version: 20220707 41

Analyt icDB for PostgreSQL supports standard attributes of database transactions and three isolat ion
levels. These attributes include atomicity, consistency, isolat ion, and durability, which are collect ively
referred to as ACID. Analyt icDB for PostgreSQL uses a distributed massively parallel processing (MPP)
architecture to horizontally scale nodes and ensure transaction consistency between nodes. This topic
describes the transaction isolat ion levels and transaction-related operations supported by Analyt icDB
for PostgreSQL.

Isolation levelsIsolation levels
Analyt icDB for PostgreSQL provides the following three transaction isolat ion levels:

READ UNCOMMITTED: follows standard SQL syntax. However, this isolat ion level is implemented the
same as the READ COMMITED isolat ion level in Analyt icDB for PostgreSQL.

READ COMMITTED: follows standard SQL syntax and is implemented the same as the READ
COMMITED isolat ion level in Analyt icDB for PostgreSQL.

SERIALIZABLE: follows standard SQL syntax. However, this isolat ion level is implemented the same
as the REPEATABLE READ isolat ion level in Analyt icDB for PostgreSQL.

Example:Example:

Execute the following statements to start a transaction block with the SERIALIZABLE isolat ion level:

BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SQL statements supportedSQL statements supported
Analyt icDB for PostgreSQL provides the following SQL statements for you to manage transactions:

BEGIN and START: each start a transaction block.

END and COMMIT: each commit a transaction.

ROLLBACK: rolls back a transaction with no changes retained.

SAVEPOINT: creates a savepoint within a transaction. You can revoke the SQL statements executed
after the savepoint was created.

ROLLBACK TO SAVEPOINT: rolls back a transaction to a savepoint.

RELEASE SAVEPOINT: releases a savepoint from a transaction.

Examples:Examples:

Execute the following statements to create a savepoint in a transaction and revoke the SQL
statements executed after the savepoint is created:

12.Transaction management12.Transaction management

Dat a··Transact ion management Analyt icDB for Post greSQL

42 > Document Version: 20220707

BEGIN;
 INSERT INTO table1 VALUES (1);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (2);
 ROLLBACK TO SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (3);
COMMIT;

In this example, the values 1 and 3 are inserted, but the value 2 is not.

Execute the following statements to create a savepoint in a transaction and then release the
savepoint:

BEGIN;
 INSERT INTO table1 VALUES (3);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (4);
 RELEASE SAVEPOINT my_savepoint;
COMMIT;

In this example, the values 3 and 4 are inserted.

Analyt icDB for Post greSQL Dat a··Transact ion management

> Document Version: 20220707 43

Manage usersManage users
When you create an instance, the system prompts you to specify an init ial username and password. This
init ial user is the root user. After the instance is created, you can use the credentials of the root user to
connect to a database on that instance. After you use the psql CLI client of PostgreSQL or Greenplum
to connect to a database on your instance, you can run the \du+ command to view the information
of all the users. Example:

Not ice Not ice In addit ion to the root user, other users are also created to manage databases.

postgres=> \du+
 List of roles
 Role name | Attributes | Member of | Description
--------------+-----------------------------------+-----------+---------------
 root_user | | | rds_superuser
 ...

Analyt icDB for PostgreSQL does not provide a superuser, which is equivalent to the RDS_SUPERUSER
role. This is the same in ApsaraDB RDS for PostgreSQL. However, you can grant the RDS_SUPERUSER role
to the root user, for example, the root_user created in the preceding example. You can only check
whether the root user has this role based on the user descript ion. The root user has the following
permissions:

Creates databases and accounts and logs on to databases, but does not have the credentials of a
superuser.

Views and modifies the tables created by users other than a superuser, changes the owners of
tables, and performs operations such as SELECT, UPDATE, and DELETE.

Views connections to users other than a superuser, cancels their SQL statements, and terminates their
connections.

Executes CREATE EXTENSION and DROP EXTENSION statements to create and delete extensions.

Creates users who have the RDS_SUPERUSER role. Example:

CRATE ROLE root_user2 RDS_SUPERUSER LOGIN PASSWORD 'xyz';

Manage permissionsManage permissions
You can manage permissions at the database, schema, and table levels. For example, if you want to
grant read permissions on a table to a user and revoke write permissions, execute the following
statements:

GRANT SELECT ON TABLE t1 TO normal_user1;
REVOKE UPDATE ON TABLE t1 FROM normal_user1;
REVOKE DELETE ON TABLE t1 FROM normal_user1;

13.Manage users and13.Manage users and
permissionspermissions

Dat a··Manage users and permissions Analyt icDB for Post greSQL

44 > Document Version: 20220707

ReferencesReferences
For more information, visit Managing Roles and Privileges.

Analyt icDB for Post greSQL Dat a··Manage users and permissions

> Document Version: 20220707 45

https://gpdb.docs.pivotal.io/6-19/admin_guide/roles_privs.html

	1.Manage databases
	2.Manage schemas
	3.Manage tables
	4.Define table distribution
	5.Define table partitioning
	6.Define storage models for tables
	7.Manage indexes
	8.Manage views
	9.Manage materialized views
	10.Real-time materialized views
	11.Query rewrite for materialized views
	12.Transaction management
	13.Manage users and permissions

