Alibaba Cloud

AnalyticDB for PostgreSQL
Data

Document Version: 20220707

(-] Alibaba Cloud

AnalyticDB for PostgreSQL Data-Legal disclaimer

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be deemed
as your total acceptance of this legal disclaimer.

1.

You shall download and obt ain this document from the Alibaba Cloud website or other Alibaba Cloud-
aut horized channels, and use this document for your own legal business activities only. The content of
this document is considered confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided to any third party for
use wit hout the prior written consent of Alibaba Cloud.

. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminated by

any organization, company or individual in any form or by any means without the prior written consent of
Alibaba Cloud.

. The content of this document may be changed because of product version upgrade, adjustment, or

other reasons. Alibaba Cloud reserves the right to modify the content of this document without notice
and an updated version of this document will be released through Alibaba Cloud-aut horized channels
from time to time. You should pay attention to the version changes of this document as they occur and
download and obt ain the most up-to-date version of this document from Alibaba Cloud-aut horized
channels.

. This document serves only as a reference guide for your use of Alibaba Cloud products and services.

Alibaba Cloud provides this document based onthe "status quo", "being defective", and "existing
functions" of its products and services. Alibaba Cloud makes every effort to provide relevant operational
guidance based on existing technologies. However, Alibaba Cloud hereby makes a clear statement that
it in no way guarantees the accuracy, integrity, applicability, and reliability of the content of this
document, either explicitly or implicitly. Alibaba Cloud shall not take legal responsibility for any errors or
lost profits incurred by any organization, company, or individual arising from download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, take responsibility for any indirect,
consequential, punitive, contingent, special, or punitive damages, including lost profits arising from t he
use or trust inthis document (evenif Alibaba Cloud has been notified of the possibility of such a loss).

. By law, allthe contents in Alibaba Cloud documents, including but not limited to pictures, architecture

design, page layout, and text description, are intellectual property of Alibaba Cloud and/or its
affiliates. This intellect ual property includes, but is not limited to, trademark rights, patent rights,
copyrights, and trade secrets. No part of this document shall be used, modified, reproduced, publicly
transmitted, changed, disseminated, distributed, or published wit hout the prior written consent of
Alibaba Cloud and/or its affiliates. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for marketing, advertising, promotion, or ot her purposes wit hout the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited to, "Alibaba Cloud",
"Aliyun", "HiChina", and other brands of Alibaba Cloud and/or its affiliates, which appear separately or in
combination, as well as the auxiliary signs and patterns of the preceding brands, or anyt hing similar to
the company names, trade names, trademarks, product or service names, domain names, patterns,
logos, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates.

. Please directly contact Alibaba Cloud for any errors of this document.

> Document Version: 20220707

AnalyticDB for PostgreSQL

Data-Document conventions

Document conventions

Style

/\ Danger

warning

) Notice

@ Note

Bold

Courier font

Italic

(1 or [alb]

{} or {a|b}

Description

A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

A note indicates supplemental
instructions, best practices, tips, and
other content.

Closing angle brackets are used to
indicate a multi-level menu cascade.

Bold formatting is used for buttons ,
menus, page names, and other Ul
elements.

Courier font is used for commands

ltalic formatting is used for parameters
and variables.

This format is used for an optional value,
where only one item can be selected.

This format is used for a required value,
where only one item can be selected.

Example

& Danger:

Resetting will result in the loss of user
configuration data.

warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

p Notice:

If the weight is set to 0, the server no
longer receives new requests.

@ Note:

You can use Ctrl + A to select all files.

Click Settings> Network> Set network
type.

Click OK.

Runthe cd /d C:/window command to
enter the Windows system folder.

bae log list --instanceid

Instance_ID

ipconfig [-all|-t]

switch {active|stand}

> Document Version: 20220707

AnalyticDB for PostgreSQL Data-Table of Contents

Table of Contents

1.Manage databases st e s e 05
2.Manage schemas st e e e e e s 06
3.Manage tables = s s e e e e e e 08
4.Define table distribution s——remrr—rree—————— 0 11
5.Define table partitioning s—=sme—rr - —ao o 16
6.Define storage models for tables = i e . it e - 20
7.Manage indexes St e e e s L 22
8.Manage views Bt e 25
9.Manage materialized views Fst st s o sl 26
10.Real-time materialized views se=sstm st aninae 29
11.Query rewrite for materialized views -—------—-—m 32
12.Transaction management =—==eem o 42
13.Manage users and permissions === 44

> Document Version: 20220707

AnalyticDB for PostgreSQL Data-Manage databases

1.Manage databases

A database is a collection of tables, indexes, views, stored procedures, and operators. You can create
more than one database in an AnalyticDB for PostgreSQL instance. However, one client program can
only connect to and access one database at a time. This means that you cannot query data across
databases.

Create a database

Executethe CcrEATE DATABASE Statement to create a database. The syntax is as follows:

CREATE DATABASE <dbname> [[WITH] [OWNER [=] <dbowner>]]
[ENCODING [=] <encoding>]

Parameter description:

o <dbname>: the name of the database you want to create.

o <dbowner>: the username of the account who owns the database. By default, the user who
executes the statement owns the database.

e <encoding>: the character set encoding to use in the database. You must specify a string constant
(such as 'SQL_ASCII') and an integer code number (UTF-8 by default).

Example:

CREATE DATABASE mygpdb;

Delete a database

Executethe bprop DATABASE statement to delete a database. This statement deletes the metadata

of the database along with the directory of the database on the disk and the data contained inthe
database. The syntax is as follows:

DROP DATABASE <dbname>

Parameter description:
<dbname>: the name of the database you want to delete.

Example:

DROP DATABASE mygpdb;

References

For more information, visit Pivotal Greenplum documentation.

> Document Version: 20220707 5

http://gpdb.docs.pivotal.io/43330/ref_guide/sql_commands/CREATE_DATABASE.html

Data-Manage schemas AnalyticDB for PostgreSQL

2.Manage schemas

A schema is the namespace of a database. It is a set of objects in a database. These objects include
tables, indexes, views, stored procedures, and operators. A schema is unique to each database. Each
database has a default schema named public.

If no schemas are created, objects are created in the public schema. All database roles (users) have
CREATE and USAGE permissions in the public schema.

Create a schema

Executethe creaTE scHeEMA Statement to create a schema. The syntax is as follows:

CREATE SCHEMA <schema name> [AUTHORIZATION <username>]

@ Note
e <schema_name>: the name of the schema.

e <username>: the name of the role that owns the schema. If this parameter is not specified,
the role that executes the statement owns the schema.

Example:

CREATE SCHEMA myschema;

Set a path to search for schemas

The search_path parameter specifies the order in which schemas are searched for.

You canusethe ALTER DATABASE Statement to set a search path. Example:

ALTER DATABASE mydatabase SET search path TO myschema, public, pg catalog;

You can also use the ALTER ROLE statement to set a search path for a specific role (user). Example:

ALTER ROLE sally SET search path TO myschema, public, pg catalog;

View the current schema

Executethe current schema() functionto view the current schema. Example:

SELECT current schema () ;

Executethe sHow statement to view the current search path. Example:

SHOW search path;

Delete a schema

6 > Document Version: 20220707

AnalyticDB for PostgreSQL Data-Manage schemas

Execute the prop scHEMA statement to delete a schema. Example:

DROP SCHEMA myschema;

@ Note By default, you can only delete a schema if it is empty.

To delete a schema and all objects (such as tables, data, and functions) in it, execute the following
statement:

DROP SCHEMA myschema CASCADE;

References

For more information, visit CREATE SCHEMA.

> Document Version: 20220707 7

https://gpdb.docs.pivotal.io/6-19/ref_guide/sql_commands/CREATE_SCHEMA.html

Data-Manage tables AnalyticDB for PostgreSQL

3.Manage tables

tables are similar to tables in relational databases, except that table rows are distributed across
compute nodes. The distribution of rows in a table is determined by the distribution policy of the table.

Create a standard table

The CREATE TABLE statement can be used to create a table. When you create a table, you can define
the following items:

e Columns of the table and their Data types
e Define constraints

e Define table distribution

e Storage model of the table

e Partitioning strategy of the table

Executethe creaTeE TAaBIE statement to create atable. The following syntax is used:

CREATE TABLE table name (

[{ column name data type [DEFAULT default expr] -- Define a column for the table.
[column constraint [...] —— Define a constraint for the column.
]
| table constraint -- Define a constraint for the table.
1)
[WITH (storage parameter=value [, ...]) -- Define the storage model for the ta
oL@,
[DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY] -- Define a distribution k
ey for the table.
[partition clause] —-- Define a partitioning strategy for
the table.
Example:

In this example, trans_id is used as the distribution key, and date-based range partitioning is specified.

CREATE TABLE sales (
trans id int,
date date,
amount decimal (9,2),
region text)
DISTRIBUTED BY (trans_id)
PARTITION BY RANGE (date)
(start (date '2018-01-01'") inclusive
end (date '2019-01-01'") exclusive every (interval 'l month'),

default partition outlying dates);

Create a temporary table

8 > Document Version: 20220707

https://www.alibabacloud.com/help/doc-detail/118165.htm#concept-263344
https://www.alibabacloud.com/help/doc-detail/120143.htm#concept-320755
https://www.alibabacloud.com/help/doc-detail/118168.htm#concept-263361
https://www.alibabacloud.com/help/doc-detail/118173.htm#concept-263404

AnalyticDB for PostgreSQL Data-Manage tables

Temporary tables are used to store temporary and intermediate data. They are automatically deleted
at the end of a session or deleted at the end of the current transaction based on user-defined
configurations. The following statement can be used to create a temporary table:

CREATE TEMPORARY TABLE table name(...)
[ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]

@ Note You can use the ON COMMIT clause to determine the operation to be performed on a
table at the end of the current transaction.

e PRESERVE ROWS: Data is retained at the end of the current transaction. T his is t he def ault
operation.

e DELETE ROWS: All rows are deleted at the end of the current transaction.

e DROP: Temporary tables are deleted at the end of the current transaction.

Example:

Create a temporary table that is to be deleted at the end of the current transaction.

CREATE TEMPORARY TABLE temp foo (a int, b text) ON COMMIT DROP;

Define constraints

You can define table or column constraints to restrict data in your tables. When you define constraints,
take note of the following items:

e CHECK constraints can reference only columns in the table on which the constraints are defined.

e UNIQUE and PRIMARY KEY constraints must contain the distribution key. Such constraints are not
allowed on append-optimized (AO) or column-oriented tables.

e FOREIGN KEY constraints are allowed but not enforced.

e Constraints that you define on one partition of a table are also used for the other partitions of the
table. Constraint definitions cannot be limited to individual partitions.

The following syntax is used:

UNIQUE (column name [, ...])

| PRIMARY KEY (column name [, ...])

| CHECK (expression)

| FOREIGN KEY (column name [, ...])
REFERENCES table name [(column name [, ...])]
[key match type]
[key action]
[key checking mode]

CHECK constraints

You can use a CHECK constraint to specify a column that satisfies a Boolean expression. Example:

> Document Version: 20220707 9

Data-Manage tables AnalyticDB for PostgreSQL

CREATE TABLE products
(product no integer,
name text,

price numeric CHECK (price > 0));

NOT NULL constraints

You can use a NOT NULL constraint to specify a column that does not contain NULL values. Example:

CREATE TABLE products
(product no integer NOT NULL,
name text NOT NULL,

price numeric);

UNIQUE constraints

You can use a UNIQUE constraint to ensure that the data contained in a column or a group of columns in
atable is unique among all the rows in the table. The table that contains a UNIQUE constraint must be
hash-distributed, and the constraint columns must contain the distribution key. Example:

CREATE TABLE products
(product no integer UNIQUE,
name text,
price numeric)
DISTRIBUTED BY (product no);

Q) Note does not support UNIQUE constraints.

PRIMARY KEY constraints

A PRIMARY KEY constraint consists of a UNIQUE constraint and a NOT NULL constraint. The table that
contains a PRIMARY KEY constraint must be hash-distributed, and the constraint columns must contain
the distribution key. By default, if a table has a primary key, the primary key column or columns are used
as the distribution key of the table. Example:

CREATE TABLE products
(product no integer PRIMARY KEY,
name text,
price numeric)

DISTRIBUTED BY (product no);

@ Note does not support primary keys.

References

For more information, see the Pivotal Greenplum documentation.

10 > Document Version: 20220707

https://gpdb.docs.pivotal.io/6-20/ref_guide/sql_commands/CREATE_TABLE.html

AnalyticDB for PostgreSQL Dat a-Define table distribution

4.Define table distribution

Table distribution options

AnalyticDB for PostgreSQL provides three options to distribute the data of a table across compute
nodes: hash distribution, random distribution, and replicated distribution.

CREATE TABLE <table name> (...) [DISTRIBUTED BY (<column> [,..]) | DISTRIBUTED RANDOMLY
| DISTRIBUTED REPLICATED]

@ Note AnalyticDB for PostgreSQL V4.3 only supports hash distribution and random
distribution. Replicated distribution is a new feature in AnalyticDB for PostgreSQL V6.0.

The creaTE TABLE statement supportsthe following clauses that specify table distribution options:

® DISTRIBUTED BY (column, [...]) :specifies hash distribution. The rows of the table are
distributed across compute nodes based on their hash values in the distribution column selected as
the distribution key. Each row is assighed to one compute node. Rows with identical values are
always assigned to the same compute node. You can choose a unique distribution key (for example,
the primary key of the table) to ensure even distribution of data. The default table distribution
option is hash distribution. If you do not specify a DISTRIBUTED clause, the table uses its primary key
orthe first identified suitable distribution column as the distribution key. If no suitable distribution
column is identified, the system uses random distribution.

e DISTRIBUTED RANDOMLY : Specifies random distribution. The rows of the table are evenly distributed
across all compute nodes by using a round-robin algorithm. Rows with identical values may be
assigned to different compute nodes. We recommend that you only use random distribution when no
suitable distribution column is identified.

® DISTRIBUTED REPLICATED : specifies replicated distribution. All data of the table is stored on all

compute nodes. This means that each compute node stores the same rows. If you want to join large
and small tables, you can specify replicated distribution for small tables to increase join performance.

Examples:

In the following example, a table that uses hash distribution is created. Each row is assigned to one
compute node based on its hash value.

CREATE TABLE products (name varchar (40),
prod id integer,
supplier id integer)
DISTRIBUTED BY (prod_id);

> Document Version: 20220707 11

Data- Define table distribution AnalyticDB for PostgreSQL

In the following example, a table that uses random distribution is created. The rows of the table are
distributed across all compute nodes by using a round-robin algorithm. If no suitable distribution
column is identified, we recommend that you use random distribution.

CREATE TABLE random stuff (things text,
doodads text,
etc text)
DISTRIBUTED RANDOMLY ;

In the following example, a table that uses replicated distribution is created. All data of the table is
stored on all compute nodes.

CREATE TABLE replicated stuff (things text,
doodads text,
etc text)
DISTRIBUTED REPLICATED;

For simple queries that use a distribution key, AnalyticDB for PostgreSQL filters compute nodes based
on the distribution key before sending query requests to them. Such simple queries include those
initiated by UPDATE and DELETE statements. For example, if you query data fromthe products table
that uses prod_id as the distribution key, your query is only sent to the compute nodes whose values of
prod_id are 101. This increases your query performance.

select * from products where prod id = 101;

Hash keys

To increase query performance, we recommend that you choose a distribution column as the
distribution key for a table based on the following rules:

e Choose one or more distribution columns with data distributed evenly. If the distribution columns you
choose have unevenly distributed data, they may skew the data in the table. Tables with skewed
data have one or more compute nodes with a disproportionate number of rows. In this situation,
some compute nodes finish their portion of a parallel query before the others. However, based on
the Cannikin Law, the query cannot be completed until all compute nodes finish processing. As a
result, the query is only as fast as the slowest compute node. Therefore, we recommend that you do
not choose distribution columns with Boolean or date values.

e Choose adistribution column that is frequently used in JOIN clauses. T his way, you can join two tables
by using a collocated join, as shown in the following figures. If the join key is the same as the
distribution key, the join can be completed within the associated compute nodes without data
movement. If you do not choose a distribution column that is frequently used in JOIN clauses, you
must redistribute (redistribute motion) the larger one of the two tables you want to join and then
perform a redistributed join. You also have the option to broadcast (broadcast motion) the
smaller one of the two tables and then perform a broadcast join.Both the redistribute and
broadcast motions increase network overheads.

e Choose afrequently used query criterion as the distribution key. This enables AnalyticDB for
PostgreSQLto filter compute nodes based on the distribution key before it sends query requests to
them.

e If you do not specify a distribution key, the primary key of the table is used as the distribution key. In
addition, if the table does not have a primary key, the first column is used as the distribution key.

12 > Document Version: 20220707

AnalyticDB for PostgreSQL Data-Define table distribution

e The distribution key can be defined from one or more columns. Example:

create table tl(cl int, c2 int) distributed by (cl,c2);

e Exercise caution when you choose random distribution because it does not support collocated joins
or compute node filtering.

Collocated Join

» Both CUST and SALES tables use icg T g %E

CUST_ID as the distribution column

* The JOIN can be completed in each
segment without data movement

Redistributed Join

+ The CUST table uses the CUST_ID as the ;‘;‘;’nﬁc u b g
distribution column, while the SALES table :

g where c.cust_id=s.cust_id
usas other columns as the distribution colu-
mn

« The SALES table is sent io segments acco-
rding to the HASH value of the CUST_ID &
column, and then JOIN with the CUST table :____________|%%
in each segment

Broadcast Join

> Document Version: 20220707 13

Data-Define table distribution AnalyticDB for PostgreSQL

* The SALES table uses the CUST_ID select
as the distribution column, while the from cust c,sales s e
CUST table uses other columns as Mhels ceUSt e clatie
the distribution column i

* The CUST table is sent to all ssgmenits,
and then JOIN with the SALES table
in each segment

¥
b
]
"
¥
¥
v
b
]
¥
b

Segment#1 | | Segment#2

Limits on distribution keys

e A column defined as the distribution key of a table cannot be updated.

e The distribution key of a table must be either the primary key or a unique key. Example:

create table tl(cl int, c2 int, primary key (cl)) distributed by (c2);

@ Note Inthis example, the primary key c1 differs fromthe distribution key c2. As a result, the
execution of the statement fails and the systemreports the following error:

ERROR: PRIMARY KEY and DISTRIBUTED BY definitions incompatible

e A column with Geometry values or any other custom data type cannot be used as the distribution key
of atable.

Troubleshooting for data skew

If the query performance of atable is poor, check whether an inappropriate distribution key is specified.
Example:

create table tl(cl int, c2 int) distributed by (cl);

For this example, execute the following statement to check for data skew in the table:

select gp segment id,count(l) from tl group by 1 order by 2 desc;

gp_segment id | count

_______________ o
2 | 131191
0 | 72
1 68

(3 rows)

14 > Document Version: 20220707

AnalyticDB for PostgreSQL Data- Define table dist ribution

If you find that some compute nodes store more rows than the others, data skew occurs. We
recommend that you define a column with evenly distributed data as the distribution column. Forthe
following example, execute the aALTER TABLE Statement to specify the c2 column as the distribution

column:

alter table tl set distributed by (c2);

The distribution key of the t1 table is changed to the c2 column. Afterthe t1 table is redistributed
based onthe c2 column, its data is no longer skewed.

> Document Version: 20220707 15

Data-Define table partitioning AnalyticDB for PostgreSQL

5.Define table partitioning

allows you to divide a large table into partitions. When you use conditions to query data, the system
scans only the partitions that meet the specified conditions. This prevents full table scans and improves
query performance.

Supported partitioning types

e Range partitioning: Data is divided based on a numeric range, such as date.
e List partitioning: Data is divided based on a list of values, such as city attributes.

e Multi-level partitioning: Data is divided based on a numeric range and a list of values.

Create a range partitioned table

You can have AnalyticDB for PostgreSQL automatically generate partitions by specifying a START value,
an END value, and an EVERY clause that defines the interval within the range. By default, the START
value is inclusive and the END value is exclusive.

Create atable that is range-partitioned by date. Sample statement:

CREATE TABLE sales (id int, date date, amt decimal (10,2))
DISTRIBUTED BY (id)
PARTITION BY RANGE (date)
(START (date '2016-01-01') INCLUSIVE
END (date '2017-01-01'"') EXCLUSIVE
EVERY (INTERVAL 'l day'));

Create atable that is range-partitioned by number. For example, a column of the INT data type can be
used as the partition key. Sample statement:

CREATE TABLE rank (id int, rank int, year int, gender char(l), count int)
DISTRIBUTED BRY (id)
PARTITION BY RANGE (year)
(START (2006) END (2016) EVERY (1),
DEFAULT PARTITION extra);

Create a list partitioned table

When you create a list partitioned table, you can set the partition key to any column whose data type
allows value comparison, and you must declare a description for each specified value of the partition
key.

Create a list partitioned table. Sample statement:

CREATE TABLE rank (id int, rank int, year int, gender
char (1), count int)
DISTRIBRUTED BRY (id)
PARTITION BY LIST (gender)
(PARTITION girls VALUES ('F'),
PARTITION boys VALUES ('M'),
DEFAULT PARTITION other);

16 > Document Version: 20220707

AnalyticDB for PostgreSQL Data-Define table partitioning

Create a multi-level partitioned table

allows you to create a table that has multi-level partitions. The following example demonstrates how
to create athree-level partitioned table. Data in level-1 partitions is range-partitioned by year, data in
level-2 partitions is range-partitioned by month, and data in level-3 partitions is list-partitioned by
region. The level-2 and level-3 partitions are called subpartitions.

CREATE TABLE sales (id int, year int, month int, day int,
region text)
DISTRIBUTED BY (id)
PARTITION BY RANGE (year)
SUBPARTITION BY RANGE (month)
SUBPARTITION TEMPLATE (
START (1) END (13) EVERY (1),
DEFAULT SUBPARTITION Other_months)
SUBPARTITION BY LIST (region)
SUBPARTITION TEMPLATE (
SUBPARTITION usa VALUES ('usa'),
SUBPARTITION europe VALUES ('europe'),
SUBPARTITION asia VALUES ('asia'),
DEFAULT SUBPARTITION other_regions)
(START (2002) END (2012) EVERY (1),
DEFAULT PARTITION outlying years);

Add a partition

You can execute an ALTER TABLE statement to add a partition to a partitioned table. If a subpartition
template is used when the partitioned table is created, the added partition is also subpartitioned
accordingly. The following example demonstrates how to add a partition:

ALTER TABLE sales ADD PARTITION
START (date '2017-02-01') INCLUSIVE
END (date '2017-03-01"') EXCLUSIVE;

If no subpartition template is used when the partitioned table is created, you can define subpartitions
when you add a partition. The following example demonstrates how to add a partition and define its
subpartitions:

ALTER TABLE sales ADD PARTITION
START (date '2017-02-01') INCLUSIVE
END (date '2017-03-01"') EXCLUSIVE
(SUBPARTITION usa VALUES ('usa'),
SUBPARTITION asia VALUES ('asia'),
SUBPARTITION europe VALUES ('europe'));

You can also use an ALTER TABLE statement to subpartition an existing partition. Sample statement:

ALTER TABLE sales ALTER PARTITION FOR (RANK(12))
ADD PARTITION africa VALUES ('africa');

> Document Version: 20220707 17

Data-Define table partitioning AnalyticDB for PostgreSQL

) Notice Partitions cannot be added to a partitioned table that has a default partition. To
add partitions to such a partitioned table, you can split the default partition. For more information,
see the "Split a partition" section of this topic.

Split a partition

You can execute an ALTER TABLE statement to split a partition into two partitions. Partition splitting is
subject to the following limits:

e [f subpartitions exist, only the lowest level of subpartitions can be split.

e The split value specified in the AT clause of the partition splitting statement is assigned to the
second partition.

For example, assume that a partition that contains the data of January 2017 is split into two partitions.
The first partition contains the data of January 1 to January 15 and the second partition contains the
data of January 16 to January 31. Sample statement:

ALTER TABLE sales SPLIT PARTITION FOR ('2017-01-01")
AT ('2017-01-16")
INTO (PARTITION janl71tol5, PARTITION janl716to31);

If your partitioned table has a default partition, you can add a partition by splitting the default
partition. In the INT O clause, you must specify the default partition as the second partition. Sample
statement:

ALTER TABLE sales SPLIT DEFAULT PARTITION
START ('2017-01-01"') INCLUSIVE

END ('2017-02-01"') EXCLUSIVE

INTO (PARTITION janl7, default partition);

Determine the partition granularity

When you use partitioned tables, you need to determine the partition granularity. For example, to
partition a table by time, you may choose a granularity of day, week, or month. A finer granularity
results in less data in each partition but a larger number of partitions. The number of partitions is not
measured by an absolute standard. We recommend that you assign no more than 200 partitions in each
table. A large number of partitions may reduce database performance. For example, the query
optimizer takes a long time to generate execution plans or the VACUUM operation takes a long time to
complete.

Optimize partitioned table queries

supports partition pruning for partitioned tables to improve query performance. When partition pruning
is enabled, the system scans only the required partitions based on query conditions, instead of scanning
the entire table. Example:

EXPLAIN
SELECT * FROM sales
WHERE year = 2008
AND month = 1
AND day = 3

AND region = 'usa';

18 > Document Version: 20220707

AnalyticDB for PostgreSQL Data-Define table partitioning

In the preceding example, the query conditions fall on the level-3 partition usa in the level-2 partition 1
in the level-1 partition 2008. Therefore, only the data in the level-3 partition usa is scanned during the
query. The following execution plan shows that only one of the 468 level-3 partitions needs to be
scanned.

Gather Motion 4:1 (slicel; segments: 4) (cost=0.00..431.00 rows=1 width=24)
-> Sequence (cost=0.00..431.00 rows=1 width=24)
-> Partition Selector for sales (dynamic scan id: 1) (cost=10.00..100.00 rows=25
width=4)
Filter: year = 2008 AND month = 1 AND region = 'usa'::text
Partitions selected: 1 (out of 468)
-> Dynamic Table Scan on sales (dynamic scan id: 1) (cost=0.00..431.00 rows=1 wid
th=24)

Filter: year = 2008 AND month = 1 AND day = 3 AND region = 'usa'::text

Query partition definitions

You can execute the following SQL statement to query the definitions of all partitions in a table:

SELECT
partitionboundary,
partitiontablename,
partitionname,
partitionlevel,
partitionrank

FROM pg partitions

WHERE tablename='sales';

Maintain partitioned tables

You can manage partitions in partitioned tables. For example, you can add, remove, rename, truncate,
exchange, and split partitions. For more information, see Partitioning Large Tables.

> Document Version: 20220707 19

https://greenplum.docs.pivotal.io/6-20/admin_guide/ddl/ddl-partition.html

Dat a-Define storage models for tab

les AnalyticDB for PostgreSQL

6.Define storage models for
tables

AnalyticDB for PostgreSQL supports two storage models for tables: row-oriented storage and column-
oriented storage.

Row-oriented table

By default, AnalyticDB for PostgreSQL uses the heap storage model in PostgreSQL to create row-
oriented heap tables. Row-oriented tables are used for data that needs to be updated at a high
frequency or written in real time by using the INSERT statement. A row-oriented table with a B-tree
index provides high data retrieval performance when you query a small amount of data at a time.

Example:

The following statement creates a row-oriented heap table:

CREATE TABLE foo (a int, b text) DISTRIBUTED BY (a);

@ Note When you use Data Transmission Service (DTS) to write data into your AnalyticDB for
PostgreSQL instance, the destination tables must be row-oriented tables. DTS allows data
synchronization in near real time. In addition to data inserted using the INSERT statement, DTS can
synchronize data updated using SQL statements such as UPDATE and DELETE.

Column-oriented table

Data within a column-oriented table is stored by column. When you access data, only relevant columns
are read. Column-oriented tables are used in data warehousing scenarios such as data queries and
aggregations of a small number of columns. In these scenarios, column-oriented tables provide
efficient 1/0. However, column-oriented tables are less efficient in scenarios that require frequent
update operations or a large number of INSERT operations. We recommend that you use a batch
loading method such as COPY to insert data into column-oriented tables. Column-oriented tables
provide a data compression ratio three to five times higher than that provided by row-oriented tables.

Example:

Column-oriented tables must be append-optimized tables. This means that you must set the
appendonly parameter to true for the column-oriented table you want to create.

CREATE TABLE bar (a int, b text)
WITH (appendonly=true, orientation=column)
DISTRIBUTED BY (a);

Data compression

Data compression is used for column-oriented tables or for append-optimized row-oriented tables
whose appendonly parameter is set to true. There are two compression types:

e Table-level compression.

e Column-level compression. You can use a unique compression algorithmfor each column.

20 > Document Version: 20220707

AnalyticDB for Post greSQL Data-Define storage models fortliks)

AnalyticDB for PostgreSQL only supports the following compression algorithms:
e AnalyticDB for PostgreSQL V4.3 supports zlib and RLE_TYPE.
e AnalyticDB for PostgreSQL V6.0 supports Zstandard (zstd), zlib, RLE_TYPE, and (z4.

@ Note If you specify the QuickLZ compression algorithm, zlib is used instead. RLE_TYPE is only
used for column-oriented tables.

Examples:

Create a column-oriented table that uses the zlib compression algorithm with a compression level of 5.

CREATE TABLE foo (a int, b text)

WITH (appendonly=true, orientation=column, compresstype=zlib, compresslevel=5) ;

Create a column-oriented table that uses the zstd compression algorithm with a compression level of 9.

CREATE TABLE foo (a int, b text)

WITH (appendonly=true, orientation=column, compresstype=zstd, compresslevel=9);

> Document Version: 20220707 21

Data-Manage indexes AnalyticDB for PostgreSQL

7.Manage indexes

This topic describes the index types of and their related operations.

@ Note does not support indexes.

Index types

supports the following index types:

B-tree index (default index type)
Bitmap index

@ Note

Bit map indexes enable AnalyticDB for PostgreSQL to store bitmaps that each contain the values
of a key. Bitmap indexes serve the same purpose as a conventional index but occupy less storage
space. In scenarios where indexed columns consist of 100 to 100,000 distinct values and are
frequently queried in conjunction with other indexed columns, bitmap indexes perform better
than other index types.

BRIN index (available only for of minor version 20210324 or later)
GIN index (available only for)
GIiST index(available only for)

@ Note does not support hash indexes.

Principles for indexing

Scenarios in which to create indexes:

Small datasets are returned from a query.

Indexes help increase the performance of queries on single data records or small datasets. Such
queries include online transaction processing (OLTP) queries.

Compressed tables are used.

On a compressed append-optimized (AO) table, indexes help increase the performance of queries
because only the involved rows are decompressed.

Methods to select index types:

Create a B-tree index on a column that has a high selectivity.

For example, in a table that has 1,000 rows, if you create an index on a column that has 800 distinct
values, the selectivity of the index is 0.8. The selectivity of anindex created on a column that has the
same value in all rows is always 1.0.

Create a bitmap index on a column that has a low selectivity.

In scenarios where indexed columns consist of 100 to 100,000 distinct values, bitmap indexes perform
betterthan other index types.

Create a BRIN index if a large amount of data is sequentially distributed and if filter conditions such

22

> Document Version: 20220707

AnalyticDB for PostgreSQL Data-Manage indexes

as <, <=, =, > ,and > areusedto filterdata.

When large datasets are involved, BRIN indexes can provide similar performance as B-tree indexes but
occupy less space.

Methods to select appropriate columns to create indexes:

Create anindex on a column that is frequently used for joins with other tables.

For example, create an index on a column used as the foreign key. This enables the query optimizer
to use more join methods and therefore increases join performance.

Create anindex on a column that is frequently referenced in predicates.
The most suitable column is the one that is frequently referenced in WHERE clauses.
Do not create an index on a frequently updated column.

If you create an index on a column that is updated frequently, the amount of data that needsto be
read and written for column updates increases.

Best practices for using indexes:

Do not create redundant indexes.

If anindex is created on more than one column, indexes that have the same leading column are
redundant.

Delete indexes before you batch load data.

If you want to load a large amount of datato atable, we recommend that you delete all existing
indexes on the data, load the data, and then recreate indexes on the table. This is faster than
updating the indexes.

Test and compare the performance of queries that use and do not use indexes.
Create indexes only when the performance of queries on the indexed columns improves.

Execute the ANALYZE statement on a table after you create an index.

Create an index

You can execute the creaTE INDEX statement to create anindex on atable. Examples:

B-tree index

Create a B-tree index on the gender column of the employee table.
CREATE INDEX gender idx ON employee (gender);
Bitmap index
Create a bitmap index on the title column of the films table.
CREATE INDEX title_bmp_idx ON films USING bitmap (title);
BRIN index
Create a BRIN index on the c_custkey column of the customer table.

CREATE INDEX c custkey brin idx ON customer USING brin(c custkey) with (pages per range=2)

’

GIN index

> Document Version: 20220707 23

Data-Manage indexes AnalyticDB for PostgreSQL

Create a GIN index on the | comment column of the lineitemtable. Only supports GIN indexes.
CREATE INDEX lineitem idx ON lineitem USING gin(to_tsvector('english', 1 comment));

e GIN index

Create a GIN index on the intarray column of the arrayt table. Only supports GIN indexes.
CREATE INDEX arrayt idx ON arrayt USING gin(intarray);

e GiST index

Create a GiST index on the c_comment column of the customer table. Only supports GIST indexes.

CREATE INDEX customer idx ON customer USING gist (to tsvector('english', c_comment));

Recreate an index
You can execute the ReINDEX INDEx Statement to recreate anindex on atable. Examples:

e Recreate the my_index index.

REINDEX INDEX my index;

e Recreate all indexes onthe my_table table.

REINDEX TABLE my table;

Delete an index

You can execute the Dprop INDEX statement to delete anindex from atable. For example, execute
the following statement to delete the title_idx index:

DROP INDEX title idx;

@ Note If you want to load a large amount of datato atable, we recommend that you delete
all existing indexes on the data, load the data, and then recreate indexes on the table. This is
fasterthan updating the indexes.

Collect indexed data

You can execute the vacuum statement to collect indexed data. For example, execute the following
statement to collect indexed data fromthe customer table:

VACUUM customer;
@ Note Indexed data collection is available only for BRIN indexes.

References

For more information about indexes, see the Pivotal Greenplum documentation.

24 > Document Version: 20220707

https://gpdb.docs.pivotal.io/6-1/ref_guide/sql_commands/CREATE_INDEX.html

AnalyticDB for PostgreSQL Data-Manage views

8.Manage views

This topic describes how to manage views for both simple and complex queries in AnalyticDB for
PostgreSQL. Views are not stored on physical devices. Each view you access runs as a subquery.

Create a view
Execute a crEATE VIEW Statement to create a view.

Example:

CREATE VIEW myview AS SELECT * FROM products WHERE kind = 'food';

@ Note Operations specified by ORDER BY and SORT clauses in a view are ignored.

Delete a view
Execute a bprop VIEW statement to delete aview.

Example:

DROP VIEW myview;

References

For more information, visit Pivotal Greenplum documentation.

> Document Version: 20220707 25

http://gpdb.docs.pivotal.io/43330/ref_guide/sql_commands/CREATE_VIEW.html

Data-Manage materialized views AnalyticDB for PostgreSQL

9.Manage materialized views

Materialized views are similar to views and allow you to save frequently used or complex queries.
Materialized views are different from views in that materialized views are based on physical storage.
You cannot write data to materialized views. When a query accesses a materialized view, the system
returns the data that is stored in the materialized view. Data in materialized views is not automatically
updated and may become obsolete. However, you can retrieve data stored in materialized views faster
than retrieving the same data by using base tables or views of the base tables. Therefore, materialized
views have significant performance advantages if you accept periodic data updates.

Create a materialized view

Execute the CREATE MATERIALIZED VIEW Statement to create a materialized view.

CREATE MATERIALIZED VIEW my materialized view as
SELECT * FROM people WHERE age > 40
DISTRIBUTED BY (id);

SELECT * from my materialized view ORDER BY age;

The following result is returned:

id | name | city | age
———————————— s S
004 | zhaoyi | zhenzhou | 44
005 | xuliui | jiaxing | 54
006 | maodi | shanghai | 55

(3 rows)

The query defined in a materialized view is used only to populate the materialized view. The only
difference between a materialized view and a table is that object identifiers (OIDs) are not
automatically generated in a materialized view. The DISTRIBUTED BY clause is optional when you create
a materialized view. If the DISTRIBUTED BY clause is not specified, the first column of the table is used as
the distribution key.

@ Note

If a materialized view query contains an ORDER BY or SORT clause, the data may not be ordered or
sorted.

Refresh or disable a materialized view

Execute the REFRESH MATERIALIZED VIEW Statement to update datain a materialized view.

INSERT INTO people VALUES ('007', 'sunshen', 'shenzhen', 60) ;

SELECT * from my materialized view ORDER BY age;

26 > Document Version: 20220707

AnalyticDB for PostgreSQL

Data-Manage materialized views

The following result is returned:

id | name | city
____________ o
004 | zhaoyi | zhenzhou
005 | xuliui | jiaxing
006 | maodi | shanghai

(3 rows)

REFRESH MATERIALIZED VIEW my materialized view;

SELECT * from my materialized view ORDER BY age;

The following result is returned:

id | name | city
____________ o
004 | zhaoyi | zhenzhou
005 | xuliui | jiaxing
006 | maodi | shanghai
007 | sunshen | shenzhen

(4 rows)

If youinclude the wiTH No pata clause in the REFRESH MATERIALIZED VIEW statement, the

materialized view is not populated with data and cannot be scanned after the statement is executed.
If a query attempts to access a materialized view that cannot be scanned, an error is returned.

REFRESH MATERIALIZED VIEW my materialized view With NO DATA;

SELECT * from my materialized view ORDER BY age;

ERROR: materialized view "my materialized view" has not been populated

HINT: Use the REFRESH MATERIALIZED VIEW command.

REFRESH MATERIALIZED VIEW my materialized view;

SELECT * from my materialized view ORDER BY age;

The following result is returned:

id | name | city
____________ o
004 | zhaoyi | zhenzhou
005 | xuliui | jiaxing
006 | maodi | shanghai
007 | sunshen | shenzhen

(4 rows)

Delete a materialized view

> Document Version: 20220707

27

Data-Manage materialized views AnalyticDB for PostgreSQL

Execute the DroP MATERIALIZED VIEW Statement to delete a materialized view.

CREATE MATERIALIZED VIEW depend materialized view as
SELECT * FROM my materialized view WHERE age > 50
DISTRIBUTED BY (id);

DROP MATERIALIZED VIEW depend materialized view;

DROP MATERTALIZED VIEW ... CASCADE allowsyouto delete all objects that depend onthe

materialized view. If the materialized view that you want to delete has dependent views, the
materialized views are also deleted.

) Notice

You must specify the CASCADE option in the DROP MATERIALIZED VIEW statement when you delete
a materialized view that has dependent views. Otherwise, an error is returned.

CREATE MATERIALIZED VIEW depend materialized view as
SELECT * FROM my materialized view WHERE age > 50
DISTRIBUTED BY (id);

DROP MATERIALIZED VIEW my materialized view;

ERROR: cannot drop materialized view my materialized view because other objects depend on
it

DETAIL: materialized view depend materialized view depends on materialized view my materia
lized view

HINT: Use DROP ... CASCADE to drop the dependent objects too.

DROP MATERIALIZED VIEW my materialized view CASCADE;

Scenarios

e Materialized views can be used for queries that are not time-sensitive.
e Materialized views can be used for frequently used or complex queries.

e To implement fast queries and analysis, you can create materialized views based on external data
sources, such as the external tables of Object Storage Service (0SS) or MaxCompute. You can use the
materialized views to store external data to on-premises storage. You can also create indexes forthe
materialized views.

References

For more information, see the Pivotal Greenplum documentation.

28 > Document Version: 20220707

https://gpdb.docs.pivotal.io/6-3/ref_guide/sql_commands/CREATE_MATERIALIZED_VIEW.html

AnalyticDB for PostgreSQL Data-Real-time materialized views

10.Real-time materialized views

provides real-time materialized views. Compared with non-real-time materialized views, real-time
materialized views can implement automatic refresh in response to data changes without the need to
execute REFRESH statements.

A real-time materialized view can be automatically updated with changes made to its base tables.
Real-time materialized views of support only statement-level automatic refresh. When an INSERT, COPY,
UPDATE, or DELETE statement is executed on a base table, real-time materialized views created on this
base table are updated in real time to ensure strong data consistency.

@ Note Inthis mode, the write performance of base tables may be reduced. We recommend
that you do not create more than five real-time materialized views on the same base table.

For more information about non-real-time materialized views, see Manage materialized views.

Statement-level refresh

When a statement is executed on a base table, real-time materialized views created on this base table
are updated in real time to ensure data consistency. Such statements include INSERT, COPY, UPDATE,
and DELETE. Real-time materialized views are updated based on the following logic:

e The database engine first updates base tables, and then updates their materialized views. If base
tables fail to be updated, no data changes are made to their materialized views.

o If materialized views fail to be updated, no data changes are made to their base tables, and an error
is returned for the executed statement.

For an explicit transaction that starts with the BEGIN TRANSACTION statement and ends with the
COMMIT statement, after base tables are updated, data changes are also made to their materialized
views in this transaction.

e If uses the default READ COMMITTED isolation level, before this transaction is committed, updates of
mat erialized views are invisible to other transactions.

o If this transaction is rolled back, base tables and their materialized views are also rolled back.

Limits

imposes the following limits on the query statements that are used to create real-time materialized

Views:

e [f a query statement contains JOIN operations, only INNER JOIN can be used to join tables. OUTER JOIN
or SELF JOIN is not supported.

e Query statements can contain most filtering and projection operations.

e Only the following aggregate operations are supported in a query statement: COUNT, SUM, AVG,
MAX, and MIN. The HAVING clause is not supported.

e Complex statements such as those that contain subqueries and common table expressions (CTEs) are
not supported.

Afteryou create a real-time materialized view on a base table, DDL statements that you execute on
the base table are subject to the following limits:

e When you execute the TRUNCATE statement on the base table, the real-time materialized view is not
synchronously updated. You must manually refresh the real-time materialized view or create another
materialized view.

> Document Version: 20220707 29

https://www.alibabacloud.com/help/doc-detail/172998.htm#topic-1913070

Data-Real-time materialized views AnalyticDB for PostgreSQL

e You must specify the CASCADE option to execute the DROP TABLE statement on the base table.

e ALTERTABLE statements on the base table cannot be used to delete or modify fields referenced by
the materialized view.

The real-time materialized view feature has the following limits:

e Real-time materialized views support only standard and partitioned heap tables. Append-optimized
(AO) tables are not supported.

Scenarios
We recommend that you use real-time materialized views in the following scenarios:

e The number of rows or columns in the query results is much smaller than that of the base tables. For
example, the query statement may contain a WHERE clause that effectively narrows down the results
or may contain an aggregate function that consolidates multiple values into a single value.

e Large amounts of computations are required to obtain the query results of the following operations:
o Semi-structured data analysis

o Aggregate operations that take a long time to complete

e Base tables are not frequently changed.

Real-time materialized views can be used in all scenarios where materialized views are suitable.
Compared with non-real-time materialized views, real-time materialized views are highly consistent with
their base tables. When a base table changes, its real-time materialized views synchronously change
with minimal perf ormance cost. However, when you use non-real-time materialized views, you must
manually update them each time their base tables change. Therefore, when large amounts of data are
changed on a base table or a streaming update is performed, real-time materialized views have great
advantages over non-real-time materialized views.

Disadvantages of real-time materialized views

Real-time materialized views are similar to indexes maintained in real time. They can significantly
optimize query performance but also reduce write performance.

When you create a real-time materialized view that contains only a single table, the write performance
of the related database is reduced because the data in the materialized view must be synchronously
updated. The write latency can be up to three times longer compared with writing data to the base
table but not updating the materialized view. We recommend that you do not create more than five
real-time materialized views on the same base table.

Batch data writes help reduce the maintenance overhead of real-time materialized views. When you
execute COPY or INSERT statements, we recommend that you increase the number of batch processed
rows wit hin a single statement. This significantly reduces the maintenance overhead of real-time
materialized views.

When the query statement used to create a real-time materialized view contains a JOIN clause to join
two tables, you must optimize the write perf ormance of the real-time materialized view. If you do not
have relevant experience or encounter low performance when you test the execution, we recommend
that you use a real-time materialized view that contains only a single table. The following suggestions
are available in scenarios where two tables are joined:

e Use the join key of each base table as their respective distribution keys.

e Create anindex for the join key of each base table.

Create or delete a real-time materialized view

30 > Document Version: 20220707

AnalyticDB for PostgreSQL Data-Real-time materialized views

e Executethe following CREATE INCREMENTAL MATERIALIZED VIEW Statement to create areal-time
materialized view named mv

CREATE INCREMENTAL MATERIALIZED VIEW mv AS SELECT * FROM base WHERE id > 40;

e Executethe following DproP MATERIALIZED VIEW Statement to deletethe mv materialized view:

DROP MATERIALIZED VIEW mv;

Examples
1. Execute the following statement to create a base table:

CREATE TABLE test (a int, b int) DISTRIBUTED BY (a);

2. Execute the following statement to create a real-time materialized view:

CREATE INCREMENTAL MATERIALIZED VIEW mv AS SELECT * FROM TEST WHERE b > 40 DISTRIBUTED
BY (a);

3. Execute the following statement to insert data to the base table:

INSERT INTO test VALUES (1, 30), (2, 40), (3, 50), (4, 60);

4. Execute the following statement to view data in the base table:

SELECT * FROM test;

The following result is returned:

5. Execute the following statement to view data in the materialized view:

SELECT * FROM mv;

The following result is returned, which indicates that the materialized view is updated:

a | b
T,
3 | 50
4 | 60
(2 rows)

> Document Version: 20220707 31

. ite f terialized .
\[?izt/:/aSQuery rewrite for materialize AnalyticDB for PostgreSQL

11.Query rewrite for
materialized views

provides the query rewrite feature for standard and real-time materialized views. T his feature can
significantly improve performance for JOIN operations, aggregate functions, subqueries, common table
expressions (CTEs), and high-concurrency SQL statements.

Best practices: Use real-time materialized views to accelerate queries that contain variable parameters

Features

Before query rewrite is supported, SELECT query statements must be manually modified to specify the
use of materialized views. After query rewrite is supported, SELECT query statements can be
automatically rewritten to use materialized views, even if the SELECT query statements reference base
tables but not materialized views. This accelerates the execution of SELECT query statements.

e [f a SELECT query statement is completely identical to the SELECT statement in a CREATE
MATERIALIZED VIEW statement, triggers query rewrite to accelerate the query by using data in the
materialized view. For more information, see the "Complete match" section of this topic.

e If a SELECT query statement is partially identical to the SELECT statement in a CREATE MATERIALIZED
VIEW statement, query rewrite supplements the SELECT statement in the CREATE MATERIALIZED VIEW
statement. For more information, see the Query supplement" section of this topic.

Limits

e Query rewrite is not supported for the SELECT FOR UPDATE statement.

e Query rewrite is not supported for statements that contain recursive CTEs.

e Query rewrite is not supported for queries that contain randomfunctions suchas ranpoM() and «

oW ()

e |f a SELECT query statement is partially identical to the SELECT statement in a CREATE MATERIALIZED
VIEW statement but the requirements for query supplement are not met, query rewrite is not
supported. For more information about query supplement, see the "Query supplement" section of
this topic.

e Query rewrite is supported only when the minor version of AnalyticDB for PostgreSQL is V6.3.6.0 or
later.

@ Note

o For more information about how to view the minor version of an instance, see View the
minor engine version.

o For more information about how to update the minor version of an instance, see Update
the minor engine version.

Enable or disable query rewrite

e Real-time materialized views

By default, query rewrite is enabled for real-time materialized views. You can execute the following
statement to disable the feature:

32 > Document Version: 20220707

https://www.alibabacloud.com/help/doc-detail/368343.htm#task-2143998
https://www.alibabacloud.com/help/doc-detail/277424.htm#concept-2096703
https://www.alibabacloud.com/help/doc-detail/139271.htm#task-2245828

Data-Query rewrite for materialized

AnalyticDB for PostgreSQL)
views

SET enable incremental matview query rewrite TO off;

e Standard materialized views

By default, query rewrite is disabled for standard materialized views. You can execute the following
statement to enable the feature:

SET enable matview query rewrite TO on;

@ Note You cannot enable or disable this feature for specific instances. To enable or disable
query rewrite for a specific instance, .

Complete match

In, query rewrite checks whether the syntax tree is a complete match between a SELECT query
statement and the SELECT statement in a CREATE MATERIALIZED VIEW statement regardless of spaces,
line breaks, comments, or aliases. If a SELECT query statement is completely identical to the SELECT
statement in a CREATE MATERIALIZED VIEW statement, the materialized view is preferentially used to
accelerate queries.

Query supplement

In, query rewrite can be used if a SELECT query statement is partially identical to the SELECT statement
in a CREATE MATERIALIZED VIEW statement. In this scenario, query rewrite supplements the SELECT
statement in the CREATE MATERIALIZED VIEW statement and returns query results based on the
materialized view.

Query supplement is supported only for the following parts in a SELECT query statement: SELECT
columns, JOIN tables, GROUP BY columns, WHERE clause, HAVING clause, ORDER BY columns, and LIMIT
clause. To meet the requirements for query rewrite, make sure that other parts in a SELECT query
statement are completely identical to those in the SELECT statement of a CREATE MATERIALIZED VIEW
statement.

e SELECT columns

When the SELECT columns in a SELECT query statement are partially identical to those in the SELECT
statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query rewrite:

o Query rewrite is supported if the order of SELECT columns in a SELECT query statement is different
fromthat in the SELECT statement of a CREATE MATERIALIZED VIEW statement.

o Query rewrite is supported if the SELECT columns in the SELECT statement of a CREATE
MATERIALIZED VIEW statement are not included in a SELECT query statement.

o Query rewrite is supported if the SELECT columns in a SELECT query statement are not included in
the SELECT statement of a CREATE MATERIALIZED VIEW statement but can be calculated from
those in the SELECT statement of the CREATE MATERIALIZED VIEW statement.

o Query rewrite is not supported if the SELECT columns in a SELECT query statement are not included
in the SELECT statement of a CREATE MATERIALIZED VIEW statement and cannot be calculated
fromthose in the SELECT statement of the CREATE MATERIALIZED VIEW statement.

e GROUP BY columns

When the GROUP BY columns in a SELECT query statement are partially identical to those inthe
SELECT statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query
rewrite:

> Document Version: 20220707 33

Data-Query rewrite for materialized

AnalyticDB for PostgreSQL

views

o The SELECT statement in a CREATE MATERIALIZED VIEW statement does not include GROUP BY

columns or aggregate functions:
m Query rewrite is supported if a SELECT query statement includes aggregate functions.
m Query rewrite is supported if a SELECT query statement includes GROUP BY columns.

m Query rewrite is supported if a SELECT query statement includes GROUP BY columns and
aggregate functions.

o The SELECT statement in a CREATE MATERIALIZED VIEW statement includes GROUP BY columns but

not aggregate functions:
m Query rewrite is supported if the GROUP BY columns in the SELECT statement of a CREATE
MATERIALIZED VIEW statement are not included in a SELECT query statement.

m Query rewrite is not supported if the GROUP BY columns in a SELECT query statement are not
included in the SELECT statement of a CREATE MATERIALIZED VIEW statement.
m Query rewrite is supported if the aggregate function in a SELECT query statement is count (dist

inct)

o The SELECT statement in a CREATE MATERIALIZED VIEW statement does not include GROUP BY
columns but includes aggregate functions:

m Query rewrite is not supported if a SELECT query statement includes GROUP BY columns.

o The SELECT statement in a CREATE MATERIALIZED VIEW statement includes GROUP BY columns and
aggregate functions:
m Query rewrite is supported if the GROUP BY columns in the SELECT statement of a CREATE
MATERIALIZED VIEW statement are not included in a SELECT query statement.

m Query rewrite is not supported if the GROUP BY columns in a SELECT query statement are not
included in the SELECT statement of a CREATE MATERIALIZED VIEW statement.

@ Note

o If a SELECT query statement includes fewer GROUP BY columns than the SELECT statement
in a CREATE MATERIALIZED VIEW statement, query rewrite supplements the SELECT
statement in the CREATE MATERIALIZED VIEW statement by performing re-aggregation on
aggregate functions. The following aggregate functions are supported for re-
aggregation: counNT , sSuM , MAX , MIN ,and AvG .Queryrewrite is not
supported if a SELECT query statement includes other aggregate functions.

o If a SELECT query statement includes a HAVING clause, GROUP BY columns cannot be used
for supplement.

JOIN tables

When the JOIN tables or conditions in a SELECT query statement are partially identical to those in the
SELECT statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query
rewrite:

o INNERJOIN tables can be interchanged, and additional JOIN tables or conditions can be used to
supplement the SELECT statement in a CREATE MATERIALIZED VIEW statement.

o LEFT OUTER JOIN and RIGHT OUTER JOIN can be converted to each other, and the left and right
tables of FULL OUTER JOIN can be interchanged. Additional JOIN tables or conditions cannot be
used to supplement the SELECT statement in a CREATE MATERIALIZED VIEW statement.

34

> Document Version: 20220707

. . ite f terialized
AnalyticDB for PostgreSQL Data-Query rewrite for ma enf/iz\?vs

When the JOIN tables in a SELECT query statement are completely identical to those in the SELECT
statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query rewrite:

o INNERJOIN tables can be interchanged. Examples:
m SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM a, b WHERE a.i = b.i;

SELECT query statements that support query rewrite:

SELECT * FROM b, a WHERE a.i = b.i;
SELECT * FROM a INNER JOIN b ON a.i = b.i;

m SELECT statement in a CREATE MATERIALIZED VIEW statement:
SELECT * FROM a INNER JOIN b ON a.i = b.i;

SELECT query statement that supports query rewrite:

SELECT * FROM b INNER JOIN a ON a.i = b.i;

o LEFT OUTER JOIN and RIGHT OUTER JOIN can be converted to each other. Examples:
SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM a LEFT JOIN b ON a.i = b.i;

SELECT query statement that supports query rewrite:
SELECT * FROM b RIGHT JOIN a ON b.i = a.i;
o The left and right tables of FULL OUTER JOIN can be interchanged. Examples:
SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM a FULL OUTER JOIN b ON a.i = b.i;

SELECT query statement that supports query rewrite:

SELECT * FROM b FULL OUTER JOIN a ON b.i = a.i;

When the JOIN tables in a SELECT query statement are partially identical to those in the SELECT
statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query rewrite:

Additional INNER JOIN tables can be supplemented. In this scenario, INNER JOIN or COMMON JOIN tables
can be interchanged, and INNER JOIN and COMMON JOIN can be converted to each other. Examples:

o SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM a, b;

SELECT query statement that supports query rewrite:

SELECT * FROM a, b, c;

> Document Version: 20220707 35

Data-Query rewrite for materialized

: AnalyticDB for PostgreSQL
views

o SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM a INNER JOIN b ON a.i = b.i;

SELECT query statement that supports query rewrite:

SELECT * FROM a INNER JOIN b ON a.i = b.i INNER JOIN ¢ ON a.i = c.i;

e WHERE clause

When the WHERE clause in a SELECT query statement is partially identical to that in the SELECT
statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query rewrite:

o Both a SELECT query statement and the SELECT statement in a CREATE MATERIALIZED VIEW
statement use AND to join multiple WHERE conditions:

m Query rewrite is supported if the order of WHERE conditions in a SELECT query statement is
different fromthat in the SELECT statement of a CREATE MATERIALIZED VIEW statement.
Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM t WHERE a > 100 AND a < 200;

SELECT query statement that supports query rewrite:

SELECT * FROM t WHERE a < 200 AND a > 100;

m Query rewrite is supported if a WHERE clause in a SELECT query statement is not included in the
SELECT statement of a CREATE MATERIALIZED VIEW statement. In this scenario, query rewrite
supplements the missing WHERE clause. The columns referenced in the WHERE clause to be
supplemented must exist in the materialized view. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM t WHERE a > 100;

SELECT query statement that supports query rewrite:

SELECT * FROM t WHERE b > 200 AND a > 100;

36 > Document Version: 20220707

Data-Query rewrite for materialized

AnalyticDB for PostgreSQL)
views

o Both a SELECT query statement and the SELECT statement in a CREATE MATERIALIZED VIEW
statement use OR to join multiple WHERE conditions:

m Query rewrite is supported if the order of WHERE conditions in a SELECT query statement is
different fromthat in the SELECT statement of a CREATE MATERIALIZED VIEW statement. The
columns referenced in all WHERE clauses must exist in the materialized view. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM t WHERE a > 100 OR a < 200;

SELECT query statement that supports query rewrite:

SELECT * FROM t WHERE a < 200 OR a > 100;

m Query rewrite is supported if a WHERE clause in a SELECT query statement is not included in the
SELECT statement of a CREATE MATERIALIZED VIEW statement. The columns referenced in all
WHERE clauses must exist in the materialized view. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT * FROM t WHERE a > 100 OR a < 200;

SELECT query statement that supports query rewrite:

SELECT * FROM t WHERE a < 200;

o The WHERE clause in the SELECT statement of a CREATE MATERIALIZED VIEW statement includes
that in a SELECT query statement:

m Query rewrite is supported if the WHERE clause in a SELECT query statement consists of an
equality condition but a range is specified in the WHERE clause in the SELECT statement of a
CREATE MATERIALIZED VIEW statement. The columns referenced in all WHERE clauses must exist in
the materialized view. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:
SELECT * FROM t WHERE a < 200 AND a >= 100;

SELECT query statement that supports query rewrite:
SELECT * FROM t WHERE a = 102;

m Query rewrite is supported if a range is specified in the WHERE clauses of both a SELECT query
statement and the SELECT statement in a CREATE MATERIALIZED VIEW statement. The columns
referenced in all WHERE clauses must exist in the materialized view. Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:
SELECT * FROM t WHERE a < 200 AND a >= 0;
SELECT query statement that supports query rewrite:

SELECT * FROM t WHERE a <= 100 AND a > 50;

e HAVING clause

> Document Version: 20220707 37

Data-Query rewrite for materialized

: AnalyticDB for PostgreSQL
views

When the HAVING clause in a SELECT query statement is partially identical to that in the SELECT
statement of a CREATE MATERIALIZED VIEW statement, the following rules apply to query rewrite:

o If GROUP BY columns do not need to be supplemented, query rewrite supplements the HAVING
clause in @ manner similar to when it supplements the WHERE clause. In the SELECT statement of a
CREATE MATERIALIZED VIEW statement, missing AND conditions can be supplemented, additional
OR conditions can be removed, and the range can be narrowed down.

o [f GROUP BY columns need to be supplemented, query rewrite is supported in the scenario where a
SELECT query statement includes a HAVING clause but the SELECT statement in a CREATE
MATERIALIZED VIEW statement does not.

e ORDER BY columns

Regardless of whether the SELECT statement in a CREATE MATERIALIZED VIEW statement includes
ORDER BY columns, query rewrite attempts to supplement ORDER BY columns. To meet the
requirements for query rewrite, make sure that ORDER BY columns of a SELECT query statement are
included in those of the SELECT statement in a CREATE MATERIALIZED VIEW statement.

e LIMIT clause

If the SELECT statement in a CREATE MAT ERIALIZED VIEW statement does not include a LIMIT clause,
query rewrite supplements the LIMIT clause. If the SELECT statement in @ CREATE MATERIALIZED VIEW
statement includes a LIMIT clause, the SELECT query statement must be completely identicalto the
SELECT statement inthe CREATE MATERIALIZED VIEW statement.

e Expression supplement

If the ordinary expression or aggregate function expression in a SELECT query statement does not
match the expression in the SELECT statement of a CREATE MATERIALIZED VIEW statement, sub-
expressions in the SELECT query statement are used fromthe top down to find the closest match.
Examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT a+b, c FROM t;

SELECT query statements that support query rewrite:

SELECT a+b, (atb)+c, mod(atb, c) FROM t;
SELECT sum((a+b) *c) FROM t;

If aggregate function expressions are included, the following rules apply to query rewrite:

o Aggregate functions sum() and count() inthe SELECT statement of a CREATE MATERIALIZED
VIEW statement can be calculated into an avc() aggregate function.

o Aggregate functions count(*) and counT(1) can be interchanged between a SELECT query
statement and the SELECT statement in a CREATE MATERIALIZED VIEW statement.

Aggregate function expression examples:

SELECT statement in a CREATE MATERIALIZED VIEW statement:

SELECT sum(a), count(a), count(*) FROM t;

SELECT query statement that supports query rewrite:

SELECT avg(a), count(l) FROM;

38 > Document Version: 20220707

AnalyticDB for PostgreSQL

Data-Query rewrite for materialized
views

CTEs and subqueries

if

CTEs and subqueries are included, the following rules apply to query rewrite based on primary queries

and subqueries. A CTE in a WITH clause is equivalent to a subquery.

A SELECT query statement includes only a single subquery:

o If the primary query and subquery in a SELECT query statement are completely identical to those in
the SELECT statement of a CREATE MATERIALIZED VIEW statement, query rewrite replaces the
SELECT statement of the CREATE MATERIALIZED VIEW statement by using the complete match
method.

o If the subquery in a SELECT query statement is completely identical to that in the SELECT
statement of a CREATE MATERIALIZED VIEW statement but the primary query is different, query
rewrite supplements the SELECT statement of the CREATE MATERIALIZED VIEW statement. For more
information about query supplement, see the "Query supplement" section of this topic.

o A SELECT query statement includes a subquery but the SELECT statement in a CREATE
MATERIALIZED VIEW statement does not:

m [f the SELECT statement in a CREATE MATERIALIZED VIEW statement is identical to the primary
query in a SELECT query statement or can be supplemented, query rewrite supplements a
subquery to the SELECT statement of the CREATE MATERIALIZED VIEW statement. Associated
subqueries cannot be supplemented.

m If the SELECT statement of a CREATE MATERIALIZED VIEW statement is identical to the subquery
in a SELECT query statement or can be supplemented, query rewrite replaces the subquery in the
SELECT query statement.

m [f the primary query or subquery in a SELECT query statement is replaced with a materialized
view, query rewrite continues to replace other parts of the SELECT query statement.

o Query rewrite does not support replacement for recursive CTEs.

A SELECT query statement includes multiple subqueries:

If the primary query or a subquery in a SELECT query statement is rewritten, query rewrite continues to
rewrite other parts of the SELECT query statement based on the preceding rules.

UNION, EXCEPT, and INTERSECT

If both a SELECT query statement and the SELECT statement in a CREATE MATERIALIZED VIEW
statement include UNION, EXCEPT, or INTERSECT, two queries before and after UNION or INTERSECT
can be interchanged, and the UNION or INTERSECT clause can be supplemented. The EXCEPT clause
can be supplemented, but two queries before and after EXCEPT cannot be interchanged.

If a SELECT query statement includes UNION, EXCEPT, or INTERSECT but the SELECT statement in a
CREATE MATERIALIZED VIEW statement does not, a UNION, EXCEPT, or INTERSECT clause can be
supplemented to join multiple materialized views.

Match multiple materialized views

If a SELECT query statement matches multiple materialized views, query rewrite selects materialized
views based on the following rules:

The materialized view that completely matches the SELECT query statement is preferentially
selected. If this materialized view does not exist, a materialized view that can be supplemented is
selected.

If multiple materialized views that can be supplemented exist, the materialized view that matches
the most tables with those of the SELECT query statement is preferentially selected.

> Document Version: 20220707 39

Data-Query rewrite for materialized
views

AnalyticDB for PostgreSQL

e [f multiple materialized views that can be supplemented reference the same number of tables as the

SELECT query statement, the materialized view that references the least data is preferentially
selected.

Examples

e Example 1:

i. Execute the following statement to create a base table:

CREATE TABLE tl (a int, b int) DISTRIBUTED BY (a);

ii. Execute the following statement to insert data to the base table:

INSERT INTO tl VALUES (generate series(l, 10), generate series(l, 2));

iii. Execute the following statement to create a materialized view:

CREATE INCREMENTAL MATERIALIZED VIEW mv AS SELECT count(a), b FROM tl GROUP BY b DIST
RIBUTED BY (b);

iv. Execute the following statement to run a query plan:

EXPLAIN SELECT count(a), b FROM tl GROUP BY b;

The following result is returned. Query rewrite uses the complete match method to replace the
SELECT statement in the CREATE MATERIALIZED VIEW statement and returns the data of the
materialized view mv.

QUERY PLAN
Gather Motion 3:1 (slicel; segments: 3) (cost=0.00..2.02 rows=2 width=12)
-> Seq Scan on mv (cost=0.00..2.02 rows=1 width=12)
Optimizer: Postgres query optimizer

(3 rows)

e Example 2:

i. Execute the following statements to create two base tables:

CREATE TABLE tl (a int, b int) DISTRIBUTED BY (a);
CREATE TABLE t2 (i int, j int) DISTRIBUTED BY (i)

ii. Execute the following statements to insert data to the base tables:

INSERT INTO tl VALUES (generate series(l, 10), generate series(l, 2));
INSERT INTO t2 VALUES (generate series(l, 10), generate series(l, 2));

iii. Execute the following statement to create a materialized view:

CREATE INCREMENTAL MATERIALIZED VIEW mv AS SELECT count(a), a, b FROM tl GROUP BY a,
b DISTRIBUTED BY (a);

iv. Execute the following statement to run a query plan:

EXPLAIN SELECT count(a) FROM tl JOIN t2 ON tl.a = t2.i WHERE b > 3 GROUP BY a;

The following result is returned. Query rewrite returns the data of the materialized view mv after
supplementing the JOIN and WHERE clauses and removing the GROUP BY clause.

40

> Document Version: 20220707

Data-Query rewrite for materialized

AnalyticDB for PostgreSQL

views
QUERY PLAN
Gather Motion 3:1 (slicel; segments: 3) (cost=0.00..437.00 rows=1 width=8)
-> Result (cost=0.00..437.00 rows=1 width=8)
-> GroupAggregate (cost=0.00..437.00 rows=1 width=8)
Group Key: mv.a
-> Sort (cost=0.00..437.00 rows=1 width=12)
Sort Key: mv.a
-> Hash Join (cost=0.00..437.00 rows=1 width=12)
Hash Cond: (mv.a = t2.1)
-> 1Index Scan using mv_index on mv (cost=0.00..6.00 r
ows=1 width=12)
Index Cond: (b > 3)
-> Hash (cost=431.00..431.00 rows=4 width=4)
-> Seq Scan on t2 (cost=0.00..431.00 rows=4 wid
th=4)
Optimizer: Pivotal Optimizer (GPORCA) version 3.86.0
(13 rows)
> Document Version: 20220707 41

Data-Transaction management AnalyticDB for PostgreSQL

12.Transaction management

AnalyticDB for PostgreSQL supports standard attributes of database transactions and three isolation
levels. These attributes include atomicity, consistency, isolation, and durability, which are collectively
referred to as ACID. AnalyticDB for PostgreSQL uses a distributed massively parallel processing (MPP)
architecture to horizontally scale nodes and ensure transaction consistency between nodes. T his topic
describes the transaction isolation levels and transaction-related operations supported by AnalyticDB
for PostgreSQL.

Isolation levels

AnalyticDB for PostgreSQL provides the following three transaction isolation levels:

e o READ UNCOMMITTED: follows standard SQL syntax. However, this isolation level is implemented the
same as the READ COMMITED isolation level in AnalyticDB for PostgreSQL.

o READ COMMITTED: follows standard SQL syntax and is implemented the same as the READ
COMMITED isolation level in AnalyticDB for PostgreSQL.

o SERIALIZABLE: follows standard SQL syntax. However, this isolation level is implemented the same
as the REPEATABLE READ isolation level in AnalyticDB for PostgreSQL.

Example:

Execute the following statements to start a transaction block with the SERIALIZABLE isolation level:

BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SQL statements supported

AnalyticDB for PostgreSQL provides the following SQL statements for you to manage transactions:
e BEGIN and START: each start a transaction block.

e END and COMMIT : each commit a transaction.

e ROLLBACK: rolls back a transaction with no changes retained.

e SAVEPOINT: creates a savepoint within a transaction. You can revoke the SQL statements executed
after the savepoint was created.

e ROLLBACKTO SAVEPOINT: rolls back a transaction to a savepoint.
e RELEASE SAVEPOINT: releases a savepoint from a transaction.

Examples:

Execute the following statements to create a savepoint in a transaction and revoke the SQL
statements executed after the savepoint is created:

42 > Document Version: 20220707

AnalyticDB for PostgreSQL Data-Transaction management

BEGIN;
INSERT INTO tablel VALUES (1);
SAVEPOINT my savepoint;
INSERT INTO tablel VALUES (2);
ROLLBACK TO SAVEPOINT my savepoint;
INSERT INTO tablel VALUES (3);
COMMIT;

In this example, the values 1 and 3 are inserted, but the value 2 is not.

Execute the following statements to create a savepoint in a transaction and then release the
savepoint:

BEGIN;
INSERT INTO tablel VALUES (3);
SAVEPOINT my savepoint;
INSERT INTO tablel VALUES (4);
RELEASE SAVEPOINT my savepoint;
COMMIT;

In this example, the values 3 and 4 are inserted.

> Document Version: 20220707

43

Data-Manage users and permissions AnalyticDB for PostgreSQL

13.Manage users and
permissions

Manage users

When you create an instance, the system prompts you to specify an initial username and password. T his
initial user is the root user. After the instance is created, you can use the credentials of the root userto
connect to a database on that instance. After you use the psqgl CL client of PostgreSQL or Greenplum
to connect to a database on yourinstance, you canrunthe \du+ command to view the information

of all the users. Example:

) Notice Inadditionto the root user, other users are also created to manage databases.

postgres=> \du+
List of roles
Role name | Attributes | Member of | Description
—————————————— B s Rttt

root user | | | rds superuser

AnalyticDB for PostgreSQL does not provide a superuser, which is equivalent to the RDS_SUPERUSER
role. This is the same in ApsaraDB RDS for PostgreSQL. However, you can grant the RDS_SUPERUSER role
to the root user, for example, the root_user created in the preceding example. You can only check
whether the root user has this role based on the user description. The root user has the following
permissions:

e (Creates databases and accounts and logs on to databases, but does not have the credentials of a
superuser.

e Views and modifies the tables created by users other than a superuser, changes the owners of
tables, and performs operations such as SELECT, UPDATE, and DELETE.

e Views connections to users other than a superuser, cancels their SQL statements, and terminates their
connections.

e Executes CREATE EXTENSION and DROP EXTENSION statements to create and delete extensions.
e Creates users who have the RDS_SUPERUSER role. Example:

CRATE ROLE root user2 RDS SUPERUSER LOGIN PASSWORD 'xyz';

Manage permissions

You can manage permissions at the database, schema, and table levels. For example, if you want to
grant read permissions on a table to a user and revoke write permissions, execute the following
statements:

GRANT SELECT ON TABLE tl TO normal userl;
REVOKE UPDATE ON TABLE tl FROM normal userl;
REVOKE DELETE ON TABLE tl FROM normal userl;

44 > Document Version: 20220707

AnalyticDB for PostgreSQL Data-Manage users and permissions

References

For more information, visit Managing Roles and Privileges.

> Document Version: 20220707 45

https://gpdb.docs.pivotal.io/6-19/admin_guide/roles_privs.html

	1.Manage databases
	2.Manage schemas
	3.Manage tables
	4.Define table distribution
	5.Define table partitioning
	6.Define storage models for tables
	7.Manage indexes
	8.Manage views
	9.Manage materialized views
	10.Real-time materialized views
	11.Query rewrite for materialized views
	12.Transaction management
	13.Manage users and permissions

