Alibaba Cloud

AnalyticDB for PostgreSQL

Performance index

Document Version: 20210709

(-] Alibaba Cloud

AnalyticDB for PostgreSQL Performance index- Legal disclaimer

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be deemed
as your total acceptance of this legal disclaimer.

1.

You shall download and obt ain this document from the Alibaba Cloud website or other Alibaba Cloud-
aut horized channels, and use this document for your own legal business activities only. The content of
this document is considered confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided to any third party for
use wit hout the prior written consent of Alibaba Cloud.

. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminated by

any organization, company or individual in any form or by any means without the prior written consent of
Alibaba Cloud.

. The content of this document may be changed because of product version upgrade, adjustment, or

other reasons. Alibaba Cloud reserves the right to modify the content of this document without notice
and an updated version of this document will be released through Alibaba Cloud-aut horized channels
from time to time. You should pay attention to the version changes of this document as they occur and
download and obt ain the most up-to-date version of this document from Alibaba Cloud-aut horized
channels.

. This document serves only as a reference guide for your use of Alibaba Cloud products and services.

Alibaba Cloud provides this document based onthe "status quo", "being defective", and "existing
functions" of its products and services. Alibaba Cloud makes every effort to provide relevant operational
guidance based on existing technologies. However, Alibaba Cloud hereby makes a clear statement that
it in no way guarantees the accuracy, integrity, applicability, and reliability of the content of this
document, either explicitly or implicitly. Alibaba Cloud shall not take legal responsibility for any errors or
lost profits incurred by any organization, company, or individual arising from download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, take responsibility for any indirect,
consequential, punitive, contingent, special, or punitive damages, including lost profits arising from t he
use or trust inthis document (evenif Alibaba Cloud has been notified of the possibility of such a loss).

. By law, allthe contents in Alibaba Cloud documents, including but not limited to pictures, architecture

design, page layout, and text description, are intellectual property of Alibaba Cloud and/or its
affiliates. This intellect ual property includes, but is not limited to, trademark rights, patent rights,
copyrights, and trade secrets. No part of this document shall be used, modified, reproduced, publicly
transmitted, changed, disseminated, distributed, or published wit hout the prior written consent of
Alibaba Cloud and/or its affiliates. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for marketing, advertising, promotion, or ot her purposes wit hout the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited to, "Alibaba Cloud",
"Aliyun", "HiChina", and other brands of Alibaba Cloud and/or its affiliates, which appear separately or in
combination, as well as the auxiliary signs and patterns of the preceding brands, or anyt hing similar to
the company names, trade names, trademarks, product or service names, domain names, patterns,
logos, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates.

. Please directly contact Alibaba Cloud for any errors of this document.

> Document Version: 20210709

AnalyticDB for PostgreSQL

Performance index- Document conv
entions

Document conventions

Style

/\ Danger

warning

) Notice

@ Note

Bold

Courier font

Italic

(1 or [alb]

{} or {a|b}

Description

A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

A note indicates supplemental
instructions, best practices, tips, and
other content.

Closing angle brackets are used to
indicate a multi-level menu cascade.

Bold formatting is used for buttons ,
menus, page names, and other Ul
elements.

Courier font is used for commands

ltalic formatting is used for parameters
and variables.

This format is used for an optional value,
where only one item can be selected.

This format is used for a required value,
where only one item can be selected.

Example

& Danger:

Resetting will result in the loss of user
configuration data.

warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

p Notice:

If the weight is set to 0, the server no
longer receives new requests.

@ Note:

You can use Ctrl + A to select all files.

Click Settings> Network> Set network
type.

Click OK.

Runthe cd /d C:/window command to
enter the Windows system folder.

bae log list --instanceid

Instance_ID

ipconfig [-all|-t]

switch {active|stand}

> Document Version: 20210709

Performance index-Table of Conten

AnalyticDB for PostgreSQL e

Table of Contents

> Document Version: 20210709

AnalyticDB for PostgreSQL Performance index-

1.TPC-H

This topic describes how to test the transaction processing capabilities of an AnalyticDB for PostgreSQL
V6.0 instance by using TPC Benchmark H (TPC-H). The transaction processing capabilities of AnalyticDB
for PostgreSQL V6.0 are greatly improved over AnalyticDB for PostgreSQL V4.3.

Introduction

TPC-His provided by the Transaction Processing Performance Council (TPC) to test decision support
systems. TPC-His used in academia and industries to evaluate the performance of decision support
applications. TPC-H models data in production environments to simulate the data warehouse of a sales
system. The data warehouse contains eight relationships and the data volume ranges from 1 GB to 3
TB. The benchmark includes 22 queries to evaluate the system response time for each query. The
response time is the time between the query submission and the result return. The test result shows the
query processing capability of the system. For more information, see

Logical relationships of eight tables

PART (P) PARTSUPP (PS) LINEITEM (L) ORDERS (0)
SF*200,000 SF*800,000 SF*6,000,000 SF*1,500,000
PARTKEY PARTKEY ORDERKEY ~&———| ORDERKEY
NAME SUPPKEY PARTKEY CUSTKEY -
MFGR AVAILQTY SUPPKEY ORDERSTATUS
BRAND SUPPLYCOST LINENUMBER TOTALPRICE
TYPE COMMENT QUANTITY ORDERDATE
SIZE EXTENDEDPRICE ORDER-
CUSTOMER (C.) PRIORITY
CONTAINER SF150,000 DISCOUNT CLERK
CUSTKEY
RETAILPRICE TAX SHIP-
NAME
COMMENT RETURNFLAG PRIORITY
ADDRESS
LINESTATUS COMMENT
SUPPLIER (S)) NATIONKEY
SF*10,000 SHIPDATE
PHONE
SUPPKEY COMMITDATE
ACCTBAL
NAME RECEIPTDATE
MKTSEGMENT
ADDRESS SHIPINSTRUCT
NATIONKEY COMMENT SHIPMODE
PHONE NATION (N_) COMMENT
25
ACCTBAL
NATIONKEY REGION (R)
COMMENT 5
NAME ! REGIONKEY
REGIONKEY |~
NAME
COMMENT
COMMENT

Document Version: 20210709

https://yq.aliyun.com/go/articleRenderRedirect?url=http%253A%252F%252Fwww.tpc.org%252Ftpc_documents_current_versions%252Fpdf%252Ftpc-h_v2.17.3.pdf

Performance index- TPC-H AnalyticDB for PostgreSQL

Data volume

The volume of data affects the query speed. In TPC-H, scale factor (SF) is used to describe the data
volume. One SF is equal to 1 GB, and 1,000 SF is equal to 1 TB. The eight tables contain 1 SF of data in
total, excluding the space occupied by indexes. You must reserve more than 1 SF of data space.
Test specifications

Select one of the following AnalyticDB for PostgreSQL V6.0 specifications for the test instance:
Standard SSDs or enhanced SSDs, four cores per node, and 32 nodes per instance.

Use standard SQL queries provided by TPC-H.

Test procedure
1. Create an ECS instance.

Create an ECS instance to generate 1 TB of data, upload data to the database, and test the client.
We recommend that you create an ECS instance of the ecs.gé.4xlarge instance type that uses a 2
TB enhanced SSD and runs Cent OS.

2. Create an AnalyticDB for PostgreSQL V6.0 instance.
The instance must be in the same region, zone, and VPC as the ECS instance.
3. Generate 1 TB of test data for TPC-H.

o Logonto the ECS instance by using an SSH key pair and download the TPC-H dbgen program. An
executable program dbgen/qggen is generated in the dbgen directory after compilation.

git clone https://github.com/gregrahn/tpch-kit.git
cd tpch-kit/dbgen
make
o Generate 1 TB of data and run the following command.
./dbgen --help
o Runthe following command to view how to generate data:
./dbgen -vf -s 1000
o Execute the following shell script to concurrently generate a dataset composed of 10 data files:
for((i=1;i<=10;i++));
do
./dbgen -s 1000 -S $i-C 10 -f &

done

o A vertical bar (|) is added at the end of each line in the generated TBL file. Execute the following
shell script to delete the vertical bars by using the sed command:

6 > Document Version: 20210709

AnalyticDB for PostgreSQL Performance index-

sed-i's/. $//' ./region.tbl &

sed -i's/. $//' ./nation.tbl &

for((i=1;<=10;i++));

do
sed -i's/.$//" .Jlineitem.tbl.$i &
sed-i's/. $//' .Jorders.tbl.$i &
sed-i's/.$//' ./customer.tbl.$i &
sed-i's/. $//'./partsupp.tbl.Si &
sed-i's/.$//" ./part.tbl.Si &
sed-i's/. $//' ./supplier.tbl.$i &

done

Create tables

Column store tables are suitable for vector computing and the Just-in-time (JIT) compilation, and can
access data and collect statistics more efficiently. You can use the table creation statements to
performthe following operations:

e (reate append-optimized (AO) column store tables.
e Disable data compression.

e Set tablesto replicated tables.

create table nation (

n_nationkey integer not null,

n_name char(25) not null,

n_regionkey integer not null,

n_comment varchar(152))
with (appendonly=true, orientation=column)
distributed REPLICATED;

create table region (

r_regionkey integer not null,

r_name char(25) not null,

r_comment varchar(152))
with (appendonly=true, orientation=column)
distributed REPLICATED;

create table part (
p_partkey integer not null,
p_name varchar(55) not null,
p_mfgr char(25) not null,
p_brand char(10) not null,
p_type varchar(25) not null,
p_size integer not null,
p_container char(10) not null,
p_retailprice DECIMAL(15,2) not null,
p_comment varchar(23) not null)
with (appendonly=true, orientation=column)
distributed by (p_partkey);

create table supplier (

s_suppkey integer not null,
s_name char(25) not null,

Document Version: 20210709

Performance index- AnalyticDB for PostgreSQL

s_address varchar(40) not null,
s_nationkey integer not null,
s_phone char(15) not null,
s_acctbal DECIMAL(15,2) not null,
s_comment varchar(101) not null)
with (appendonly=true, orientation=column)
distributed by (s_suppkey);

create table partsupp (
ps_partkey integer not null,
ps_suppkey integer not null,
ps_availgty integer not null,
ps_supplycost DECIMAL(15,2) not null,
ps_comment varchar(199) not null)
with (appendonly=true, orientation=column)
distributed by (ps_partkey);

create table customer (
c_custkey integer not null,
c_name varchar(25) not null,
c_address varchar(40) not null,
c_nationkey integer not null,
c_phone char(15) not null,
c_acctbal DECIMAL(15,2) not null,
c_mktsegment char(10) not null,
c_comment varchar(117) not null)

with (appendonly=true, orientation=column)

distributed by (c_custkey);

create table orders (
o_orderkey bigint not null,
o_custkey integer not null,
o_orderstatus char(1) not null,
o_totalprice DECIMAL(15,2) not null,
o_orderdate date not null,
o_orderpriority char(15) not null,
o_clerk char(15) not null,
o_shippriority integer not null,
o_comment varchar(79) not null)

with (appendonly=true, orientation=column)

distributed by (o_orderkey);

create table lineitem (
|_orderkey bigint not null,
|_partkey integer not null,
|_suppkey integer not null,
I_linenumber integer not null,
|_quantity DECIMAL(15,2) not null,
|_extendedprice DECIMAL(15,2) not null,
|_discount DECIMAL(15,2) not null,
|_tax DECIMAL(15,2) not null,
I_returnflag char(1) not null,
|_linestatus char(1) not null,
|_shipdate date not null,

| R PR R (SR | |

8 Document Version: 20210709

AnalyticDB for PostgreSQL Performance index-

L_commitaate aate not nuti,
|_receiptdate date not null,
I_shipinstruct char(25) not null,
|_shipmode char(10) not null,
|_comment varchar(44) not null)
with (appendonly=true, orientation=column)
distributed by (l_orderkey);

Import data

You can use one of the following methods to import data:
e Execute the COPY statements.

e Use 0SS external tables.

The following sections describe the details of the methods.

Execute the COPY statements to import data

Execute the following SQL script:

\copy nation from '/data/tpch_1t/nation.tbl' DELIMITER'|';
\copy region from '/data/tpch_1t/region.tbl' DELIMITER'|';
\copy supplier from '/data/tpch_1t/supplier.tbl' DELIMITER'|';
\copy part from '/data/tpch_1t/part.tbl' DELIMITER'|';

\copy partsupp from '/data/tpch_1t/partsupp.tbl' DELIMITER'|';
\copy customer from '/data/tpch_1t/customer.tbl' DELIMITER'|';
\copy orders from '/data/tpch_1t/orders.tbl' DELIMITER'|";
\copy lineitem from '/data/tpch_1t/lineitem.tbl' DELIMITER'|';

Replace the example path of the TBL file with the actual path. For more information about the shell
script, see the shell script of table creation. You can also use psqlto connect to the database and
execute the SQL script. To improve the import efficiency that is allowed by the network bandwidt h of
the ECS instance, you can use multiple psqgl connections to concurrently execute COPY statements.

Use external tables to import data

Upload the generated data file to OSS.

.Jossutil64 cp -r <TBL file directory> oss://<oss bucket>/<directory>/
-i <AccessKey ID> -k <Access Key Secret>
-e <EndPoint>

For more information, see
Create 0SS external tables

create readable external table ext_nation (n_nationkey int, n_name varchar(25), n_regionkey integer,
n_comment varchar(152))
location('oss://oss-cn-beijing.aliyuncs.com
filepath=data/tpch_data_1000x/nation.tbl
id=$AccessKey key=$AccessKeySecret
bucket=0ss-y') FORMAT 'TEXT' (DELIMITER'|");

Document Version: 20210709

https://www.alibabacloud.com/help/doc-detail/35457.htm#concept-ofw-3mr-52b

Performance index- AnalyticDB for PostgreSQL

create readable external table ext_region (R_REGIONKEY int, R_NAME CHAR(25),R_COMMENT VARCHAR(152))

location('oss://oss-cn-beijing.aliyuncs.com
filepath=data/tpch_data_1000x/region.tbl
id=$AccessKey key=$AccessKeySecret
bucket=o0ss-y') FORMAT 'TEXT' (DELIMITER'|") ;

CREATE readable external TABLE ext_lineitem (|_orderkey bigint, |_partkey bigint, |_suppkey bigint,
|_linenumber bigint, |_quantity double precision, |_extendedprice double precision,
|_discount double precision, |_tax double precision, |_returnflag CHAR(1),
|_linestatus CHAR(1), |_shipdate DATE, |_commitdate DATE, |_receiptdate DATE,
I_shipinstruct CHAR(25), |_shipmode CHAR(10), |_comment VARCHAR(44))
location('oss://oss-cn-beijing.aliyuncs.com
filepath=data/tpch_data_1000x/lineitem.tbl
id=$AccessKey key= $SAccessKeySecret
bucket=o0ss-y ') FORMAT 'TEXT' (DELIMITER|') ;

CREATE readable external TABLE ext_orders (o_orderkey bigint , o_custkey bigint , o_orderstatus CHAR(1),
o_totalprice double precision, o_orderdate DATE, o_orderpriority CHAR(15) , o_clerk CHAR(15) ,
o_shippriority bigint ,0_comment VARCHAR(79))

location('oss://oss-cn-beijing.aliyuncs.com
filepath=data/tpch_data_1000x/orders.tbl
id=$AccessKey key=$AccessKeySecret
bucket=o0ss-y') FORMAT 'TEXT' (DELIMITER'|") ;

CREATE readable external TABLE ext_part (p_partkey bigint , p_name VARCHAR(55) , p_mfgr CHAR(25),
p_brand CHAR(10), p_type VARCHAR(25) , p_size bigint , p_container CHAR(10) ,
p_retailprice double precision , p_comment VARCHAR(23))
location('oss://oss-cn-beijing.aliyuncs.com
filepath=data/tpch_data_1000x/part.tbl
id=$AccessKey key= $AccessKeySecret
bucket=o0ss-y') FORMAT 'TEXT' (DELIMITER'[');

CREATE readable external TABLE ext_partsupp (ps_partkey bigint , ps_suppkey bigint ,
ps_availqty bigint , ps_supplycost double precision , ps_comment VARCHAR(199))
location('oss://oss-cn-beijing.aliyuncs.com
filepath=data/tpch_data_1000x/partsupp.tbl
id=$AccessKey key= $AccessKeySecret
bucket=o0ss-y') FORMAT 'TEXT' (DELIMITER'|');

CREATE readable external TABLE ext_supplier (s_suppkey bigint ,s_name CHAR(25) ,
s_address VARCHAR(40) , s_nationkey bigint ,s_phone CHAR(15) ,s_acctbal DECIMAL(15,2),
s_comment VARCHAR(101))

location('oss://oss-cn-beijing.aliyuncs.com
filepath=data/tpch_data_1000x/supplier.tbl
id=$AccessKey key= $SAccessKeySecret
bucket=0ss-y') FORMAT 'TEXT' (DELIMITER'|') ;

CREATE readable external TABLE ext_customer (c_custkey bigint , c_name VARCHAR(25) ,
c_address VARCHAR(40) , c_nationkey bigint , c_phone CHAR(15) , c_acctbal double precision,
c_mktsegment CHAR(10) , c_comment VARCHAR(117))

location('oss://oss-cn-beijing.aliyuncs.com
filepath=data/tpch_data_1000x/customer.tbl

e L e ¥ D Rl o W N LT o AT

10 Document Version: 20210709

AnalyticDB for PostgreSQL Performance index-

IU— JALLESSNEY KEYy— JALLESSNEYyDELIeL

bucket=o0ss-y') FORMAT 'TEXT' (DELIMITER'|');

Write TPC-H data from OSS external tables to the AnalyticDB for
PostgreSQL instance

insert into nation select * from ext_nation;
insert into region select * from ext_region;
insert into lineitem select * from ext_lineitem;
insert into orders select * from ext_orders;
insert into customer select * from ext_customer;
insert into part select * from ext_part;

insert into partsupp select * from ext_partsupp;
insert into supplier select * from ext_supplier;

Data is imported. Performthe following steps to execute queries.
Collect table statistics

analyze nation;
analyze region;
analyze lineitem;
analyze orders;
analyze customer;
analyze part;
analyze partsupp;
analyze supplier;

Execute queries

Execute the following shell script to start the test. You can also use clients such as psqglto execute SQL
queries one by one. The 22 SQL queries are listed in the lower part of this topic.

Accelerate queries

The vector computing acceleration engine for AnalyticDB for PostgreSQL V6.0, Odyssey, can double
query performance in TPC-H scenarios.

Usage:

Set enable_odyssey to on at the session level to enable Odyssey. Execute the following SQL
statement:

set enable_odyssey =on;

Set enable_odyssey to off to disable Odyssey.

set enable_odyssey = off;

If you execute the following script to execute the 22 SQL queries, you must add

set enable_odyssey =on; at the beginning of each query.

Document Version: 20210709 11

Performance index- TPC-H AnalyticDB for PostgreSQL

Execute all queries and record the time consumed by each query and the overall time
consumed

total_cost=0

foriin{1..22}
do
echo "begin run Q${i}, query/qSi.sql, “date™ "
begin_time="date +%s. %N’
#psql-h ${instance endpoint} -p ${port} -U ${database user} -f query/q${i}.sql > ./log/log_q${i}.out
rc=$?
end_time="date +%s. %N"
cost="echo "end_time-bhegin_time"|bc’
total_cost="echo "$total_cost+Scost"|bc"
if[Src-ne0];then
printf "run Q%s fail, cost: %.2f, totalCost: %.2f, * date \n" $i $cost Stotal_cost
else
printf "run Q%s succ, cost: %.2f, totalCost: %.2f, " date " \n" $i Scost Stotal_cost
fi
done

Test results

The following table describes the number of data entries in each table. The total amount of datais 1
TB, excluding indexes.

Table name Data entries
customer 150,000,000
lineitem 5,999,989,709
nation 25

orders 1,500,000,000
part 200,000,000
partsupp 800,000,000
region 5

supplier 10,000,000

The following table describes the execution duration.

12 > Document Version: 20210709

AnalyticDB for PostgreSQL

Performance index-TPC-H

Total execution duration
(Unit: seconds)

Total

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

4-core CPU, 32 nodes,
standard SSD or enhanced
SSD

2179.85

399.38

25.32

56.91

54.26

145.64

30.61

71.43

73.58

174.09

51.56

11.63

44.25

59.13

27.90

48.62

4-core CPU, 32 nodes,
standard SSD or enhanced
SSD, Odyssey enabled

1258.24

171.05

12.24

38.26

20.20

118.72

21.19

63.79

37.84

169.28

36.96

4.56

27.74

40.00

15.18

26.27

> Document Version: 20210709

13

Performance index-TPC-H AnalyticDB for PostgreSQL

Total execution duration 4-core CPU, 32 nodes, 4-core CPU, 32 nodes,

e — standard SSD or enhanced standard SSD or enhanced
SSD SSD, Odyssey enabled

Q16 19.15 13.02

Q17 294.83 178.73

Q18 293.15 98.39

Q19 41.84 48.15

Q20 61.87 32.22

Q21 151.44 58.85

Q22 43.26 25.60

22 SQL queries

-Q1
-- Enable Odyssey.
set enable_odyssey =on;
select
I_returnflag,
|_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 - |_discount)) as sum_disc_price,
sum(l_extendedprice * (1 - [_discount) * (1 +|_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order
from
lineitem
where
|_shipdate <= date '1998-12-01' - interval '93 day'
group by
I_returnflag,
_linestatus
order by
I_returnflag,
I_linestatus;

-02

14 > Document Version: 20210709

AnalyticDB for PostgreSQL

-- Enable Odyssey.
set enable_odyssey = on;
select
s_acctbal,
s_name,
n_name,
p_partkey,
p_mfgr,
s_address,
s_phone,
s_comment
from
part,
supplier,
partsupp,
nation,
region
where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_size =23
and p_type like '%STEEL'
and s_nationkey = n_nationkey
and n_regionkey =r_regionkey
and r_name ='EUROPE'
and ps_supplycost = (
select
min(ps_supplycost)
from
partsupp,
supplier,
nation,
region
where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey =r_regionkey
and r_name ='EUROPE'
)
order by
s_acctbal desc,
n_name,
s_name,
p_partkey
limit 100;

--Q3

-- Enable Odyssey.

set enable_odyssey = on;

select
|_orderkey,
sum(l_extendedprice * (1 - |_discount)) as revenue,
o_orderdate,

Document Version: 20210709

Performance index:

15

Performance index- AnalyticDB for PostgreSQL

o_shippriority
from
customer,
orders,
lineitem
where
c_mktsegment = 'MACHINERY"
and c_custkey = o_custkey
and |_orderkey = o_orderkey
and o_orderdate <date '1995-03-24'
and |_shipdate > date '1995-03-24'
group by
|_orderkey,
o_orderdate,
o_shippriority
order by
revenue desc,
o_orderdate
limit 10;

--Q4
-- Enable Odyssey.
set enable_odyssey = on;
select
o_orderpriority,
count(*) as order_count
from
orders
where
o_orderdate >=date '1996-08-01"'
and o_orderdate < date '1996-08-01' + interval '3' month
and exists (
select
from
lineitem
where
|_orderkey = o_orderkey
and |_commitdate <|_receiptdate
)
group by
o_orderpriority
order by
o_orderpriority;

--Q5
-- Enable Odyssey.
set enable_odyssey = on;
select

n_name,

sum(l_extendedprice * (1 - |_discount)) as revenue
from

customer,

orders,

16 Document Version: 20210709

AnalyticDB for PostgreSQL

lineitem,
supplier,
nation,
region
where
c_custkey = o_custkey
and |_orderkey = o_orderkey
and |_suppkey =s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey =r_regionkey
and r_name="MIDDLE EAST'
and o_orderdate >= date '1994-01-01'
and o_orderdate <date '1994-01-01' + interval '1' year
group by
n_name
order by
revenue desc;

--Q6
-- Enable Odyssey.
set enable_odyssey = on;
select
sum(l_extendedprice * |_discount) as revenue
from
lineitem
where
|_shipdate >= date '1994-01-01'
and [_shipdate <date '1994-01-01' + interval '1' year
and |_discount between 0.06 - 0.01 and 0.06 + 0.01
and |_quantity < 24;

--Q7
-- Enable Odyssey.
set enable_odyssey = on;
select
supp_nation,
cust_nation,
_year,
sum(volume) as revenue
from
(
select
nl.n_name as supp_nation,
n2.n_name as cust_nation,
extract(year from [_shipdate) as |_year,
|_extendedprice * (1 - |_discount) as volume
from
supplier,
lineitem,
orders,
customer,
nationnl,
nation n2

Document Version: 20210709

Performance index:

17

Performance index:

where
s_suppkey = |_suppkey
and o_orderkey =_orderkey
and c_custkey = o_custkey
and s_nationkey = nl.n_nationkey
and c_nationkey = n2.n_nationkey
and (

(nl.n_name ="'JORDAN' and n2.n_name ="INDONESIA')
or (nl.n_name ="INDONESIA' and n2.n_name ='JORDAN')

)

and |_shipdate between date '1995-01-01' and date '1996-12-31'

) as shipping

group by
supp_nation,
cust_nation,
l_year

order by
supp_nation,
cust_nation,
l_year;

--Q8
-- Enable Odyssey.
set enable_odyssey =on;
select
o_year,
sum(case
when nation ='INDONESIA' then volume
else 0
end) /sum(volume) as mkt_share
from
(
select
extract(year from o_orderdate) as o_year,

|_extendedprice * (1 - |_discount) as volume,

n2.n_name as nation
from
part,
supplier,
lineitem,
orders,
customer,
nation nl,
nation n2,
region
where
p_partkey =_partkey
and s_suppkey =|_suppkey
and |_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = nl.n_nationkey
and nl.n_regionkey = r_regionkey
and r_name ="ASIA'
and s_nationkey = n2.n_nationkey

—mmd - LA _s_ L _si..__._ d_i_VaAAr A1 Al

18

——d d_i_1aAnr 1A AT

AnalyticDB for PostgreSQL

Document Version: 20210709

AnalyticDB for PostgreSQL

ana o_oraeraate petween aate 19yyo-ul-Ul ana aate 1yvyob-14-51°
and p_type ='STANDARD BRUSHED BRASS'
) as all_nations
group by
o_year
order by
o_year;

--Q9
-- Enable Odyssey.
set enable_odyssey = on;
select
nation,
o_year,
sum(amount) as sum_profit
from
(
select
n_name as nation,
extract(year from o_orderdate) as o_year,
|_extendedprice * (1 - |_discount) - ps_supplycost * |_quantity as amount
from
part,
supplier,
lineitem,
partsupp,
orders,
nation
where
s_suppkey = |_suppkey
and ps_suppkey = |_suppkey
and ps_partkey = |_partkey
and p_partkey = |_partkey
and o_orderkey =|_orderkey
and s_nationkey = n_nationkey
and p_name like '%chartreuse%’
) as profit
group by
nation,
o_year
order by
nation,
o_year desc;

--Q10
-- Enable Odyssey.
set enable_odyssey = on;
select
c_custkey,
Cc_name,
sum(l_extendedprice * (1 - |_discount)) as revenue,
c_acctbal,
n_name,
c_address,

r nhana

Document Version: 20210709

Performance index:

19

Performance index:

~_privii,

c_comment
from
customer,
orders,
lineitem,
nation
where
c_custkey = o_custkey
and |_orderkey = o_orderkey
and o_orderdate >= date '1994-08-01'
and o_orderdate <date '1994-08-01' + interval '3' month
and _returnflag="R'
and c_nationkey = n_nationkey
group by
c_custkey,
Cc_name,
c_acctbal,
c_phone,
n_name,
c_address,
c_comment
order by
revenue desc
limit 20;

- Q11
-- Enable Odyssey.
set enable_odyssey = on;
select
ps_partkey,
sum(ps_supplycost * ps_availgty) as value
from
partsupp,
supplier,
nation
where
ps_suppkey =s_suppkey
and s_nationkey = n_nationkey
and n_name ='INDONESIA’
group by
ps_partkey having
sum(ps_supplycost * ps_availqgty) > (
select
sum(ps_supplycost * ps_availgty) * 0.0001000000
from
partsupp,
supplier,
nation
where
ps_suppkey =s_suppkey
and s_nationkey = n_nationkey
and n_name ="INDONESIA'
)

order by

20

AnalyticDB for PostgreSQL

Document Version: 20210709

AnalyticDB for PostgreSQL

value desc;

--Q12
-- Enable Odyssey.
set enable_odyssey = on;
select
|_shipmode,
sum(case
when o_orderpriority = '1-URGENT'
or o_orderpriority ='2-HIGH'
thenl
else0
end) as high_line_count,
sum(case
when o_orderpriority <> '1-URGENT'
and o_orderpriority <> '2-HIGH'
then1
else0
end) as low_line_count
from
orders,
lineitem
where
o_orderkey = |_orderkey
and |_shipmode in ('REG AIR', 'TRUCK')
and |_commitdate <|_receiptdate
and |_shipdate < |_commitdate
and |_receiptdate >= date '1994-01-01'
and |_receiptdate <date '1994-01-01' + interval '1' year
group by
|_shipmode
order by
|_shipmode;

- Q13
-- Enable Odyssey.
set enable_odyssey = on;
select
c_count,
count(*) as custdist
from
(
select
c_custkey,
count(o_orderkey)
from
customer left outer join orders on
c_custkey = o_custkey
and o_comment not like '%pending%requests%'
group by
c_custkey
) as c_orders (c_custkey, c_count)
group by
c_count

Document Version: 20210709

Performance index:

21

Performance index- AnalyticDB for PostgreSQL

order by
custdist desc,
c_count desc;

--Q14
-- Enable Odyssey.
set enable_odyssey = on;
select
100.00 * sum(case
when p_type like 'PROMO%'
then |_extendedprice * (1 - |_discount)
else 0
end) / sum(l_extendedprice * (1 - |_discount)) as promo_revenue
from
lineitem,
part
where
|_partkey = p_partkey
and |_shipdate >= date '1994-11-01'
and |_shipdate < date '1994-11-01' + interval '1' month;

--Q15
-- Enable Odyssey.
set enable_odyssey = on;
create view revenue0 (supplier_no, total_revenue) as
select
|_suppkey,
sum(l_extendedprice * (1 - |_discount))
from
lineitem
where
|_shipdate >=date '1997-10-01'
and |_shipdate <date '1997-10-01' + interval '3' month
group by
|_suppkey;
select
s_suppkey,
s_name,
s_address,
s_phone,
total_revenue
from
supplier,
revenue0
where
s_suppkey =supplier_no
and total_revenue = (
select
max(total_revenue)
from
revenue0
)
order by
s_suppkey;

22 Document Version: 20210709

AnalyticDB for PostgreSQL

drop view revenue0;

--Ql6
-- Enable Odyssey.
set enable_odyssey =on;
select
p_brand,
p_type,
p_size,
count(distinct ps_suppkey) as supplier_cnt
from
partsupp,
part
where
p_partkey = ps_partkey
and p_brand <>'Brand#44'
and p_type not like 'SMALL BURNISHED%'
and p_size in (36, 27, 34,45, 11, 6, 25, 16)
and ps_suppkey not in (
select
s_suppkey
from
supplier
where
s_comment like '%Customer%Complaints%

)
group by
p_brand,
p_type,
p_size
order by
supplier_cnt desc,
p_brand,
p_type,
p_size;

--Q17
-- Enable Odyssey.
set enable_odyssey = on;
select
sum(l_extendedprice) / 7.0 as avg_yearly
from
lineitem,
part
where
p_partkey =_partkey
and p_brand = 'Brand#42'
and p_container ='JUMBO PACK'
and [_quantity < (
select
0.2 * avg(l_quantity)
from
lineitem
where

Document Version: 20210709

Performance index:

23

Performance index:

L_partkey = p_partkey

);

--Q18
-- Enable Odyssey.
set enable_odyssey = on;
select
Cc_name,
c_custkey,
o_orderkey,
o_orderdate,
o_totalprice,
sum(l_quantity)
from
customer,
orders,
lineitem
where
o_orderkey in (
select
|_orderkey
from
lineitem
group by
|_orderkey having
sum(l_quantity) >312
)
and c_custkey = o_custkey
and o_orderkey =|_orderkey
group by
Cc_name,
c_custkey,
o_orderkey,
o_orderdate,
o_totalprice
order by
o_totalprice desc,
o_orderdate
limit 100;

- Q19
-- Enable Odyssey.
set enable_odyssey = on;
select
sum(l_extendedprice* (1 - |_discount)) as revenue
from
lineitem,
part
where
(
p_partkey =|_partkey
and p_brand ='Brand#43'
and p_containerin ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG'")
and |_quantity >=5 and |_quantity <=5+ 10

and n civa hatwwaan 1 and R

24

AnalyticDB for PostgreSQL

Document Version: 20210709

AnalyticDB for PostgreSQL

alnuvu P_OILC MTLVWCCIHI LA dlivu v

and [_shipmode in ('AIR', 'AIR REG')

and |_shipinstruct ='DELIVER IN PERSON'
)

or
(

p_partkey =|_partkey

and p_brand = 'Brand#45'

and p_containerin ('"MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')

and |_quantity >=12 and |_quantity <=12 + 10

and p_size between 1 and 10

and |_shipmode in ('AIR', 'AIR REG')

and |_shipinstruct ='DELIVER IN PERSON'

or

p_partkey =_partkey
and p_brand ='Brand#11'
and p_containerin ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG")
and |_quantity >=24 and |_quantity <=24 + 10
and p_size between 1 and 15
and [_shipmode in ('AIR', 'AIR REG')
and |_shipinstruct ='DELIVER IN PERSON'
);

--Q20
-- Enable Odyssey.
set enable_odyssey = on;
select
s_name,
s_address
from
supplier,
nation
where
s_suppkey in (
select
ps_suppkey
from
partsupp
where
ps_partkey in (
select
p_partkey
from
part
where
p_name like 'magenta%’
)
and ps_availqgty > (
select
0.5 * sum(l_quantity)
from
lineitem
where

Document Version: 20210709

Performance index:

25

Performance index- AnalyticDB for PostgreSQL

|_partkey = ps_partkey

and |_suppkey = ps_suppkey

and |_shipdate >= date '1996-01-01'

and |_shipdate <date '1996-01-01' + interval '1' year

)
and s_nationkey = n_nationkey
and n_name ="'RUSSIA'
order by
S_name;

--Q21
-- Enable Odyssey.
set enable_odyssey = on;
select
s_name,
count(*) as numwait
from
supplier,
lineitem 11,
orders,
nation
where
s_suppkey = 1.l_suppkey
and o_orderkey = 1.|_orderkey
and o_orderstatus ='F'
and 1.1_receiptdate > [1.|_commitdate
and exists (
select
from
lineitem 12
where
12.l_orderkey = 1.|_orderkey
and 12.1_suppkey <> [1.|_suppkey
)
and not exists (
select
from
lineitem 13
where
13.l_orderkey = 11.l_orderkey
and 13.1_suppkey <> [1.|_suppkey
and 3.l_receiptdate > [3.|_commitdate
)
and s_nationkey = n_nationkey
and n_name ='MOZAMBIQUE'
group by
s_name
order by
numwait desc,
s_name
limit 100;

26 Document Version: 20210709

AnalyticDB for PostgreSQL

Performance index- TPC-H

--Q22
-- Enable Odyssey.
set enable_odyssey =on;
select
cntrycode,
count(*) as numcust,
sum(c_acctbal) as totacctbal
from
(
select
substring(c_phone from 1 for 2) as cntrycode,
c_acctbal
from
customer
where
substring(c_phone from 1 for 2) in
('13','31','23",'29','30','18",'17")
and c_acctbal > (
select
avg(c_acctbal)
from
customer
where
c_acctbal>0.00
and substring(c_phone from 1 for 2) in
('13','31','23",'29','30','18','17")
)
and not exists (
select
from
orders
where
o_custkey = c_custkey
)
) as custsale
group by
cntrycode
order by
cntrycode;

> Document Version: 20210709

27

	1.TPC-H

