
Alibaba Cloud

ApsaraDB for RDS
AliPG Kernel

Document Version: 20201013

Alibaba Cloud

ApsaraDB for RDS
AliPG Kernel

Document Version: 20201013

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and condit ions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be
deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba
Cloud-authorized channels, and use this document for your own legal business act ivit ies only. T he
content of this document is considered confident ial informat ion of Alibaba Cloud. You shall
st rict ly abide by the confident iality obligat ions. No part of this document shall be disclosed or
provided to any third party for use without the prior writ ten consent of Alibaba Cloud.

2. No part of this document shall be excerpted, t ranslated, reproduced, t ransmit ted, or
disseminated by any organizat ion, company or individual in any form or by any means without the
prior writ ten consent of Alibaba Cloud.

3. T he content of this document may be changed because of product version upgrade, adjustment,
or other reasons. Alibaba Cloud reserves the right to modify the content of this document
without not ice and an updated version of this document will be released through Alibaba Cloud-
authorized channels from t ime to t ime. You should pay at tent ion to the version changes of this
document as they occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. T his document serves only as a reference guide for your use of Alibaba Cloud products and
services. Alibaba Cloud provides this document based on the "status quo", "being defect ive", and
"exist ing funct ions" of its products and services. Alibaba Cloud makes every effort to provide
relevant operat ional guidance based on exist ing technologies. However, Alibaba Cloud hereby
makes a clear statement that it in no way guarantees the accuracy, integrity, applicability, and
reliability of the content of this document, either explicit ly or implicit ly. Alibaba Cloud shall not
take legal responsibility for any errors or lost profits incurred by any organizat ion, company, or
individual arising from download, use, or t rust in this document. Alibaba Cloud shall not , under
any circumstances, take responsibility for any indirect , consequent ial, punit ive, cont ingent ,
special, or punit ive damages, including lost profits arising from the use or t rust in this document
(even if Alibaba Cloud has been not ified of the possibility of such a loss).

5. By law, all the contents in Alibaba Cloud documents, including but not limited to pictures,
architecture design, page layout , and text descript ion, are intellectual property of Alibaba Cloud
and/or its affiliates. T his intellectual property includes, but is not limited to, t rademark rights,
patent rights, copyrights, and t rade secrets. No part of this document shall be used, modified,
reproduced, publicly t ransmit ted, changed, disseminated, dist ributed, or published without the
prior writ ten consent of Alibaba Cloud and/or its affiliates. T he names owned by Alibaba Cloud
shall not be used, published, or reproduced for market ing, advert ising, promot ion, or other
purposes without the prior writ ten consent of Alibaba Cloud. T he names owned by Alibaba Cloud
include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combinat ion, as well as the auxiliary
signs and patterns of the preceding brands, or anything similar to the company names, t rade
names, t rademarks, product or service names, domain names, patterns, logos, marks, signs, or
special descript ions that third part ies ident ify as Alibaba Cloud and/or its affiliates.

6. Please direct ly contact Alibaba Cloud for any errors of this document.

ApsaraDB for RDS AliPG Kernel · Legal disclaimer

> Document Version:20201013 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that
the user must understand.

 Notice:

If the weight is set to 0, the server
no longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set network
type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

ApsaraDB for RDS AliPG Kernel · Document convent ions

> Document Version:20201013 I

Table of Contents
1.AliPG overview

2.Release notes of minor AliPG versions

3.Functional modules of AliPG

4.Plug-ins supported

5.Query vertical industry-specific data

5.1. Use the TimescaleDB plug-in

5.2. Use the smlar plug-in

5.3. Use the PASE plug-in

5.4. Use the roaringbitmap plug-in

5.5. Use the RDKit plug-in

6.Run cross-database queries

6.1. Read and write external data files by using oss_fdw

6.2. Use mysql_fdw to read and write data to a MySQL database …

6.3. Use the log_fdw plug-in

6.4. Use the tds_fdw plug-in

6.5. Use the oracle_fdw plug-in

7.Use the dblink and postgre_fdw plug-ins for cross-database operations …

8.Use the hll plug-in

9.Use the pg_cron plug-in

10.Use the PL/Proxy plug-in

11.Fuzzy query (PG_ bigm)

12.Use the wal2json plug-in

13.Failover slot

05

07

11

13

22

22

24

26

33

39

42

42

48

51

53

55

60

63

66

68

75

83

85

ApsaraDB for RDS AliPG Kernel · T able of Contents

> Document Version:20201013 I

This topic provides an overview of AliPG.

Background information
PostgreSQL is an advanced open source enterprise-grade database service. PostgreSQL was
listed in the DB-Engines Ranking in 2017 and 2018. In 2019, PostgreSQL even won the O'Reilly
Open Source Convention award (OSCON).

Alibaba Cloud offers two PostgreSQL-compatible database services that run AliPG: ApsaraDB for
RDS and ApsaraDB for MyBase. AliPG is a unified database engine that is developed by Alibaba
Cloud. Since its commercial rollout in 2015, AliPG has been running stably for years to process a
large number of workloads within Alibaba Group and on the cloud. AliPG supports the following
major PostgreSQL versions: 9.4, 10, 11, and 12.

Benefits
AliPG is developed based on insights into the industry requirements. AliPG aims to help
customers expand business boundaries.

AliPG has the following benefits over the PostgreSQL Community edition:

Faster
Image recognition and vector similarity-based search run tens of thousands of times faster
on AliPG than on the PostgreSQL Community edition. For more information, see Image
recognition, face recognition, similarity-based retrieval, and similarity-based audience
spotting.
Real-time marketing and user profiling run thousands of times faster on AliPG than on the
PostgreSQL Community edition. For more information, see Real-time precision marketing
(user selection).
The GIS-based Mod operator processes mobile objects 50 times faster than the Mod
operator that runs based on the open-source PostGIS. For more information, see Overview.

More stable

AliPG uses the Platform as a Service (PaaS) architecture. This architecture allows you to
transform traditional software from license-based service to subscription-based service. You
can manage a large amount of metadata, optimize connections, and better isolate resources.
You can also use tens of thousands of schemas per RDS instance.

More secure
AliPG is certified based on leading national and international security standards, which
empowers enterprises to increase institutional security scores in the financing and listing
phases.

1.AliPG overview

ApsaraDB for RDS AliPG Kernel · AliPG overview

> Document Version:20201013 5

https://www.alibabacloud.com/help/doc-detail/154873.htm#task-2424978
https://www.alibabacloud.com/help/doc-detail/154080.htm#task-2418501
https://www.alibabacloud.com/help/doc-detail/95580.htm#concept-nwr-lc5-qfb

AliPG provides the following security enhancements:
Encrypts sensitive data that contains passwords. This sensitive data includes the dynamic
views, shared memory, dblink plug-in, historical commands, and audit logs.
Fixes bugs in the functions that you call in the PostgreSQL Community edition.
Supports fully encrypted databases. For more information, see Create a fully encrypted
database on an ApsaraDB RDS for PostgreSQL instance.
Supports the semi-synchronous mode. This mode allows you to configure the following
protection levels for your RDS instance: maximum protection, highest high availability,
and optimal performance. For more information, see Set the protection level of an
ApsaraDB RDS for PostgreSQL instance.
Supports the failover slot function. This function prevents primary/secondary switchovers
from affecting the reliability of logical replication. For more information, see Failover slot.

More flexible and controllable (For more information, see What is ApsaraDB for MyBase?)
AliPG grants you the permissions to manage the operating systems on hosts in dedicated
ApsaraDB for MyBase clusters. This allows you to manage your dedicated ApsaraDB for
MyBase clusters based on your business requirements.
AliPG allows you to customize overcommit ratios in the development, test, and staging
environments. For example, you can configure 128 CPU cores for a host that provides only 64
CPU cores. This allows you to exclusively occupy resources in the production system to
reduce the overall costs.

AliPG Kernel · AliPG overview ApsaraDB for RDS

6 > Document Version:20201013

https://www.alibabacloud.com/help/doc-detail/144156.htm#task-2339243
https://www.alibabacloud.com/help/doc-detail/151265.htm#task-2399885
https://www.alibabacloud.com/help/doc-detail/164023.htm#task-2488073
https://www.alibabacloud.com/help/doc-detail/141455.htm#concept-2319911

This topic describes the release notes of minor AliPG versions.

PostgreSQL 12
20200830

New features:
The Ganos plug-in is upgraded to version 3.0.
The sql_firewall plug-in is supported. It allows you to prevent an injection of malicious SQL
statements.
The pg_bigm plug-in is supported. It allows you to implement fuzzy match.
The TimescaleDB plug-in is supported. It allows you to process time series data.

Bugs fixed:

The bug that prevents the backend from identifying the rds_ prefix in parameters is fixed.

The bug that prevents you from properly creating and using the pg_cron plug-in is fixed.
The bug that prevents you from loading the RDKit plug-in due to the lack of dependencies is
fixed.

20200421

New features:
AliPG is upgraded to ensure compatibility with PostgreSQL 12.2 of the Community edition.
The Ganos plug-in is upgraded to version 2.7.
The HLL plug-in of version 2.14 is supported.
The PL/Proxy plug-in of version 2.9.0 is supported.
The tsm_system_rows plug-in of version 1.0 is supported.
The tsm_system_time plug-in of version 1.0 is supported.
The smlar plug-in of version 1.0 is supported.
The tds_fdw plug-in of version 1.0 is supported.

Bug fixed:

The bug that causes RDS instances to restart due to logical subscription timeout is fixed.

20200221

New features:
The reservation for a specific number of connections is supported for the rds_superuser role.
If you are authorized with the rds_superuser role, you can connect to an RDS instance to
troubleshoot issues even if the number of established connections to the RDS instance
reaches the upper limit.
The wal2json plug-in is supported.
The Ganos plug-in is upgraded to version 2.6.

Bugs fixed:

2.Release notes of minor AliPG
versions

ApsaraDB for RDS AliPG Kernel · Release notes of minor AliPG versions

> Document Version:20201013 7

https://www.alibabacloud.com/help/doc-detail/95580.htm#concept-nwr-lc5-qfb
https://www.alibabacloud.com/help/doc-detail/182848.htm#task-1948114
https://www.alibabacloud.com/help/doc-detail/182266.htm#task-1946314
https://www.alibabacloud.com/help/doc-detail/118899.htm#concept-265491
https://www.alibabacloud.com/help/doc-detail/95580.htm#concept-nwr-lc5-qfb
https://www.alibabacloud.com/help/doc-detail/164024.htm#task-2488206
https://www.alibabacloud.com/help/doc-detail/164553.htm#task-2489118
https://www.alibabacloud.com/help/doc-detail/164554.htm#task-2489267
https://www.alibabacloud.com/help/doc-detail/164555.htm#task-2489417
https://www.alibabacloud.com/help/doc-detail/150350.htm#task-2389150
https://www.alibabacloud.com/help/doc-detail/95580.htm#concept-nwr-lc5-qfb

Some permission-related bugs are fixed.

20191230

New features:

The pg_roaringbitmap, RDKit, mysql_fdw, and Ganos plug-ins are supported.
The permissions to publish all tables at a time and create subscriptions are granted to
privileged accounts.

PostgreSQL 11
20200830

New features:
The Ganos plug-in is upgraded to version 3.0.
The sql_firewall plug-in is supported. It allows you to prevent an injection of malicious SQL
statements.
The pg_bigm plug-in is supported. It allows you to implement fuzzy match.
The ZomboDB plug-in is supported. It allows you to implement text search and analysis.

Bugs fixed:

The bug that prevents the backend from identifying the rds_ prefix in parameters is fixed.

The bug that causes a secondary RDS instance to exit because the failover slot has the
same name as the streaming replication slot is fixed.
The bug that prevents you from properly creating and using the pg_cron plug-in is fixed.
The bug in a global variable of the PASE plug-in is fixed.

20200610

New features:

The TimescaleDB plug-in of version 1.7.1 is supported.
The pageinspect plug-in is supported for the rds_superuser role.
The rds_superuser role is authorized to grant the replication permissions to other users.

20200511

New feature:

The Ganos plug-in is upgraded to version 2.8.

Bug fixed:

The bug that causes the PASE plug-in to slowly run INSERT statements on HNSW indexes is
fixed.

20200421

New features:

The failover slot function is supported. For more information, see Failover slot.
The PL/Proxy plug-in of version 2.9.0 is supported.
The tsm_system_rows plug-in of version 1.0 is supported.
The tsm_system_time plug-in of version 1.0 is supported.
The smlar plug-in of version 1.0 is supported.

AliPG Kernel · Release notes of minor AliPG versions ApsaraDB for RDS

8 > Document Version:20201013

https://www.alibabacloud.com/help/doc-detail/154079.htm#task-2418503
https://www.alibabacloud.com/help/doc-detail/143613.htm#task-2340494
https://www.alibabacloud.com/help/doc-detail/95580.htm#concept-nwr-lc5-qfb
https://www.alibabacloud.com/help/doc-detail/182848.htm#task-1948114
https://www.alibabacloud.com/help/doc-detail/182266.htm#task-1946314
https://www.alibabacloud.com/help/doc-detail/182849.htm#task-1948113
https://www.alibabacloud.com/help/doc-detail/118899.htm#concept-265491
https://www.alibabacloud.com/help/doc-detail/95580.htm#concept-nwr-lc5-qfb
https://www.alibabacloud.com/help/doc-detail/164023.htm#task-2488073
https://www.alibabacloud.com/help/doc-detail/164553.htm#task-2489118
https://www.alibabacloud.com/help/doc-detail/164554.htm#task-2489267

20200402

New features:
The HLL plug-in of version 2.14 is supported. It allows ApsaraDB RDS for PostgreSQL to
support the HLL data type, respond to queries in milliseconds, and analyze approximate
data at low costs and high speeds. For example, you can query page views (PVs) and unique
visitors (UVs) in real time and determine whether the analyzed approximate data contains
the specified characteristic tags.
The oss_fdw plug-in of version 1.1 is supported. It allows you to store infrequently
requested historical data to Object Storage Service (OSS) buckets. This reduces storage
costs.
The tds_fdw plug-in of version 2.0.1 is supported. It allows you to initiate requests on an
ApsaraDB RDS for PostgreSQL instance to query data from a Sybase or SQL Server database
without the need to perform extract, transform and load (ETL) operations. It also allows you
to migrate data between an ApsaraDB RDS for PostgreSQL instance and a Sybase or SQL
Server database.

Upgraded plug-ins:
The Ganos plug-in is upgraded to version 2.7.
The wal2json plug-in is upgraded to version 2.2.

Performance optimization:

The shutdown -m fast command is optimized.

20191218

New features:

The PASE plug-in is supported. It allows you to create indexes that are used to recognize
images.
The permissions to publish all tables at a time and create subscriptions are granted to
privileged accounts.

PostgreSQL 10
20200830

New features:
The Ganos plug-in is upgraded to version 3.0.
The sql_firewall plug-in is supported. It allows you to prevent an injection of malicious SQL
statements.
The pg_bigm plug-in is supported. It allows you to implement fuzzy match.

Bug fixed:

The bug that prevents you from properly creating and using the pg_cron plug-in is fixed.

20200212

New features:
The reservation for a specific number of connections is supported for the rds_superuser role.
If you are authorized with the rds_superuser role, you can connect to an RDS instance to
troubleshoot issues even if the number of established connections to the RDS instance
reaches the upper limit.

ApsaraDB for RDS AliPG Kernel · Release notes of minor AliPG versions

> Document Version:20201013 9

https://www.alibabacloud.com/help/doc-detail/164024.htm#task-2488206
https://www.alibabacloud.com/help/doc-detail/44461.htm#concept-d23-m3g-wdb
https://www.alibabacloud.com/help/doc-detail/164555.htm#task-2489417
https://www.alibabacloud.com/help/doc-detail/95580.htm#concept-nwr-lc5-qfb
https://www.alibabacloud.com/help/doc-detail/150350.htm#task-2389150
https://www.alibabacloud.com/help/doc-detail/147837.htm#concept-2370342
https://www.alibabacloud.com/help/doc-detail/95580.htm#concept-nwr-lc5-qfb
https://www.alibabacloud.com/help/doc-detail/182848.htm#task-1948114
https://www.alibabacloud.com/help/doc-detail/182266.htm#task-1946314

The Ganos plug-in is upgraded to version 2.6.

Bug fixed:

The bug that causes long waits in streaming replication is fixed.

20190703

New features:
AliPG is upgraded to version 10.9.
The change from synchronous replication to asynchronous replication is supported when
the ongoing replication times out.

Bug fixed:
The bug that prevents you from properly creating the pg_hint_plan plug-in is fixed.
The bug that causes failures in external RUM indexing is fixed.

PostgreSQL 9.4
20200623

New features:
The wal2json plug-in is upgraded to version 2.2.
The xml2 plug-in of version 1.0 is supported.

Bug fixed:

The bug that causes memory exhaustion when the wal2json plug-in runs is fixed.

20200210

The reservation for a specific number of connections is supported for the rds_superuser role. If
you are authorized with the rds_superuser role, you can connect to an RDS instance to
troubleshoot issues even if the number of established connections to the RDS instance reaches
the upper limit.

20190601

AliPG is upgraded to version 9.4.19.

AliPG Kernel · Release notes of minor AliPG versions ApsaraDB for RDS

10 > Document Version:20201013

https://www.alibabacloud.com/help/doc-detail/95580.htm#concept-nwr-lc5-qfb
https://www.alibabacloud.com/help/doc-detail/150350.htm#task-2389150

This topic describes the functional modules that are provided by AliPG.

Overview

Category Functional
module Description

Account
permission rds_superuser

The rds_superuser role is a type of intermediate account
between standard accounts and superuser accounts. The
accounts that are assigned the rds_superuser role are
called privileged accounts. To ensure security on the cloud,
AliPG does not provide superuser accounts. However, AliPG
provides the rds_superuser role. The rds_superuser role
does not have the sensitive security permissions that are
owned by superuser accounts. The rds_superuser role has
the permissions to create and delete plug-ins, create and
delete standard and privileged accounts, access and
manage all of the tables that are created by standard
accounts, and close connections.

Spatio-temporal
database engine Ganos

Ganos is a spatio-temporal database engine that is
developed by Alibaba Cloud. Ganos provides a series of
data types, functions, and stored procedures to efficiently
store, index, query, analyze, and compute spatio-temporal
data.

External data
reads and writes oss_fdw

The oss_fdw plug-in supports data migration and hot-cold
data separation. You can load data from Alibaba Cloud
Object Storage Service (OSS) buckets to RDS instances.
You can also write data from RDS instances to OSS
buckets.

Concurrency
control (CCL)

pg_concurrency_
control

The pg_concurrency_control plug-in controls the
concurrency of transactions, SQL queries, stored
procedures, and data manipulation language (DML)
operations and allows you to customize large queries. This
expedites the execution of highly concurrent workloads.

Failover slot Failover Slot

In the PostgreSQL Community edition, logical slots cannot
be automatically switched over to the new primary RDS
instance in the event of a primary/secondary switchover.
As a result, logical subscriptions are disconnected. In AliPG,
the failover slot feature allows ApsaraDB for RDS to
synchronize all logical slots from the primary RDS instance
to the secondary RDS instance. This prevents the
disconnection of logical subscriptions.

3.Functional modules of AliPG

ApsaraDB for RDS AliPG Kernel · Funct ional modules of AliPG

> Document Version:20201013 11

https://www.alibabacloud.com/help/doc-detail/96753.htm#concept-kxw-k1p-ydb
https://www.alibabacloud.com/help/doc-detail/95580.htm#concept-nwr-lc5-qfb
https://www.alibabacloud.com/help/doc-detail/44461.htm#concept-d23-m3g-wdb
https://www.alibabacloud.com/help/doc-detail/164023.htm#task-2488073

Bitmap function
extension varbitx

The varbitx plug-in of the PostgreSQL Community edition
supports only simple BIT-type operation functions. In AliPG,
the varbitx plug-in is extended to support more BIT-type
operations in more scenarios. These scenarios include real-
time user profile recommendation, access control
advertising, and ticketing.

Vector search PASE

PASE is a high-performance vector search index plug-in
that is developed for AliPG. The PASE plug-in uses the
following two well-developed, stable, and efficient
approximate nearest neighbor (ANN) search algorithms:
IVFFlat and Hierarchical Navigable Small World (HNSW).
These algorithms are used to query vectors from
PostgreSQL databases at high speeds. The PASE plug-in
does not support the extraction or output of feature
vectors. You must retrieve the feature vectors of the
entities that you want to query. The PASE plug-in only
implements a similarity search among a large amount of
vectors that are identified based on retrieved feature
vectors.

Log query log_fdw The log_fdw plug-in queries logs from external tables.

Security Security
hardening

A security hardening module is built-in to improve custom
views, enhance the security of the functions that you call,
prevent security traps, and avoid the security
vulnerabilities that are detected in the PostgreSQL
Community edition.

Category Functional
module Description

References
Plug-ins supported

AliPG Kernel · Funct ional modules of AliPG ApsaraDB for RDS

12 > Document Version:20201013

https://www.alibabacloud.com/help/doc-detail/147837.htm#concept-2370342
https://www.alibabacloud.com/help/doc-detail/150239.htm#task-2384196
https://www.alibabacloud.com/help/doc-detail/142340.htm#concept-2331628

This topic lists the plug-ins that are supported by RDS PostgreSQL and their available versions.

PostgreSQL 12

Plug-in Version

btree_gin 1.3

btree_gist 1.5

citext 1.6

cube 1.4

dblink 1.2

dict_int 1

earthdistance 1.1

fuzzystrmatch 1.1

hstore 1.6

intagg 1.1

intarray 1.2

isn 1.2

ltree 1.1

pg_buffercache 1.3

pg_prewarm 1.2

pg_stat_statements 1.7

pg_trgm 1.4

pgcrypto 1.3

pgrowlocks 1.2

pgstattuple 1.5

postgres_fdw 1

sslinfo 1.2

tablefunc 1

4.Plug-ins supported

ApsaraDB for RDS AliPG Kernel · Plug-ins supported

> Document Version:20201013 13

unaccent 1.1

plpgsql 1

plperl 1

pg_roaringbitmap 0.5.0

rdkit 3.8

mysql_fdw 1.1

ganos_geometry_sfcgal 2.7

ganos_geometry_topology 2.7

ganos_geometry 2.7

ganos_networking 2.7

ganos_pointcloud_geometry 2.7

ganos_pointcloud 2.7

ganos_raster 2.7

ganos_spatialref 2.7

ganos_trajectory 2.7

ganos_tiger_geocoder 2.7

ganos_address_standardizer 2.7

ganos_address_standardizer_data_us 2.7

wal2json 2.0

hll 2.14

plproxy 2.9.0

tsm_system_rows 1.0

tsm_system_time 1.0

smlar 1.0

tds_fdw 1.0

bigm 1.2

Plug-in Version

AliPG Kernel · Plug-ins supported ApsaraDB for RDS

14 > Document Version:20201013

timescaledb 1.7.1

Plug-in Version

PostgreSQL 11

Plug-in Version

plpgsql 1

pg_stat_statements 1.6

btree_gin 1.3

btree_gist 1.5

citext 1.5

cube 1.4

rum 1.3

dblink 1.2

dict_int 1

earthdistance 1.1

hstore 1.5

intagg 1.1

intarray 1.2

isn 1.2

ltree 1.1

pgcrypto 1.3

pgrowlocks 1.2

pg_prewarm 1.2

pg_trgm 1.4

postgres_fdw 1

sslinfo 1.2

tablefunc 1

timescaledb 1.7.1

ApsaraDB for RDS AliPG Kernel · Plug-ins supported

> Document Version:20201013 15

unaccent 1.1

fuzzystrmatch 1.1

pgstattuple 1.5

pg_buffercache 1.3

zhparser 1

pg_pathman 1.5

plperl 1

orafce 3.8

pg_concurrency_control 1

varbitx 1

postgis 2.5.1

pgrouting 2.6.2

postgis_sfcgal 2.5.1

postgis_topology 2.5.1

address_standardizer 2.5.1

address_standardizer_data_us 2.5.1

ogr_fdw 1

ganos_pointcloud 2.8

ganos_spatialref 2.8

log_fdw 1.0

wal2json 2.2

PL/v8 2.3.13

pg_cron 1.1

pase 0.0.1

hll 2.14

oss_fdw 1.1

Plug-in Version

AliPG Kernel · Plug-ins supported ApsaraDB for RDS

16 > Document Version:20201013

tds_fdw 2.0.1

plproxy 2.9.0

tsm_system_rows 1.0

tsm_system_time 1.0

smlar 1.0

zombodb 4.0

bigm 1.2

Plug-in Version

PostgreSQL 10

Plug-in Version

pg_stat_statements 1.6

btree_gin 1.2

btree_gist 1.5

chkpass 1

citext 1.4

cube 1.2

dblink 1.2

dict_int 1

earthdistance 1.1

hstore 1.4

intagg 1.1

intarray 1.2

isn 1.1

ltree 1.1

pgcrypto 1.3

pgrowlocks 1.2

pg_prewarm 1.1

ApsaraDB for RDS AliPG Kernel · Plug-ins supported

> Document Version:20201013 17

pg_trgm 1.3

postgres_fdw 1

sslinfo 1.2

tablefunc 1

unaccent 1.1

postgis_sfcgal 2.5.1

postgis_topology 2.5.1

fuzzystrmatch 1.1

postgis_tiger_geocoder 2.5.1

address_standardizer 2.5.1

address_standardizer_data_us 2.5.1

ogr_fdw 1

plperl 1

plv8 1.4.2

plls 1.4.2

plcoffee 1.4.2

uuid-ossp 1.1

zhparser 1

pgrouting 2.6.2

pg_hint_plan 1.3.0

pgstattuple 1.5

oss_fdw 1.1

ali_decoding 0.0.1

varbitx 1

pg_buffercache 1.3

q3c 1.5.0

Plug-in Version

AliPG Kernel · Plug-ins supported ApsaraDB for RDS

18 > Document Version:20201013

pg_sphere 1

smlar 1

rum 1.3

pg_pathman 1.5

aggs_for_arrays 1.3.1

mysql_fdw 1

orafce 3.6

plproxy 2.8.0

pg_concurrency_control 1

postgis 2.5.1

ganos_geometry_sfcgal 2.2

ganos_geometry_topology 2.2

ganos_geometry 2.2

ganos_networking 2.2

ganos_pointcloud_geometry 2.2

ganos_pointcloud 2.2

ganos_raster 2.2

ganos_spatialref 2.2

ganos_trajectory 2.2

ganos_tiger_geocoder 2.2

ganos_address_standardizer 2.2

ganos_address_standardizer_data_us 2.2

bigm 1.2

Plug-in Version

PostgreSQL 9.4

Plug-in Version

plpgsql 1

ApsaraDB for RDS AliPG Kernel · Plug-ins supported

> Document Version:20201013 19

pg_stat_statements 1.2

btree_gin 1

btree_gist 1

chkpass 1

citext 1

cube 1

dblink 1.1

dict_int 1

earthdistance 1

hstore 1.3

intagg 1

intarray 1

isn 1

ltree 1

pgcrypto 1.1

pgrowlocks 1.1

pg_prewarm 1

pg_trgm 1.1

postgres_fdw 1

sslinfo 1

tablefunc 1

tsearch2 1

unaccent 1

postgis 2.2.8

postgis_topology 2.2.8

fuzzystrmatch 1

Plug-in Version

AliPG Kernel · Plug-ins supported ApsaraDB for RDS

20 > Document Version:20201013

postgis_tiger_geocoder 2.2.8

plperl 1

pltcl 1

plv8 1.4.2

plls 1.4.2

plcoffee 1.4.2

uuid-ossp 1

zhparser 1

pgrouting 2.0.0

rdkit 3.4

pg_hint_plan 1.1.3

pgstattuple 1.2

oss_fdw 1.1

jsonbx 1

ali_decoding 0.0.1

varbitx 1

pg_buffercache 1

smlar 1

pg_sphere 1

q3c 1.5.0

pg_awr 1

imgsmlr 1

orafce 3.6

pg_concurrency_control 1

Plug-in Version

ApsaraDB for RDS AliPG Kernel · Plug-ins supported

> Document Version:20201013 21

The TimescaleDB plug-in is introduced to ApsaraDB RDS for PostgreSQL instances. The plug-in
supports automatic sharding, fast writes, retrieval, and near real-time aggregation of time
series data.

The TimescaleDB plug-in supported by ApsaraDB RDS for PostgreSQL is an open-source edition
and may not support some advanced features because of issues such as licenses. For more
information, see TimescaleDB.

Prerequisites
Your RDS instance runs PostgreSQL 11.

Note Some existing users may have created the TimescaleDB plug-in. If the following
message appears after you upgrade the kernel version:

ERROR: could not access file "$libdir/timescaledb-1.3.0": No such file or directory

Execute the following SQL statement in the target database to update the plug-in:

alter extension timescaledb update;

Create the TimescaleDB plug-in
Use the pgAdmin client to connect to your RDS instance. Then execute the following statement to
create the TimescaleDB plug-in:

CREATE EXTENSION IF NOT EXISTS timescaledb CASCADE;

Create a time series table
1. Execute the following statement to create a standard table named conditions:

CREATE TABLE conditions (

 time T IMESTAMPTZ NOT NULL,

 location TEXT NOT NULL,

 temperature DOUBLE PRECISION NULL,

 humidity DOUBLE PRECISION NULL

);

2. Execute the following statement to create a time series table:

SELECT create_hypertable('conditions', 'time');

5.Query vertical industry-specific data
5.1. Use the TimescaleDB plug-in

AliPG Kernel · Query vert ical industry-specific data ApsaraDB for RDS

22 > Document Version:20201013

https://www.timescale.com/products
https://www.alibabacloud.com/help/doc-detail/26158.htm#concept-stt-3hg-wdb/section-yfs-phg-wdb

Note For more information, see Create a Hypertable.

Insert data into a hypertable
You can execute standard SQL statements to insert data into a hypertable. Example:

INSERT INTO conditions(time, location, temperature, humidity)

 VALUES (NOW(), 'office', 70.0, 50.0);

You can also insert multiple rows of data into a hypertable at a time. Example:

INSERT INTO conditions

 VALUES

 (NOW(), 'office', 70.0, 50.0),

 (NOW(), 'basement', 66.5, 60.0),

 (NOW(), 'garage', 77.0, 65.2);

Retrieve data
You can run advanced SQL queries to retrieve data. Example:

--Query data that was collected at 15-minute intervals for the last 3 hours and was sorted from time a

nd temperature dimensions.

SELECT time_bucket('15 minutes', time) AS fifteen_min,

 location, COUNT(*),

 MAX(temperature) AS max_temp,

 MAX(humidity) AS max_hum

 FROM conditions

 WHERE time > NOW() - interval '3 hours'

 GROUP BY fifteen_min, location

 ORDER BY fifteen_min DESC, max_temp DESC;

You can also use built-in functions to analyze and query data. Examples:

--Query the median.

SELECT percentile_cont(0.5)

 WITHIN GROUP (ORDER BY temperature)

 FROM conditions;

ApsaraDB for RDS AliPG Kernel · Query vert ical industry-specific data

> Document Version:20201013 23

https://docs.timescale.com/v1.3/using-timescaledb/hypertables#create

--Query the moving average.

SELECT time, AVG(temperature) OVER(ORDER BY time

 ROWS BETWEEN 9 PRECEDING AND CURRENT ROW)

 AS smooth_temp

 FROM conditions

 WHERE location = 'garage' and time > NOW() - interval '1 day'

 ORDER BY time DESC;

This topic describes the smlar plug-in. This allows you to calculate the similarity between two
arrays of the same data type.

Prerequisites
The instance runs one of the following PostgreSQL versions:

PostgreSQL 12 (kernel version 20200421 and later)
PostgreSQL 11 (kernel version 20200402 and later)

Note To view the kernel version, perform the following steps: Log on to the ApsaraDB
for RDS console, find the target RDS instance, and navigate to the Basic Information page.
Then, in the Configuration Information section, check whether the Upgrade Minor Version
button exists. If the button exists, click it to view the kernel version. If the button does not
exist, it indicates that you are already using the latest kernel version. For more information,
see Upgrade the kernel version of an ApsaraDB RDS for PostgreSQL instance.

Context
The smlar plug-in provides multiple functions to calculate the similarity between two arrays of
the same data type. It also provides parameters to control the similarity calculation methods. All
built-in data types are supported.

Function description
float4 smlar(anyarray, anyarray)

Calculates the similarity between two arrays of the same data type.

float4 smlar(anyarray, anyarray, bool useIntersect)

Calculates the similarity between two arrays of composite data types. The composite data
type is defined as follows:

CREATE TYPE type_name AS (element_name anytype, weight_name FLOAT4);

When the useIntersect parameter is set to true, only the parts that contain duplicate
elements are calculated. When the useIntersect parameter is set to false, all elements are
calculated.

5.2. Use the smlar plug-in

AliPG Kernel · Query vert ical industry-specific data ApsaraDB for RDS

24 > Document Version:20201013

https://www.alibabacloud.com/help/doc-detail/146895.htm#concept-gnx-vgj-wdb11

float4 smlar(anyarray a, anyarray b, text formula)

Calculates the similarity between two arrays of the same data type. The arrays are specified
by the formula parameter.

The predefined variables for formula are described as follows:

N.i: The number of common elements in the two arrays.
N.a: The number of distinct elements in array a.
N.b: The number of distinct elements in array b.

float4 set_smlar_limit(float4)

Sets the smlar.threshold parameter.

float4 show_smlar_limit()

Displays the smlar.threshold parameter value.

anyarray % anyarray

Returns true if the similarity between arrays is greater than the smlar.threshold parameter
value. Otherwise, returns false.

text[] tsvector2textarray(tsvector)

Converts the tsvector type to the text type.

anyarray array_unique(anyarray)

Sorts the elements (excluding duplicate elements) in an array.

float4 inarray(anyarray, anyelement)

Returns 1 if the anyelement parameter value exists in the anyarray parameter value.
otherwise, returns 0.

float4 inarray(anyarray, anyelement, float4, float4)

Returns the third parameter value if anyelement exists in anyarray. Otherwise, returns the
fourth parameter value.

For more information about parameter descriptions and supported data types, visit smlar.

Use smlar
After you have connected to an instance, execute the following statement to create a smlar
plug-in:

testdb=> create extension smlar;

Execute the following statements to use basic functions of smlar:

ApsaraDB for RDS AliPG Kernel · Query vert ical industry-specific data

> Document Version:20201013 25

https://github.com/jirutka/smlar

testdb=> SELECT smlar('{1,4,6}'::int[], '{5,4,6}');

 smlar

 0.666667

(1 row)

testdb=> SELECT smlar('{1,4,6}'::int[], '{5,4,6}', 'N.i / sqrt(N.a * N.b)');

 smlar

 0.666667

(1 row)

Execute the following statement to remove smlar:

testdb=> drop extension smlar;

This topic describes how to use the PostgreSQL ANN search extension (PASE) plug-in to search
for vectors in RDS PostgreSQL.

Prerequisites
Your ApsaraDB RDS PostgreSQL instance runs PostgreSQL 11.

Background information
Representation learning is a typical artificial intelligence (AI) technology in the deep learning
discipline. It has developed rapidly over the recent years and is used in various businesses such
as advertising, face scan payment, image recognition, and voice recognition. This technology
enables data to be embedded into high-dimensional vectors and allows you to query data by
using the vector search approach.

PASE is a high-performance vector search index plug-in developed for PostgreSQL. It uses two
well-developed, stable, and efficient approximate nearest neighbor (ANN) search algorithms,
IVFFlat and Hierarchical Navigable Small World (HNSW), to query vectors from PostgreSQL
databases at high speeds. PASE does not support the extraction or output of feature vectors.
You must retrieve the feature vectors of the entities you want to query. PASE only implements a
similarity search among a large amount of vectors identified based on retrieved feature vectors.

Intended audience
This topic does not explain the terms related to machine learning in detail. Before you read this
topic, you must understand the basics of machine learning and search technologies.

Algorithms used by PASE
IVFFlat

IVFFlat is a simplified version of the IVFADC algorithm. It is suitable for businesses that require
high precision but can tolerate up to 100 milliseconds taken for queries. IVFFlat has the
following advantages compared with other algorithms:

5.3. Use the PASE plug-in

AliPG Kernel · Query vert ical industry-specific data ApsaraDB for RDS

26 > Document Version:20201013

If the vector to query is one of the candidate datasets, IVFFlat delivers 100% recall.
IVFFlat uses a simple structure to create an index fast and occupy less storage space.
You can specify a centroid for clustering and can control precision by reconfiguring
parameters.
You can control the accuracy of IVFFlat by reconfiguring its interpretable parameters.

The following figure shows how IVFFlat works.

The procedure is described as follows:

i. IVFFlat uses a clustering algorithm such as k-means to divide vectors in the high-
dimensional data space into clusters based on implicit clustering properties. Each cluster
has a centroid.

ii. IVFFlat traverses the centroids of all clusters to identify the n centroids nearest to the
target vector you want to query.

iii. IVFFlat traverses and sorts all vectors in the clusters to which the identified n centroids
belong, and then obtains the nearest k vectors.

Note
When IVFFlat attempts to identify the nearest n centroids, it skips the clusters
located far away to expedite the query. However, IVFFlat cannot ensure that all the
similar k vectors are included in the clusters to which the identified n centroids
belong. As a result, precision may decrease. You can use the variable n to control
precision. A larger n value indicates higher precision but more computing workloads.
In the first phase, IVFFlat works the same as IVFADC. The main differences between
them lie in the second phase. In the second phase, IVFADC uses product
quantization to avoid traversal computing workloads. This is faster but has lower
precision. Whereas, IVFFlat uses brute-force computing to ensure precision and
allows you to control computing workloads.

HNSW

HNSW is a graph-based ANN algorithm suitable for queries among tens of millions or more
vector datasets that take 10 milliseconds or less.

HNSW searches among proximity graph neighbors for similar vectors. When the data volume is
large, HNSW significantly improves performance compared to other algorithms. However,
HNSW requires the storage of proximity graph neighbors, which occupy storage space. In
addition, the precision of HNSW cannot be increased by reconfiguring parameters after
reaching a certain level.

The following figure shows how HNSW works.

The procedure is described as follows:

i. HNSW builds a hierarchical structure consisting of multiple layers (graphs). Each layer is a
panorama and skip list of its lower layer.

ii. HNSW randomly selects an element from the top layer to start a search.

iii. HNSW identifies the neighbors of the selected element and adds the identified neighbors

ApsaraDB for RDS AliPG Kernel · Query vert ical industry-specific data

> Document Version:20201013 27

to a fixed-length dynamic list based on their distances to the selected element. HNSW
continues to identify the neighbors of each neighbor included in the list and adds the
identified neighbors to the list. Every time when HNSW adds a neighbor to the list, it re-
sorts the neighbors in the list and only retains the first k neighbors. If the list changes,
HNSW continues to search until the list reaches its final state. Then, HNSW uses the first
element in the list as the start for a search in the lower layer.

iv. HNSW repeats the third step until it enters the bottom layer.

Note HNSW constructs a multi-layer structure by using the Navigable Small World
(NSW) algorithm designed to construct single-layer structures. The employment of an
approach for selecting proximity graph neighbors enables HNSW to deliver higher query
speedup than clustering algorithms.

IVFFlat and HNSW are each suitable for specific businesses. For example, IVFFlat is suitable for
image comparison at high precision, and HNSW is suitable for searches with recommended recall.
More industry-leading algorithms will be integrated into PASE.

Procedure
1. Execute the following statement to create the PASE plug-in:

CREATE EXTENSION pase;

2. Use one of the following construction methods to calculate vector similarity:

PASE-type-based construction

Example:

SELECT ARRAY[2, 1, 1]::float4[] <? > pase(ARRAY[3, 1, 1]::float4[]) AS distance;

SELECT ARRAY[2, 1, 1]::float4[] <? > pase(ARRAY[3, 1, 1]::float4[], 0) AS distance;

SELECT ARRAY[2, 1, 1]::float4[] <? > pase(ARRAY[3, 1, 1]::float4[], 0, 1) AS distance;

Note

<? > is a PASE-type operator, which specifies to calculate similarity between
the vectors to the left and right of a specific element. The vector to the left
must use the float4[] data type and the vector to the right must use the PASE
data type.

The PASE data type is defined in the PASE plug-in and can contain up to three
constructors. Take the float4[], 0, 1 part in the preceding third statement as an
example: The first parameter specifies the vector to the right with the float4[]
data type. The second parameter does not serve a special purpose, so you can
set it to 0. The third parameter specifies the similarity calculation method,
where the value 0 represents the Euclidean distance method and the value 1
represents the dot product (also referred to as inner product) method.

The vector to the left must have the same number of dimensions as the vector
to the right. Otherwise, the system reports similarity calculation errors.

String-based construction

AliPG Kernel · Query vert ical industry-specific data ApsaraDB for RDS

28 > Document Version:20201013

Example:

SELECT ARRAY[2, 1, 1]::float4[] <? > '3,1,1'::pase AS distance;

SELECT ARRAY[2, 1, 1]::float4[] <? > '3,1,1:0'::pase AS distance;

SELECT ARRAY[2, 1, 1]::float4[] <? > '3,1,1:0:1'::pase AS distance;

Note The string-based construction method differs from the PASE-type-based
construction in the following aspect: The string-based construction method uses
colons (:) to separate parameters. Take the 3,1,1:0:1 part in the preceding third
statement as an example: The first parameter specifies the vector to the right. The
second parameter does not serve a special purpose, so you can set it to 0. The third
parameter specifies the similarity calculation method, where the value 0 represents
the Euclidean distance method and the value 1 represents the dot product (also
referred to as the inner product) method.

3. Use IVFFlat or HNSW to create an index.

Note If you use the Euclidean distance method to calculate vector similarity, the
original vector does not need to be processed. If you use the dot product or cosine
method to calculate vector similarity, the original vector must be normalized. For
example, if the original vector is , it must meet the following formula: . In this example,
the dot product is the same as the cosine value.

IVFFlat

Example:

CREATE INDEX ivfflat_idx ON vectors_table

USING

 pase_ivfflat(vector)

WITH

 (clustering_type = 1, distance_type = 0, dimension = 256, base64_encoded = 0, clustering_para

ms = "10,100");

The following table describes the parameters in the IVFFlat index.

Parameter Description

clustering_type

The type of clustering operation IVFFlat performs on vectors. This
parameter is mandatory. Valid values:

0: external clustering. An external centroid file is loaded, which is
specified by the clustering_params parameter.

1: internal clustering. The k-means clustering algorithm is used,
which is specified by the clustering_params parameter.

If you are using PASE for the first time, we recommend that you use
internal clustering.

ApsaraDB for RDS AliPG Kernel · Query vert ical industry-specific data

> Document Version:20201013 29

distance_type

The method to calculate vector similarity. Default value: 0. Valid
values:

0: Euclidean distance.

1: dot product. This method requires the normalization of vectors.
The order of dot products is opposite to the order of Euclidean
distances.

Currently, only the Euclidean distance method is supported. Dot
products can only be calculated after vectors are normalized. For
more information, see Appendixes.

dimension The number of dimensions. This parameter is mandatory.

base64_encoded

Specifies whether to use Base64 encoding. Default value: 0. Valid
values:

0: specifies to use the float4[] data type to represent the vector
type.

1: specifies to use the Base64-encoded float[] data type to
represent the vector type.

clustering_params

For external clustering, this parameter specifies the directory of the
external centroid file to use. For internal clustering, this parameter
specifies the clustering algorithm to use. The format is as follows: cl

ustering_sample_ratio,k . This parameter is mandatory.

clustering_sample_ratio: the sampling fraction with 1000 as its
denominator. The value of this field is an integer within the (0,
1000] range. For example, if you set this field to 1, the system
samples data from the dynamic list based on the 1/1000 sampling
ratio before it performs k-means clustering. A larger value indicates
higher query accuracy but slower index creation. We recommend
that the total number of data records sampled do not exceed
100,000.

k: the number of centroids. A larger value indicates higher query
accuracy but slower index creation. We recommend that you set this
field to a value within the [100, 1000] range.

Parameter Description

HNSW

Example:

CREATE INDEX hnsw_idx ON vectors_table

USING

 pase_hnsw(vector)

WITH

 (dim = 256, base_nb_num = 16, ef_build = 40, ef_search = 200, base64_encoded = 0);

The following table describes the parameters in the HNSW index.

AliPG Kernel · Query vert ical industry-specific data ApsaraDB for RDS

30 > Document Version:20201013

Parameter Description

dim The number of dimensions. This parameter is mandatory.

base_nb_num

The number of neighbors to identify for an element. This parameter is
mandatory. A larger value indicates higher query accuracy, but slower
index creation and more storage space occupied. We recommend that
you set this parameter to a value within the [16, 128] range.

ef_build

The heap length to use during index creation. This parameter is
mandatory. A longer heap length indicates higher query accuracy but
slower index creation. We recommend that you set this parameter to a
value within the [40, 400] range.

ef_search

The heap length to use during query. This parameter is mandatory. A
longer heap length indicates higher query accuracy but poorer query
performance. You can specify this parameter when initiating the
query request. Default value: 200.

base64_encoded

Specifies whether to use Base64 encoding. Default value: 0. Valid
values:

0: specifies to use the float4[] data type to represent the vector
type.

1: specifies to use the Base64-encoded float[] data type to
represent the vector type.

4. Use one of the following indexes to query a vector:

IVFFlat index

Example:

SELECT id, vector <#> '1,1,1'::pase as distance

FROM vectors_ivfflat

ORDER BY

vector <#> '1,1,1:10:0'::pase

ASC LIMIT 10;

ApsaraDB for RDS AliPG Kernel · Query vert ical industry-specific data

> Document Version:20201013 31

Note

<#> is an operator used by the IVFFlat index.

You must execute the ORDER BY statement to make the IVFFlat index take
effect. The IVFFlat index allows vectors to be sorted in ascending order.

The PASE data type requires three parameters to specify a vector. These
parameters are separated with colons (:). For example, 1,1,1:10:0 includes
three parameters: The first parameter specifies the vector to query. The second
parameter specifies the query efficiency of IVFFlat with a value range of (0,
1000], in which a larger value indicates higher query accuracy but poorer query
performance. The third parameter specifies the vector similarity calculation
method, where the value 0 represents the Euclidean distance method and the
value 1 represents the dot product (also referred to as inner product) method.
The dot product method requires the normalization of vectors. The order of dot
products is opposite to the order of Euclidean distances.

HNSW

Example:

SELECT id, vector <? > '1,1,1'::pase as distance

FROM vectors_ivfflat

ORDER BY

vector <? > '1,1,1:100:0'::pase

ASC LIMIT 10;

Note

<? > is an operator used by the HNSW index.

You must execute the ORDER BY statement to make the HNSW index take
effect. The HNSW index allows vectors to be sorted in ascending order.

The PASE data type requires three parameters to specify a vector. These
parameters are separated with colons (:). For example, 1,1,1:10:0 includes
three parameters: The first parameter specifies the vector to query. The second
parameter specifies the query efficiency of HNSW with a value range of (0, ∞), in
which a larger value indicates higher query accuracy but poorer query
performance. We recommend that you set the second parameter to 40 and then
test the value by small increases until you find the most suitable value for your
business. The third parameter specifies the vector similarity calculation
method, where the value 0 represents the Euclidean distance method and the
value 1 represents the dot product (also referred to as inner product) method.
The dot product method requires the normalization of vectors. The order of dot
products is opposite to the order of Euclidean distances.

Appendixes
Calculate the dot product of a vector.

AliPG Kernel · Query vert ical industry-specific data ApsaraDB for RDS

32 > Document Version:20201013

For this example, use the HNSW index to create a function:

CREATE OR REPLACE FUNCTION inner_product_search(query_vector text, ef integer, k integer, table_

name text) RETURNS TABLE (id integer, uid text, distance float4) AS $$

BEGIN

 RETURN QUERY EXECUTE format('

 select a.id, a.vector <? > pase(ARRAY[%s], %s, 1) AS distance from

 (SELECT id, vector FROM %s ORDER BY vector <? > pase(ARRAY[%s], %s, 0) ASC LIMIT %s) a

 ORDER BY distance DESC;', query_vector, ef, table_name, query_vector, ef, k);

END

$$

LANGUAGE plpgsql;

Note The dot product of a normalized vector is the same as its cosine value.
Therefore, you can also follow this example to calculate the cosine value of a vector.

Create the IVFFlat index from an external centroid file.

This is an advanced feature. You must upload an external centroid file to the specified
directory of the server and use this file to create the IVFFlat index. For more information, see
the parameters of the IVFFlat index. The file format is as follows:

Number of dimensions|Number of centroids|Centroid vector dataset

Example:

3|2|1,1,1,2,2,2

References
Product Quantization for Nearest Neighbor Search

Herv ́e J ́egou, Matthijs Douze, Cordelia Schmid. Product quantization for nearest neighbor
search.

Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small
World graphs

Yu.A.Malkov, D.A.Yashunin. Efficient and robust approximate nearest neighbor search using
Hierarchical Navigable Small World graphs.

This topic describes how to use the roaringbitmap plug-in provided by ApsaraDB RDS for
PostgreSQL to improve query performance.

Prerequisites
Your RDS instance runs PostgreSQL 12.

Context

5.4. Use the roaringbitmap plug-in

ApsaraDB for RDS AliPG Kernel · Query vert ical industry-specific data

> Document Version:20201013 33

https://ieeexplore.ieee.org/abstract/document/5432202
https://ieeexplore.ieee.org/abstract/document/8594636

The Roaring bitmap algorithm divides 32-bit integers into 2 16 chunks. Each chunk stores the 16
most significant digits and uses a container to store the 16 least significant digits. A Roaring
bitmap stores containers in a dynamic array as primary indexes. Two types of containers are
available: array containers for sparse chunks and bitmap containers for dense chunks. An array
container can store up to 4,096 integers. A bitmap container can store more than 4,096 integers.

Roaring bitmaps can use this storage structure to rapidly retrieve specific values. Additionally,
Roaring bitmaps provide bitwise operations such as AND, OR, and XOR between the two types of
containers. Therefore, Roaring bitmaps can deliver excellent storage and computing
performance.

Procedure
1. Create a plug-in. Example:

CREATE EXTENSION roaringbitmap;

2. Create a table with roaringbitmap data. Example:

CREATE TABLE t1 (id integer, bitmap roaringbitmap);

3. Call the rb_build function to insert roaringbitmap data. Example:

-- Set the bit value of an array to 1. INSERT INTO t1 SELECT 1,RB_BUILD(ARRAY[1,2,3,4,5,6,7,8,9,200])

;

-- Set the bit values of multiple elements to 1 and aggregate the bit values into a Roaring bitmap.

INSERT INTO t1 SELECT 2,RB_BUILD_AGG(e) FROM GENERATE_SERIES(1,100) e;

4. Perform bitwise operations such as OR, AND, XOR, and ANDNOT. Example:

SELECT RB_OR(a.bitmap,b.bitmap) FROM (SELECT bitmap FROM t1 WHERE id = 1) AS a,(SELECT bitma

p FROM t1 WHERE id = 2) AS b;

5. Perform bitwise aggregate operations such as OR, AND, XOR, and BUILD to generate a new
Roaring bitmap. Example:

SELECT RB_OR_AGG(bitmap) FROM t1;

SELECT RB_AND_AGG(bitmap) FROM t1;

SELECT RB_XOR_AGG(bitmap) FROM t1;

SELECT RB_BUILD_AGG(e) FROM GENERATE_SERIES(1,100) e;

6. Calculate the cardinality of the Roaring bitmap. The cardinality is the number of bits that are
set to 1 in the Roaring bitmap. Example:

SELECT RB_CARDINALITY(bitmap) FROM t1;

7. Obtain the subscripts of the bits that are set to 1. Example:

SELECT RB_ITERATE(bitmap) FROM t1 WHERE id = 1;

Bitmap calculation functions

AliPG Kernel · Query vert ical industry-specific data ApsaraDB for RDS

34 > Document Version:20201013

Function Input Output Description Example

rb_build integer[] roaringbitmap

Creates a
Roaring bitmap
from an integer
array.

rb_build('{1,2,

3,4,5}')

rb_and roaringbitmap,ro
aringbitmap roaringbitmap Performs an AND

operation.

rb_and(rb_bui

ld('{1,2,3}'),rb_

build('{3,4,5}'))

rb_or roaringbitmap,ro
aringbitmap roaringbitmap Performs an OR

operation.

rb_or(rb_build

('{1,2,3}'),rb_b

uild('{3,4,5}'))

rb_xor roaringbitmap,ro
aringbitmap roaringbitmap Performs an XOR

operation.

rb_xor(rb_buil

d('{1,2,3}'),rb_

build('{3,4,5}'))

rb_andnot roaringbitmap,ro
aringbitmap roaringbitmap

Performs an
ANDNOT
operation.

rb_andnot(rb

_build('{1,2,3}'

),rb_build('{3,

4,5}'))

rb_cardinality roaringbitmap integer Calculates the
cardinality.

rb_cardinality

(rb_build('{1,2

,3,4,5}'))

ApsaraDB for RDS AliPG Kernel · Query vert ical industry-specific data

> Document Version:20201013 35

rb_and_cardinalit
y

roaringbitmap,ro
aringbitmap integer

Calculates the
cardinality from
an AND
operation on two
Roaring bitmaps.

rb_and_cardin

ality(rb_build(

'{1,2,3}'),rb_bu

ild('{3,4,5}'))

rb_or_cardinality roaringbitmap,ro
aringbitmap integer

Calculates the
cardinality from
an OR operation
on two Roaring
bitmaps.

rb_or_cardina

lity(rb_build('{

1,2,3}'),rb_buil

d('{3,4,5}'))

rb_xor_cardinalit
y

roaringbitmap,ro
aringbitmap integer

Calculates the
cardinality from
an XOR
operation on two
Roaring bitmaps.

rb_xor_cardin

ality(rb_build(

'{1,2,3}'),rb_bu

ild('{3,4,5}'))

rb_andnot_cardin
ality

roaringbitmap,ro
aringbitmap integer

Calculates the
cardinality from
an ANDNOT
operation on two
Roaring bitmaps.

rb_andnot_ca

rdinality(rb_b

uild('{1,2,3}'),r

b_build('{3,4,5

}'))

rb_is_empty roaringbitmap boolean
Checks whether
a Roaring bitmap
is empty.

rb_is_empty(r

b_build('{1,2,3

,4,5}'))

rb_equals roaringbitmap,ro
aringbitmap boolean

Checks whether
two Roaring
bitmaps are the
same.

rb_equals(rb_

build('{1,2,3}'),

rb_build('{3,4,

5}'))

Function Input Output Description Example

AliPG Kernel · Query vert ical industry-specific data ApsaraDB for RDS

36 > Document Version:20201013

rb_intersect roaringbitmap,ro
aringbitmap boolean

Checks whether
two Roaring
bitmaps
intersect.

rb_intersect(r

b_build('{1,2,3

}'),rb_build('{3,

4,5}'))

rb_remove roaringbitmap,int
eger roaringbitmap

Removes an
offset from a
Roaring bitmap.

rb_remove(rb

_build('{1,2,3}'

),3)

rb_flip roaringbitmap,int
eger,integer roaringbitmap

Flips specific
offsets in a
Roaring bitmap.

rb_flip(rb_buil

d('{1,2,3}'),2,3)

rb_minimum roaringbitmap integer

Returns the
smallest offset
in a Roaring
bitmap. If the
Roaring bitmap is
empty, the value
-1 is returned.

rb_minimum(r

b_build('{1,2,3

}'))

rb_maximum roaringbitmap integer

Returns the
largest offset in
a Roaring
bitmap. If the
Roaring bitmap is
empty, the value
0 is returned.

rb_maximum(r

b_build('{1,2,3

}'))

rb_rank roaringbitmap,int
eger integer

Returns the
number of
elements that
are smaller than
or equal to a
specified offset
in a Roaring
bitmap.

rb_rank(rb_bu

ild('{1,2,3}'),3)

rb_iterate roaringbitmap setof integer
Returns a list of
offsets from a
Roaring bitmap.

rb_iterate(rb_

build('{1,2,3}'))

Function Input Output Description Example

ApsaraDB for RDS AliPG Kernel · Query vert ical industry-specific data

> Document Version:20201013 37

Bitmap aggregate functions

Function Input Output Description Example

rb_build_agg integer roaringbitmap

Creates a
Roaring bitmap
from a group of
offsets.

rb_build_agg(

1)

rb_or_agg roaringbitmap roaringbitmap
Performs an OR
aggregate
operation.

rb_or_agg(rb_

build('{1,2,3}'))

rb_and_agg roaringbitmap roaringbitmap
Performs an AND
aggregate
operation.

rb_and_agg(r

b_build('{1,2,3

}'))

rb_xor_agg roaringbitmap roaringbitmap
Performs an XOR
aggregate
operation.

rb_xor_agg(rb

_build('{1,2,3}'

))

rb_or_cardinality
_agg roaringbitmap integer

Calculates the
cardinality from
an OR aggregate
operation on two
Roaring bitmaps.

rb_or_cardina

lity_agg(rb_b

uild('{1,2,3}'))

rb_and_cardinalit
y_agg roaringbitmap integer

Calculates the
cardinality from
an AND
aggregate
operation on two
Roaring bitmaps.

rb_and_cardin

ality_agg(rb_

build('{1,2,3}'))

rb_xor_cardinalit
y_agg roaringbitmap integer

Calculates the
cardinality from
an XOR
aggregate
operation on two
Roaring bitmaps.

rb_xor_cardin

ality_agg(rb_

build('{1,2,3}'))

AliPG Kernel · Query vert ical industry-specific data ApsaraDB for RDS

38 > Document Version:20201013

This topic describes how to use the RDKit plug-in of ApsaraDB RDS for PostgreSQL to implement
functions such as molecular computing and search.

Prerequisites
Your RDS instance runs PostgreSQL 12.

Context
RDKit supports two data types: the mol data type that is used to describe molecular types, and
the fp data type that is used to describe molecular fingerprints. It allows for comparison
computing, similarity computing based on the Tanimoto and Dice coefficients, and GiST indexing.

For more information about the SQL statements that are supported by RDKit, visit RDKit SQL.

Precautions
Input and output functions based on the mol data type comply with the simplified molecular
input line entry specification (SMILES).
Input and output functions based on the fp data type comply with the bytea format that is
used to store binary data.

Create the RDKit plug-in

postgres=# create extension rdkit ;

CREATE EXTENSION

Default parameter settings

postgres=# show rdkit.tanimoto_threshold ;

 rdkit.tanimoto_threshold

 0.5

(1 row)

postgres=# show rdkit.dice_threshold;

 rdkit.dice_threshold

 0.5

(1 row)

Indexes supported
B-tree and hash indexes are supported for comparison computing operations that are based
on the mol and fp data types. Examples:

5.5. Use the RDKit plug-in

ApsaraDB for RDS AliPG Kernel · Query vert ical industry-specific data

> Document Version:20201013 39

https://github.com/rdkit/rdkit/tree/master/Code/PgSQL/rdkit/sql

CREATE INDEX molidx ON pgmol (mol);

CREATE INDEX molidx ON pgmol (fp);

GiST indexes are supported for the following operations that are based on the mol and fp
data types: "mol % mol", "mol # mol", "mol @> mol", "mol <@ mol", "fp % fp", and "fp # fp."
Example:

CREATE INDEX molidx ON pgmol USING gist (mol);

Sample functions
The tanimoto_sml function calculates the degree of similarity based on the Tanimoto
coefficient.

postgres=# \df tanimoto_sml

 List of functions

 Schema | Name | Result data type | Argument data types | Type

--------+--------------+------------------+---------------------+------

 public | tanimoto_sml | double precision | bfp, bfp | func

 public | tanimoto_sml | double precision | sfp, sfp | func

(2 rows)

The dice_sml function calculates the degree of similarity based on the Dice coefficient.

postgres=# \df dice_sml

 List of functions

 Schema | Name | Result data type | Argument data types | Type

--------+----------+------------------+---------------------+------

 public | dice_sml | double precision | bfp, bfp | func

 public | dice_sml | double precision | sfp, sfp | func

(2 rows)

If the second argument is a substructure of the first argument, the substruct function returns
the TRUE value.

postgres=# \df substruct

 List of functions

 Schema | Name | Result data type | Argument data types | Type

--------+-----------+------------------+---------------------+------

 public | substruct | boolean | mol, mol | func

 public | substruct | boolean | mol, qmol | func

 public | substruct | boolean | reaction, reaction | func

(3 rows)

Basic operations

AliPG Kernel · Query vert ical industry-specific data ApsaraDB for RDS

40 > Document Version:20201013

 mol % mol and fp % fp

If the degree of similarity that is calculated based on the Tanimoto coefficient is less than the
value of the rdkit.tanimoto_threshold GUC variable, the TRUE value is returned.

 mol # mol and fp # fp

If the degree of similarity that is calculated based on the Dice coefficient is less than the value
of the rdkit.dice_threshold GUC variable, the TRUE value is returned.

 mol @> mol

If the left operand contains the right operand, the TRUE value is returned.

 mol <@ mol

If the right operand contains the left operand, the TRUE value is returned.

ApsaraDB for RDS AliPG Kernel · Query vert ical industry-specific data

> Document Version:20201013 41

Alibaba Cloud allows you to use the oss_fdw plug-in to load data from an OSS bucket to a
database on an ApsaraDB RDS for PostgreSQL or PPAS instance and write data from the
database to the OSS bucket.

Prerequisites
The RDS instance runs one of the following PostgreSQL versions:

PostgreSQL 9.4
PostgreSQL 10

Example

6.Run cross-database queries
6.1. Read and write external data files by
using oss_fdw

AliPG Kernel · Run cross-database queries ApsaraDB for RDS

42 > Document Version:20201013

Create an oss_fdw plug-in for the RDS for PostgreSQL database.

create extension oss_fdw; --- For an RDS for PPAS database, execute the select rds_manage_extensi

on('create','oss_fdw'); statement.

Create a server.

CREATE SERVER ossserver FOREIGN DATA WRAPPER oss_fdw OPTIONS

 (host 'oss-cn-hangzhou.aliyuncs.com' , id 'xxx', key 'xxx',bucket 'mybucket');

Create a foreign table for OSS.

CREATE FOREIGN TABLE ossexample

 (date text, time text, open float,

 high float, low float, volume int)

 SERVER ossserver

 OPTIONS (filepath 'osstest/example.csv', delimiter ',' ,

 format 'csv', encoding 'utf8', PARSE_ERRORS '100');

Create a table to store loaded data.

create table example

 (date text, time text, open float,

 high float, low float, volume int);

Load data from the ossexample table to the example table.

insert into example select * from ossexample;

oss_fdw estimates the data size in the OSS bucket and configures a query plan.

explain insert into example select * from ossexample;

 QUERY PLAN

 Insert on example (cost=0.00..1.60 rows=6 width=92)

 -> Foreign Scan on ossexample (cost=0.00..1.60 rows=6 width=92)

 Foreign OssFile: osstest/example.csv.0

 Foreign OssFile Size: 728

(4 rows)

Write data from the example table to the ossexample table.

insert into ossexample select * from example;

explain insert into ossexample select * from example;

 QUERY PLAN

 Insert on ossexample (cost=0.00..16.60 rows=660 width=92)

 -> Seq Scan on example (cost=0.00..16.60 rows=660 width=92)

(2 rows)

For information about the parameters, see the following sections.

ApsaraDB for RDS AliPG Kernel · Run cross-database queries

> Document Version:20201013 43

oss_fdw parameters
The oss_fdw plug-in uses a method similar to other Foreign Data Wrappers (FDWs) to
encapsulate external data stored in OSS buckets. You can use oss_fdw to read data from OSS
buckets. This process is similar to reading data from tables. oss_fdw provides unique parameters
to connect to OSS buckets and parse file data.

Note
oss_fdw can read and write the following types of files in OSS buckets: TEXT and CSV
files, including TEXT and CSV files compressed by using gzip.
The value of each parameter must be enclosed in double quotation marks (") and
cannot contain any unnecessary spaces.

CREATE SERVER parameters

Parameter Description

ossendpoint The internal OSS endpoint, which is used as the host address.

id oss The account ID.

key oss The account key.

bucket The OSS bucket. You must create an OSS account before you configure this
parameter.

The following fault tolerance parameters can be used for data import and export. If the network
connectivity is poor, you can adjust these parameters to ensure successful import and export.

Parameter Description

oss_connect_timeout The timeout period of connection. Unit: seconds. Default value: 10.

oss_dns_cache_timeou
t The timeout period of DNS cache. Unit: seconds. Default value: 60.

oss_speed_limit The minimum transmission rate. Unit: bit/s. Default value: 1024 (1 Kbit/s).

oss_speed_time The maximum time period to tolerate the minimum transmission rate. Unit:
seconds. Default value: 15.

Note If the default values of oss_speed_limit and oss_speed_time are used, a timeout
occurs when the transmission rate is slower than 1 Kbit/s for 15 consecutive seconds.

CREATE FOREIGN TABLE parameters

Parameter Description

AliPG Kernel · Run cross-database queries ApsaraDB for RDS

44 > Document Version:20201013

filepath

The file name that contains the path in the OSS bucket.

The file name contains the path and does not contain the bucket name.

This parameter matches multiple files in the specified path in the OSS
bucket, so you can load multiple files to the database at a time.

You can import files named in the format of filepath or filepath.x to the
database. The values of x must be consecutive numbers starting from 1.

For example, among the files named filepath, filepath.1, filepath.2,
filepath.3, and filepath.5, the first four files are matched and imported.
The filepath.5 file is not imported.

dir

The virtual file directory in the OSS bucket.

The value must end with a forward slash (/).

All files (excluding subfolders and files in the subfolders) in the
specified virtual file directory are matched and imported to the
database.

prefix
The path name prefix of the data file. The prefix does not support regular
expressions. You can only configure one of the prefix, filepath, and dir
parameters.

format The file format. Set the value to csv.

encoding The data encoding format. Common encoding formats in PostgreSQL are
supported, such as UTF-8.

parse_errors The fault-tolerant parsing mode. If an error occurs in the parsing process,
the entire row of data is ignored.

delimiter The column delimiter.

quote The quote character for the file.

escape The escape character for the file.

null This parameter sets the value of the column matching a specified string to
null. For example, null 'test' sets the value of the test column to null.

force_not_null
This parameter sets the value of the specified column to a non-null value.
For example, if the value of the id column is empty, force_not_null 'id' sets
the value of the id column to an empty string, instead of null.

compressiontype

The format of files to be read and written in the OSS bucket.

none: the uncompressed text files. This is the default value.

gzip: the gzip-compressed files.

compressionlevel The compression level of files written to the OSS bucket. Valid values: 1 to
9. Default value: 6.

Parameter Description

ApsaraDB for RDS AliPG Kernel · Run cross-database queries

> Document Version:20201013 45

Note
The filepath and dir parameters are configured in the OPTIONS field.
You must specify either the filepath or dir parameter.
The export only supports the dir parameter and does not support the filepath
parameter.

CREATE FOREIGN TABLE parameters in the export
oss_flush_block_size: the buffer size for data written to the OSS bucket at a time. Default
value: 32 MB. Valid values: 1 MB to 128 MB.
oss_file_max_size: the maximum file size for data written to the OSS bucket. Extra data is
written to another file. Default value: 1024 MB. Valid values: 8 MB to 4000 MB.
num_parallel_worker: the number of parallel compression threads in which data is written to
the OSS bucket. Valid values: 1 to 8. Default value: 3.

Auxiliary functions
FUNCTION oss_fdw_list_file (relname text, schema text DEFAULT ‘public’)

This function obtains the names and sizes of files that match a foreign table in the OSS
bucket.
The unit of the file size is bytes.

select * from oss_fdw_list_file('t_oss');

 name | size

--------------------------------+-----------

 oss_test/test.gz.1 | 739698350

 oss_test/test.gz.2 | 739413041

 oss_test/test.gz.3 | 739562048

(3 rows)

Auxiliary features
oss_fdw.rds_read_one_file: specifies the file that matches the foreign table when data is read.
The foreign table only matches the specified file during data import.

Example: set oss_fdw.rds_read_one_file = ‘oss_test/example16.csv.1’;

set oss_fdw.rds_read_one_file = 'oss_test/test.gz.2';

select * from oss_fdw_list_file('t_oss');

 name | size

--------------------------------+-----------

 oss_test/test.gz.2 | 739413041

(1 rows)

oss_fdw usage notes

AliPG Kernel · Run cross-database queries ApsaraDB for RDS

46 > Document Version:20201013

oss_fdw is a foreign table plug-in developed based on the PostgreSQL FOREIGN TABLE
framework.
Data import efficiency varies based on the OSS configuration and PostgreSQL cluster
resources, such as CPU, I/O, and memory.
Make sure that the RDS for PostgreSQL instance resides in the same region as the OSS bucket.
This ensures data import efficiency. For more information, see OSS domain names.

If the error ERROR: oss endpoint userendpoint not in aliyun white list is reported when SQL
statements are read from the foreign table, you can use the public OSS endpoint of the
required region. For more information, see Regions and endpoints. If the problem persists,
submit a ticket.

Error information
When an error occurs during the import or export, the following error information is recorded in
logs:

code: the HTTP status code of the failed request.

error_code: the error code returned by OSS.

error_msg: the error message returned by OSS.

req_id: the UUID that identifies the request. If you require assistance in solving a problem, you
can submit a ticket containing req_id of the failed request to OSS developers.

For more information about the errors, see the following references. Timeout errors can be
handled based on oss_ext parameters.

Object Storage Service document center

CREATE FOREIGN TABLE in PostgreSQL

OSS error handling

OSS error response

ID and key encryption
If the id and key parameters in CREATE SERVER are not encrypted, other users can obtain your ID
and key in plaintext by executing the select * from pg_foreign_server statement. You can use
symmetric encryption to hide the ID and key and use different keys for different instances to
protect your data. However, to avoid incompatibility with instances of earlier versions, do not
add data types as you do in Greenplum.

The encrypted ID and key are displayed as follows:

postgres=# select * from pg_foreign_server ;

 srvname | srvowner | srvfdw | srvtype | srvversion | srvacl |

srvoptions

-----------+----------+--------+---------+------------+--------+---

 ossserver | 10 | 16390 | | | | {host=oss-cn-hangzhou-zmf.aliyuncs.com,id=MD5xxxxxxx

x,key=MD5xxxxxxxx,bucket=067862}

ApsaraDB for RDS AliPG Kernel · Run cross-database queries

> Document Version:20201013 47

https://www.alibabacloud.com/help/doc-detail/31834.htm
https://www.alibabacloud.com/help/doc-detail/31837.htm#concept-zt4-cvy-5db
https://www.alibabacloud.com/help/product/31815.htm
http://www.postgresql.org/docs/9.4/static/sql-createforeigntable.html
https://www.alibabacloud.com/help/doc-detail/32141.htm
https://www.alibabacloud.com/help/doc-detail/32005.htm

The encrypted string starts with MD5. The total length divided by 8 gets a remainder of 3.
Encryption is not performed again when the exported data is imported. You cannot create a key
and ID that starts with MD5.

This topic describes how to use the mysql_fdw plug-in of ApsaraDB RDS for PostgreSQL to read
and write data to a database on an ApsaraDB RDS for MySQL instance or to a user-created
MySQL database.

Prerequisites
Your ApsaraDB for RDS instance runs PostgreSQL 10 or 12 based on standard or enhanced
SSDs.
Communication between your ApsaraDB RDS for PostgreSQL instance and the target MySQL
database is normal. You can configure whitelists and firewalls to ensure proper
communication. For more information, see Configure a whitelist for an ApsaraDB RDS for
PostgreSQL instance and What do I do if I cannot connect an ECS instance to an ApsaraDB for
RDS instance?

Context
PostgreSQL 9.6 and later support parallel computing. PostgreSQL 11 can complete queries by
using joins among up to 1 billion data records in seconds. A number of users prefer to use
PostgreSQL to build small-sized data warehouses and process highly concurrent access
requests. PostgreSQL 13 is under development. It will support columnar storage engines that
further improve analysis capabilities.

The mysql_fdw plug-in establishes a connection to synchronize data from a MySQL database to
your ApsaraDB RDS for PostgreSQL instance.

Procedure
1. Create the mysql_fdw plug-in.

postgres=> create extension mysql_fdw;

CREATE EXTENSION

2. Define a MySQL server.

postgres=> CREATE SERVER <The name of the MySQL server>

postgres-> FOREIGN DATA WRAPPER mysql_fdw

postgres-> OPTIONS (host '<The endpoint used to connect to the MySQL server>', port '<The po

rt used to connect the MySQL server>');

CREATE SERVER

Example:

6.2. Use mysql_fdw to read and write data
to a MySQL database

AliPG Kernel · Run cross-database queries ApsaraDB for RDS

48 > Document Version:20201013

https://www.alibabacloud.com/help/doc-detail/43187.htm#concept-sfx-kdg-wdb
https://www.alibabacloud.com/help/doc-detail/127814.htm#concept-cqq-x1d-sfb/section-7dl-9ch-bs5

postgres=> CREATE SERVER mysql_server

postgres-> FOREIGN DATA WRAPPER mysql_fdw

postgres-> OPTIONS (host 'rm-xxx.mysql.rds.aliyuncs.com', port '3306');

CREATE SERVER

3. Map the MySQL server to an account created on your ApsaraDB RDS for PostgreSQL instance.
That account is used to read and write data to the target MySQL database on the MySQL
server.

postgres=> CREATE USER MAPPING FOR <The username of the account to which the MySQL server

is mapped>

SERVER <The name of the MySQL server>

OPTIONS (username '<The username used to log on to the target MySQL database>', password '<

The password used to log on to the target MySQL database>');

CREATE USER MAPPING

Example:

postgres=> CREATE USER MAPPING FOR pgtest

SERVER mysql_server

OPTIONS (username 'mysqltest', password 'Test1234!') ;

CREATE USER MAPPING

4. Create a foreign MySQL table by using the account that you mapped to the MySQL server in
the previous step.

Note The field names in the foreign MySQL table must be the same as those in the
target table of the target MySQL database. You can choose to create only the fields you
want to query. For example, if the target table in the target MySQL database contains
three fields, ID, NAME, and AGE, you only need to create two fields, ID and NAME, in the
foreign MySQL table.

postgres=> CREATE FOREIGN TABLE <The name of the foreign MySQL table> (<The name of Field 1

> <The data type of Field 1>,<The name of Field 2> <The data type of Field 2>...) server <The nam

e of the MySQL server> options (dbname '<The name of the target MySQL database>', table_name

'<The name of the target table in the target MySQL database>'); CREATE FOREIGN TABLE

Example:

postgres=> CREATE FOREIGN TABLE ft_test (id1 int, name1 text) server mysql_server options (dbn

ame 'test123', table_name 'test');

CREATE FOREIGN TABLE

What to do next

ApsaraDB for RDS AliPG Kernel · Run cross-database queries

> Document Version:20201013 49

You can use the foreign MySQL table to test the performance of reading and writing data to the
target MySQL database.

Note Data can be written to the target table in the target MySQL database only when
the target table is assigned a primary key. If the target table is not assigned a primary key,
the following error is reported:

ERROR: first column of remote table must be unique for INSERT/UPDATE/DELETE operation.

postgres=> select * from ft_test ;

postgres=> insert into ft_test values (2,'abc');

INSERT 0 1

postgres=> insert into ft_test select generate_series(3,100),'abc';

INSERT 0 98

postgres=> select count(*) from ft_test ;

 count

 99

(1 row)

Check query plans to find out how the requests sent from your ApsaraDB RDS for PostgreSQL
instance are executed to query data from the target MySQL database.

AliPG Kernel · Run cross-database queries ApsaraDB for RDS

50 > Document Version:20201013

postgres=> explain verbose select count(*) from ft_test ;

 QUERY PLAN

 Aggregate (cost=1027.50..1027.51 rows=1 width=8)

 Output: count(*)

 -> Foreign Scan on public.ft_test (cost=25.00..1025.00 rows=1000 width=0)

 Output: id, info

 Remote server startup cost: 25

 Remote query: SELECT NULL FROM `test123`.`test`

(6 rows)

postgres=> explain verbose select id from ft_test where id=2;

 QUERY PLAN

 Foreign Scan on public.ft_test (cost=25.00..1025.00 rows=1000 width=4)

 Output: id

 Remote server startup cost: 25

 Remote query: SELECT `id` FROM `test123`.`test` WHERE ((`id` = 2))

(4 rows)

This topic describes how to use the log_fdw plug-in to query the database logs of an RDS
PostgreSQL instance.

Prerequisites
The RDS instance runs PostgreSQL 11.

Context
The log_fdw plug-in provides the following two functions:

list_postgres_log_files(): lists all .csv log files.
create_foreign_table_for_log_file(IN table_name text, IN log_server text, IN log_file text):
creates a foreign table associated with a specific .csv log file.

Procedure
1. Create the log_fdw plug-in.

postgres=> create extension log_fdw;

CREATE EXTENSION

2. Create a definition for the log server.

postgres=> create server <The name of the log server> foreign data wrapper log_fdw;

6.3. Use the log_fdw plug-in

ApsaraDB for RDS AliPG Kernel · Run cross-database queries

> Document Version:20201013 51

Example:

postgres=> create server log_server foreign data wrapper log_fdw;

CREATE SERVER

3. Invoke the list_postgres_log_files() function to list all .csv log files.

postgres=> select * from list_postgres_log_files() order by 1;

 file_name | file_size_bytes

----------------------------------+-----------------

 postgresql-2020-01-10_095546.csv | 3794

 postgresql-2020-01-10_100336.csv | 318318

 postgresql-2020-01-11_000000.csv | 198437

 postgresql-2020-01-11_083546.csv | 4775

 postgresql-2020-01-13_030618.csv | 3347

4. Invoke the create_foreign_table_for_log_file(IN table_name text, IN log_server text, IN
log_file text) function to create a foreign table associated with a specific .csv log file.

postgres=> select create_foreign_table_for_log_file('<The name to use for the foreign table>', '<T

he name of the log server>', '<The name of the .csv log file associated with the foreign table>');

Example:

postgres=> select create_foreign_table_for_log_file('ft1', 'log_server', 'postgresql-2020-01-13_0306

18.csv');

 create_foreign_table_for_log_file

 t

(1 row)

5. Query the foreign table to obtain the data of the .csv log file associated with it.

postgres=> select log_time, message from <The name of the foreign table to query> order by log_

time desc limit 2;

Example:

postgres=> select log_time, message from ft1 order by log_time desc limit 2;

 log_time | message

----------------------------+---

 2020-01-13 03:35:00.003+00 | cron job 1 completed: INSERT 0 1 1

 2020-01-13 03:35:00+00 | cron job 1 starting: INSERT INTO cron_test VALUES ('Hello World')

(2 rows)

Schema of a foreign table

AliPG Kernel · Run cross-database queries ApsaraDB for RDS

52 > Document Version:20201013

postgres=> \d+ ft1

 Foreign table "public.ft1"

 Column | Type | Collation | Nullable | Default | FDW options | Storage | Stats targ

et | Description

------------------------+-----------------------------+-----------+----------+---------+-------------+----------+-----

---------+-------------

 log_time | timestamp(3) with time zone | | | | | plain | |

 user_name | text | | | | | extended | |

 database_name | text | | | | | extended | |

 process_id | integer | | | | | plain | |

 connection_from | text | | | | | extended | |

 session_id | text | | | | | extended | |

 session_line_num | bigint | | | | | plain | |

 command_tag | text | | | | | extended | |

 session_start_time | timestamp with time zone | | | | | plain | |

 virtual_transaction_id | text | | | | | extended | |

 transaction_id | bigint | | | | | plain | |

 error_severity | text | | | | | extended | |

 sql_state_code | text | | | | | extended | |

 message | text | | | | | extended | |

 detail | text | | | | | extended | |

 hint | text | | | | | extended | |

 internal_query | text | | | | | extended | |

 internal_query_pos | integer | | | | | plain | |

 context | text | | | | | extended | |

 query | text | | | | | extended | |

 query_pos | integer | | | | | plain | |

 location | text | | | | | extended | |

 application_name | text | | | | | extended | |

Server: log_server

FDW options: (filename 'postgresql-2020-01-13_030618.csv')

This topic describes the tds_fdw plug-in that is used to query data in other types of databases.

Prerequisites
The instance runs one of the following PostgreSQL versions:

PostgreSQL 12 (kernel version 20200421 and later)
PostgreSQL 11 (kernel version 20200402 and later)

6.4. Use the tds_fdw plug-in

ApsaraDB for RDS AliPG Kernel · Run cross-database queries

> Document Version:20201013 53

Note To view the kernel version, perform the following steps: Log on to the ApsaraDB
for RDS console, find the target RDS instance, and navigate to the Basic Information page.
Then, in the Configuration Information section, check whether the Upgrade Minor Version
button exists. If the button exists, click it to view the kernel version. If the button does not
exist, it indicates that you are already using the latest kernel version. For more information,
see Upgrade the kernel version of an ApsaraDB RDS for PostgreSQL instance.

Context
tds_fdw is a PostgreSQL foreign data wrapper that you can use to connect to databases. These
databases use the Tabular Data Stream (TDS) protocol. Databases include Sybase and Microsoft
SQL Server.

For more information, visit postgres_fdw.

Create a tds_fdw plug-in
After you have connected to an instance, execute the following statement to create a tds_fdw
plug-in:

create extension tds_fdw;

Use tds_fdw
1. Execute the following statement to create a server:

CREATE SERVER mssql_svr

 FOREIGN DATA WRAPPER tds_fdw

 OPTIONS (servername '127.0.0.1', port '1433', database 'tds_fdw_test', tds_version '7.1');

2. Create a foreign table. You can use one of the following methods to create a foreign table:

Execute the following statement to create a foreign table. You must specify the
table_name parameter.

CREATE FOREIGN TABLE mssql_table (

 id integer,

 data varchar)

 SERVER mssql_svr

 OPTIONS (table_name 'dbo.mytable', row_estimate_method 'showplan_all');

Execute the following statement to create a foreign table. You must specify the
schema_name and table_name parameters.

AliPG Kernel · Run cross-database queries ApsaraDB for RDS

54 > Document Version:20201013

https://www.alibabacloud.com/help/doc-detail/146895.htm#concept-gnx-vgj-wdb11
http://www.postgres.cn/docs/11/postgres-fdw.html

CREATE FOREIGN TABLE mssql_table (

 id integer,

 data varchar)

 SERVER mssql_svr

 OPTIONS (schema_name 'dbo', table_name 'mytable', row_estimate_method 'showplan_all');

Execute the following statement to create a foreign table. You must specify the query
parameter.

CREATE FOREIGN TABLE mssql_table (

 id integer,

 data varchar)

 SERVER mssql_svr

 OPTIONS (query 'SELECT * FROM dbo.mytable', row_estimate_method 'showplan_all');

Execute the following statement to create a foreign table. You must specify a foreign
column name.

CREATE FOREIGN TABLE mssql_table (

 id integer,

 col2 varchar OPTIONS (column_name 'data'))

 SERVER mssql_svr

 OPTIONS (schema_name 'dbo', table_name 'mytable', row_estimate_method 'showplan_all');

3. Execute the following statement to create a user mapping:

CREATE USER MAPPING FOR postgres

 SERVER mssql_svr

 OPTIONS (username 'sa', password '123456');

4. Execute the following statement to import a schema from a foreign table:

IMPORT FOREIGN SCHEMA dbo

 EXCEPT (mssql_table)

 FROM SERVER mssql_svr

 INTO public

 OPTIONS (import_default 'true');

This topic describes how to use the oracle_fdw plug-in to connect to an Oracle database. It also
provides details about how to create a PostgreSQL table and synchronize data to an Oracle
table.

Prerequisites
Your RDS instance runs PostgreSQL 12 with the kernel version of 20200421 or later.

6.5. Use the oracle_fdw plug-in

ApsaraDB for RDS AliPG Kernel · Run cross-database queries

> Document Version:20201013 55

Note You can execute the show rds_supported_extensions; statement to check
whether the current kernel version supports the oracle_fdw plug-in. If the current kernel
version does not support the oracle_fdw plug-in, you must first upgrade the kernel
version.

The Oracle client version is 11.2 or later.
The Oracle server version is based on the Oracle client version. For more information, see
Oracle documentation.

Context
oracle_fdw is a PostgreSQL plug-in that provides a Foreign Data Wrapper (FDW). It provides easy
access to Oracle databases and allows you to synchronize data between PostgreSQL and
Oracle.

For more information, see oracle_fdw.

Precautions
If you want to execute the UPDATE or DELETE statements, you must set the key parameter to
true for primary key columns when you create a foreign table. For more information, see
Create a foreign table.
The data types of columns in the foreign table must be identifiable and convertible for
oracle_fdw. For more information about the conversion rules supported by oracle_fdw, see
Data types.
oracle_fdw can push the WHERE and ORDER BY clauses down to Oracle databases.
oracle_fdw can push down join operations to Oracle databases. Pushdown has the following
limits:

Both tables for a join must be defined in the same database mapping.
Joins between three or more tables cannot be pushed down.
Joins must be included in a SELECT statement.
Cross joins without join conditions cannot be pushed down.
If a join is pushed down, ORDER BY clauses are not pushed down.

oracle_fdw supports PostGIS. After PostGIS is installed, oracle_fdw further supports the
following spatial data types:

POINT
LINE
POLYGON
MULTIPOINT
MULTILINE
MULTIPOLYGON

Procedure
1. Create an oracle_fdw plug-in. The statement is as follows:

CREATE EXTENSION oracle_fdw;

AliPG Kernel · Run cross-database queries ApsaraDB for RDS

56 > Document Version:20201013

https://oraclefact.wordpress.com/2018/04/05/client-server-interoperability-support-matrix-for-different-oracle-versions-doc-id-207303-1/
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw#data-types

2. Create an Oracle database mapping. One of the following two statements can be used:

CREATE SERVER <Server name>

FOREIGN DATA WRAPPER oracle_fdw

OPTIONS (dbserver '//<Endpoint>:<Port>/<Database name>');

Example:

CREATE SERVER <Server name>

FOREIGN DATA WRAPPER oracle_fdw

OPTIONS (dbserver '//127.0.0.1:5432/oradbname');

CREATE SERVER oradb

FOREIGN DATA WRAPPER oracle_fdw

OPTIONS (host '<Endpoint>', port '<Port>', dbname '<Database name>');

Example:

CREATE SERVER oradb

FOREIGN DATA WRAPPER oracle_fdw

OPTIONS (host '127.0.0.1', port '5432', dbname 'oradbname');

3. Create a user mapping. The statement is as follows:

CREATE USER MAPPING

FOR <PostgreSQL username> SERVER <Mapping name>

OPTIONS (user '<Oracle database username>', password '<User password>');

Note If you do not store the Oracle user credentials in your PostgreSQL database,
set the user parameter to an empty string and provide external authorization
credentials.

Example:

CREATE USER MAPPING

FOR pguser SERVER oradb

OPTIONS (user 'orauser', password 'orapwd');

4. Create a foreign table. Example:

ApsaraDB for RDS AliPG Kernel · Run cross-database queries

> Document Version:20201013 57

CREATE FOREIGN TABLE oratab (

 id integer OPTIONS (key 'true') NOT NULL,

 text character varying(30),

 floating double precision NOT NULL

) SERVER oradb OPTIONS (table 'ORATAB',

 schema 'ORAUSER',

 max_long '32767',

 readonly 'false',

 sample_percent, '100',

 prefetch, '200');

Note The structure of the foreign table must be consistent with that of the
mapped Oracle table.

The following table describes the parameters in OPTIONS.

Parameter Description

key

Specifies whether to set a column as a primary key column. Valid
values: true and false. Default value: false. If you want to execute the
UPDATE and DELETE statements, you must set the value to true for all
primary key columns.

table

The name of the Oracle table. The value must be in uppercase, and this
parameter must be specified. You can also use an Oracle SQL statement
to define the value of the table parameter. Example: OPTIONS (table '(

SELECT col FROM tab WHERE val = ''string'')') . In this case, do not use
the schema parameter.

schema The Oracle username for accessing a table that does not belong to the
currently connected user. The value must be in uppercase.

max_long
The maximum length of columns that have the LONG, LONG RAW, or
XMLTYPE data types in the Oracle table. Valid values: 1 to 1073741823.
Default value: 32767.

readonly Specifies whether the Oracle table is read-only. If the value is true, you
cannot execute the INSERT, UPDATE, and DELETE statements.

sample_percent
The percentage of Oracle table blocks that are randomly selected to
calculate PostgreSQL table statistics. Valid values: 0.000001 to 100.
Default value: 100.

prefetch

The number of rows that are fetched for a single round-trip
transmission between PostgreSQL and Oracle during a foreign table
scan. Valid values: 0 to 1024. Default value: 200. The value 0 indicates
that the prefetch function is disabled.

AliPG Kernel · Run cross-database queries ApsaraDB for RDS

58 > Document Version:20201013

After you create the foreign table, you can use it to perform operations on the Oracle table.
Basic SQL statements such as DELETE, INSERT, UPDATE, and SELECT are supported. Foreign table
definitions can be imported. The statement is as follows:

IMPORT FOREIGN SCHEMA <ora_schema_name>

FROM SERVER <server_name>

INTO <schema_name>

OPTIONS (case 'lower');

Note case has the following values:
keep: uses the same object names as those in Oracle. In most cases, the names are in
uppercase.
lower: converts all object names to lowercase.
smart: converts only the object names that are in all uppercase to lowercase.

Delete oracle_fdw
Execute the following SQL statement to delete the oracle_fdw plug-in:

DROP EXTENSION oracle_fdw;

ApsaraDB for RDS AliPG Kernel · Run cross-database queries

> Document Version:20201013 59

This topic describes how to use the dblink and postgre_fdw plug-ins provided with PostgreSQL
to manage tables across databases.

Context
ApsaraDB for RDS instances that run PostgreSQL based on standard or enhanced SSDs support the
dblink and postgres_fdw plug-ins. You can use these plug-ins to manage tables across
databases on instances that reside in the same VPC. These instances include user-created
PostgreSQL instances. If you want to access an RDS for PostgreSQL instance that resides in a
different VPC, you can use an ECS instance in your VPC to redirect access requests between the
database instances.

To purchase an RDS instance that runs PostgreSQL 11 based on standard or enhanced SSDs.

Precautions
Before you perform cross-database operations, consider the following items:

If a user-created ECS-based PostgreSQL instance resides in the same VPC as your RDS for
PostgreSQL instance, you can directly manage tables across these database instances.
An ECS instance in your VPC can be used to redirect access requests between database
instances. This applies if you want to manage tables across your RDS for PostgreSQL instance
and a user-created ECS-based PostgreSQL instance that resides in a different VPC.
You can use the oracle_fdw or mysql_fdw plug-in to connect a user-created PostgreSQL
instance and an Oracle or MySQL instance that reside in different VPCs.
If you manage tables across databases on the same RDS for PostgreSQL instance, you must
set the host parameter to localhost and the port parameter to the local port that is obtained
by running the show port command.

Use dblink
1. Create the dblink plug-in.

create extension dblink;

2. Create a dblink connection to a remote RDS for PostgreSQL instance that resides in the same
VPC as your source database.

7.Use the dblink and postgre_fdw
plug-ins for cross-database
operations

AliPG Kernel · Use the dblink and postgre_fdw plug-ins for cross-database
operat ions

ApsaraDB for RDS

60 > Document Version:20201013

https://www.alibabacloud.com/help/doc-detail/69795.htm#concept-kpg-5wx-5db/section-nae-caf-stf
https://rds-buy.aliyun.com/rdsBuy?#/create/rds?initData=%257B%2522data%2522:%257B%2522rds_dbtype%2522:%2522PostgreSQL%2522%257D%257D

postgres=> select dblink_connect('<The name of the connection>', 'host=<The internal endpoint u

sed to connect to the remote RDS instance> port=<The internal port used to connect to the remot

e RDS instance> user=<The username used to log on to the target database on the remote RDS in

stance> password=<The password used to log on to the target database on the remote RDS insta

nce> dbname=<The name of the target database on the remote RDS instance>');

postgres=> SELECT * FROM dblink('<The name of the connection>', '<The SQL command to run>') a

s <The name of the table to manage>(<The name of the column to manage> <The type of the colu

mn to manage>);

Example:

postgres=> select dblink_connect('a', 'host=pgm-bpxxxxx.pg.rds.aliyuncs.com port=3433 user=test

user2 password=passwd1234 dbname=postgres');

postgres=> select * from dblink('a','select * from products') as T(id int,name text,price numeric); /

/Query a table on the remote RDS instance.

For more information, see dblink.

Use postgres_fdw
1. Create a database.

postgres=> create database <The name of the database>; //Create a database.

postgres=> \c <The name of the created database> //Switch to the database that you created.

Example:

postgres=> create database db1;

CREATE DATABASE

postgres=> \c db1

2. Create the postgres_fdw plug-in.

db1=> create extension postgres_fdw;

3. Create a remote database server that can connect to a remote RDS for PostgreSQL instance
that resides in the same VPC as your source database.

ApsaraDB for
RDS

AliPG Kernel · Use the dblink and postgre_fdw plug-ins for cross-database
operat ions

> Document Version:20201013 61

https://www.postgresql.org/docs/12/dblink.html

db1=> CREATE SERVER <The name of the remote database server>

 FOREIGN DATA WRAPPER postgres_fdw

 OPTIONS (host '<The internal endpoint used to connect to the remote RDS instance>,port '<T

he internal port used to connect to the remote RDS instance>', dbname '<The name of the target d

atabase on the remote RDS instance>');

db1=> CREATE USER MAPPING FOR <The username used to log on to your source database>

 SERVER <The name of the created remote database server>

 OPTIONS (user '<The username used to log on to the target database on the remote RDS inst

ance>', password '<The password used to log on to the target database on the remote RDS instan

ce>');

Example:

db1=> CREATE SERVER foreign_server1

 FOREIGN DATA WRAPPER postgres_fdw

 OPTIONS (host 'pgm-bpxxxxx.pg.rds.aliyuncs.com', port '3433', dbname 'postgres');

CREATE SERVER

db1=> CREATE USER MAPPING FOR testuser

 SERVER foreign_server1

 OPTIONS (user 'testuser2', password 'passwd1234');

CREATE USER MAPPING

4. Import an external table.

db1=> import foreign schema public from server foreign_server1 into <The name of the schema us

ed by the external table>; //Import an external table.

db1=> select * from <The name of the schema used by the external table>. <The name of the exte

rnal table> //Query a remote table.

Example:

db1=> import foreign schema public from server foreign_server1 into ft;

IMPORT FOREIGN SCHEMA

db1=> select * from ft.products;

For more information, see postgres_fdw.

AliPG Kernel · Use the dblink and postgre_fdw plug-ins for cross-database
operat ions

ApsaraDB for RDS

62 > Document Version:20201013

https://www.postgresql.org/docs/12/postgres-fdw.html

This topic describes the use of the HyperLogLog data type supported by the hll plug-in to
estimate page views (PV) and unique visitors (UV).

Prerequisites
The instance runs one of the following PostgreSQL versions:

PostgreSQL 12 (kernel version 20200421 and later)
PostgreSQL 11 (kernel version 20200402 and later)

Note To view the kernel version, perform the following steps: Log on to the ApsaraDB
for RDS console, find the target RDS instance, and navigate to the Basic Information page.
Then, in the Configuration Information section, check whether the Upgrade Minor Version
button exists. If the button exists, click it to view the kernel version. If the button does not
exist, it indicates that you are already using the latest kernel version. For more information,
see Upgrade the kernel version of an ApsaraDB RDS for PostgreSQL instance.

Context
The hll plug-in supports an extendable, set-resembled data type HyperLogLog (hll) to estimate
DISTINCT elements under a specified accuracy. For example, you can use 1,280 bytes of hll data
to accurately estimate billions of DISTINCT elements. The hll plug-in is suitable for industries
that need estimation analysis, such as Internet advertisement analysis to estimate PVs and UVs.

For more information about how to use the hll plug-in, visit postgresql-hll.

For more information about the detailed algorithm, visit HyperLogLog: the analysis of a near-
optimal cardinality estimation algorithm.

Create an hll plug-in
After you connect to an instance, execute the following statement to create an hll plug-in:

CREATE EXTENSION hll;

Basic operations
Execute the following statement to create a table that contains hll fields:

create table agg (id int primary key,userids hll);

Execute the following statement to convert INT data to hll_hashval data:

select 1::hll_hashval;

Basic operators
The hll data type supports the following operators:

=

8.Use the hll plug-in

ApsaraDB for RDS AliPG Kernel · Use the hll plug-in

> Document Version:20201013 63

https://www.alibabacloud.com/help/doc-detail/146895.htm#concept-gnx-vgj-wdb11
https://github.com/citusdata/postgresql-hll
http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf

! =
<>
||
#

Examples:

select hll_add_agg(1::hll_hashval) = hll_add_agg(2::hll_hashval);

select hll_add_agg(1::hll_hashval) | | hll_add_agg(2::hll_hashval);

select #hll_add_agg(1::hll_hashval);

The hll_hashval data type supports the following operators:
=
! =
<>

Examples:

select 1::hll_hashval = 2::hll_hashval;

select 1::hll_hashval <> 2::hll_hashval;

Basic functions
The hll plug-in supports hash functions such as hll_hash_boolean, hll_hash_smallint, and
hll_hash_bigint. Examples:

select hll_hash_boolean(true);

select hll_hash_integer(1);

The hll plug-in supports the hll_add_agg function to convert the data type from INT to hll.
Example:

select hll_add_agg(1::hll_hashval);

The hll plus-in supports the hll_union function to perform UNION operations on hll data.
Example:

select hll_union(hll_add_agg(1::hll_hashval),hll_add_agg(2::hll_hashval));

The hll plus-in supports the hll_set_defaults function to set the accuracy. Example:

select hll_set_defaults(15,5,-1,1);

The hll plug-in supports the hll_print function to display debug information. Example:

select hll_print(hll_add_agg(1::hll_hashval));

Example

AliPG Kernel · Use the hll plug-in ApsaraDB for RDS

64 > Document Version:20201013

create table access_date (acc_date date unique, userids hll);

insert into access_date select current_date, hll_add_agg(hll_hash_integer(user_id)) from generate_ser

ies(1,10000) t(user_id);

insert into access_date select current_date-1, hll_add_agg(hll_hash_integer(user_id)) from generate_s

eries(5000,20000) t(user_id);

insert into access_date select current_date-2, hll_add_agg(hll_hash_integer(user_id)) from generate_s

eries(9000,40000) t(user_id);

postgres=# select #userids from access_date where acc_date=current_date;

 ? column?

 9725.85273370708

(1 row)

postgres=# select #userids from access_date where acc_date=current_date-1;

 ? column?

 14968.6596883279

(1 row)

postgres=# select #userids from access_date where acc_date=current_date-2;

 ? column?

 29361.5209149911

(1 row)

ApsaraDB for RDS AliPG Kernel · Use the hll plug-in

> Document Version:20201013 65

This topic describes how to use the pg_cron plug-in provided by RDS PostgreSQL to configure a
scheduled task.

Prerequisites
Your RDS instance runs PostgreSQL 11.

Note The pg_cron plug-in is only available to new RDS instances. If you want to use it in
an existing RDS instance, you must submit a ticket.

Context
pg_cron is a CRON-based job scheduling plug-in. It uses the same syntax as standard CRON
expressions, but can initiate PostgreSQL commands from databases.

Each scheduled task consists of the following two parts:

Schedule

The schedule to run the pg_cron plug-in. For example, the schedule specifies to run the
pg_cron plug-in once every minute.

Task

The jobs to execute. Example: select * from some_table .

Syntax
The pg_cron plug-in follows the syntax used by standard CRON expressions. In this syntax, the
wildcard * specifies to run the pg_cron plug-in at any time and a specific number specifies to
only run the pg_cron plug-in during the period specified by this number.

 ┌───────────── Minute (0 to 59)

 │ ┌────────────── Hour (0 to 23)

 │ │ ┌─────────────── Date (1 to 31)

 │ │ │ ┌──────────────── Month (1 to 12)

 │ │ │ │ ┌───────────────── Day within a week (0 to 6) (The value 0 indicates Sunda

y.)

 │ │ │ │ │

 │ │ │ │ │

 │ │ │ │ │

 * * * * *

Examples
Create the pg_cron plug-in.

CREATE EXTENSION pg_cron;

9.Use the pg_cron plug-in

AliPG Kernel · Use the pg_cron plug-in ApsaraDB for RDS

66 > Document Version:20201013

https://workorder-intl.console.aliyun.com/#/ticket/createIndex

Add jobs to the scheduled task.

-- Delete expired data at 3:30 am (GMT) every Saturday.

SELECT cron.schedule('30 3 * * 6', $$DELETE FROM events WHERE event_time < now() - interval '1 wee

k'$$);

-- Clear disks at 10:00 am (GMT) every day.

SELECT cron.schedule('0 10 * * *', 'VACUUM');

-- Execute the specified script once every minute.

SELECT cron.schedule('* * * * *', 'select 1;');

-- Execute the specified script at the 23th minute of every hour.

SELECT cron.schedule('23 * * * *', 'select 1;');

-- Execute the specified script on the 4th day of every month.

SELECT cron.schedule('* * 4 * *', 'select 1;');

View the current scheduled task.

SELECT * FROM cron.job;

 jobid | schedule | command | nodename | nodeport | database | username | active

-------+------------+-----------+-----------+----------+----------+----------+--------

 43 | 0 10 * * * | VACUUM; | localhost | 5433 | postgres | test | t

Delete a job from the scheduled task.

SELECT cron.unschedule(43);

Note The number 43 indicates the ID of the job you want to delete.

ApsaraDB for RDS AliPG Kernel · Use the pg_cron plug-in

> Document Version:20201013 67

The PL/Proxy plug-in supports CLUSTER and CONNECT modes to access databases.

Prerequisites
The instance runs one of the following PostgreSQL versions:

PostgreSQL 12 (kernel version 20200421 and later)
PostgreSQL 11 (kernel version 20200402 and later)

Note To view the kernel version, perform the following steps: Log on to the ApsaraDB
for RDS console, find the target RDS instance, and navigate to the Basic Information page.
Then, in the Configuration Information section, check whether the Upgrade Minor Version
button exists. If the button exists, click it to view the kernel version. If the button does not
exist, it indicates that you are already using the latest kernel version. For more information,
see Upgrade the kernel version of an ApsaraDB RDS for PostgreSQL instance.

Context
The PL/Proxy plug-in supports the following modes:

CLUSTER

Supports horizontal splitting of databases and SQL replication.

CONNECT

Supports SQL requests routing to specified databases.

For more information about the use of the PL/Proxy plug-in, visit PL/Proxy.

Precautions
You can directly manage tables across these PostgreSQL instances that reside in the same
VPC.
An ECS instance in the VPC where the PostgreSQL instance resides can redirect access
requests between instances. This allows you to manage tables across instances.
The number of data nodes at the proxy node backend must be 2 to the power of n.

Test environment
Select an instance as the proxy node and another two instances as the data nodes. The
following table describes the instance details.

IP Node type Database name Username

100.xx.xx.136 Proxy node postgres postgres

100.xx.xx.72 Data node pl_db0 postgres

11.xx.xx.9 Data node pl_db1 postgres

10.Use the PL/Proxy plug-in

AliPG Kernel · Use the PL/Proxy plug-in ApsaraDB for RDS

68 > Document Version:20201013

https://www.alibabacloud.com/help/doc-detail/146895.htm#concept-gnx-vgj-wdb11
https://plproxy.github.io/tutorial.html

Create a PL/Proxy plug-in
Execute the following statement to create a PL/Proxy plug-in:

create extension plproxy

Create a PL/Proxy cluster

Note You can skip this operation when you use the CONNECT mode.

1. Execute the following statement to create a PL/Proxy cluster and specify the database
names, IP addresses, and ports of the child node to be connected:

postgres=# CREATE SERVER cluster_srv1 FOREIGN DATA WRAPPER plproxy

postgres-# OPTIONS (

postgres(# connection_lifetime '1800',

postgres(# disable_binary '1',

postgres(# p0 'dbname=pl_db0 host=100.xxx.xxx.72 port=5678',

postgres(# p1 'dbname=pl_db1 host=11.xxx.xxx.9 port=5678'

postgres(#);

CREATE SERVER

2. Execute the following statement to grant permissions to the postgres user:

postgres=# grant usage on FOREIGN server cluster_srv1 to postgres;

GRANT

3. Execute the following statement to create a user mapping:

postgres=> create user mapping for postgres server cluster_srv1 options (user 'postgres');

CREATE USER MAPPING

Create a test table
Execute the following statement to create a test table in each data node:

create table users(userid int, name text);

Test in CLUSTER mode
To test horizontal data splitting, follow these steps:

1. Execute the following statements to create an insert function for each data node:

ApsaraDB for RDS AliPG Kernel · Use the PL/Proxy plug-in

> Document Version:20201013 69

pl_db0=> CREATE OR REPLACE FUNCTION insert_user(i_id int, i_name text)

pl_db0-> RETURNS integer AS $$

pl_db0$> INSERT INTO users (userid, name) VALUES ($1,$2);

pl_db0$> SELECT 1;

pl_db0$> $$ LANGUAGE SQL;

CREATE FUNCTION

pl_db1=> CREATE OR REPLACE FUNCTION insert_user(i_id int, i_name text)

pl_db1-> RETURNS integer AS $$

pl_db1$> INSERT INTO users (userid, name) VALUES ($1,$2);

pl_db1$> SELECT 1;

pl_db1$> $$ LANGUAGE SQL;

CREATE FUNCTION

2. Execute the following statements to create an insert function with the same name for the
proxy node:

postgres=> CREATE OR REPLACE FUNCTION insert_user(i_id int, i_name text)

postgres-> RETURNS integer AS $$

postgres$> CLUSTER 'cluster_srv1';

postgres$> RUN ON ANY;

postgres$> $$ LANGUAGE plproxy;

CREATE FUNCTION

3. Execute the following statements to create a function for the proxy node. This allows you to
obtain user data.

postgres=> CREATE OR REPLACE FUNCTION get_user_name()

postgres-> RETURNS TABLE(userid int, name text) AS $$

postgres$> CLUSTER 'cluster_srv1';

postgres$> RUN ON ALL ;

postgres$> SELECT userid,name FROM users;

postgres$> $$ LANGUAGE plproxy;

CREATE FUNCTION

4. Execute the following statements to insert 10 test records in the proxy node:

AliPG Kernel · Use the PL/Proxy plug-in ApsaraDB for RDS

70 > Document Version:20201013

SELECT insert_user(1001, 'Sven');

SELECT insert_user(1002, 'Marko');

SELECT insert_user(1003, 'Steve');

SELECT insert_user(1004, 'lottu');

SELECT insert_user(1005, 'rax');

SELECT insert_user(1006, 'ak');

SELECT insert_user(1007, 'jack');

SELECT insert_user(1008, 'molica');

SELECT insert_user(1009, 'pg');

SELECT insert_user(1010, 'oracle');

5. The insert function contains the RUN ON ANY statement to randomly insert data into two
data nodes. Execute the following statements to view data of each data node:

pl_db0=> select * from users;

 userid | name

--------+--------

 1001 | Sven

 1003 | Steve

 1004 | lottu

 1005 | rax

 1006 | ak

 1007 | jack

 1008 | molica

 1009 | pg

(8 rows)

pl_db1=> select * from users;

 userid | name

--------+--------

 1002 | Marko

 1010 | oracle

(2 rows)

Note The query results indicate that 10 data records are distributed among
different data nodes. The uneven distribution is based on the minimum data volume.

6. The function to obtain user data contains the RUN ON ALL statement to return the query
results from both data nodes. Execute the following statement to execute the function on
the proxy node:

ApsaraDB for RDS AliPG Kernel · Use the PL/Proxy plug-in

> Document Version:20201013 71

postgres=> SELECT USERID,NAME FROM GET_USER_NAME();

 userid | name

--------+--------

 1001 | Sven

 1003 | Steve

 1004 | lottu

 1005 | rax

 1006 | ak

 1007 | jack

 1008 | molica

 1009 | pg

 1002 | Marko

 1010 | oracle

(10 rows)

To test SQL replication, follow these steps:

1. Execute the following statements to create a function for each node to truncate the users
table:

pl_db0=> CREATE OR REPLACE FUNCTION trunc_user()

pl_db0-> RETURNS integer AS $$

pl_db0$> truncate table users;

pl_db0$> SELECT 1;

pl_db0$> $$ LANGUAGE SQL;

CREATE FUNCTION

pl_db1=> CREATE OR REPLACE FUNCTION trunc_user()

pl_db1-> RETURNS integer AS $$

pl_db1$> truncate table users;

pl_db1$> SELECT 1;

pl_db1$> $$ LANGUAGE SQL;

CREATE FUNCTION

postgres=> CREATE OR REPLACE FUNCTION trunc_user()

postgres-> RETURNS SETOF integer AS $$

postgres$> CLUSTER 'cluster_srv1';

postgres$> RUN ON ALL;

postgres$> $$ LANGUAGE plproxy;

CREATE FUNCTION

2. Execute the truncate function on the proxy node:

AliPG Kernel · Use the PL/Proxy plug-in ApsaraDB for RDS

72 > Document Version:20201013

postgres=> SELECT TRUNC_USER();

 trunc_user

 1

 1

(2 rows)

3. Execute the following statements to create an insert function for the proxy node:

postgres=> CREATE OR REPLACE FUNCTION insert_user_2(i_id int, i_name text)

postgres-> RETURNS SETOF integer AS $$

postgres$> CLUSTER 'cluster_srv1';

postgres$> RUN ON ALL;

postgres$> TARGET insert_user;

postgres$> $$ LANGUAGE plproxy;

CREATE FUNCTION

4. Execute the following statements to insert four test records into the proxy node:

SELECT insert_user_2(1004, 'lottu');

SELECT insert_user_2(1005, 'rax');

SELECT insert_user_2(1006, 'ak');

SELECT insert_user_2(1007, 'jack');

5. Execute the following statements to view data in each data node:

pl_db0=> select * from users;

 userid | name

--------+-------

 1004 | lottu

 1005 | rax

 1006 | ak

 1007 | jack

(4 rows)

pl_db1=> select * from users;

 userid | name

--------+-------

 1004 | lottu

 1005 | rax

 1006 | ak

 1007 | jack

(4 rows)

ApsaraDB for RDS AliPG Kernel · Use the PL/Proxy plug-in

> Document Version:20201013 73

Note The data is the same in each data node. This indicates that data is replicated.

6. When you query data from the proxy node, you can execute the RUN ON ANY statement to
read data from all data nodes. Execute the following statements to query data:

postgres=> CREATE OR REPLACE FUNCTION get_user_name_2()

postgres-> RETURNS TABLE(userid int, name text) AS $$

postgres$> CLUSTER 'cluster_srv1';

postgres$> RUN ON ANY ;

postgres$> SELECT userid,name FROM users;

postgres$> $$ LANGUAGE plproxy;

CREATE FUNCTION

postgres=> SELECT USERID,NAME FROM GET_USER_NAME_2();

 userid | name

--------+-------

 1004 | lottu

 1005 | rax

 1006 | ak

 1007 | jack

(4 rows)

Test in CONNECT mode
When you use the CONNECT mode, you can execute the following statements to access other
instances from the proxy node:

postgres=> CREATE OR REPLACE FUNCTION get_user_name_3()

postgres-> RETURNS TABLE(userid int, name text) AS $$

postgres$> CONNECT 'dbname=pl_db0 host=100.81.137.72 port=56789';

postgres$> SELECT userid,name FROM users;

postgres$> $$ LANGUAGE plproxy;

CREATE FUNCTION

postgres=> SELECT USERID,NAME FROM GET_USER_NAME_3();

 userid | name

--------+-------

 1004 | lottu

 1005 | rax

 1006 | ak

 1007 | jack

(4 rows)

AliPG Kernel · Use the PL/Proxy plug-in ApsaraDB for RDS

74 > Document Version:20201013

The pg_bigm plug-in that is provided by ApsaraDB RDS for PostgreSQL supports full-text search.
It allows you to create a 2-gram Generalized Inverted Index (GIN) index that is used to expedite
full-text search queries.

Prerequisites
Your RDS instance runs one of the following PostgreSQL versions:

PostgreSQL 12
PostgreSQL 11
PostgreSQL 10

Differences between pg_bigm and pg_trgm
The pg_trgm plug-in is also provided by ApsaraDB RDS for PostgreSQL. However, it uses a 3-gram
model to implement full-text search. The pg_bigm plug-in is developed based on the pg_trgm
plug-in. The following table describes the differences between the two plug-ins.

Functionality pg_trgm pg_bigm

Phrase matching model 3-gram 2-gram

Index types GIN and GiST GIN

Operators LIKE | ILIKE | ~ | ~* LIKE

Non-alphabet full-text search Not supported Supported

Full-text search with keywords
that contain 1 to 2 characters Slow Fast

Similarity search Supported Supported

Maximum indexed column
length

238,609,291 bytes
(approximately equal to 228
MB)

107,374,180 bytes
(approximately equal to 102
MB)

Precautions
The length of the column on which you create a GIN index cannot exceed 107,374,180 bytes
(approximately equal to 102 MB).
If the data in your RDS instance is not encoded by using ASCII, we recommend that you change
the encoding format to UTF8.

Note To query the encoding format of your RDS instance, run the select pg_encoding_

to_char(encoding) from pg_database where datname = current_database(); command.

Basic operations
Create the pg_bigm plug-in.

11.Fuzzy query (PG_ bigm)

ApsaraDB for RDS AliPG Kernel · Fuzzy query (PG_ bigm)

> Document Version:20201013 75

postgres=> create extension pg_bigm;

CREATE EXTENSION

Create a GIN index.

postgres=> CREATE TABLE pg_tools (tool text, description text);

CREATE TABLE

postgres=> INSERT INTO pg_tools VALUES ('pg_hint_plan', 'Tool that allows a user to specify an opti

mizer HINT to PostgreSQL');

INSERT 0 1

postgres=> INSERT INTO pg_tools VALUES ('pg_dbms_stats', 'Tool that allows a user to stabilize plan

ner statistics in PostgreSQL');

INSERT 0 1

postgres=> INSERT INTO pg_tools VALUES ('pg_bigm', 'Tool that provides 2-gram full text search cap

ability in PostgreSQL');

INSERT 0 1

postgres=> INSERT INTO pg_tools VALUES ('pg_trgm', 'Tool that provides 3-gram full text search capa

bility in PostgreSQL');

INSERT 0 1

postgres=> CREATE INDEX pg_tools_idx ON pg_tools USING gin (description gin_bigm_ops);

CREATE INDEX

postgres=> CREATE INDEX pg_tools_multi_idx ON pg_tools USING gin (tool gin_bigm_ops, description

gin_bigm_ops) WITH (FASTUPDATE = off);

CREATE INDEX

Run a full-text search query.

postgres=> SELECT * FROM pg_tools WHERE description LIKE '%search%';

 tool | description

---------+---

 pg_bigm | Tool that provides 2-gram full text search capability in PostgreSQL

 pg_trgm | Tool that provides 3-gram full text search capability in PostgreSQL

(2 rows)

Run a similarity search query by using the =% operator.

AliPG Kernel · Fuzzy query (PG_ bigm) ApsaraDB for RDS

76 > Document Version:20201013

postgres=> SET pg_bigm.similarity_limit TO 0.2;

SET

postgres=> SELECT tool FROM pg_tools WHERE tool =% 'bigm';

 tool

 pg_bigm

 pg_trgm

(2 rows)

Delete the pg_bigm plug-in.

postgres=> drop extension pg_bigm;

DROP EXTENSION

Basic functions
likequery

Purpose: This function is used to generate a string that can be identified based on the LIKE
keyword.
Request parameters: This function contains one request parameter. The data type for this
parameter is STRING.
Return value: This function returns a string that can be identified based on the LIKE
keyword.
Implementation:

Add a percent sign (%) preceding and following the keyword.

Use a backward slash (\) to escape the percent sign (%).

Example:

postgres=> SELECT likequery('pg_bigm has improved the full text search performance by 200%');

 likequery

 %pg_bigm has improved the full text search performance by 200\%%

(1 row)

postgres=> SELECT * FROM pg_tools WHERE description LIKE likequery('search');

 tool | description

---------+---

 pg_bigm | Tool that provides 2-gram full text search capability in PostgreSQL

 pg_trgm | Tool that provides 3-gram full text search capability in PostgreSQL

(2 rows)

show_bigm
Purpose: This function is used to obtain all of the 2-gram elements that comprise a string.

ApsaraDB for RDS AliPG Kernel · Fuzzy query (PG_ bigm)

> Document Version:20201013 77

Request parameters: This function contains one request parameter. The data type for this
parameter is STRING.
Return value: This parameter returns an array that consists of all the 2-gram elements of a
string.
Implementation:

Add a space preceding and following the string.
Identify all of the 2-gram elements in the string.

Example:

postgres=> SELECT show_bigm('full text search');

 show_bigm

--

 {" f"," s"," t",ar,ch,ea,ex,fu,"h ","l ",ll,rc,se,"t ",te,ul,xt}

(1 row)

bigm_similarity
Purpose: This function is used to obtain the similarity between two strings.
Request parameters: This function contains two request parameters. The data types for
these parameters are STRING.
Return value: This function returns a floating-point number. The number indicates the
similarity between the two strings.
Implementation:

Identify the 2-gram elements that are included in both the two strings.
The return value is within the range from 0 to 1. The value 0 indicates that the two strings
are completely different. The value 1 indicates that the two strings are identical.

Note
This function adds a space preceding and following each string. Therefore, the
similarity between the ABC string and the B string is 0, and the similarity
between the ABC string and the A string is 0.25.

This function supports case sensitivity. For example, it determines that the
similarity between the ABC string and the abc string is 0.

AliPG Kernel · Fuzzy query (PG_ bigm) ApsaraDB for RDS

78 > Document Version:20201013

Example:

postgres=> SELECT bigm_similarity('full text search', 'text similarity search');

 bigm_similarity

 0.5714286

(1 row)

postgres=> SELECT bigm_similarity('ABC', 'A');

 bigm_similarity

 0.25

(1 row)

postgres=> SELECT bigm_similarity('ABC', 'B');

 bigm_similarity

 0

(1 row)

postgres=> SELECT bigm_similarity('ABC', 'abc');

 bigm_similarity

 0

(1 row)

pg_gin_pending_stats
Purpose: This function is used to obtain the number of pages and the number of tuples in
the pending list of a GIN index.
Request parameters: This function contains one parameter. This parameter specifies the
name or OID of the GIN index.
Return value: This function returns two values: the number of pages in the pending list of
the GIN index and the number of tuples in the pending list of the GIN index.

Note If you set the FASTUPDATE parameter to False for a GIN index, the GIN index
does not have a pending list. In this case, this function returns two values 0.

ApsaraDB for RDS AliPG Kernel · Fuzzy query (PG_ bigm)

> Document Version:20201013 79

Example:

postgres=> SELECT * FROM pg_gin_pending_stats('pg_tools_idx');

 pages | tuples

-------+--------

 0 | 0

(1 row)

Behavior control
pg_bigm.last_update

This parameter indicates the last date when the pg_bigm plug-in was updated. This
parameter is read-only. You cannot reconfigure this parameter.

Example:

SHOW pg_bigm.last_update;

pg_bigm.enable_recheck

This parameter specifies whether to perform a recheck.

Note We recommend that you retain the default value ON. This allows you to obtain
accurate query results.

Example:

AliPG Kernel · Fuzzy query (PG_ bigm) ApsaraDB for RDS

80 > Document Version:20201013

postgres=> CREATE TABLE tbl (doc text);

CREATE TABLE

postgres=> INSERT INTO tbl VALUES('He is awaiting trial');

INSERT 0 1

postgres=> INSERT INTO tbl VALUES('It was a trivial mistake');

INSERT 0 1

postgres=> CREATE INDEX tbl_idx ON tbl USING gin (doc gin_bigm_ops);

CREATE INDEX

postgres=> SET enable_seqscan TO off;

SET

postgres=> EXPLAIN ANALYZE SELECT * FROM tbl WHERE doc LIKE likequery('trial');

 QUERY PLAN

 Bitmap Heap Scan on tbl (cost=20.00..24.01 rows=1 width=32) (actual time=0.020..0.021 rows=1 loop

s=1)

 Recheck Cond: (doc ~~ '%trial%'::text)

 Rows Removed by Index Recheck: 1

 Heap Blocks: exact=1

 -> Bitmap Index Scan on tbl_idx (cost=0.00..20.00 rows=1 width=0) (actual time=0.013..0.013 rows=

2 loops=1)

 Index Cond: (doc ~~ '%trial%'::text)

 Planning Time: 0.117 ms

 Execution Time: 0.043 ms

(8 rows)

postgres=>

postgres=> SELECT * FROM tbl WHERE doc LIKE likequery('trial');

 doc

 He is awaiting trial

(1 row)

postgres=> SET pg_bigm.enable_recheck = off;

SET

postgres=> SELECT * FROM tbl WHERE doc LIKE likequery('trial');

 doc

 He is awaiting trial

 It was a trivial mistake

(2 rows)

ApsaraDB for RDS AliPG Kernel · Fuzzy query (PG_ bigm)

> Document Version:20201013 81

pg_bigm.gin_key_limit

This parameter specifies the maximum number of 2-gram elements that can be used for a full-
text search query. The default value is 0, which indicates that all 2-gram elements are used.

Note If the use of all 2-gram elements triggers a performance decrease, you can
decrease the value of this parameter.

pg_bigm.similarity_limit

This parameter specifies the threshold for similarity. The tuples whose similarity exceeds the
specified threshold are returned as similarity search results.

AliPG Kernel · Fuzzy query (PG_ bigm) ApsaraDB for RDS

82 > Document Version:20201013

This topic describes how to use the wal2json plug-in provided by RDS PostgreSQL to export
logical log records as a file in JSON format.

Prerequisites
Your RDS instance runs PostgreSQL 11/12.
The wal_level parameter is set to logical. For more information, see Reconfigure parameters
for an RDS PostgreSQL instance.

Context
wal2json is a logical decoding plug-in. It has access to tuples generated by INSERT and UPDATE
statements and can parse log records produced by write-ahead logging (WAL).

The wal2json plug-in produces a JSON object for each transaction. All new and old tuples are
available in the JSON object. In addition, there are options to include properties such as
transaction timestamp, schema-qualified, data type, and transaction ID. You can obtain JSON
objects by executing SQL statements. For more information, see Execute SQL statements to
obtain JSON objects.

Execute SQL statements to obtain JSON objects
1. 通过DMS登录RDS数据库.

2. Execute the following statements to create a table and initialize the wal2json plug-in:

CREATE TABLE table2_with_pk (a SERIAL, b VARCHAR(30), c TIMESTAMP NOT NULL, PRIMARY KEY(a,

c));

CREATE TABLE table2_without_pk (a SERIAL, b NUMERIC(5,2), c TEXT);

SELECT 'init' FROM pg_create_logical_replication_slot('test_slot', 'wal2json');

3. Execute the following statements to change data:

BEGIN;

INSERT INTO table2_with_pk (b, c) VALUES('Backup and Restore', now());

INSERT INTO table2_with_pk (b, c) VALUES('Tuning', now());

INSERT INTO table2_with_pk (b, c) VALUES('Replication', now());

DELETE FROM table2_with_pk WHERE a < 3;

INSERT INTO table2_without_pk (b, c) VALUES(2.34, 'Tapir');

UPDATE table2_without_pk SET c = 'Anta' WHERE c = 'Tapir';

COMMIT;

4. Execute the following statement to produce logical log records in JSON format:

SELECT data FROM pg_logical_slot_get_changes('test_slot', NULL, NULL, 'pretty-print', '1');

12.Use the wal2json plug-in

ApsaraDB for RDS AliPG Kernel · Use the wal2json plug-in

> Document Version:20201013 83

https://www.alibabacloud.com/help/doc-detail/96751.htm#concept-lfl-xmn-wdb
https://www.alibabacloud.com/help/doc-detail/96787.htm#concept-cml-x4v-ydb

Note If you want to stop producing logical log records and release the resources
used, execute the following statement:

SELECT 'stop' FROM pg_drop_replication_slot('test_slot');

AliPG Kernel · Use the wal2json plug-in ApsaraDB for RDS

84 > Document Version:20201013

This topic describes the failover slot feature to synchronize logical slots from a primary instance
to a secondary instance.

Context
The logical subscription will be disabled during a primary/secondary switchover if you do not
enable the failover slot feature. This is because slots cannot be automatically switched to the
new primary instance. You must manually create slots to enable logical subscription again. The
failover slot feature synchronizes logical slots from a primary instance to a secondary instance
to ensure that logical subscription is enabled.

Note You can only create failover slots for logical slots.

You can set the rds_failover_slot_mode parameter to use the failover slot feature. The
parameter value takes effect immediately. Valid values:

sync: enable the synchronization mode.
async: enable the asynchronization mode.
off: disable the failover slot feature.

For more information about how to set the parameter value, see Reconfigure parameters for an
RDS PostgreSQL instance.

The following section describes the two modes in details.

Synchronization mode
Synchronization mode ensures that logical subscription data is not lost after a
primary/secondary switchover.

However, when the secondary instance is disconnected for a long time period or the secondary
instance is recreated, the latency between the primary and secondary instances is high. If you
perform the primary/secondary switchover during this period, logical subscription data may be
lost. Lost data includes data lost during the primary/secondary switchover and lost data
generated by the new primary instance after the switchover.

To avoid this situation, modify the rds_priority_replication_force_wait parameter to on.The
default parameter value is off. The modification takes effect immediately. After you modify the
parameter, the primary instance will not send data to the logical subscription client until the
secondary instance is reconnected or recreated. We recommend that you do not perform this
operation because the logical subscription availability is reduced.

Asynchronization mode
Asynchronization mode ensures that logical subscription data is not lost after a
primary/secondary switchover. However, duplicate data may be sent to the logical subscription
client.

You can use asynchronization mode if possible data inconsistency does not affect your business.
Otherwise, we recommend that you use synchronization mode.

13.Failover slot

ApsaraDB for RDS AliPG Kernel · Failover slot

> Document Version:20201013 85

https://www.alibabacloud.com/help/doc-detail/96751.htm#concept-lfl-xmn-wdb

	1.AliPG overview
	2.Release notes of minor AliPG versions
	3.Functional modules of AliPG
	4.Plug-ins supported
	5.Query vertical industry-specific data
	5.1. Use the TimescaleDB plug-in
	5.2. Use the smlar plug-in
	5.3. Use the PASE plug-in
	5.4. Use the roaringbitmap plug-in
	5.5. Use the RDKit plug-in

	6.Run cross-database queries
	6.1. Read and write external data files by using oss_fdw
	6.2. Use mysql_fdw to read and write data to a MySQL database
	6.3. Use the log_fdw plug-in
	6.4. Use the tds_fdw plug-in
	6.5. Use the oracle_fdw plug-in

	7.Use the dblink and postgre_fdw plug-ins for cross-database operations
	8.Use the hll plug-in
	9.Use the pg_cron plug-in
	10.Use the PL/Proxy plug-in
	11.Fuzzy query (PG_ bigm)
	12.Use the wal2json plug-in
	13.Failover slot

