
Alibaba Cloud

ApsaraDB for Redis
Product Introduction

Document Version: 20201014

Alibaba Cloud

ApsaraDB for Redis
Product Introduction

Document Version: 20201014

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and condit ions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be
deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba
Cloud-authorized channels, and use this document for your own legal business act ivit ies only. T he
content of this document is considered confident ial informat ion of Alibaba Cloud. You shall
st rict ly abide by the confident iality obligat ions. No part of this document shall be disclosed or
provided to any third party for use without the prior writ ten consent of Alibaba Cloud.

2. No part of this document shall be excerpted, t ranslated, reproduced, t ransmit ted, or
disseminated by any organizat ion, company or individual in any form or by any means without the
prior writ ten consent of Alibaba Cloud.

3. T he content of this document may be changed because of product version upgrade, adjustment,
or other reasons. Alibaba Cloud reserves the right to modify the content of this document
without not ice and an updated version of this document will be released through Alibaba Cloud-
authorized channels from t ime to t ime. You should pay at tent ion to the version changes of this
document as they occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. T his document serves only as a reference guide for your use of Alibaba Cloud products and
services. Alibaba Cloud provides this document based on the "status quo", "being defect ive", and
"exist ing funct ions" of its products and services. Alibaba Cloud makes every effort to provide
relevant operat ional guidance based on exist ing technologies. However, Alibaba Cloud hereby
makes a clear statement that it in no way guarantees the accuracy, integrity, applicability, and
reliability of the content of this document, either explicit ly or implicit ly. Alibaba Cloud shall not
take legal responsibility for any errors or lost profits incurred by any organizat ion, company, or
individual arising from download, use, or t rust in this document. Alibaba Cloud shall not , under
any circumstances, take responsibility for any indirect , consequent ial, punit ive, cont ingent ,
special, or punit ive damages, including lost profits arising from the use or t rust in this document
(even if Alibaba Cloud has been not ified of the possibility of such a loss).

5. By law, all the contents in Alibaba Cloud documents, including but not limited to pictures,
architecture design, page layout , and text descript ion, are intellectual property of Alibaba Cloud
and/or its affiliates. T his intellectual property includes, but is not limited to, t rademark rights,
patent rights, copyrights, and t rade secrets. No part of this document shall be used, modified,
reproduced, publicly t ransmit ted, changed, disseminated, dist ributed, or published without the
prior writ ten consent of Alibaba Cloud and/or its affiliates. T he names owned by Alibaba Cloud
shall not be used, published, or reproduced for market ing, advert ising, promot ion, or other
purposes without the prior writ ten consent of Alibaba Cloud. T he names owned by Alibaba Cloud
include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combinat ion, as well as the auxiliary
signs and patterns of the preceding brands, or anything similar to the company names, t rade
names, t rademarks, product or service names, domain names, patterns, logos, marks, signs, or
special descript ions that third part ies ident ify as Alibaba Cloud and/or its affiliates.

6. Please direct ly contact Alibaba Cloud for any errors of this document.

ApsaraDB for Redis Product Introduct ion · Legal disclaimer

> Document Version:20201014 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that
the user must understand.

 Notice:

If the weight is set to 0, the server
no longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set network
type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

ApsaraDB for Redis Product Introduct ion · Document convent ions

> Document Version:20201014 I

Table of Contents
1.What is ApsaraDB for Redis?

2.Overview and selection of ApsaraDB for Redis

3.ApsaraDB for Redis Enhanced Edition (Tair)

3.1. Overview

3.2. Enhanced multi-threading performance

3.3. Hybrid-storage instances

4.Architectures

4.1. Overview

4.2. Standard master-replica instances

4.3. Cluster master-replica instances

4.4. Read/write splitting instances

4.5. Instructions of read/write splitting instances

5.Instance specifications

5.1. Overview

5.2. Community Edition

5.2.1. Standard master-replica instance

5.2.2. Master-replica cluster instances

5.2.3. Read/Write Splitting

5.2.4. Read/write splitting cluster instances

5.3. Enhanced Edition

5.3.1. Performance-enhanced cluster instances

5.3.2. Performance-enhanced cluster instances

5.3.3. Performance-enhanced read/write splitting instances

5.3.4. Standard hybrid-storage instances

5.3.5. Hybrid-storage cluster instances

5.4. Phased-out instance types

07

09

10

10

11

14

20

20

21

22

24

26

28

28

30

30

32

34

37

39

39

41

44

49

52

55

ApsaraDB for Redis Product Introduct ion · T able of Contents

> Document Version:20201014 I

6.Commands

6.1. Overview

6.2. Community Edition

6.2.1. Commands supported by Redis 2.8

6.2.2. Commands supported by Redis 4.0

6.2.3. Commands supported by Redis 5.0

6.2.4. Unsupported commands

6.2.5. Limits on the commands supported by cluster instances …

6.2.6. Commands supported by read/write splitting instances …

6.2.7. Redis commands developed by Alibaba Cloud

6.3. Enhanced Edition

6.3.1. Commands supported by performance-enhanced instances …

6.3.2. CAS and CAD commands

6.3.3. TairString commands

6.3.4. TairHash commands

6.3.5. TairGIS commands

6.3.6. TairBloom commands

6.3.7. TairDoc commands

7.Version description

7.1. Feature updates of ApsaraDB for Redis 5.0

7.2. Features of engine version 4.0 of ApsaraDB for Redis

7.3. ApsaraDB for Redis 4.0 release notes

7.4. ApsaraDB for Redis 5.0 release notes

8.Disaster recovery

9.Features

10.Scenarios

11.Terms

12.Comparison between ApsaraDB for Redis and on-premises Redis …

60

60

61

61

64

67

69

70

71

72

74

74

75

77

88

110

118

124

139

139

140

145

147

149

152

154

156

157

Product Introduct ion · T able of Contents ApsaraDB for Redis

II > Document Version:20201014

ApsaraDB for Redis Product Introduct ion · T able of Contents

> Document Version:20201014 III

ApsaraDB for Redis is a database service that is compatible with native Redis protocols. It
supports a hybrid of memory and hard disks for storage. ApsaraDB for Redis provides a highly
available hot standby architecture, and can scale to meet requirements for high-performance
and low-latency read/write operations.

Benefits
Hardware and data are deployed in the cloud. ApsaraDB for Redis is a fully-managed cloud
database service provided by Alibaba Cloud. Alibaba Cloud manages infrastructure planning,
network security and system maintenance. This allows you to focus on business development.
ApsaraDB for Redis supports various data types, such as strings, lists, sets, sorted sets, hash
tables, and streams. The service also provides advanced features, such as transactions,
message subscription, and message publishing.
ApsaraDB for Redis Enhanced Edition (Tair) is a key-value pair cloud cache service that is an
upgraded version of ApsaraDB for Redis Community Edition. ApsaraDB for Redis Enhanced
Edition (Tair) supports two series of instances: performance-enhanced instances and hybrid-
storage instances.

For more information, see Comparison between ApsaraDB for Redis and on-premises Redis and
Scenarios.

Editions
ApsaraDB for Redis provides Community Edition and Enhanced Edition.

Edition Description

ApsaraDB for
Redis Community
Edition

ApsaraDB for Redis Community Edition is compatible with the data cache service
of native Redis engines. It supports master-replica instances, cluster instances,
and read/write splitting instances.

ApsaraDB for
Redis Enhanced
Edition (Tair)

ApsaraDB for Redis Enhanced Edition (Tair) is developed based on Community
Edition. It supports the following instance types:

Performance Enhanced instances: Performance-enhanced instances provide a
multi-threading model and integrate with some features from Tair of Alibaba
Group. These instances are fully compatible with native Redis databases and
suitable for some scenarios.

Hybrid-storage instances: Hybrid-storage instances store all data in disks
and hot data in memory. This ensures high read/write performance. ApsaraDB
for Redis Enhanced Edition (Tair) also uses Redis Database (RDB) and Append
Only File (AOF) to perform high speed read/write operations and meet data
persistence requirements.

Architectures
ApsaraDB for Redis supports multiple deployment architectures that are applicable in different
scenarios.

1.What is ApsaraDB for Redis?

ApsaraDB for Redis Product Introduct ion · What is ApsaraDB for Redis?

> Document Version:20201014 7

https://help.aliyun.com/document_detail/126164.html#concept-1254543
https://help.aliyun.com/document_detail/126650.html#concept-1322770
https://help.aliyun.com/document_detail/134776.html#reference-2005627
https://help.aliyun.com/document_detail/43829.html#concept-jll-cn4-tdb
https://help.aliyun.com/document_detail/145957.html#concept-2352921
https://help.aliyun.com/document_detail/126164.html#concept-1254543
https://help.aliyun.com/document_detail/126650.html#concept-1322770
https://help.aliyun.com/document_detail/43886.html#task-1715457
https://help.aliyun.com/document_detail/147408.html#task-2368275

Architecture type Description

Standard master-replica
instances

The system synchronizes data between the master node and replica
node in real time. If the master node fails, the system automatically fails
over to the replica node and restores services in seconds. This process
is transparent to users and does not affect your business. The master-
replica architecture ensures high availability of system services.

Cluster master-replica
instances

Cluster instances use a distributed architecture. Each shard works as a
master-replica HA node and provides automatic disaster recovery and
failover. Multiple cluster specifications are available. You can select a
specification based on your business requirements. The cluster
architecture supports the following connection modes:

Proxy mode is the default endpoint of a cluster instance. You can
configure automatic connection to reduce application development
costs.

Direct connect mode allows the client to bypass the proxy server and
directly access backend shards to reduce network overhead and
service response time. This mode is suitable for business scenarios
that are latency-sensitive.

Read/write splitting
instances

A read/write splitting instance uses a master-replica architecture to
provide high availability. Read replicas are attached to the primary node
to facilitate data replication and implement linear scaling of read
performance. Read replicas can alleviate performance issues caused by
hot keys. Read/write splitting instances are suitable for business
scenarios that require high read/write ratios. Read/write splitting
instances are classified into non-cluster instances and cluster
instances.

A non-cluster read/write splitting instance can have one, three, or
five read replicas.

For a read/write splitting cluster instance, a read replica is attached
to each shard to achieve automatic read/write splitting on individual
shards. Read/write splitting cluster instances are suitable for large-
scale business scenarios that require high read/write ratios.

Instance types
ApsaraDB for Redis Community Edition and Enhanced Edition provide different instance types for
each architecture. For more information, see Overview.

Product Introduct ion · What is ApsaraDB for Redis? ApsaraDB for Redis

8 > Document Version:20201014

https://help.aliyun.com/document_detail/52226.html#concept-qf3-kjh-tdb
https://help.aliyun.com/document_detail/52228.html#concept-tds-4mm-tdb
https://help.aliyun.com/document_detail/52228.html#concept-tds-4mm-tdb/section-h69-izd-531
https://help.aliyun.com/document_detail/52228.html#concept-tds-4mm-tdb/section-dqj-mgc-4ir
https://help.aliyun.com/document_detail/62870.html#concept-zm4-3mh-tdb
https://help.aliyun.com/document_detail/26350.html#concept-gph-q34-tdb

2.Overview and selection of ApsaraDB
for Redis

ApsaraDB for Redis Product Introduct ion · Overview and select ion of ApsaraDB for Redis

> Document Version:20201014 9

ApsaraDB for Redis Enhanced Edition (Tair) is a key-value pair cloud cache service based on the
Tair used by Alibaba Group. ApsaraDB for Redis Enhanced Edition (Tair) has officially handled the
cache business of Alibaba Group since 2009 and has proven its outstanding performance in
scenarios such as Double 11, Youku Spring Festival Gala, Cainiao, and AMAP.

Emergence of Tair
In 2004, Taobao began using caching technology to support its business operations. This is the
first time that Frontend page caching was used. This technology uses ESI to identify Web
content segments that can or cannot be accelerated. Frontend page caching provides effective
methods to reduce the number of entire pages that are captured from the server.

The rapid growth of network traffic to Taobao has exerted more pressure on databases. To
reduce the load on databases, backend caching becomes an effective countermeasure. Backend
caching evolved over many iterations from Tbstore to TDBM. Tbstore provided services such as
Taobao details and verification codes. TDBM was initially used in Taobao User Center. In 2009,
the large-scale and high-speed Tair was released. This solution is developed based on the
success of previous systems and technical experience.

Milestones of Tair

Date Event

2009.04 Tair 1.0 was released and used in services such as the Taobao core system, MDB
cache, and User Center.

2009.11 The first year that Tair started to provide support for high traffic during Double 11.

2011.06 The LDB persistence engine was released to meet key-value storage requirements
on the Internet.

2012.10 The RDB cache engine was released with APIs that are similar to that used in Redis.
This provides support for more flexible and complex data structures.

2013.04
The Fastdump service was released. It can reduce import time and access latency.

Tair was implemented on a large scale in Alimama.

2014.05 After OCS was released, Tair became one of basic Alibaba Cloud products and
started to provide services to Memcache users.

2015.03 Tair entered the cloud era with the release of KVStore.

2016.08 Tair Smart O&M Platform was released. The release of the platform contributed to a
significant boost in sales during 2016 Double 11.

3.ApsaraDB for Redis Enhanced
Edition (Tair)
3.1. Overview

Product Introduct ion · ApsaraDB for Redis Enhanced Edit ion (T air) ApsaraDB for Redis

10 > Document Version:20201014

2017.04

Tair 2.0 was released and started to provide services to the AMAP and Youku
business units.

OCS was upgraded to KVStore.

2017.11 Tair dynamic hashing delivered successful support for 2017 Double 11 and was able
to fix several cache hotspot issues within the industry.

2018.08 KVStore started to offer hybrid storage instances to separate cold data from hot
data and reduce costs for key customers.

2019.04 The KVStore team was among the top three contributors in the Redis open source
community and delivered a public speech at RedisConf 2019.

2019.11 Tair 3.0, or ApsaraDB for Redis Enterprise Edition, was officially released.

Date Event

Tair types and features
As a distributed NoSQL database with high availability and performance, Tair focuses on caching
and high-speed storage for multiple data structures. It is fully compatible with the Redis
protocol. Tair is one of the most popular systems of Alibaba Group and has provided core access
acceleration during the Double 11 for many years. Tair can handle hundreds of millions of calls
per second. Compared to ApsaraDB for Redis Community Edition, Tair provides higher
performance, more data structures, and more storage methods. For more information, see the
following table.

Tair type Feature

Performance-
enhanced series

Performance-enhanced series uses multithreading and provides about three
times the performance of ApsaraDB for Redis Community Edition instances of
the same specifications.

Performance-enhanced series provides multiple enhanced data structure
modules such as TairString (including CAS and CAD commands), TairHash,
TairGIS, TairBloom, and TairDoc. Performance-enhanced series can improve
the efficiency of business development. You no longer need to be concerned
about storage structures and timeliness.

Hybrid-storage
series

Hybrid-storage series adopts the memory and disk storage method. During off-
peak hours, this method can separate hot data from cold data to ensure a high
memory access speed. Hybrid-storage series also balances performance and
costs by providing a larger storage capacity than ApsaraDB for Redis Community
Edition.

3.2. Enhanced multi-threading
performance

ApsaraDB for Redis Product Introduct ion · ApsaraDB for Redis Enhanced Edit ion (T air)

> Document Version:20201014 11

https://help.aliyun.com/document_detail/126164.html#concept-1254543
https://help.aliyun.com/document_detail/126164.html#concept-1254543
https://help.aliyun.com/document_detail/146579.html#concept-2360176
https://help.aliyun.com/document_detail/145902.html#concept-2353550
https://help.aliyun.com/document_detail/145833.html#concept-2353547
https://help.aliyun.com/document_detail/145970.html#concept-2353551
https://help.aliyun.com/document_detail/145971.html#concept-2353552
https://help.aliyun.com/document_detail/145972.html#concept-2353553
https://help.aliyun.com/document_detail/145940.html#concept-2353554
https://help.aliyun.com/document_detail/126650.html#concept-1322770

Compared with ApsaraDB for Redis Community Edition, performance-enhanced instances of
ApsaraDB for Redis Enhanced Edition (Tair) provide more benefits. For example, these instances
provide enhanced multi-threading performance and integrate multiple Redis modules. This topic
describes enhanced multi-threading performance of ApsaraDB for Redis Enhanced Edition (Tair).

Note For more information about Redis modules, see Integration of multiple Redis
modules.

Benefits
Supports full compatibility with native Redis databases. You do not need to modify application
code when you manage on-premises Redis databases by using ApsaraDB for Redis.
Provides read/write performance three times that of native Redis databases or ApsaraDB for
Redis Community Edition when the same specifications are used. This eliminates the
performance limits on high-frequency read/write requests for hot data.
Requires less response time to process a large number of queries per second (QPS) when
compared with native Redis databases.
Ensures stable performance in high-concurrency scenarios and eliminates connection
problems caused by a sudden rise in the number of requests during peak hours.
Runs full and incremental synchronization tasks in input and output (I/O) threads to speed up
the synchronization.
Supports standard, cluster, and read/write splitting architectures.

How performance-enhanced instances work
In a process of handling requests, native Redis databases and ApsaraDB for Redis Community
Edition must go through the following steps: read requests, parse requests, process data, and
then send responses. During the process, network I/O operations and request parsing consume
most resources. Performance-enhanced instances use multiple threads to process the tasks in
these steps in parallel.

I/O threads are used to read requests, send responses, and parse commands.
Worker threads are used to process commands and timer events.
Auxiliary threads are used to monitor the statuses of nodes and heartbeats.

The following figures show the differences between a single-threading model and a multi-
threading model.

Single-threading model of ApsaraDB for Redis

Multi-threading model of ApsaraDB for Redis

ApsaraDB for Redis reads and parses requests in I/O threads, and sends commands through the
queues of the parsed requests to worker threads. Afterward, worker threads run the commands
to process the requests and send the responses to I/O threads through other queues.

Performance-enhanced instances support a maximum of four parallel I/O threads. To improve
the multi-threading performance, unlocked queues and pipelines are used to transmit data
between I/O threads and worker threads.

Product Introduct ion · ApsaraDB for Redis Enhanced Edit ion (T air) ApsaraDB for Redis

12 > Document Version:20201014

https://help.aliyun.com/document_detail/146579.html#concept-2360176

Performance comparison
ApsaraDB for Redis Community Edition and native Redis databases support the single-threading
model. The query rate on each data shard reaches 80,000 QPS to 100,000 QPS. Performance-
enhanced instances support the multi-threading model. In this model, I/O threads, worker
threads, and auxiliary threads process requests in parallel. Each data shard of ApsaraDB for
Redis Enhanced Edition (Tair) provides three times the performance of each data shard of
ApsaraDB for Redis Community Edition. The performance is compared in details as follows:

ApsaraDB for Redis Community Edition
Standard instances of ApsaraDB for Redis Community Edition are not suitable for processing
more than 100,000 QPS on a single data shard.
A cluster instance of ApsaraDB for Redis Community Edition contains multiple data shards.
Each data shard provides performance similar to that of a standard instance. If one of the
data shards stores hot data and receives a large number of concurrent requests for hot
data, the access to other data of this data shard may be delayed, which results in a
performance bottleneck.
Read/write splitting instances of ApsaraDB for Redis Community Edition provide high read
performance. Instances of this type have outstanding performance in scenarios where more
reads are requested than writes. These instances cannot support a large number of
concurrent writes.

Performance-enhanced standard instances of ApsaraDB for Redis Enhanced Edition (Tair)
Performance-enhanced standard instances are suitable for processing more than 100,000
QPS on a single data shard.
Performance-enhanced cluster instances can provide high performance to read and write
hot data and reduce maintenance costs.
Performance-enhanced read/write splitting instances can provide high read performance
and process a large number of concurrent writes. Instances of this type are suitable for
processing a large number of reads and writes, where more reads are requested than
writes.

Scenarios
Live video streaming
Flash sales promotion systems
Online education

Performance-enhanced instances can support a great number of concurrent reads and writes
and process large amounts of hot data. You can use ApsaraDB for Redis Enhanced Edition (Tair) if
you require higher performance than ApsaraDB for Redis Community Edition. The following
section describes some typical scenarios where performance-enhanced instances are used.

Scenario 1: A flash sales promotion system may process 200,000 QPS or higher for some cached
hot keys. Standard master-replica instances of ApsaraDB for Redis Community Edition cannot
provide high performance during peak hours. However, standard master-replica instances of
ApsaraDB for Redis Enhanced Edition (Tair) can process requests for popular commodities and
provide excellent user experience. The performance bottleneck is resolved.
Scenario 2: Cluster instances of ApsaraDB for Redis Community Edition have limits on database
transactions and Lua scripts. However, performance-enhanced cluster instances of ApsaraDB
for Redis Enhanced Edition (Tair) can provide required performance and eliminate the limits on
cluster commands.

ApsaraDB for Redis Product Introduct ion · ApsaraDB for Redis Enhanced Edit ion (T air)

> Document Version:20201014 13

Scenario 3: If you build an on-premises Redis service with one master node and multiple
replica nodes, the number of replica nodes increases when your workloads increase. This
raises your management and maintenance costs. However, performance-enhanced
read/write splitting instances of ApsaraDB for Redis Enhanced Edition (Tair) can provide one
data shard and up to five read replicas. This architecture helps you process one million or more
QPS.
Scenario 4: If you build an on-premises Redis cluster to process ten million or more QPS, the
number of shards increases when your workloads increase. This raises your management and
maintenance costs. However, performance-enhanced cluster instances of ApsaraDB for Redis
Enhanced Edition (Tair) can serve your workloads and reduce the cluster size by two thirds.
This instance type is a cost-effective choice.

Specifications
For more information about the specifications of performance-enhanced instances, see Overview.

Purchase and activate an instance
For more information, see Step 1: Create an ApsaraDB for Redis instance.

ApsaraDB for Redis Enhanced Edition (Tair) supports two instance types: performance-enhanced
instances and hybrid-storage instances. Hybrid-storage instances store data in memory and
disks whereas in-memory instances store all data in memory. Hybrid-storage instances combine
the benefits of memory and disks to provide high read/write performance and persistent data
storage.

Introduction
Hybrid-storage instances of ApsaraDB for Redis Enhanced Edition (Tair), which are
independently developed by Alibaba Cloud, are compatible with the Redis protocol. These
instances store all data in disks and hot data in memory to ensure high read/write performance.
Hybrid-storage instances deliver a cost-effective solution to provide high-performance queries
for frequently accessed data without the limit of memory capacity.

In-memory storage: Keys and values of hot data are stored in memory. The information about
keys is also cached in memory. This allows you to check whether a specified key exists.
Disk storage: All keys and values are stored in disks. Redis data structures such as Hash are
also stored in disks in a certain format.

Architecture

Scenarios
Live video streaming

Live video streams generate a large amount of hot data. This type of data is from popular live
streaming rooms. You can use hybrid-storage instances to store data from popular live
streams in memory and data from less popular live streams in disks. This allows you to make
full use of the limited memory capacity.

E-commerce

3.3. Hybrid-storage instances

Product Introduct ion · ApsaraDB for Redis Enhanced Edit ion (T air) ApsaraDB for Redis

14 > Document Version:20201014

https://help.aliyun.com/document_detail/26350.html#concept-gph-q34-tdb
https://help.aliyun.com/document_detail/26351.html#concept-kqh-vv5-tdb

E-commerce applications generate a large amount of data. You can use hybrid-storage
instances to store data and optimize memory usage. The data of popular items is stored in
memory and data of less popular items is stored in disks.

Online education

Online education applications generate a large amount of data. Such data includes online
courses, question libraries, and messages between teachers and students. Only popular
courses and the latest question libraries are frequently queried. You can use hybrid-storage
instances to store the data of online courses in disks, and store the data of popular courses
and question libraries in memory. ApsaraDB for Redis provides a cost-effective solution to
ensure high read/write performance for frequently queried data.

The following examples show the benefits of hybrid-storage instances:

Example 1: A native Redis cluster is used to store 100 GB of data. The query rate is less than
20,000 queries per second (QPS) at peak hours and 80% of the data is infrequently accessed. In
this case, you can use a hybrid-storage instance of ApsaraDB for Redis Enhanced Edition (Tair)
that has 32 GB memory and 128 GB disk capacity. This decreases memory usage by about 70 GB
and reduces storage costs by more than 50%.
Example 2: An on-premises Pika instance is used to reduce the storage costs of a native Redis
deployment. The total size of the data is about 400 GB and only about 10% of the data is
frequently accessed. High costs are incurred for cluster operations and maintenance (O&M). In
this case, you can use a hybrid-storage instance of ApsaraDB for Redis Enhanced Edition (Tair)
that has 64 GB memory and 512 GB disk capacity. This minimizes your O&M investment and
ensures high availability.

Select instances based on scenarios
Hybrid-storage instances of ApsaraDB for Redis Enhanced Edition (Tair) and cache-only
instances of ApsaraDB for Redis Community Edition are applicable to different scenarios, as
shown in the following table.

Scenario Hybrid-storage instance of ApsaraDB for Redis
Enhanced Edition (Tair)

ApsaraDB for Redis Community
Edition instance

Data size
and budget

You need to store a large amount of data at
a lower cost.

You use Pika, SSDB, or Antibiotic Resistance
Genes Database (ARDB) database services.

You use master-replica or cluster instances
of ApsaraDB for Redis to store a large
amount of data.

You need to store a small amount
of data, or your budget is
sufficient for storage costs.

Separation
of hot and
cold data

Your business data is divided into hot data and
cold data.

Note Cold data is the data that is
infrequently accessed.

Your business data is accessed at
random.

ApsaraDB for Redis Product Introduct ion · ApsaraDB for Redis Enhanced Edit ion (T air)

> Document Version:20201014 15

QPS
performanc
e and
latency
requiremen
ts for hot
and cold
data

High QPS performance is required for hot
data.

The access to cold data is not affected by
latency.

High QPS performance is
required for all data.

The access to all data is
affected by latency.

Access
frequency
of big keys

No big key exists in your business data.

Big keys are frequently accessed and need
to be stored in memory.

Big keys are infrequently accessed and are
not affected by latency.

Big keys are irregularly accessed
and are highly sensitive to
latency.

Scenario Hybrid-storage instance of ApsaraDB for Redis
Enhanced Edition (Tair)

ApsaraDB for Redis Community
Edition instance

Select instances based on specifications
When you create a hybrid-storage instance of ApsaraDB for Redis Enhanced Edition (Tair), you
must specify the memory and disk capacity. The memory capacity determines the maximum
amount of hot data that can be stored and the disk capacity determines the total amount of
data that can be stored. ApsaraDB for Redis allocates CPU resources to the instance based on
the specified memory and disk capacity. For example, if you specify a master-replica instance
that has 64 GB memory and 256 GB disk capacity, the instance can store up to 256 GB of data and
can cache 64 GB of data in memory.

For more information, see Overview.

Note
You cannot customize the number of CPU cores.
Hybrid-storage instances store the metadata of keys in memory and disks. The
metadata includes the time-to-live (TTL) value, the least recently used (LRU) clock
value, and the type of each key. When you specify the memory and disk capacity, you
must reserve the storage capacity for metadata. For more information, see the
following description in this topic.

Memory capacity

To support more native Redis features, hybrid-storage instances store all keys in memory.
These instances store the values of frequently accessed keys in memory and the values of
infrequently accessed keys in disks. Therefore, make sure that the specified memory capacity
is sufficient to store all keys and related metadata. The following table lists the
recommended memory capacity based on the total number of keys.

Total number of keys Recommended memory capacity

Less than 20 million 64 GB, 32 GB, and 16 GB

20 million to 50 million 64 GB and 32 GB

Product Introduct ion · ApsaraDB for Redis Enhanced Edit ion (T air) ApsaraDB for Redis

16 > Document Version:20201014

https://help.aliyun.com/document_detail/26350.html#concept-gph-q34-tdb

50 million to 100 million 128 GB, 64 GB, and 32 GB

More than 100 million 128 GB and 64 GB

Total number of keys Recommended memory capacity

Note The memory capacity determines the CPU resources that are allocated to the
instance when you create an instance. A higher memory capacity indicates higher
performance of the instance.

Disk capacity

Hybrid storage instances store all data in disks, including the metadata generated for each
key. The metadata occupies extra storage. Therefore, we recommend that you select a disk
capacity that is 20% to 50% more than the required storage.

Purchase an instance
For more information, see Step 1: Create an ApsaraDB for Redis instance.

Instance performance
The performance of a hybrid-storage instance depends on the instance type and memory hit
ratio. This hit ratio indicates the probability that the requested data is found in memory. Higher
specifications and a higher memory hit ratio indicate higher performance. If all requested data is
found in the memory of the hybrid-storage instance, the performance is the same as that of a
high-performance in-memory instance. A lower memory hit ratio indicates lower performance of
the hybrid-storage instance. If all requested data is found in disks, the hybrid-storage instance
delivers the lowest performance.

In the following performance tests, the ApsaraDB for Redis instance stores 20 million keys and
the size of each value is 1 KB. The GET command is used to read values. Different types of keys
are accessed in the following scenarios.

Test results

Test scenario QPS of a Community Edition
instance

QPS of a hybrid-storage
instance

Keys are accessed at random. 123,000 15,000

Based on the Gaussian
distribution, 20% of the keys
are accessed at a probability
of 80%.

120,000 54,000

Based on the Gaussian
distribution, 1% of the keys are
accessed at a probability of
99%.

135,000 114,000

Command limits

ApsaraDB for Redis Product Introduct ion · ApsaraDB for Redis Enhanced Edit ion (T air)

> Document Version:20201014 17

https://help.aliyun.com/document_detail/26351.html#concept-kqh-vv5-tdb

Hybrid-storage instances of ApsaraDB for Redis Enhanced Edition (Tair) support most native
Redis commands. To ensure high performance, hybrid-storage instances impose limits on the use
of some commands. For more information, see Compatibility in commands.

FAQ
What is the threshold of hot data in memory? What may happen after the threshold is
exceeded?

The threshold of hot data in memory is 90% of the memory capacity of the instance. For
example, for a hybrid-storage instance with a memory capacity of 16 GB, if the amount of used
memory exceeds 14.4 GB, ApsaraDB for Redis evicts values of cold data from memory.
However, values of cold data are still stored in disks.

What is the granularity of data eviction if the amount of used memory exceeds the threshold?

Keys are the smallest unit for eviction. For example, if the memory usage of a hash exceeds
the threshold, the hash table is evicted.

How is a key-value pair stored in memory?

Compared with instances of Community Edition, hybrid-storage instances store additional
metadata. The metadata is used to record whether the values of keys are cached in memory,
and check whether the data is hot or cold when it is evicted.

How is data written to disks?

To avoid direct access to disks, data is first modified in memory, which is similar to page cache.
Then, background threads continuously synchronize data modifications to the disks.

Note Hot data can be directly modified in memory. Cold data must be loaded to
memory before modification.

How does a hybrid-storage instance work if the data to be accessed is not cached in memory?

ApsaraDB for Redis checks whether the data to be accessed is cached in memory before it runs
a command. If the data is not cached in memory, ApsaraDB for Redis caches the data from
disks to memory before it runs the command.

Note It takes longer to load data with more complex data structures from disks. We
recommend that you evaluate access models and data models to avoid frequent requests
to cold data.

Why does a write timeout occur?

The write timeout may occur due to the following causes:

When the cold data is requested, it takes a long time to cache data from disks to the
memory.
A large number of concurrent write requests are processed. After the data is modified in
memory, background threads synchronize the modification to disks. However, the write
speed of disks is less than that of the memory. When the data is written to memory at a
much faster rate than to disks, a write speed limit must be set on the memory to prevent
write timeouts.

Other FAQ

Product Introduct ion · ApsaraDB for Redis Enhanced Edit ion (T air) ApsaraDB for Redis

18 > Document Version:20201014

https://help.aliyun.com/document_detail/126720.html#concept-1323044

An OOM error occurred when I wrote data to a hybrid-storage instance. All memory is
consumed, but the disks still have some remaining capacity. How can I resolve this issue?

The memory capacity is insufficient to store all keys and related metadata. Therefore, the
memory capacity must be increased. For more information, see Change specifications.

Can I change configurations from hybrid-storage instances to Community Edition instances or
performance-enhanced instances.

No, you cannot change the configurations from hybrid-storage instances to Community Edition
instances or performance-enhanced instances.

How do I migrate data from hybrid-storage instances to Community Edition instances or
performance-enhanced instances?

You can use the redis-shake tool to migrate full data. For more information, see Use redis-
shake to migrate data.

Note
Hybrid storage instances use different encoding formats and replication protocols
from Community Edition instances. You can use only the rump or sync mode to
migrate full data. The migration of incremental data is not supported.
You cannot use Data Transmission Service (DTS) to migrate data.

How do I export data from a hybrid storage instance to my local device?

You can use the dump mode of the redis-shake tool to export Redis Database Backup (RDB)
files. If you use the Community Edition replication protocol to connect to a hybrid-storage
instance, the hybrid-storage instance converts data to the RDB format and sends the data to
the redis-shake tool. For more information, see Use the redis-shake tool to back up data.

Can I mount a Community Edition instance or a performance-enhanced instance of Enhanced
Edition (Tair) to a hybrid-storage instance as a secondary instance?

Yes, you can perform this operation. This operation is applicable only in specific scenarios
because hybrid-storage instances support only full data synchronization.

ApsaraDB for Redis Product Introduct ion · ApsaraDB for Redis Enhanced Edit ion (T air)

> Document Version:20201014 19

https://help.aliyun.com/document_detail/26353.html#concept-mgf-z25-tdb
https://help.aliyun.com/document_detail/117311.html#concept-226440
https://help.aliyun.com/document_detail/119991.html#concept-287091

ApsaraDB for Redis supports the standard, cluster, and read/write splitting architectures. You
can select the instances suitable for your business requirements.

Architectures
The following table lists the supported architectures. You can click the architecture name to
view more details.

Warning

Architecture Edition Description Scenario

Standard
master-replica
instances

Enhanced
Edition

Communit
y Edition

Master-replica
architecture to ensure
high availability

Support for more native Redis
features.

Persistent storage on ApsaraDB for
Redis instances.

Stable query rate on a single node of
ApsaraDB for Redis.

Use of simple Redis commands, when
only a few sorting and computing
commands are used.

Cluster master-
replica
instances

Enhanced
Edition

Communit
y Edition

Uses a cluster
architecture with
multiple data shards.
Each data shard runs
in the master-replica
mode and supports
connections through
proxy servers and
internal endpoints.

Large data volume.

High queries per second (QPS).

Throughput-intensive workloads.

Read/write
splitting
instances

Enhanced
Edition

Communit
y Edition

Consists of multiple
proxy servers, one
master node, one
replica node, and one
or more read replicas.

High QPS.

Support for more native Redis
features.

Persistent storage on ApsaraDB for
Redis instances.

Documentation applicability

4.Architectures
4.1. Overview

Product Introduct ion · Architectures ApsaraDB for Redis

20 > Document Version:20201014

https://help.aliyun.com/document_detail/52226.html#concept-qf3-kjh-tdb
https://help.aliyun.com/document_detail/52228.html#concept-tds-4mm-tdb
https://help.aliyun.com/document_detail/62870.html#concept-zm4-3mh-tdb

You must understand the following concepts in ApsaraDB for Redis: architectures, editions such
as Community Edition and Enhanced Edition, series types such as performance-enhanced
instances, and engine versions such as Redis 4.0 or 5.0. The descriptions and topics listed in the
preceding table are applicable to related editions, series types, and engine versions. For
standard instances, you can view architecture information in Standard master-replica instances.
This rule also applies to cluster instances and read/write splitting instances.

Standard master-replica instances of ApsaraDB for Redis provide high-performance caching
services and support high data reliability.

Overview
Standard master-replica instances of ApsaraDB for Redis run in a master-replica architecture.
The master node serves your workloads and the replica node stays in a hot standby state to
ensure high availability. If the master node fails, the system switches the workloads to the
replica node within 30 seconds after the failure occurs. This mechanism guarantees the high
availability for your workloads.

Features
Reliability

Service reliability

Standard master-replica instances adopt a master-replica architecture, with master and
replica nodes deployed on different physical machines. The master node serves your
workloads. You can use the Redis command-line interface (CLI) and common clients to add,
delete, modify, and query data on the master node. Alibaba Cloud has developed a high-
availability (HA) system for standard master-replica instances. If the master node fails, the
HA system performs a failover to guarantee the high availability for your workloads.

Data reliability

By default, data persistence is enabled for standard master-replica instances. Instances
support data backup. You can clone or roll back an instance based on a specified backup set
to restore data after misoperations. Instances created in zones that provide disaster
recovery, such as Hangzhou Zones H and I, also support zone-disaster recovery.

Compatibility

Standard master-replica instances of ApsaraDB for Redis are developed based on Redis 2.8
and compatible with all Redis commands. You can migrate your workloads on an on-premises
Redis database to a standard master-replica instance of ApsaraDB for Redis without service
disruption. Alibaba Cloud also provides Data Transmission Service (DTS) to support
incremental migration to ApsaraDB for Redis. This ensures a stable transition for your
business.

Proprietary systems developed by Alibaba Cloud
HA system

ApsaraDB for Redis uses the HA system to detect failures on the master node, such as disk
input and output (I/O) failures and CPU failures, and performs failovers to ensure high
availability.

4.2. Standard master-replica instances

ApsaraDB for Redis Product Introduct ion · Architectures

> Document Version:20201014 21

https://help.aliyun.com/document_detail/52226.html#concept-qf3-kjh-tdb

Master-replica replication mechanism

Alibaba Cloud has customized the master-replica replication mechanism of ApsaraDB for
Redis. You can replicate data in the format of incremental logs between the master node
and the replica node. If the replication is interrupted, system performance and stability is
unchanged and free from issues caused by the master-replica replication mechanism of
native Redis databases.

Some issues caused by the master-replica replication mechanism of native Redis databases
are described as follows:

If the replication is interrupted, the replica node runs the Partial Resynchronization
(PSYNC) command to resynchronize partial data. During this process, the
resynchronization fails. Then, the master node synchronizes all RDB files to the replica
node.
To synchronize all RDB files, the master node must perform full replication first due to the
single-threading model. As a result, the master node has a latency of several milliseconds
or seconds.
Child processes are created to perform copy-on-write (COW) tasks. The child processes
consume memory on the master node. The master node may run out of memory and cause
the application to exit abnormally.
The replica files that the master node generates consume disk I/O and CPU resources.
The replication of GB-level files may lead to outbound traffic bursts on the server and
increase the sequential I/O throughput of disks. This delays responses and causes more
issues.

Scenarios
Support for more native Redis features

Standard instances are compatible with all Redis commands. You can migrate your workloads
to instances without service disruption.

Persistent storage on an ApsaraDB for Redis instance

Standard instances support data persistence, backup, and recovery features to ensure data
reliability.

Stable query rate on a single node of ApsaraDB for Redis.

Due to the single-threading model of native Redis databases, we recommend that you use a
standard instance if your workloads support a query rate lower than 100,000 QPS. To achieve
higher performance, select a cluster instance.

Use of simple Redis commands, where only a few sorting and computing commands are used

CPU performance is the main bottleneck due to the single-threading model of native Redis
databases. We recommend that you use a cluster instance of ApsaraDB for Redis to process a
large number of sorting and computing workloads.

Cluster master-replica instances of ApsaraDB for Redis can resolve the performance bottleneck
that is caused by a single-threading model. You can use the instances to process large-capacity
or high-performance workload. Cluster master-replica instances can run in proxy mode or direct
connect mode. You can select one based on your business requirements.

4.3. Cluster master-replica instances

Product Introduct ion · Architectures ApsaraDB for Redis

22 > Document Version:20201014

Proxy mode
By default, cluster instances use the proxy mode. In this mode, you can access ApsaraDB for
Redis clusters by using a unified endpoint (domain). Proxy server forwards requests from clients
to each data shard. Proxy servers, data shards, and config servers do not provide separate
endpoints. This simplifies application development and code. The following sections describe
the architecture and components in proxy mode.

Architecture of an ApsaraDB for Redis cluster master-replica instance in proxy mode

Components of an ApsaraDB for Redis cluster master-replica instance in
proxy mode

Component Description

Proxy server
Each proxy server has a single node configured. A cluster instance contains
multiple proxy servers. The system implements load balancing and failover for
the proxy servers.

Data shard
Each data shard runs in a high-availability master-replica architecture. If the
master node fails, the system switches the workload to the replica node to
ensure high availability.

Config server A config server stores configuration data and sharding policies, and runs in a
high-availability master-replica architecture.

The number and specifications for each instance components depend on the specifications that
you select when you create a cluster instance. You can use Change specifications to modify the
size of the cluster instance or select another architecture type. For more information about
architecture types, see Overview.

Direct connect mode
The proxy mode simplifies business development but slightly deteriorates the service response
speed, because all requests are forwarded by proxy servers. If you require high response speed,
use the direct connect mode. In this mode, you can directly connect to backend data shards
without the need to use proxy servers. This reduces network overheads and service response
time. The following sections describe the architecture and components in direct connect mode.

Architecture of an ApsaraDB for Redis cluster master-replica instance in direct connect
mode

To use the direct connect mode, you must apply for a private endpoint to obtain a connection
string. Then, you can connect to the cluster in the same way you connect to a native Redis
cluster. When a client connects to the cluster for the first time, DNS resolves the connection
string to the virtual IP address of a random shard. Then, the client can use the Redis cluster
protocol to access each data shard. The direct connect mode and proxy mode are different from
each other. For more information about relevant precautions and connection examples, see Use
a private endpoint to connect to an ApsaraDB for Redis instance.

Scenarios

ApsaraDB for Redis Product Introduct ion · Architectures

> Document Version:20201014 23

https://help.aliyun.com/document_detail/26350.html#concept-gph-q34-tdb
https://help.aliyun.com/document_detail/26353.html#concept-mgf-z25-tdb
https://help.aliyun.com/document_detail/86132.html#concept-nc2-vsl-l2b
https://help.aliyun.com/document_detail/148603.html#task-2378182

Large data volume

Cluster instances of ApsaraDB for Redis support the scaling of storage capacity. Compared
with standard instances, cluster instances support a storage capacity of up to 4,098 GB. You
can scale out storage capacity based on your business requirements.

High QPS

Standard instances of ApsaraDB for Redis cannot support high-QPS scenarios. You must deploy
multiple data shards to resolve the performance bottleneck that is caused by the single-
threading model. For more information, see Master-replica cluster instances.

Throughput-intensive applications

Compared with standard instances, cluster instances provide higher throughput over internal
networks. You can read hot data with high performance and manage high-throughput
workload.

Applications that do not require high compatibility with the Redis protocol

A cluster instance has multiple components. Therefore, compared with a standard instance, a
cluster instance has more limits when it runs Redis commands. For more information, see Limits
on the commands supported by cluster instances.

References
To troubleshoot excessive memory consumption of shards in a cluster instance, see How do I
search for large keys?.
You can analyze data distribution in memory. For more information, see Analyze memory
usage of ApsaraDB for Redis.

FAQ
Can I use the direct connect mode and proxy mode together?

Yes, you can use these modes together.

In the scenarios where reads are more than writes, read/write splitting instances of ApsaraDB
for Redis support multiple specifications to meet various business requirements.

Overview
Read/write splitting instances of ApsaraDB for Redis are suitable for workloads where reads are
more than writes. These instances ensure high availability (HA) and high performance, and
support multiple specifications. The read/write splitting architecture allows a large number of
concurrent requests to read hot data from read replicas. This can reduce the loads on the
master node and minimize your costs of operations and maintenance (O&M).

Components
A read/write splitting instance of ApsaraDB for Redis consists of multiple proxy servers, a master
node, a replica node, and one or more read replicas.

4.4. Read/write splitting instances

Product Introduct ion · Architectures ApsaraDB for Redis

24 > Document Version:20201014

https://help.aliyun.com/document_detail/145231.html#concept-2348302
https://help.aliyun.com/document_detail/145968.html#concept-2353537
https://help.aliyun.com/document_detail/56949.html#concept-frf-r2z-xdb
https://help.aliyun.com/document_detail/141763.html#task-2316836

As a hot standby node, the replica node does not provide services. Read replicas only process
read requests. Proxy servers forward write requests to the master node and forward read
requests to the master node or one of the read replicas based on weights. The weight of each
node is determined by the system and cannot be customized.

Note The system evenly distributes read requests among the master node and read
replicas. For example, if you purchase an instance with three read replicas, the read weight
is 25% for the master node and each read replica.

The HA system monitors the status of each node. If a master node fails, the HA system performs
a failover between the master node and the replica node. If a read replica fails, the HA system
creates a new read replica to process read requests. During this process, the HA system updates
the routing and weighting information.

The read/write splitting architecture supports chain replication. This allows you to scale out
read replicas to increase the read capacity. The source code of the replication process has been
customized and optimized by specialists of Alibaba Cloud to maximize workload stability during
replication.

When an application is connected to the read/write splitting instance, a proxy server identifies
read and write requests, performs load balancing, and forwards the requests to different nodes
based on weights. Write requests are forwarded to the master node, and read requests are
evenly distributed among the master node and read replicas.

Cluster instances of ApsaraDB for Redis are developed based on the native Redis protocol and
are compatible with all Redis commands. You can upgrade a standard master-replica instance to
a read/write splitting instance with a few clicks. You can also migrate data from an on-premises
Redis database to a read/write splitting instance of ApsaraDB for Redis. Both instance upgrades
and data migrations can be performed without the need to disrupt services.

Key Features
High availability

Alibaba Cloud has developed an HA system for read/write splitting instances. The HA
system monitors the status of all nodes on an instance to guarantee high availability. If a
master node fails, the HA system will switch the workload from the master node to the
replica node and update the instance topology. If a read replica fails, the HA system will
enable another read replica. It will then synchronize data and forward read requests to this
enabled read replica and suspend the failed read replica.
The proxy server module detects the service status of each read replica in real time. If a
read replica is unavailable due to an exception, the proxy server module reduces the weight
of this read replica. After a read replica cannot be connected for a specified number of
times, the system suspends the read replica and forwards read requests to available read
replicas. If the unavailable read replica recovers, the system enables and continues to
monitor the read replica.

High performance

The read/write splitting instance supports chained replication. You can scale out the read
replicas to increase the read capacity and optimize the usage of physical resources for each
read replica.

Scenarios

ApsaraDB for Redis Product Introduct ion · Architectures

> Document Version:20201014 25

High QPS

Standard instances of ApsaraDB for Redis cannot support high queries per second (QPS)
scenarios. If reads of your workloads are more than writes, you must deploy multiple read
replicas. This allows you to fix the performance bottleneck issue caused by a single-threading
model. You can attach one, three, or five read replicas to a cluster instance of ApsaraDB for
Redis. Compared with a standard instance, the cluster instance has the QPS performance
improved by about five times.

More native Redis features

Read/write splitting instances are compatible with all Redis commands. You can migrate data
to these instances without disrupting services.

Persistent storage on ApsaraDB for Redis instances

Read/write splitting instances support data persistence, backup, and recovery to ensure data
reliability.

Read/write splitting instances of ApsaraDB for Redis are different from standard instances and
cluster instances of ApsaraDB for Redis in terms of architectures and data processing methods.
This topic describes how each component of a read/write splitting instance works and provides
guidelines about how to use them.

Architecture description
A read/write splitting instance of ApsaraDB for Redis provides one or more read replicas.
One-way chained replication is used between the master node and the read replicas.
A proxy server forwards requests to the master node and read replicas in the following ways:

Forwards write requests to the master node.
Forwards read requests to the master node and read replicas in an equal-weight manner.

Requests from Lua scripts and database transactions are forwarded to the master node.
The high-availability (HA) module monitors the statuses of the master node and read replicas
and performs a failover if one of the components fails.

Architecture of a read/write splitting instance of ApsaraDB for Redis

Notes
If a read replica fails, requests are forwarded to another read replica. If all read replicas are
unavailable, requests are forwarded to the master node. Read replica failures may result in
increases of the workloads on the master node and the response time. We recommend that
you use multiple read replicas to process a large number of read requests.
If an error occurs on a read replica, the HA module suspends the read replica and forwards
requests to an available read replica. This failover process involves resource allocation, data
synchronization, and service loading. The amount of time that it takes to perform a failover
depends on the system workloads and data size. ApsaraDB for Redis does not guarantee the

4.5. Instructions of read/write splitting
instances

Product Introduct ion · Architectures ApsaraDB for Redis

26 > Document Version:20201014

time when the faulty read replica recovers.
Full synchronization between read replicas is triggered in certain scenarios, for example,
when a failover occurs on the master node. During full synchronization, read replicas are not
available. If your requests are forwarded to the read replicas, the following error message is
returned: -LOADING Redis is loading the dataset in memory\r\n .

The master node conforms to the Service Level Agreement of ApsaraDB for Redis.

ApsaraDB for Redis Product Introduct ion · Architectures

> Document Version:20201014 27

https://www.alibabacloud.com/help/doc-detail/123155.htm

ApsaraDB for Redis provides multiple editions, series types, and architectures.

This topic describes the edition, series type, and architecture specifications of ApsaraDB for
Redis instances. You can refer to the following table for more information about the required
instance specifications.

Edition Series Type Architecture
type Description

Community
Edition None

Standard
master-
replica
instance

A master-replica instance of ApsaraDB for Redis.
The maximum memory capacity is 64 GB and the
QPS reference value is approximately 80,000.

Master-
replica
cluster
instances

A cluster instance of ApsaraDB for Redis. Each
data shard is deployed in a master-replica
architecture. The instance with the highest
capacity and performance contains 32 data
shards and supports a memory capacity of 512
GB. The QPS reference value is approximately
2,560,000.

Read/Write
Splitting

An ApsaraDB for Redis instance that contains a
master-replica architecture and one or more
read replicas. The instance with the highest
capacity and performance contains five read
replicas and supports a memory capacity of 64
GB.

Read/write
splitting
cluster
instances

A read/write splitting instance of ApsaraDB for
Redis that contains a cluster instance and one or
more read replicas. Each shard in the cluster is
attached to one read replica. The instance with
the highest capacity and performance contains
32 shards and 32 read replicas, and supports a
memory capacity of 512 GB.

Standard
master-
replica
instance

A standard master-replica instance that uses
multi-thread model provides the performance
approximately three times that of an ApsaraDB
for Redis Community Edition instance of the
same specifications. The maximum memory
capacity is 64 GB and the QPS reference value is
approximately 240,000.

5.Instance specifications
5.1. Overview

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

28 > Document Version:20201014

https://help.aliyun.com/document_detail/144988.html#concept-2348204
https://help.aliyun.com/document_detail/145231.html#concept-2348302
https://help.aliyun.com/document_detail/145235.html#concept-2348477
https://help.aliyun.com/document_detail/145236.html#concept-2348482
https://help.aliyun.com/document_detail/145228.html#concept-2348289

ApsaraDB for
Redis
Enhanced
Edition (Tair)

Performance
enhanced

Cluster
instances

A cluster instance of ApsaraDB for Redis that
uses multi-thread model supports several types
of new data structures. Each data shard uses a
master-replica architecture, and the
performance is approximately three times that
of an ApsaraDB for Redis Community Edition
instance of the same specifications. The
maximum memory capacity is 4,096 GB and the
QPS reference value is approximately 61,440,000.

Read/Write
Splitting

A read/write splitting instance of ApsaraDB for
Redis uses multi-thread model and contains a
master-replica architecture and one or more
read replicas. It provides the performance
approximately three times that of an ApsaraDB
for Redis Community Edition instance of the
same specifications. The instance with the
highest capacity and performance contains five
read replicas and supports a memory capacity of
64 GB.

Hybrid
storage

Standard
master-
replica
instances

A hybrid-storage instance of ApsaraDB for Redis
that is developed based on standard master-
replica instances. The hybrid-storage instance
supports storage in memory and disks. The
instance with the highest capacity and
performance supports a memory capacity of 64
GB and disk storage of up to 512 GB.

Cluster
instances

A cluster instance of ApsaraDB for Redis that
supports storage in memory and disks. The
instance with the highest capacity and
performance supports a memory capacity of
1,024 GB and disk storage of up to 8,192 GB, and
contains 16 shards.

Phased-out
instance
types

N/A N/A

This topic lists the ApsaraDB for Redis instances
that are no longer available for purchase. If you
have already purchased one or more of these
instances, you can continue to use them. You
can view the information about these
specifications such as connection limit,
bandwidth, and QPS reference value in Phased-
out instance types.

Edition Series Type Architecture
type Description

FAQ
Q: Do I need to reserve snapshot memory resources as I do with AWS ElastiCache when I
choose a specification?

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 29

https://help.aliyun.com/document_detail/145957.html#concept-2352921
https://help.aliyun.com/document_detail/150458.html#concept-2388285
https://help.aliyun.com/document_detail/150459.html#concept-2388319
https://help.aliyun.com/document_detail/145229.html#concept-2348294
https://help.aliyun.com/document_detail/146384.html#concept-2359122
https://help.aliyun.com/document_detail/145409.html#concept-2349429
https://help.aliyun.com/document_detail/145409.html#concept-2349429

A: No. Alibaba Cloud provides the instances of ApsaraDB for Redis Community Edition and
Enhanced Edition (Tair). Therefore, you do not need to reserve the memory required for
snapshots. The memory capacity corresponding to the specifications is the maximum available
memory under an account. The memory capacity includes the memory occupied by user data,
the static memory consumed by the database, and the memory occupied by the network link.
In the future, Alibaba Cloud may provide hosts to support your ApsaraDB for Redis service. You
may need to follow the instructions in related documentation to reserve memory when you
purchase the hosts.

Q: Why are some instance types not available?

A: These instances may no longer be available to purchase. For more information, see Phased-
out instance types.

Q: How can I check the specifications of an ApsaraDB for Redis instance by using
InstanceClass?

A: You can enter the value of InstanceClass in the search bar at the top of an Alibaba Cloud
document.

Q: How do I test the performance of ApsaraDB for Redis instances?

A: You can test the performance of ApsaraDB for Redis instances by using the methods
described in Performance White Paper.

This topic describes the specifications of standard master-replica cluster instances of ApsaraDB
for Redis Community Edition. These specifications include the memory capacity, the maximum
number of connections to each instance, maximum internal bandwidth, and queries per second
(QPS) reference value.

Instance types

Instance type InstanceClass
(used in API)

Maximum
number of
new
connection
s per
second

Maximum
number of
connection
s

Bandwidth
(MB/s)

QPS
reference
value

256 MB master-
replica instance

redis.master.micro
.default 10000 10000 10 80000

1 GB master-
replica instance

redis.master.small.
default 10000 10000 10 80000

2 GB master-
replica instance

redis.master.mid.d
efault 10000 10000 16 80000

4 GB master-
replica instance

redis.master.stand
.default 10000 10000 24 80000

5.2. Community Edition
5.2.1. Standard master-replica instance

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

30 > Document Version:20201014

https://help.aliyun.com/document_detail/145409.html#concept-2349429
https://help.aliyun.com/document_detail/100328.html#concept-jpy-trq-dgb

8 GB master-
replica instance

redis.master.large.
default 10000 10000 24 80000

16 GB master-
replica instance

redis.master.2xlar
ge.default 10000 10000 32 80000

32 GB master-
replica instance

redis.master.4xlar
ge.default 10000 10000 32 80000

64 GB master-
replica instance

redis.master.8xlar
ge.default 10000 10000 48 80000

Instance type InstanceClass
(used in API)

Maximum
number of
new
connection
s per
second

Maximum
number of
connection
s

Bandwidth
(MB/s)

QPS
reference
value

Calculation rules for bandwidth
If network resources are sufficient, the bandwidth is unlimited. However, if network resources
are insufficient, the limit on maximum internal bandwidth takes effect.
The bandwidth value in the table refers to the bandwidth of the instance. It is the sum of
bandwidth of all shards or nodes on the instance.
The upper limit of total bandwidth for a cluster or read/write splitting instance (as shown in
the table) is 2,048 MB/s. After the upper limit is reached, the bandwidth cannot be increased
even if the number of shards or nodes is increased.
The bandwidth applies to the upstream bandwidth and downstream bandwidth respectively.
If the bandwidth of an instance is 10 MB/s, the upstream and downstream bandwidth of the
instance are both 10 MB/s.
The bandwidth listed in the table is the internal bandwidth of the ApsaraDB for Redis
instance. The Internet bandwidth is determined by the internal bandwidth and is limited by
the bandwidth of the connection between the instance and a client. We recommend that you
connect to the instance over an internal network to maximize the performance.

Calculation rules for connections
The following example explains the maximum number of new connections that can be added
per second: The maximum number of new connections per second of an instance is 10,000. The
maximum number of connections is 50,000. The actual number of connections at the Nth
second after the instance starts to run is 12,000. Then, at the (N+1)th second, the number of
connections is 22,000 (12,000 + 10,000).
The maximum number of new connections per second and the maximum number of
connections are the sum of the corresponding values of all shards or nodes on the instance.
After 500,000 is reached, the maximum number of connections cannot be increased even if the
number of shards or nodes is increased.

FAQ
Why is the actual bandwidth of my instance different from the bandwidth described in this
topic?

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 31

The bandwidth of some instance types may be adjusted after the upgrades are complete. If
the bandwidth of your instance is different from that described in this topic, you can change
configurations and select the same specifications as that of your instance to update the
bandwidth. You are not charged for the same specifications. For more information, see Change
specifications.

How do I create an instance with 256 MB of memory?

On the Subscription tab of the buy page, you can find this instance type.

This topic describes the specifications of master-replica cluster instances of ApsaraDB for Redis
Community Edition. These specifications include the memory capacity, number of concurrent
connections to each instance, maximum internal bandwidth, and queries per second (QPS)
reference value.

Instance specifications

Instance type
InstanceClass
(API
operation)

Number
of
shards

Maximu
m
number
of new
connecti
ons per
second

Maximu
m
number
of
concurre
nt
connecti
ons

Bandwid
th
(Mbit/s)

QPS
referenc
e value

16 GB cluster
instance

redis.logic.sha
rding.2g.8db.0r
odb.8proxy.def
ault

8 50000 80000 768 640000

32 GB cluster
instance

redis.logic.sha
rding.4g.8db.0r
odb.8proxy.def
ault

8 50000 80000 768 640000

64 GB cluster
instance

redis.logic.sha
rding.8g.8db.0r
odb.8proxy.def
ault

8 50000 80000 768 640000

128 GB cluster
instance

redis.logic.sha
rding.8g.16db.
0rodb.16proxy.
default

16 50000 160000 1536 1280000

256 GB cluster
instance

redis.logic.sha
rding.16g.16db
.0rodb.16proxy
.default

16 50000 160000 1536 1280000

5.2.2. Master-replica cluster instances

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

32 > Document Version:20201014

https://help.aliyun.com/document_detail/26353.html#concept-mgf-z25-tdb

512 GB cluster
instance

redis.logic.sha
rding.16g.32db
.0rodb.32proxy
.default

32 50000 320000 2048 2560000

Instance type
InstanceClass
(API
operation)

Number
of
shards

Maximu
m
number
of new
connecti
ons per
second

Maximu
m
number
of
concurre
nt
connecti
ons

Bandwid
th
(Mbit/s)

QPS
referenc
e value

Calculation rules for bandwidth
If network resources are sufficient, the bandwidth is unlimited. However, if network resources
are insufficient, the limit on maximum internal bandwidth takes effect.
The bandwidth value in the table refers to the bandwidth of the instance. It is the sum of
bandwidth of all shards or nodes on the instance.
The upper limit of total bandwidth for a cluster or read/write splitting instance (as shown in
the table) is 2,048 MB/s. After the upper limit is reached, the bandwidth cannot be increased
even if the number of shards or nodes is increased.
The bandwidth applies to the upstream bandwidth and downstream bandwidth respectively.
If the bandwidth of an instance is 10 MB/s, the upstream and downstream bandwidth of the
instance are both 10 MB/s.
The bandwidth listed in the table is the internal bandwidth of the ApsaraDB for Redis
instance. The Internet bandwidth is determined by the internal bandwidth and is limited by
the bandwidth of the connection between the instance and a client. We recommend that you
connect to the instance over an internal network to maximize the performance.

Calculation rules for connections
The following example explains the maximum number of new connections that can be added
per second: The maximum number of new connections per second of an instance is 10,000. The
maximum number of connections is 50,000. The actual number of connections at the Nth
second after the instance starts to run is 12,000. Then, at the (N+1)th second, the number of
connections is 22,000 (12,000 + 10,000).
The maximum number of new connections per second and the maximum number of
connections are the sum of the corresponding values of all shards or nodes on the instance.
After 500,000 is reached, the maximum number of connections cannot be increased even if the
number of shards or nodes is increased.

FAQ
Why does the bandwidth of my instance differ from that of the same instance described in this
topic?

The bandwidth of some instance types may be adjusted after service upgrades. If the bandwidth
of your instance is different from those described in this topic, you can change configurations
and select the same specifications as that of your current instance. (You are not charged for the
same instance type). For more information, see Modify instance configurations.

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 33

https://help.aliyun.com/document_detail/26353.html#concept-mgf-z25-tdb

This topic describes the specifications of read/write splitting instances of ApsaraDB for Redis
Community Edition. These specifications include the memory capacity, maximum number of
concurrent connections to each instance, maximum bandwidth, and QPS reference value.

Instance specifications

Instance type
InstanceClass
(API
operation)

Number
of read
replicas

Bandwid
th
(MB/s)

Maximu
m
number
of new
connecti
ons per
second

Maximu
m
number
of
concurre
nt
connecti
ons

QPS
referenc
e value

1 GB read/write
splitting instance (1
primary node, 1 read
replica)

redis.logic.spli
trw.small.1db.1
rodb.4proxy.de
fault

1 192 20000 20000 200000

1 GB read/write
splitting instance (1
primary node, 3 read
replicas)

redis.logic.spli
trw.small.1db.3
rodb.4proxy.de
fault

3 384 40000 40000 400000

1 GB read/write
splitting instance (1
primary node, 5 read
replicas)

redis.logic.spli
trw.small.1db.5
rodb.6proxy.de
fault

5 576 50000 60000 600000

2 GB read/write
splitting instance (1
primary node, 1 read
replica)

redis.logic.spli
trw.mid.1db.1r
odb.4proxy.def
ault

1 192 20000 20000 200000

2 GB read/write
splitting instance (1
primary node, 3 read
replicas)

redis.logic.spli
trw.mid.1db.3r
odb.4proxy.def
ault

3 384 40000 40000 400000

2 GB read/write
splitting instance (1
primary node, 5 read
replicas)

redis.logic.spli
trw.mid.1db.5r
odb.6proxy.def
ault

5 576 50000 60000 600000

4 GB read/write
splitting instance (1
primary node, 1 read
replica)

redis.logic.spli
trw.stand.1db.
1rodb.4proxy.d
efault

1 192 20000 20000 200000

5.2.3. Read/Write Splitting

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

34 > Document Version:20201014

4 GB read/write
splitting instance (1
primary node, 3 read
replicas)

redis.logic.spli
trw.stand.1db.
3rodb.4proxy.d
efault

3 384 40000 40000 400000

4 GB read/write
splitting instance (1
primary node, 5 read
replicas)

redis.logic.spli
trw.stand.1db.
5rodb.6proxy.d
efault

5 576 50000 60000 600000

8 GB read/write
splitting instance (1
primary node, 1 read
replica)

redis.logic.spli
trw.large.1db.1
rodb.4proxy.de
fault

1 192 20000 20000 200000

8 GB read/write
splitting instance (1
primary node, 3 read
replicas)

redis.logic.spli
trw.large.1db.3
rodb.4proxy.de
fault

3 384 40000 40000 400000

8 GB read/write
splitting instance (1
primary node, 5 read
replicas)

redis.logic.spli
trw.large.1db.5
rodb.6proxy.de
fault

5 576 50000 60000 600000

16 GB read/write
splitting instance (1
primary node, 1 read
replica)

redis.logic.spli
trw.2xlarge.1d
b.1rodb.4proxy
.default

1 192 20000 20000 200000

16 GB read/write
splitting instance (1
primary node, 3 read
replicas)

redis.logic.spli
trw.2xlarge.1d
b.3rodb.4proxy
.default

3 384 40000 40000 400000

16 GB read/write
splitting instance (1
primary node, 5 read
replicas)

redis.logic.spli
trw.2xlarge.1d
b.5rodb.6proxy
.default

5 576 50000 60000 600000

32 GB read/write
splitting instance (1
primary node, 1 read
replica)

redis.logic.spli
trw.4xlarge.1d
b.1rodb.4proxy
.default

1 192 20000 20000 200000

Instance type
InstanceClass
(API
operation)

Number
of read
replicas

Bandwid
th
(MB/s)

Maximu
m
number
of new
connecti
ons per
second

Maximu
m
number
of
concurre
nt
connecti
ons

QPS
referenc
e value

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 35

32 GB read/write
splitting instance (1
primary node, 3 read
replicas)

redis.logic.spli
trw.4xlarge.1d
b.3rodb.4proxy
.default

3 384 40000 40000 400000

32 GB read/write
splitting instance (1
primary node, 5 read
replicas)

redis.logic.spli
trw.4xlarge.1d
b.5rodb.6proxy
.default

5 576 50000 60000 600000

64 GB read/write
splitting instance (1
primary node, 1 read
replica)

redis.logic.spli
trw.8xlarge.1d
b.1rodb.4proxy
.default

1 192 20000 20000 200000

64 GB read/write
splitting instance (1
primary node, 3 read
replicas)

redis.logic.spli
trw.8xlarge.1d
b.3rodb.4proxy
.default

3 384 40000 40000 400000

64 GB read/write
splitting instance (1
primary node, 5 read
replicas)

redis.logic.spli
trw.8xlarge.1d
b.5rodb.6proxy
.default

5 576 50000 60000 600000

Instance type
InstanceClass
(API
operation)

Number
of read
replicas

Bandwid
th
(MB/s)

Maximu
m
number
of new
connecti
ons per
second

Maximu
m
number
of
concurre
nt
connecti
ons

QPS
referenc
e value

Calculation rules for bandwidth
If network resources are sufficient, the bandwidth is unlimited. However, if network resources
are insufficient, the limit on maximum internal bandwidth takes effect.
The bandwidth value in the table refers to the bandwidth of the instance. It is the sum of
bandwidth of all shards or nodes on the instance.
The upper limit of total bandwidth for a cluster or read/write splitting instance (as shown in
the table) is 2,048 MB/s. After the upper limit is reached, the bandwidth cannot be increased
even if the number of shards or nodes is increased.
The bandwidth applies to the upstream bandwidth and downstream bandwidth respectively.
If the bandwidth of an instance is 10 MB/s, the upstream and downstream bandwidth of the
instance are both 10 MB/s.
The bandwidth listed in the table is the internal bandwidth of the ApsaraDB for Redis
instance. The Internet bandwidth is determined by the internal bandwidth and is limited by
the bandwidth of the connection between the instance and a client. We recommend that you
connect to the instance over an internal network to maximize the performance.

Calculation rules for connections

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

36 > Document Version:20201014

The following example explains the maximum number of new connections that can be added
per second: The maximum number of new connections per second of an instance is 10,000. The
maximum number of connections is 50,000. The actual number of connections at the Nth
second after the instance starts to run is 12,000. Then, at the (N+1)th second, the number of
connections is 22,000 (12,000 + 10,000).
The maximum number of new connections per second and the maximum number of
connections are the sum of the corresponding values of all shards or nodes on the instance.
After 500,000 is reached, the maximum number of connections cannot be increased even if the
number of shards or nodes is increased.

This topic describes the specifications of read/write splitting cluster instances of ApsaraDB for
Redis Community Edition. These specifications include the memory capacity, maximum number of
concurrent connections to each instance, maximum bandwidth, and QPS reference value for
these instances.

Instance specifications

Instance type
InstanceClas
s (API
operation)

Numbe
r of
shards

Numbe
r of
read
replica
s per
shard

Bandwi
dth
(MB/s)

Maxim
um
numbe
r of
new
connec
tions
per
second

Maxim
um
numbe
r of
concur
rent
connec
tions

QPS
refere
nce
value

4 GB read/write
splitting instance
(2 primary nodes,
1 read replica)

redis.logic.s
plitrw.shardi
ng2g.2db.1ro
db.4proxy.de
fault

2 1 384 50000 40000 400000

8 GB read/write
splitting instance
(2 primary nodes,
1 read replica)

redis.logic.s
plitrw.shardi
ng4g.2db.1ro
db.4proxy.de
fault

2 1 384 50000 40000 400000

16 GB read/write
splitting instance
(2 primary nodes,
1 read replica)

redis.logic.s
plitrw.shardi
ng8g.2db.1ro
db.8proxy.de
fault

2 1 384 50000 40000 400000

32 GB read/write
splitting instance
(8 primary nodes,
1 read replica)

redis.logic.s
plitrw.shardi
ng4g.8db.1ro
db.16proxy.d
efault

8 1 1536 50000 160000 160000
0

5.2.4. Read/write splitting cluster instances

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 37

64 GB read/write
splitting instance
(16 primary nodes,
1 read replica)

redis.logic.s
plitrw.shardi
ng4g.16db.1r
odb.32proxy.
default

16 1 2048 50000 320000 320000
0

128 GB read/write
splitting instance
(16 primary nodes,
1 read replica)

redis.logic.s
plitrw.shardi
ng8g.16db.1r
odb.32proxy.
default

16 1 2048 50000 320000 320000
0

256 GB read/write
splitting instance
(32 primary nodes,
1 read replica)

redis.logic.s
plitrw.shardi
ng8g.32db.1r
odb.64proxy.
default

32 1 2048 50000 500000 640000
0

512 GB read/write
splitting instance
(32 primary nodes,
1 read replica)

redis.logic.s
plitrw.shardi
ng16g.32db.1
rodb.64proxy
.default

32 1 2048 50000 500000 640000
0

Instance type
InstanceClas
s (API
operation)

Numbe
r of
shards

Numbe
r of
read
replica
s per
shard

Bandwi
dth
(MB/s)

Maxim
um
numbe
r of
new
connec
tions
per
second

Maxim
um
numbe
r of
concur
rent
connec
tions

QPS
refere
nce
value

Calculation rules for bandwidth
If network resources are sufficient, the bandwidth is unlimited. However, if network resources
are insufficient, the limit on maximum internal bandwidth takes effect.
The bandwidth value in the table refers to the bandwidth of the instance. It is the sum of
bandwidth of all shards or nodes on the instance.
The upper limit of total bandwidth for a cluster or read/write splitting instance (as shown in
the table) is 2,048 MB/s. After the upper limit is reached, the bandwidth cannot be increased
even if the number of shards or nodes is increased.
The bandwidth applies to the upstream bandwidth and downstream bandwidth respectively.
If the bandwidth of an instance is 10 MB/s, the upstream and downstream bandwidth of the
instance are both 10 MB/s.
The bandwidth listed in the table is the internal bandwidth of the ApsaraDB for Redis
instance. The Internet bandwidth is determined by the internal bandwidth and is limited by
the bandwidth of the connection between the instance and a client. We recommend that you
connect to the instance over an internal network to maximize the performance.

Calculation rules for connections

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

38 > Document Version:20201014

The following example explains the maximum number of new connections that can be added
per second: The maximum number of new connections per second of an instance is 10,000. The
maximum number of connections is 50,000. The actual number of connections at the Nth
second after the instance starts to run is 12,000. Then, at the (N+1)th second, the number of
connections is 22,000 (12,000 + 10,000).
The maximum number of new connections per second and the maximum number of
connections are the sum of the corresponding values of all shards or nodes on the instance.
After 500,000 is reached, the maximum number of connections cannot be increased even if the
number of shards or nodes is increased.

FAQ
Q: How can I create a read/write splitting cluster instance in the console?

A: To create a read/write splitting cluster instance in the console, follow these steps:

1. Log on to the ApsaraDB for Redis console. In the left-side navigation pane, click Instances,
and click Create Instance. On the buy page that appears, set Architecture Type to Cluster
Edition.

2. Set Shards to the number of shards on the read-write splitting instance.

3. Select Master-Replica from the Node Type drop-down list.

4. Select the specifications from the Instance Class drop-down list.

This topic describes the specifications of performance-enhanced cluster instances of ApsaraDB
for Redis Enterprise Edition. These specifications include the memory capacity, number of
concurrent connections to each instance, maximum bandwidth, and queries per second (QPS)
reference value.

Instance specifications

Instance type InstanceClass
(API operation)

Number
of I/O
threads

Maximum
number
of new
connecti
ons per
second

Maximum
number
of
concurre
nt
connecti
ons

Bandwidt
h (MB/s)

QPS
referenc
e value

1 GB master-
replica
performance-
enhanced
instance

redis.amber.ma
ster.small.multit
hread

4 10000 30000 96 240000

5.3. Enhanced Edition
5.3.1. Performance-enhanced cluster instances

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 39

2 GB master-
replica
performance-
enhanced
instance

redis.amber.ma
ster.mid.multith
read

4 10000 30000 96 240000

4 GB master-
replica
performance-
enhanced
instance

redis.amber.ma
ster.stand.multi
thread

4 10000 30000 96 240000

8 GB master-
replica
performance-
enhanced
instance

redis.amber.ma
ster.large.multit
hread

4 10000 30000 96 240000

16 GB master-
replica
performance-
enhanced
instance

redis.amber.ma
ster.2xlarge.mul
tithread

4 10000 30000 96 240000

32 GB master-
replica
performance-
enhanced
instance

redis.amber.ma
ster.4xlarge.mul
tithread

4 10000 30000 96 240000

64 GB master-
replica
performance-
enhanced
instance

redis.amber.ma
ster.8xlarge.mul
tithread

4 10000 30000 96 240000

Instance type InstanceClass
(API operation)

Number
of I/O
threads

Maximum
number
of new
connecti
ons per
second

Maximum
number
of
concurre
nt
connecti
ons

Bandwidt
h (MB/s)

QPS
referenc
e value

Calculation rules for bandwidth
If network resources are sufficient, the bandwidth is unlimited. However, if network resources
are insufficient, the limit on maximum internal bandwidth takes effect.
The bandwidth value in the table refers to the bandwidth of the instance. It is the sum of
bandwidth of all shards or nodes on the instance.
The upper limit of total bandwidth for a cluster or read/write splitting instance (as shown in
the table) is 2,048 MB/s. After the upper limit is reached, the bandwidth cannot be increased
even if the number of shards or nodes is increased.
The bandwidth applies to the upstream bandwidth and downstream bandwidth respectively.

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

40 > Document Version:20201014

If the bandwidth of an instance is 10 MB/s, the upstream and downstream bandwidth of the
instance are both 10 MB/s.
The bandwidth listed in the table is the internal bandwidth of the ApsaraDB for Redis
instance. The Internet bandwidth is determined by the internal bandwidth and is limited by
the bandwidth of the connection between the instance and a client. We recommend that you
connect to the instance over an internal network to maximize the performance.

Calculation rules for connections
The following example explains the maximum number of new connections that can be added
per second: The maximum number of new connections per second of an instance is 10,000. The
maximum number of connections is 50,000. The actual number of connections at the Nth
second after the instance starts to run is 12,000. Then, at the (N+1)th second, the number of
connections is 22,000 (12,000 + 10,000).
The maximum number of new connections per second and the maximum number of
connections are the sum of the corresponding values of all shards or nodes on the instance.
After 500,000 is reached, the maximum number of connections cannot be increased even if the
number of shards or nodes is increased.

FAQ
Q: Why does the maximum number of concurrent connections of my instance differ from that of
the same instance described in this topic?

A: The maximum number of concurrent connections of some instance types may be adjusted
after service upgrades. If the maximum number of concurrent connections of your instance is
different than those described in this topic, refer to Change specifications and modify your
instance configurations. You are not charged for the same instance type.

This topic describes the specifications of performance-enhanced cluster instances of ApsaraDB
for Redis Enhanced Edition. These specifications include the memory capacity, number of
concurrent connections to each instance, bandwidth, and queries per second (QPS) reference
value.

Instance specifications

Instance type
InstanceCla
ss (API
operation)

Numb
er of
I/O
thread
s

Numb
er of
shard
s

Maxim
um
numbe
r of
new
conne
ctions
per
secon
d

Maximu
m
number
of
concurre
nt
connecti
ons

Band
width
(Mbit/
s)

QPS
reference
value

5.3.2. Performance-enhanced cluster instances

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 41

https://help.aliyun.com/document_detail/26353.html#concept-mgf-z25-tdb

4 GB
performance-
enhanced cluster
instance

redis.amber
.logic.shardi
ng.2g.2db.0
rodb.6proxy
.multithrea
d

4 2 40000 60000 192 480000

8 GB
performance-
enhanced cluster
instance

redis.amber
.logic.shardi
ng.2g.4db.0
rodb.12prox
y.multithrea
d

4 4 40000 120000 384 960000

16 GB
performance-
enhanced cluster
instance

redis.amber
.logic.shardi
ng.2g.8db.0
rodb.24prox
y.multithrea
d

4 8 50000 240000 768 1920000

32 GB
performance-
enhanced cluster
instance

redis.amber
.logic.shardi
ng.4g.8db.0
rodb.24prox
y.multithrea
d

4 8 50000 240000 768 1920000

64 GB
performance-
enhanced cluster
instance

redis.amber
.logic.shardi
ng.8g.8db.0
rodb.24prox
y.multithrea
d

4 8 50000 240000 768 1920000

128 GB
performance-
enhanced cluster
instance

redis.amber
.logic.shardi
ng.8g.16db.
0rodb.48pro
xy.multithre
ad

4 16 50000 480000 1536 3840000

Instance type
InstanceCla
ss (API
operation)

Numb
er of
I/O
thread
s

Numb
er of
shard
s

Maxim
um
numbe
r of
new
conne
ctions
per
secon
d

Maximu
m
number
of
concurre
nt
connecti
ons

Band
width
(Mbit/
s)

QPS
reference
value

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

42 > Document Version:20201014

256 GB
performance-
enhanced cluster
instance

redis.amber
.logic.shardi
ng.16g.16db
.0rodb.48pr
oxy.multithr
ead

4 16 50000 480000 1536 3840000

512 GB
performance-
enhanced cluster
instance

redis.amber
.logic.shardi
ng.16g.32db
.0rodb.96pr
oxy.multithr
ead

4 32 50000 500000 2048 7680000

1,024 GB
performance-
enhanced cluster
instance

redis.amber
.logic.shardi
ng.16g.64db
.0rodb.192p
roxy.multith
read

4 64 50000 500000 2048 15360000

2,048 GB
performance-
enhanced cluster
instance

redis.amber
.logic.shardi
ng.16g.128d
b.0rodb.384
proxy.multit
hread

4 128 50000 500000 2048 30720000

4,096 GB
performance-
enhanced cluster
instance

redis.amber
.logic.shardi
ng.16g.256d
b.0rodb.768
proxy.multit
hread

4 256 50000 500000 2048 61440000

Instance type
InstanceCla
ss (API
operation)

Numb
er of
I/O
thread
s

Numb
er of
shard
s

Maxim
um
numbe
r of
new
conne
ctions
per
secon
d

Maximu
m
number
of
concurre
nt
connecti
ons

Band
width
(Mbit/
s)

QPS
reference
value

Calculation rules for bandwidth
If network resources are sufficient, the bandwidth is unlimited. However, if network resources
are insufficient, the limit on maximum internal bandwidth takes effect.
The bandwidth value in the table refers to the bandwidth of the instance. It is the sum of
bandwidth of all shards or nodes on the instance.
The upper limit of total bandwidth for a cluster or read/write splitting instance (as shown in
the table) is 2,048 MB/s. After the upper limit is reached, the bandwidth cannot be increased

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 43

even if the number of shards or nodes is increased.
The bandwidth applies to the upstream bandwidth and downstream bandwidth respectively.
If the bandwidth of an instance is 10 MB/s, the upstream and downstream bandwidth of the
instance are both 10 MB/s.
The bandwidth listed in the table is the internal bandwidth of the ApsaraDB for Redis
instance. The Internet bandwidth is determined by the internal bandwidth and is limited by
the bandwidth of the connection between the instance and a client. We recommend that you
connect to the instance over an internal network to maximize the performance.

Calculation rules for connections
The following example explains the maximum number of new connections that can be added
per second: The maximum number of new connections per second of an instance is 10,000. The
maximum number of connections is 50,000. The actual number of connections at the Nth
second after the instance starts to run is 12,000. Then, at the (N+1)th second, the number of
connections is 22,000 (12,000 + 10,000).
The maximum number of new connections per second and the maximum number of
connections are the sum of the corresponding values of all shards or nodes on the instance.
After 500,000 is reached, the maximum number of connections cannot be increased even if the
number of shards or nodes is increased.

FAQ
Q: Why does the maximum number of concurrent connections of my instance differ from that of
the same instance described in this topic?

A: The maximum number of concurrent connections of some instance types may be adjusted
after service upgrades. If the maximum number of concurrent connections of your instance is
different than those described in this topic, refer to Change specifications and modify your
instance configurations. You are not charged for the same instance type.

This topic describes the specifications of read/write splitting instances of ApsaraDB for Redis
Enhanced Edition (Tair). These specifications include the number of read-only replicas, memory
capacity, maximum number of concurrent connections to each instance, bandwidth, and queries
per second (QPS) reference value.

Instance specifications

5.3.3. Performance-enhanced read/write splitting
instances

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

44 > Document Version:20201014

https://help.aliyun.com/document_detail/26353.html#concept-mgf-z25-tdb

Instance type

InstanceCl
ass (used
in API
operations
)

Numb
er of
I/O
threa
ds

Numb
er of
read/
write
nodes

Numb
er of
read-
only
replic
as

Band
width
(MB/s
)

Maxi
mum
numb
er of
new
conne
ctions
per
secon
d

Maxi
mum
numb
er of
concu
rrent
conne
ctions

QPS
referen
ce
value

1 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 1 read-
only replica)

redis.ambe
r.logic.split
rw.small.1
db.1rodb.6
proxy.multi
thread

4 1 1 192 20,00
0

60,00
0 480,000

2 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 1 read-
only replica)

redis.ambe
r.logic.split
rw.mid.1db
.1rodb.6pr
oxy.multith
read

4 1 1 192 20,00
0

60,00
0 480,000

4 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 1 read-
only replica)

redis.ambe
r.logic.split
rw.stand.1
db.1rodb.6
proxy.multi
thread

4 1 1 192 20,00
0

60,00
0 480,000

8 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 1 read-
only replica)

redis.ambe
r.logic.split
rw.large.1
db.1rodb.6
proxy.multi
thread

4 1 1 192 20,00
0

60,00
0 480,000

16 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 1 read-
only replica)

redis.ambe
r.logic.split
rw.2xlarge.
1db.1rodb.
6proxy.mul
tithread

4 1 1 192 20,00
0

60,00
0 480,000

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 45

32 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 1 read-
only replica)

redis.ambe
r.logic.split
rw.4xlarge.
1db.1rodb.
6proxy.mul
tithread

4 1 1 192 20,00
0

60,00
0 480,000

64 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 1 read-
only replica)

redis.ambe
r.logic.split
rw.8xlarge.
1db.1rodb.
6proxy.mul
tithread

4 1 1 192 20,00
0

60,00
0 480,000

1 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 3 read-
only replicas)

redis.ambe
r.logic.split
rw.small.1
db.3rodb.1
2proxy.mul
tithread

4 1 3 384 40,00
0

120,0
00 960,000

2 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 3 read-
only replicas)

redis.ambe
r.logic.split
rw.mid.1db
.3rodb.12p
roxy.multit
hread

4 1 3 384 40,00
0

120,0
00 960,000

4 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 3 read-
only replicas)

redis.ambe
r.logic.split
rw.stand.1
db.3rodb.1
2proxy.mul
tithread

4 1 3 384 40,00
0

120,0
00 960,000

Instance type

InstanceCl
ass (used
in API
operations
)

Numb
er of
I/O
threa
ds

Numb
er of
read/
write
nodes

Numb
er of
read-
only
replic
as

Band
width
(MB/s
)

Maxi
mum
numb
er of
new
conne
ctions
per
secon
d

Maxi
mum
numb
er of
concu
rrent
conne
ctions

QPS
referen
ce
value

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

46 > Document Version:20201014

8 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 3 read-
only replicas)

redis.ambe
r.logic.split
rw.large.1
db.3rodb.1
2proxy.mul
tithread

4 1 3 384 40,00
0

120,0
00 960,000

16 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 3 read-
only replicas)

redis.ambe
r.logic.split
rw.2xlarge.
1db.3rodb.
12proxy.m
ultithread

4 1 3 384 40,00
0

120,0
00 960,000

32 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 3 read-
only replicas)

redis.ambe
r.logic.split
rw.4xlarge.
1db.3rodb.
12proxy.m
ultithread

4 1 3 384 40,00
0

120,0
00 960,000

64 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 3 read-
only replicas)

redis.ambe
r.logic.split
rw.8xlarge.
1db.3rodb.
12proxy.m
ultithread

4 1 3 384 40,00
0

120,0
00 960,000

1 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 5 read-
only replicas)

redis.ambe
r.logic.split
rw.small.1
db.5rodb.1
8proxy.mul
tithread

4 1 5 576 50,00
0

180,0
00

1,440,00
0

Instance type

InstanceCl
ass (used
in API
operations
)

Numb
er of
I/O
threa
ds

Numb
er of
read/
write
nodes

Numb
er of
read-
only
replic
as

Band
width
(MB/s
)

Maxi
mum
numb
er of
new
conne
ctions
per
secon
d

Maxi
mum
numb
er of
concu
rrent
conne
ctions

QPS
referen
ce
value

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 47

2 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 5 read-
only replicas)

redis.ambe
r.logic.split
rw.mid.1db
.5rodb.18p
roxy.multit
hread

4 1 5 576 50,00
0

180,0
00

1,440,00
0

4 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 5 read-
only replicas)

redis.ambe
r.logic.split
rw.stand.1
db.5rodb.1
8proxy.mul
tithread

4 1 5 576 50,00
0

180,0
00

1,440,00
0

8 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 5 read-
only replicas)

redis.ambe
r.logic.split
rw.large.1
db.5rodb.1
8proxy.mul
tithread

4 1 5 576 50,00
0

180,0
00

1,440,00
0

16 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 5 read-
only replicas)

redis.ambe
r.logic.split
rw.2xlarge.
1db.5rodb.
18proxy.m
ultithread

4 1 5 576 50,00
0

180,0
00

1,440,00
0

32 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 5 read-
only replicas)

redis.ambe
r.logic.split
rw.4xlarge.
1db.5rodb.
18proxy.m
ultithread

4 1 5 576 50,00
0

180,0
00

1,440,00
0

Instance type

InstanceCl
ass (used
in API
operations
)

Numb
er of
I/O
threa
ds

Numb
er of
read/
write
nodes

Numb
er of
read-
only
replic
as

Band
width
(MB/s
)

Maxi
mum
numb
er of
new
conne
ctions
per
secon
d

Maxi
mum
numb
er of
concu
rrent
conne
ctions

QPS
referen
ce
value

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

48 > Document Version:20201014

64 GB
performance-
enhanced
read/write
splitting
instance (1
shard, 5 read-
only replicas)

redis.ambe
r.logic.split
rw.8xlarge.
1db.5rodb.
18proxy.m
ultithread

4 1 5 576 50,00
0

180,0
00

1,440,00
0

Instance type

InstanceCl
ass (used
in API
operations
)

Numb
er of
I/O
threa
ds

Numb
er of
read/
write
nodes

Numb
er of
read-
only
replic
as

Band
width
(MB/s
)

Maxi
mum
numb
er of
new
conne
ctions
per
secon
d

Maxi
mum
numb
er of
concu
rrent
conne
ctions

QPS
referen
ce
value

Calculation rules for bandwidth
If network resources are sufficient, the bandwidth is unlimited. However, if network resources
are insufficient, the limit on maximum internal bandwidth takes effect.
The bandwidth value in the table refers to the bandwidth of the instance. It is the sum of
bandwidth of all shards or nodes on the instance.
The upper limit of total bandwidth for a cluster or read/write splitting instance (as shown in
the table) is 2,048 MB/s. After the upper limit is reached, the bandwidth cannot be increased
even if the number of shards or nodes is increased.
The bandwidth applies to the upstream bandwidth and downstream bandwidth respectively.
If the bandwidth of an instance is 10 MB/s, the upstream and downstream bandwidth of the
instance are both 10 MB/s.
The bandwidth listed in the table is the internal bandwidth of the ApsaraDB for Redis
instance. The Internet bandwidth is determined by the internal bandwidth and is limited by
the bandwidth of the connection between the instance and a client. We recommend that you
connect to the instance over an internal network to maximize the performance.

Calculation rules for connections
The following example explains the maximum number of new connections that can be added
per second: The maximum number of new connections per second of an instance is 10,000. The
maximum number of connections is 50,000. The actual number of connections at the Nth
second after the instance starts to run is 12,000. Then, at the (N+1)th second, the number of
connections is 22,000 (12,000 + 10,000).
The maximum number of new connections per second and the maximum number of
connections are the sum of the corresponding values of all shards or nodes on the instance.
After 500,000 is reached, the maximum number of connections cannot be increased even if the
number of shards or nodes is increased.

5.3.4. Standard hybrid-storage instances

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 49

This topic describes the specifications of standard hybrid-storage instances of ApsaraDB for
Redis Enhanced Edition (Tair), such as the memory capacity, maximum number of concurrent
connections to each instance, maximum internal bandwidth, and queries per second (QPS)
reference value.

Instance specifications

Note The maximum internal bandwidth is applicable to both upstream bandwidth and
downstream bandwidth. If network resources are sufficient, the bandwidth is unlimited for
ApsaraDB for Redis instances. However, if network resources are insufficient, the limit on
maximum internal bandwidth takes effect for the instances.

Instance type
InstanceClass
(used in API
operations)

Number
of new
connecti
ons per
second

Maximu
m
number
of
concurre
nt
connecti
ons

Maximu
m
internal
bandwid
th
(MB/s)

QPS
referenc
e value

Description

Master-replica
instance with
16 GB memory
and 32 GB disk
storage

redis.amber.m
aster.16g.2x.e
xt4.default

10,000 50,000 48 40,000

Master-replica
hybrid-
storage
instance

Master-replica
instance with
16 GB memory
and 64 GB disk
storage

redis.amber.m
aster.16g.4x.e
xt4.default

10,000 50,000 48 40,000

Master-replica
hybrid-
storage
instance

Master-replica
instance with
16 GB memory
and 128 GB
disk storage

redis.amber.m
aster.16g.8x.e
xt4.default

10,000 50,000 48 40,000

Master-replica
hybrid-
storage
instance

Master-replica
instance with
32 GB memory
and 64 GB disk
storage

redis.amber.m
aster.32g.2x.e
xt4.default

10,000 50,000 48 40,000

Master-replica
hybrid-
storage
instance

Master-replica
instance with
32 GB memory
and 128 GB
disk storage

redis.amber.m
aster.32g.4x.e
xt4.default

10,000 50,000 48 40,000

Master-replica
hybrid-
storage
instance

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

50 > Document Version:20201014

Master-replica
instance with
32 GB memory
and 256 GB
disk storage

redis.amber.m
aster.32g.8x.e
xt4.default

10,000 50,000 48 40,000

Master-replica
hybrid-
storage
instance

Master-replica
instance with
64 GB memory
and 128 GB
disk storage

redis.amber.m
aster.64g.2x.e
xt4.default

10,000 50,000 48 40,000

Master-replica
hybrid-
storage
instance

Master-replica
instance with
64 GB memory
and 256 GB
disk storage

redis.amber.m
aster.64g.4x.e
xt4.default

10,000 50,000 48 40,000

Master-replica
hybrid-
storage
instance

Master-replica
instance with
64 GB memory
and 512 GB
disk storage

redis.amber.m
aster.64g.8x.e
xt4.default

10,000 50,000 48 40,000

Master-replica
hybrid-
storage
instance

Instance type
InstanceClass
(used in API
operations)

Number
of new
connecti
ons per
second

Maximu
m
number
of
concurre
nt
connecti
ons

Maximu
m
internal
bandwid
th
(MB/s)

QPS
referenc
e value

Description

Calculation rules for bandwidth
If network resources are sufficient, the bandwidth is unlimited. However, if network resources
are insufficient, the limit on maximum internal bandwidth takes effect.
The bandwidth value in the table refers to the bandwidth of the instance. It is the sum of
bandwidth of all shards or nodes on the instance.
The upper limit of total bandwidth for a cluster or read/write splitting instance (as shown in
the table) is 2,048 MB/s. After the upper limit is reached, the bandwidth cannot be increased
even if the number of shards or nodes is increased.
The bandwidth applies to the upstream bandwidth and downstream bandwidth respectively.
If the bandwidth of an instance is 10 MB/s, the upstream and downstream bandwidth of the
instance are both 10 MB/s.
The bandwidth listed in the table is the internal bandwidth of the ApsaraDB for Redis
instance. The Internet bandwidth is determined by the internal bandwidth and is limited by
the bandwidth of the connection between the instance and a client. We recommend that you
connect to the instance over an internal network to maximize the performance.

Calculation rules for connections
The following example explains the maximum number of new connections that can be added

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 51

per second: The maximum number of new connections per second of an instance is 10,000. The
maximum number of connections is 50,000. The actual number of connections at the Nth
second after the instance starts to run is 12,000. Then, at the (N+1)th second, the number of
connections is 22,000 (12,000 + 10,000).
The maximum number of new connections per second and the maximum number of
connections are the sum of the corresponding values of all shards or nodes on the instance.
After 500,000 is reached, the maximum number of connections cannot be increased even if the
number of shards or nodes is increased.

This topic describes the specifications of hybrid-storage cluster instances of ApsaraDB for Redis
Enhanced Edition (Tair). These specifications include the memory and disk capacity, maximum
number of concurrent connections to each instance, maximum internal bandwidth, and queries
per second (QPS) reference value.

Instance types

Instance type InstanceClass
(used in API)

Number
of
shards

Maximu
m
number
of new
connect
ions
per
second

Maximu
m
number
of
connect
ions

Bandwi
dth
(MB/s)

QPS
referen
ce
value

64 GB memory and
256 GB disk storage
(4 shards)

redis.amber.shardi
ng.16g.4db.0rodb.1
2proxy.4x.ext4.defa
ult

4 40000 200000 384 120000

64 GB memory and
512 GB disk storage
(4 shards)

redis.amber.shardi
ng.16g.4db.0rodb.1
2proxy.8x.ext4.defa
ult

4 40000 200000 384 120000

128 GB memory and
512 GB disk storage
(4 shards)

redis.amber.shardi
ng.32g.4db.0rodb.1
2proxy.4x.ext4.defa
ult

4 40000 200000 384 120000

128 GB memory and
1,024 GB disk
storage (4 shards)

redis.amber.shardi
ng.32g.4db.0rodb.1
2proxy.8x.ext4.defa
ult

4 40000 200000 384 120000

256 GB memory and
1,024 GB disk
storage (4 shards)

redis.amber.shardi
ng.64g.4db.0rodb.1
2proxy.4x.ext4.defa
ult

4 40000 200000 384 120000

5.3.5. Hybrid-storage cluster instances

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

52 > Document Version:20201014

256 GB memory and
2,048 GB disk
storage (4 shards)

redis.amber.shardi
ng.64g.4db.0rodb.1
2proxy.8x.ext4.defa
ult

4 40000 200000 384 120000

128 GB memory and
512 GB disk storage
(8 shards)

redis.amber.shardi
ng.16g.8db.0rodb.2
4proxy.4x.ext4.defa
ult

8 50000 400000 768 240000

128 GB memory and
1,024 GB disk
storage (8 shards)

redis.amber.shardi
ng.16g.8db.0rodb.2
4proxy.8x.ext4.defa
ult

8 50000 400000 768 240000

256 GB memory and
1,024 GB disk
storage (8 shards)

redis.amber.shardi
ng.32g.8db.0rodb.2
4proxy.4x.ext4.defa
ult

8 50000 400000 768 240000

256 GB memory and
2,048 GB disk
storage (8 shards)

redis.amber.shardi
ng.32g.8db.0rodb.2
4proxy.8x.ext4.defa
ult

8 50000 400000 768 240000

512 GB memory and
2,048 GB disk
storage (8 shards)

redis.amber.shardi
ng.64g.8db.0rodb.2
4proxy.4x.ext4.defa
ult

8 50000 400000 768 240000

512 GB memory and
4,096 GB disk
storage (8 shards)

redis.amber.shardi
ng.64g.8db.0rodb.2
4proxy.8x.ext4.defa
ult

8 50000 400000 768 240000

256 GB memory and
1,024 GB disk
storage (16 shards)

redis.amber.shardi
ng.16g.16db.0rodb.
48proxy.4x.ext4.def
ault

16 50000 500000 1536 480000

256 GB memory and
2,048 GB disk
storage (16 shards)

redis.amber.shardi
ng.16g.16db.0rodb.
48proxy.8x.ext4.def
ault

16 50000 500000 1536 480000

Instance type InstanceClass
(used in API)

Number
of
shards

Maximu
m
number
of new
connect
ions
per
second

Maximu
m
number
of
connect
ions

Bandwi
dth
(MB/s)

QPS
referen
ce
value

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 53

512 GB memory and
2,048 GB disk
storage (16 shards)

redis.amber.shardi
ng.32g.16db.0rodb.
48proxy.4x.ext4.def
ault

16 50000 500000 1536 480000

512 GB memory and
4,096 GB disk
storage (16 shards)

redis.amber.shardi
ng.32g.16db.0rodb.
48proxy.8x.ext4.def
ault

16 50000 500000 1536 480000

1,024 GB memory
and 4,096 GB disk
storage (16 shards)

redis.amber.shardi
ng.64g.16db.0rodb.
48proxy.4x.ext4.def
ault

16 50000 500000 1536 480000

1,024 GB memory
and 8,192 GB disk
storage (16 shards)

redis.amber.shardi
ng.64g.16db.0rodb.
48proxy.8x.ext4.def
ault

16 50000 500000 1536 480000

Instance type InstanceClass
(used in API)

Number
of
shards

Maximu
m
number
of new
connect
ions
per
second

Maximu
m
number
of
connect
ions

Bandwi
dth
(MB/s)

QPS
referen
ce
value

Calculation rules for bandwidth
If network resources are sufficient, the bandwidth is unlimited. However, if network resources
are insufficient, the limit on maximum internal bandwidth takes effect.
The bandwidth value in the table refers to the bandwidth of the instance. It is the sum of
bandwidth of all shards or nodes on the instance.
The upper limit of total bandwidth for a cluster or read/write splitting instance (as shown in
the table) is 2,048 MB/s. After the upper limit is reached, the bandwidth cannot be increased
even if the number of shards or nodes is increased.
The bandwidth applies to the upstream bandwidth and downstream bandwidth respectively.
If the bandwidth of an instance is 10 MB/s, the upstream and downstream bandwidth of the
instance are both 10 MB/s.
The bandwidth listed in the table is the internal bandwidth of the ApsaraDB for Redis
instance. The Internet bandwidth is determined by the internal bandwidth and is limited by
the bandwidth of the connection between the instance and a client. We recommend that you
connect to the instance over an internal network to maximize the performance.

Calculation rules for connections
The following example explains the maximum number of new connections that can be added
per second: The maximum number of new connections per second of an instance is 10,000. The
maximum number of connections is 50,000. The actual number of connections at the Nth
second after the instance starts to run is 12,000. Then, at the (N+1)th second, the number of
connections is 22,000 (12,000 + 10,000).

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

54 > Document Version:20201014

The maximum number of new connections per second and the maximum number of
connections are the sum of the corresponding values of all shards or nodes on the instance.
After 500,000 is reached, the maximum number of connections cannot be increased even if the
number of shards or nodes is increased.

This topic describes the ApsaraDB for Redis instances that are phased out. If you have purchased
these instances, you can continue to use them. The following table lists the maximum number of
connections to each instance, maximum bandwidth, and QPS reference value for these
instances.

Standard zone-disaster recovery instances of Community Edition

Instance type InstanceClass
(used in API)

Maximum
number of
new
connectio
ns per
second

Maximum
number of
connectio
ns

Bandwidt
h (MB/s)

QPS
reference
value

1 GB zone-disaster
recovery instance

redis.logic.shardi
ng.drredissdb1g.
1db.0rodb.4proxy
.default

10000 10000 10 80000

2 GB zone-disaster
recovery instance

redis.logic.shardi
ng.drredissdb2g.
1db.0rodb.4proxy
.default

10000 10000 16 80000

4 GB zone-disaster
recovery instance

redis.logic.shardi
ng.drredissdb4g.
1db.0rodb.4proxy
.default

10000 10000 24 80000

8 GB zone-disaster
recovery instance

redis.logic.shardi
ng.drredissdb8g.
1db.0rodb.4proxy
.default

10000 10000 24 80000

16 GB zone-disaster
recovery instance

redis.logic.shardi
ng.drredissdb16g
.1db.0rodb.4prox
y.default

10000 10000 32 80000

32 GB zone-disaster
recovery instance

redis.logic.shardi
ng.drredissdb32g
.1db.0rodb.4prox
y.default

10000 10000 32 80000

5.4. Phased-out instance types

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 55

64 GB zone-disaster
recovery instance

redis.logic.shardi
ng.drredissdb64g
.1db.0rodb.4prox
y.default

10000 10000 48 80000

Instance type InstanceClass
(used in API)

Maximum
number of
new
connectio
ns per
second

Maximum
number of
connectio
ns

Bandwidt
h (MB/s)

QPS
reference
value

Master-replica cluster instances of Community Edition

Instance type InstanceClass
(used in API)

Number
of
shards

Maximu
m
number
of new
connecti
ons per
second

Maximu
m
number
of
connecti
ons

Bandwid
th
(MB/s)

QPS
referenc
e value

1 GB cluster instance
(2 shards)

redis.logic.sha
rding.512m.2db
.0rodb.4proxy.
default

2 20000 20000 48 200000

1 GB cluster instance
(4 shards)

redis.logic.sha
rding.256m.4db
.0rodb.4proxy.
default

4 40000 40000 96 400000

2 GB cluster instance
(4 shards)

redis.logic.sha
rding.512m.4db
.0rodb.4proxy.
default

4 40000 40000 96 400000

2 GB cluster instance
(8 shards)

redis.logic.sha
rding.256m.8db
.0rodb.8proxy.
default

8 50000 80000 192 800000

4 GB cluster instance
(8 shards)

redis.logic.sha
rding.512m.8db
.0rodb.8proxy.
default

8 50000 80000 192 800000

4 GB cluster instance
(16 shards)

redis.logic.sha
rding.256m.16d
b.0rodb.16prox
y.default

16 50000 160000 384 1600000

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

56 > Document Version:20201014

8 GB cluster instance
(16 shards)

redis.logic.sha
rding.512m.16d
b.0rodb.16prox
y.default

16 50000 160000 384 1600000

8 GB cluster instance
(32 shards)

redis.logic.sha
rding.256m.32d
b.0rodb.32prox
y.default

32 50000 320000 768 3200000

16 GB cluster
instance (32 shards)

redis.logic.sha
rding.512m.32d
b.0rodb.32prox
y.default

32 50000 320000 768 3200000

16 GB cluster
instance

redis.sharding.
small.default 8 50000 80000 768 640000

32 GB cluster
instance

redis.sharding.
mid.default 8 50000 80000 768 640000

64 GB cluster
instance

redis.sharding.
large.default 8 50000 80000 768 640000

128 GB cluster
instance

redis.sharding.
2xlarge.defaul
t

16 50000 160000 1536 1280000

256 GB cluster
instance

redis.sharding.
4xlarge.defaul
t

16 50000 160000 1536 1280000

512 GB cluster
instance

redis.sharding.
8xlarge.defaul
t

32 50000 320000 2048 2560000

Instance type InstanceClass
(used in API)

Number
of
shards

Maximu
m
number
of new
connecti
ons per
second

Maximu
m
number
of
connecti
ons

Bandwid
th
(MB/s)

QPS
referenc
e value

Zone-disaster recovery cluster instances of Community Edition

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 57

Instance type InstanceClass
(used in API)

Number
of
shards

Maximu
m
number
of new
connecti
ons per
second

Maximu
m
number
of
connecti
ons

Bandwid
th
(MB/s)

QPS
referenc
e value

16 GB zone-disaster
recovery cluster
instance

redis.logic.sha
rding.drredism
db16g.8db.0ro
db.8proxy.defa
ult

8 50000 80000 768 640000

32 GB zone-disaster
recovery cluster
instance

redis.logic.sha
rding.drredism
db32g.8db.0ro
db.8proxy.defa
ult

8 50000 80000 768 640000

64 GB zone-disaster
recovery cluster
instance

redis.logic.sha
rding.drredism
db64g.8db.0ro
db.8proxy.defa
ult

8 50000 80000 768 640000

128 GB zone-disaster
recovery cluster
instance

redis.logic.sha
rding.drredism
db128g.16db.0r
odb.16proxy.d
efault

16 50000 160000 1536 1280000

256 GB zone-disaster
recovery cluster
instance

redis.logic.sha
rding.drredism
db256g.16db.0r
odb.16proxy.d
efault

16 50000 160000 1536 1280000

512 GB zone-disaster
recovery cluster
instance

redis.logic.sha
rding.drredism
db512g.32db.0r
odb.32proxy.d
efault

32 50000 320000 2048 2560000

Calculation rules for bandwidth
If network resources are sufficient, the bandwidth is unlimited. However, if network resources
are insufficient, the limit on maximum internal bandwidth takes effect.
The bandwidth value in the table refers to the bandwidth of the instance. It is the sum of
bandwidth of all shards or nodes on the instance.
The upper limit of total bandwidth for a cluster or read/write splitting instance (as shown in
the table) is 2,048 MB/s. After the upper limit is reached, the bandwidth cannot be increased
even if the number of shards or nodes is increased.
The bandwidth applies to the upstream bandwidth and downstream bandwidth respectively.

Product Introduct ion · Instance specificat ions ApsaraDB for Redis

58 > Document Version:20201014

If the bandwidth of an instance is 10 MB/s, the upstream and downstream bandwidth of the
instance are both 10 MB/s.
The bandwidth listed in the table is the internal bandwidth of the ApsaraDB for Redis
instance. The Internet bandwidth is determined by the internal bandwidth and is limited by
the bandwidth of the connection between the instance and a client. We recommend that you
connect to the instance over an internal network to maximize the performance.

Calculation rules for connections
The following example explains the maximum number of new connections that can be added
per second: The maximum number of new connections per second of an instance is 10,000. The
maximum number of connections is 50,000. The actual number of connections at the Nth
second after the instance starts to run is 12,000. Then, at the (N+1)th second, the number of
connections is 22,000 (12,000 + 10,000).
The maximum number of new connections per second and the maximum number of
connections are the sum of the corresponding values of all shards or nodes on the instance.
After 500,000 is reached, the maximum number of connections cannot be increased even if the
number of shards or nodes is increased.

FAQ
Zone-disaster recovery instances of ApsaraDB for Redis are phased out. How can I create a
zone-disaster recovery instance when I use ApsaraDB for Redis?

Zone-disaster recovery instances of ApsaraDB for Redis are upgraded. To use the zone-disaster
recovery feature, you can select a zone that supports zone-disaster recovery when you create
an ApsaraDB for Redis instance.

ApsaraDB for Redis Product Introduct ion · Instance specificat ions

> Document Version:20201014 59

ApsaraDB for Redis provides instances of multiple editions, series, and architectures. The
supported commands vary based on different instance types. This topic describes the commands
supported and unsupported by ApsaraDB for Redis instances. You can refer to the topics in the
following tables to view details of commands.

Common commands

Note The common commands are applicable to the Community Edition and Enhanced
Edition.

Topic Description

Commands supported by Redis 2.8

This topic describes the commands supported by
ApsaraDB for Redis instances that use Redis 2.8.
These instances include standard instances,
cluster instances, and read/write splitting
instances. ApsaraDB for Redis instances that
use Redis 2.8 support the commands supported
by native Redis 3.0.

Commands supported by Redis 4.0

This topic describes the commands supported by
ApsaraDB for Redis instances that use Redis 4.0.
These instances include standard instances,
cluster instances, and read/write splitting
instances.

Unsupported commands This topic describes the native Redis commands
that are not supported by ApsaraDB for Redis.

Limits on the commands supported by cluster
instances

This topic describes the limits on the commands
supported by cluster instances. Cluster
instances and standard instances are deployed
in different architectures of ApsaraDB for Redis.
These types of instances follow different rules
to run Redis commands.

Redis commands developed by Alibaba Cloud

ApsaraDB for Redis also supports certain Redis
commands developed by Alibaba Cloud. You can
use these commands to manage cluster
instances or read/write splitting instances of
ApsaraDB for Redis.

Commands for Enhanced Edition

6.Commands
6.1. Overview

Product Introduct ion · Commands ApsaraDB for Redis

60 > Document Version:20201014

https://help.aliyun.com/document_detail/145966.html#concept-2353530
https://help.aliyun.com/document_detail/145967.html#concept-2353532
https://help.aliyun.com/document_detail/145965.html#concept-2353535
https://help.aliyun.com/document_detail/145968.html#concept-2353537
https://help.aliyun.com/document_detail/145969.html#concept-2353538

Topic Description

Commands supported by performance-enhanced
instances

This topic describes the commands that are
supported by ApsaraDB for Redis performance-
enhanced instances. Performance-enhanced
instances of ApsaraDB for Redis integrate with
certain features of Tair, a distributed key-value
storage system developed by Alibaba Group.
Performance-enhanced instances support the
commands supported by Community Edition as
well as some new commands. This topic
describes these new Redis commands.

CAS and CAD commands

This topic describes the enhanced commands
that you can run to process strings on
performance-enhanced instances of ApsaraDB
for Redis Enhanced Edition (Tair). These
commands include Compare And Set (CAS) and
Compare And Delete (CAD).

TairString commands This topic describes the commands supported by
a TairString.

TairHash commands This topic describes the commands supported by
a TairHash.

TairGIS commands This topic describes the commands supported by
a TairGIS.

TairBloom commands This topic describes the commands supported by
a TairBloom.

TairDoc commands This topic describes the commands supported by
a TairDoc.

Compatibility in commands

ApsaraDB for Redis hybrid-storage instances
support most native Redis commands. To
guarantee high performance, hybrid-storage
instances have limits on the use of certain Redis
commands. This topic describes these limited
commands.

This topic describes the commands supported by ApsaraDB for Redis instances that use Redis 2.8.
These instances include standard instances, cluster instances, and read/write splitting
instances. ApsaraDB for Redis instances that use Redis 2.8 support the commands supported by
native Redis 3.0.

Supported Redis commands

6.2. Community Edition
6.2.1. Commands supported by Redis 2.8

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 61

https://help.aliyun.com/document_detail/145832.html#concept-2353546
https://help.aliyun.com/document_detail/145833.html#concept-2353547
https://help.aliyun.com/document_detail/145902.html#concept-2353550
https://help.aliyun.com/document_detail/145970.html#concept-2353551
https://help.aliyun.com/document_detail/145971.html#concept-2353552
https://help.aliyun.com/document_detail/145972.html#concept-2353553
https://help.aliyun.com/document_detail/145940.html#concept-2353554
https://help.aliyun.com/document_detail/126720.html#concept-1323044

Supported Redis commands 1

Key String Hash List Set SortedSet

DEL APPEND HDEL BLPOP SADD ZADD

DUMP BITCOUNT HEXISTS BRPOP SCARD ZCARD

EXISTS BITOP HGET BRPOPLPUSH SDIFF ZCOUNT

EXPIRE BITPOS HGETALL LINDEX SDIFFSTORE ZINCRBY

EXPIREAT DECR HINCRBY LINSERT SINTER ZRANGE

MOVE DECRBY HINCRBYFLOA
T LLEN SINTERSTORE ZRANGEBYSC

ORE

PERSIST GET HKEYS LPOP SISMEMBER ZRANK

PEXPIRE GETBIT HLEN LPUSH SMEMBERS ZREM

PEXPIREAT GETRANGE HMGET LPUSHX SMOVE ZREMRANGEB
YRANK

PTTL GETSET HMSET LRANGE SPOP ZREMRANGEB
YSCORE

RANDOMKEY INCR HSET LREM SRANDMEMBE
R ZREVRANGE

RENAME INCRBY HSETNX LSET SREM ZREVRANGEB
YSCORE

RENAMENX INCRBYFLOAT HVALS LTRIM SUNION ZREVRANK

RESTORE MGET HSCAN RPOP SUNIONSTOR
E ZSCORE

SORT MSET None RPOPLPUSH SSCAN ZUNIONSTOR
E

TTL MSETNX None RPUSH None ZINTERSTORE

TYPE PSETEX None RPUSHX None ZSCAN

SCAN SET None None None ZRANGEBYLE
X

OBJECT SETBIT None None None ZLEXCOUNT

None SETEX None None None ZREMRANGEB
YLEX

None SETNX None None None None

Product Introduct ion · Commands ApsaraDB for Redis

62 > Document Version:20201014

None SETRANGE None None None None

None STRLEN None None None None

Key String Hash List Set SortedSet

Supported Redis commands 2

HyperLogL
og Pub/Sub Transactio

n Connection Server Scripting Geo

PFADD PSUBSCRIB
E DISCARD AUTH FLUSHALL EVAL GEOADD

PFCOUNT PUBLISH EXEC ECHO FLUSHDB EVALSHA GEOHASH

PFMERGE PUBSUB MULTI PING DBSIZE SCRIPT
EXISTS GEOPOS

None PUNSUBSC
RIBE UNWATCH QUIT TIME SCRIPT

FLUSH GEODIST

None SUBSCRIBE WATCH SELECT INFO SCRIPT
KILL GEORADIUS

None UNSUBSCRI
BE None None KEYS SCRIPT

LOAD
GEORADIUS
BYMEMBER

None None None None CLIENT KILL None None

None None None None CLIENT
LIST None None

None None None None CLIENT
GETNAME None None

None None None None CLIENT
SETNAME None None

None None None None CONFIG
GET None None

None None None None MONITOR None None

None None None None SLOWLOG None None

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 63

Note
In an ApsaraDB for Redis cluster instance:

You can run the CLIENT LIST command to retrieve information about the
connections to the specified proxy server. The fields including id, age, idle,
addr, fd, name, db, multi, omem, and cmd indicate the same meanings as those
in the native Redis kernel. The values of the sub and psub fields are either both
1 or both 0 for all proxy servers. The qbuf, qbuf-free, obl, and oll fields have no
meanings and can be disregarded.

You can run the CLIENT KILL command by using the following two methods: clie

nt kill ip:port and client kill addr ip:port .

The CLIENT ID command is not supported by read/write splitting instances and cluster
instances.

Other Redis commands
For more information about other supported commands, see Overview.
For more information about unsupported commands, see Unsupported commands.

This topic describes the commands supported by ApsaraDB for Redis instances that use Redis 4.0.
These instances include standard instances, cluster instances, and read/write splitting
instances.

Supported Redis commands

Supported Redis commands 1

Key String Hash List Set SortedSet

DEL APPEND HDEL BLPOP SADD ZADD

DUMP BITCOUNT HEXISTS BRPOP SCARD ZCARD

EXISTS BITOP HGET BRPOPLPUSH SDIFF ZCOUNT

EXPIRE BITPOS HGETALL LINDEX SDIFFSTORE ZINCRBY

EXPIREAT DECR HINCRBY LINSERT SINTER ZRANGE

MOVE DECRBY HINCRBYFLOA
T LLEN SINTERSTORE ZRANGEBYSC

ORE

PERSIST GET HKEYS LPOP SISMEMBER ZRANK

PEXPIRE GETBIT HLEN LPUSH SMEMBERS ZREM

PEXPIREAT GETRANGE HMGET LPUSHX SMOVE ZREMRANGEB
YRANK

6.2.2. Commands supported by Redis 4.0

Product Introduct ion · Commands ApsaraDB for Redis

64 > Document Version:20201014

https://help.aliyun.com/document_detail/26356.html#concept-ztj-rpn-tdb
https://help.aliyun.com/document_detail/145965.html#concept-2353535

PTTL GETSET HMSET LRANGE SPOP ZREMRANGEB
YSCORE

RANDOMKEY INCR HSET LREM SRANDMEMBE
R ZREVRANGE

RENAME INCRBY HSETNX LSET SREM ZREVRANGEB
YSCORE

RENAMENX INCRBYFLOAT HVALS LTRIM SUNION ZREVRANK

RESTORE MGET HSCAN RPOP SUNIONSTOR
E ZSCORE

SORT MSET None RPOPLPUSH SSCAN ZUNIONSTOR
E

TTL MSETNX None RPUSH None ZINTERSTORE

TYPE PSETEX None RPUSHX None ZSCAN

SCAN SET None None None ZRANGEBYLE
X

OBJECT SETBIT None None None ZLEXCOUNT

UNLINK SETEX None None None ZREMRANGEB
YLEX

None SETNX None None None None

None SETRANGE None None None None

None STRLEN None None None None

Key String Hash List Set SortedSet

Supported Redis commands 2

HyperLogL
og Pub/Sub Transactio

n Connection Server Scripting Geo

PFADD PSUBSCRIB
E DISCARD AUTH FLUSHALL EVAL GEOADD

PFCOUNT PUBLISH EXEC ECHO FLUSHDB EVALSHA GEOHASH

PFMERGE PUBSUB MULTI PING DBSIZE SCRIPT
EXISTS GEOPOS

None PUNSUBSC
RIBE UNWATCH QUIT TIME SCRIPT

FLUSH GEODIST

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 65

None SUBSCRIBE WATCH SELECT INFO SCRIPT
KILL GEORADIUS

None UNSUBSCRI
BE None None KEYS SCRIPT

LOAD
GEORADIUS
BYMEMBER

None None None None CLIENT KILL None None

None None None None CLIENT
LIST None None

None None None None CLIENT
GETNAME None None

None None None None CLIENT
SETNAME None None

None None None None CONFIG
GET None None

None None None None MONITOR None None

None None None None SLOWLOG None None

None None None None SWAPDB None None

None None None None MEMORY None None

HyperLogL
og Pub/Sub Transactio

n Connection Server Scripting Geo

Note
In an ApsaraDB for Redis cluster instance:

You can run the CLIENT LIST command to retrieve information about the
connections to the specified proxy server. The fields including id, age, idle,
addr, fd, name, db, multi, omem, and cmd indicate the same meanings as those
in the native Redis kernel. The values of the sub and psub fields are either both
1 or both 0 for all proxy servers. The qbuf, qbuf-free, obl, and oll fields have no
meanings and can be disregarded.

You can run the CLIENT KILL command by using the following two methods: clie

nt kill ip:port and client kill addr ip:port .

The CLIENT ID command is not supported by read/write splitting instances and cluster
instances.

Other Redis commands
For more information about other supported commands, see Overview.
For more information about unsupported commands, see Unsupported commands.

Product Introduct ion · Commands ApsaraDB for Redis

66 > Document Version:20201014

https://help.aliyun.com/document_detail/26356.html#concept-ztj-rpn-tdb
https://help.aliyun.com/document_detail/145965.html#concept-2353535

This topic describes the commands supported by the engine version Redis 5.0 of ApsaraDB for
Redis instances. The commands include standard instances, cluster instances, and read/write
splitting instances.

Supported Redis commands

Supported Redis commands 1

Key String Hash List Set SortedSet Stream

DEL APPEND HDEL BLPOP SADD ZADD XINFO

DUMP BITCOUNT HEXISTS BRPOP SCARD ZCARD XADD

EXISTS BITOP HGET BRPOPLPU
SH SDIFF ZCOUNT XTRIM

EXPIRE BITPOS HGETALL LINDEX SDIFFSTOR
E ZINCRBY XDEL

EXPIREAT DECR HINCRBY LINSERT SINTER ZRANGE XRANGE

MOVE DECRBY HINCRBYFL
OAT LLEN SINTERSTO

RE
ZRANGEBY
SCORE

XREVRANG
E

PERSIST GET HKEYS LPOP SISMEMBER ZRANK XLEN

PEXPIRE GETBIT HLEN LPUSH SMEMBERS ZREM XREAD

PEXPIREAT GETRANGE HMGET LPUSHX SMOVE ZREMRANG
EBYRANK XGROUP

PTTL GETSET HMSET LRANGE SPOP ZREMRANG
EBYSCORE

XREADGRO
UP

RANDOMKE
Y INCR HSET LREM SRANDMEM

BER
ZREVRANG
E XACK

RENAME INCRBY HSETNX LSET SREM ZREVRANG
EBYSCORE XCLAIM

RENAMENX INCRBYFLO
AT HVALS LTRIM SUNION ZREVRANK XPENDING

RESTORE MGET HSCAN RPOP SUNIONST
ORE ZSCORE

SORT MSET RPOPLPUS
H SSCAN ZUNIONST

ORE

TTL MSETNX RPUSH ZINTERSTO
RE

6.2.3. Commands supported by Redis 5.0

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 67

TYPE PSETEX RPUSHX ZSCAN

SCAN SET ZRANGEBY
LEX

OBJECT SETBIT ZLEXCOUN
T

UNLINK SETEX ZREMRANG
EBYLEX

SETNX ZPOPMAX

SETRANGE ZPOPMIN

STRLEN BZPOPMIN

BZPOPMAX

Key String Hash List Set SortedSet Stream

Supported Redis commands 2

HyperLogL
og Pub/Sub Transactio

n Connection Server Scripting Geo

PFADD PSUBSCRIB
E DISCARD AUTH FLUSHALL EVAL GEOADD

PFCOUNT PUBLISH EXEC ECHO FLUSHDB EVALSHA GEOHASH

PFMERGE PUBSUB MULTI PING DBSIZE SCRIPT
EXISTS GEOPOS

PUNSUBSC
RIBE UNWATCH QUIT TIME SCRIPT

FLUSH GEODIST

SUBSCRIBE WATCH SELECT INFO SCRIPT
KILL GEORADIUS

UNSUBSCRI
BE KEYS SCRIPT

LOAD
GEORADIUS
BYMEMBER

CLIENT KILL

CLIENT
LIST

CLIENT
GETNAME

CLIENT
SETNAME

Product Introduct ion · Commands ApsaraDB for Redis

68 > Document Version:20201014

CONFIG
GET

MONITOR

SLOWLOG

SWAPDB

MEMORY

CLIENT
UNBLOCK

CLIENT ID

LOLWUT

HyperLogL
og Pub/Sub Transactio

n Connection Server Scripting Geo

Note
On ApsaraDB for Redis cluster instances:

When you run the CLIENT LIST command, you can retrieve information about all
connections to the specified proxy server. In this list, the fields including id,
age, idle, addr, fd, name, db, multi, omem, and cmd indicate the same
meanings as those in the native Redis kernel. The values of the sub and psub
fields are either both 1 or both 0 for all proxy servers. The qbuf, qbuf-free, obl,
and oll fields have no meanings and can be ignored.

You can run the CLIENT KILL command in two ways: client kill ip:port and clien

t kill addr ip:port .

On ApsaraDB for Redis read-write-splitting and cluster instances:CLIENT ID is not
available.

This topic describes the native Redis commands that are not supported by ApsaraDB for Redis.

Key Server

MIGRATE BGREWRITEAOF

None BGSAVE

None CONFIG REWRITE

None CONFIG SET

6.2.4. Unsupported commands

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 69

None CONFIG RESETSTAT

None COMMAND

None COMMAND COUNT

None COMMAND GETKEYS

None COMMAND INFO

None DEBUG OBJECT

None DEBUG SEGFAULT

None LASTSAVE

None ROLE

None SAVE

None SHUTDOWN

None SLAVEOF

None SYNC

Key Server

This topic describes the limits on the commands supported by cluster instances. Cluster
instances and standard instances are deployed in different architectures of ApsaraDB for Redis.
These types of instances follow different rules to run Redis commands.

Limited commands

Key String List HyperLogLog Transaction Scripting

RENAME MSETNX RPOPLPUSH PFMERGE DISCARD EVAL

RENAMENX None BRPOP PFCOUNT EXEC EVALSHA

SORT None BLPOP None MULTI SCRIPT
EXISTS

None None BRPOPLPUSH None UNWATCH SCRIPT FLUSH

None None None None WATCH SCRIPT KILL

None None None None None SCRIPT LOAD

6.2.5. Limits on the commands supported by cluster
instances

Product Introduct ion · Commands ApsaraDB for Redis

70 > Document Version:20201014

Unsupported commands
SWAP

Limits
To run limited commands in cluster instances, you can use hash tags to make sure that target
keys are distributed in a hash slot. For more information, see Limited commands.

For example, if you process key1, aakey, and abkey3, you must store them as {key}1, aa{key},
and ab{key}3 to run the limited commands. For more information, visit Official Redis
Documentation.

If you do not run the WATCH command before a transaction is executed, and each command in
the transaction processes only one key, the keys processed by all commands can be
distributed in different slots. You can run these commands in the same way as you run them in
a database that is connected without a proxy server. In other scenarios, all keys that all
commands process in a transaction must be in the same slot.

The commands that process multiple keys include: DEL, SORT, MGET, MSET, BITOP, EXISTS,
MSETNX, RENAME, RENAMENX, BLPOP, BRPOP, RPOPLPUSH, BRPOPLPUSH, SMOVE, SUNION,
SINTER, SDIFF, SUNIONSTORE, SINTERSTORE, SDIFFSTORE, ZUNIONSTORE, ZINTERSTORE,
PFMERGE, and PFCOUNT.
The commands that do not support transactions include: WATCH, UNWATCH, RANDOMKEY,
KEYS, SUBSCRIBE, UNSUBSCRIBE, PSUBSCRIBE, PUNSUBSCRIBE, PUBLISH, PUBSUB, SCRIPT, EVAL,
EVALSHA, SCAN, ISCAN, DBSIZE, ADMINAUTH, AUTH, PING, ECHO, FLUSHDB, FLUSHALL,
MONITOR, IMONITOR, RIMONITOR, INFO, IINFO, RIINFO, CONFIG, SLOWLOG, TIME, and CLIENT.

When you run Lua scripts on a cluster instance, follow these limits:
You must use KEYS arrays to pass all keys. For Redis commands in redis.call() and
redis.pcall(), keys must be KEYS arrays. You cannot replace KEYS with Lua variables.
Otherwise, the system returns the following error: " -ERR bad lua script for redis cluster, all the

keys that the script uses should be passed using the KEYS array\r\n ".

All keys must be in the same slot. Otherwise, the system returns an error: " -ERR eval/evalsh

a command keys must be in same slot\r\n ".

You must use keys when you run Redis commands. Otherwise, the system returns an error:
" -ERR for redis cluster, eval/evalsha number of keys can't be negative or zero\r\n ".

Pub/Sub commands are not supported, including PSUBSCRIBE, PUBSUB, PUBLISH,
PUNSUBSCRIBE, SUBSCRIBE, and UNSUBSCRIBE.

Note You can ignore these limits when you run Lua scripts on a standard ApsaraDB
for Redis instance.

Read/write splitting instances of ApsaraDB for Redis are classified into non-cluster read/write
splitting instances and read/write splitting cluster instances. The supported commands vary
depending on the type of instances.

6.2.6. Commands supported by read/write splitting
instances

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 71

http://redis.io/topics/cluster-spec

Instance
type Supported command

Non-
cluster
read/write
splitting
instance

A non-cluster read/write splitting instance is a single-shard read/write splitting
instance. The architecture consists of one read/write shard and one, three, or five
read replicas. The read/write shard runs in a master-replica structure. The instance
supports the commands that are supported by standard instances of ApsaraDB for
Redis. The commands supported by an instance depend on the engine version of the
instance. For example, to check the commands supported by the instances that use
Redis 2.8, see Commands supported by Redis 2.8.

A non-cluster read/write splitting instance supports certain commands developed by
Alibaba Cloud, such as RIINFO and RIMONITOR. These commands are only applicable to
read/write splitting instances. For more information, see Redis commands developed
by Alibaba Cloud.

Read/write
splitting
cluster
instance

A read/write splitting cluster instance consists of multiple read/write shards. Each
shard runs in a master-replica structure and has one read replica attached. The
instance supports the commands that are supported by cluster instances of ApsaraDB
for Redis. For more information, see Limits on the commands supported by cluster
instances.

A read/write splitting cluster instance supports certain commands developed by
Alibaba Cloud, such as RIINFO and RIMONITOR. These commands are only applicable to
read/write splitting instances. For more information, see Redis commands developed
by Alibaba Cloud.

Besides native Redis commands, ApsaraDB for Redis supports certain Redis commands
developed by Alibaba Cloud. You can use these commands to manage cluster instances or
read/write splitting instances of ApsaraDB for Redis.

Description
INFO KEY: You can run this command to query slots and databases (DBs) to which keys belong.
The native Redis command INFO can only contain one optional section by following this
syntax: info [section] . When you run certain commands for cluster instances of ApsaraDB for
Redis, all keys must be in the same slot. The INFO KEY command allows you to check
whether keys are in the same slot or DB. You can run this command by following this syntax:

 127.0.0.1:6379> info key test_key

 slot:15118 node_index:0

6.2.7. Redis commands developed by Alibaba Cloud

Product Introduct ion · Commands ApsaraDB for Redis

72 > Document Version:20201014

https://help.aliyun.com/document_detail/145966.html#concept-2353530
https://help.aliyun.com/document_detail/145969.html#concept-2353538
https://help.aliyun.com/document_detail/145968.html#concept-2353537
https://help.aliyun.com/document_detail/145969.html#concept-2353538

Notice

In earlier versions, the INFO KEY command may return a node index different from
the node index in the topology of an instance. This issue has been fixed in the
latest version. If your instance is an earlier version, you can upgrade the minor
version. For more information, see Upgrade the minor version.

The INFO KEY command returns the node indexes of shard servers on cluster
instances. These shard servers are different from the DBs used in the SELECT
command.

IINFO: You can run this command to specify the node of ApsaraDB for Redis to run the INFO
command. This command is similar to the INFO command. You can run this command by
following this syntax:

iinfo db_idx [section]

In this command, db_idx supports the range of [0, nodecount]. You can obtain the nodecount
value by running the INFO command, and specify the section option in the same way as you
specify this option for a native Redis database. To view a node of ApsaraDB for Redis, you can
run the IINFO command or check the instance topology in the console.

RIINFO: You can run this command in a similar way as you run IINFO, but only in read/write
splitting scenarios. This command specifies the idx value as the identifier of the read replica
where you want to run the INFO command. If you use this command on instances other than
cluster read/write splitting instances, the system returns an error. You can run this command
by following this syntax:

riinfo db_idx ro_slave_idx [section]

ISCAN: You can run this command to specify the DB of a cluster where you want to run the
SCAN command. This command provides the db_idx parameter based on SCAN. The db_idx
parameter supports the range of [0, nodecount]. You can obtain the nodecount value by
running the INFO command or by checking the instance topology in the console. You can run
this command by following this syntax:

iscan db_idx cursor [MATCH pattern] [COUNT count]

IMONITOR: Similar to IINFO and ISCAN, this parameter provides the db_idx parameter based on
the MONITOR command. The db_idx parameter specifies the node where you want to run
MONITOR. The db_idx parameter supports the range of [0, nodecount). You can obtain the
nodecount value by running the INFO command or by checking the instance topology in the
console. You can run this command by following this syntax:

imonitor db_idx

RIMONITOR: Similar to RIINFO, you can run this command to specify the read replica in a
specified shard where you want to run the MONITOR command. This command supports
read/write splitting scenarios. You can run this command by following this syntax:

rimonitor db_idx ro_slave_idx

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 73

https://help.aliyun.com/document_detail/56450.html#concept-itn-f44-tdb

Note Before you run IMONITOR and RIMONITOR, use telnet to make sure that your
application is connected with the target ApsaraDB for Redis instance. To terminate these
commands, run the QUIT command.

This topic describes the commands that are supported by ApsaraDB for Redis performance-
enhanced instances. This type of instances integrate with certain features of Tair and support
the commands supported by Community Edition as well as some new commands.

Supported new command types
The following table lists the new commands that are exclusively supported by performance-
enhanced instances. For more information about how to use these commands, see the related
topic of each command.

Supported new command types

Command type Description

Enhanced string
commands

These commands are developed to enhance the performance of Redis
strings. You can run these commands to change or delete a value if it
matches a specified value.

TairString commands Performance-enhanced instances integrate Tair and support the
TairString data type and related commands.

TairHash commands Performance-enhanced instances integrate Tair and support the TairHash
data type and related commands.

TairGIS commands Performance-enhanced instances integrate Tair and support the TairGIS
data type and related commands.

TairBloom commands Performance-enhanced instances integrate Tair and support the
TairBloom data type and related commands.

TairDoc commands Performance-enhanced instances integrate Tair and support the TairDoc
data type and related commands.

Other commands
Performance-enhanced instances of ApsaraDB for Redis Enhanced Edition support the same
commands as Community Edition when the same architecture is used. For more information
about the commands supported by different ApsaraDB for Redis editions and architectures, see
Overview.

6.3. Enhanced Edition
6.3.1. Commands supported by performance-
enhanced instances

Product Introduct ion · Commands ApsaraDB for Redis

74 > Document Version:20201014

https://help.aliyun.com/document_detail/145833.html#concept-2353547
https://help.aliyun.com/document_detail/145902.html#concept-2353550
https://help.aliyun.com/document_detail/145970.html#concept-2353551
https://help.aliyun.com/document_detail/145971.html#concept-2353552
https://help.aliyun.com/document_detail/145972.html#concept-2353553
https://help.aliyun.com/document_detail/145940.html#concept-2353554
https://help.aliyun.com/document_detail/26356.html#concept-ztj-rpn-tdb

This topic describes the enhanced commands that you can run to process strings on
performance-enhanced instances of ApsaraDB for Redis Enhanced Edition (Tair). These
commands include Compare And Set (CAS) and Compare And Delete (CAD).

Prerequisites
The commands described in this topic take effect only if the following conditions are met:

A performance-enhanced instance of ApsaraDB for Redis Enhanced Edition (Tair) is used.
The native Redis string data to be managed is stored on the performance-enhanced instance.

Note You can manage both native Redis string data and TairString data on a
performance-enhanced instance. Only native Redis string data supports the commands
described in this topic.

Commands

Enhanced commands supported by Redis strings

Command Syntax Description

CAS CAS <key> <oldvalue> <newvalue>

Changes the value of a specified key to
newvalue if the current value of the key
matches the oldvalue parameter. If the
current value of the key does not match
the oldvalue parameter, the value is not
changed.

Note CAS is only applicable to
Redis strings. To change TairString
values, use the EXCAS command.

CAD CAD <key> <value>

Deletes a specified key if the current
value of the key matches the oldvalue
parameter. The key is not deleted if the
current value of the key does not match
the oldvalue parameter.

Note CAD is only applicable to
Redis strings. To delete TairString
keys, use the EXCAD command.

CAS
Syntax

CAS <key> <oldvalue> <newvalue>

Time complexity

6.3.2. CAS and CAD commands

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 75

O(1)

Description

This command can be used to change the value of a specified key to a new value if the current
value of the key matches a specified value. The value is not changed if the current value of
the key does not match the specified value.

Parameters and options

Parameter Description

key The key of the native Redis string data that you want to manage with the
command.

oldvalue The value that you compare with the current value of the specified key.

newvalue Changes the value of the specified key to the value of this parameter if the
current value of the key matches the specified value.

Returned values
Expected result: 1.
A value of -1 is returned if the specified key does not exist.
A value of 0 is returned if the change fails.
An error message is returned as another unexpected result.

Examples

127.0.0.1:6379> SET foo bar

OK

127.0.0.1:6379> CAS foo baa bzz

(integer) 0

127.0.0.1:6379> GET foo

"bar"

127.0.0.1:6379> CAS foo bar bzz

(integer) 1

127.0.0.1:6379> GET foo

"bzz"

CAD
Syntax

CAD <key> <value>

Time complexity

O(1)

Description

Product Introduct ion · Commands ApsaraDB for Redis

76 > Document Version:20201014

This command can be used to delete a specified key if the current value of the key matches a
specified value. The key is not deleted if the current value of the key does not match the
specified value.

Parameters and options

Parameter Description

key The key of the native Redis string data that you want to manage with the
command.

value The value that you compare with the current value of the specified key.

Returned values
Expected result: 1.
A value of -1 is returned if the specified key does not exist.
A value of 0 is returned if the deletion fails.
An error message is returned as another unexpected result.

Examples

127.0.0.1:6379> SET foo bar

OK

127.0.0.1:6379> CAD foo bzz

(integer) 0

127.0.0.1:6379> CAD not-exists xxx

(integer) -1

127.0.0.1:6379> CAD foo bar

(integer) 1

127.0.0.1:6379> GET foo

(nil)

This topic describes the commands supported by a TairString.

Overview
A TairString is a string that includes a version number. The string data of native Redis uses a key-
value pair structure and only contains keys and values. However, TairStrings consist of keys,
values, and version numbers. TairStrings can be used in scenarios where optimistic locking
occurs. The INCRBY and INCRBYFLOAT commands are used to increase or decrease values of
Redis strings. You can use TairStrings to limit the range of results returned by these commands.
If a result is out of range, an error message is returned.

Key features:

Each TairString value includes a version number.
TairStrings can be used to limit the range of results returned by the INCRBY and INCRBYFLOAT
commands when you run these commands to increase values.

6.3.3. TairString commands

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 77

Warning TairStrings are different from native Redis strings. The commands that are
supported by TairStrings and native Redis strings are not interchangeable.

Prerequisites
The commands described in this topic take effect only if the following conditions are met:

A performance-enhanced instance of ApsaraDB for Redis Enterprise Edition is used.
The TairString data to be managed is stored on the performance-enhanced instance.

Note You can manage both native Redis string data and TairStrings on a
performance-enhanced instance. However, Redis strings do not support the commands
described in this topic.

Commands supported by TairStrings

TairString commands

Command Syntax Description

EXSET

EXSET <key> <value> [EX time]
[PX time] [EXAT time] [PXAT
time] [NX | XX] [VER version |
ABS version]

Writes a value to a key.

EXGET EXGET <key> Retrieves the value and
version number of a TairString.

EXSETVER EXSETVER <key> <version> Specifies the version number
of a key.

EXINCRBY

EXINCRBY <key> <num> [EX
time] [PX time] [EXAT time]
[EXAT time] [PXAT time] [NX |
XX] [VER version | ABS version]
[MIN minval] [MAX maxval]

Increases or decreases the
value of a TairString. The value
of the num parameter must be
of long type.

EXINCRBYFLOAT

EXINCRBYFLOAT <key> <num>
[EX time] [PX time] [EXAT time]
[EXAT time] [PXAT time] [NX |
XX] [VER version | ABS version]
[MIN minval] [MAX maxval]

Increases the value of a
TairString that you want to
manage. The num parameter
specifies a value of double
type.

EXCAS EXCAS <key> <newvalue>
<version>

Changes the value of a
specified key only if the
current version number of the
key matches the specified
version number. The current
value and version number of
the key are returned if the
update fails.

Product Introduct ion · Commands ApsaraDB for Redis

78 > Document Version:20201014

EXCAD EXCAD <key> <version>

Deletes a key if the current
version number of the key
matches the specified version
number. An error message is
returned if the operation fails.

DEL DEL <key> [key ...] Deletes one or more
TairStrings.

Command Syntax Description

EXSET
Syntax

EXSET <key> <value> [EX time] [PX time] [EXAT time] [EXAT time] [PXAT time] [NX | XX] [VER
version | ABS version]

Time complexity

O(1)

Description

This command is used to write a value to a key.

Parameters and options

Parameter/o
ption Description

key The key of the TairString that you want to manage.

value The value that you want to write to the specified key.

EX The relative timeout of the specified key in seconds. A value of 0 specifies that
the key immediately expires.

EXAT The absolute timeout of the specified key in seconds. A value of 0 specifies that
the key immediately expires.

PX The relative timeout of the specified key in milliseconds. A value of 0 specifies
that the key immediately expires.

PXAT The absolute timeout of the specified key in milliseconds. A value of 0 specifies
that the key immediately expires.

NX Specifies that the value is written only if the specified key does not exist.

XX Specifies that the value is written only if the specified key exists.

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 79

https://redis.io/commands/del

VER

The version number of the specified key.

If the specified key exists, the version number specified by this parameter is
compared with the current version number:

If the version numbers match, the specified value is written to the key and
the version number is increased by 1.

If the version numbers do not match, an error message is returned.

If the specified key does not exist or the current version number of the key is 0,
this parameter is ignored. The specified value is written to the key, and then
the version number is set to 1.

ABS
The absolute version number of the key. Writes the specified value to the key
disregard of the current version number of the key, and then overwrites the
version number with the ABS value.

Parameter/o
ption Description

Returned values
OK: the operation is successful.
Otherwise, an exception is returned.

Example

127.0.0.1:6379> EXSET foo bar XX

(nil)

127.0.0.1:6379> EXSET foo bar NX

OK

127.0.0.1:6379> EXSET foo bar NX

(nil)

127.0.0.1:6379> EXGET foo

1) "bar"

2) (integer) 1

127.0.0.1:6379> EXSET foo bar1 VER 10

(error) ERR update version is stale

127.0.0.1:6379> EXSET foo bar1 VER 1

OK

127.0.0.1:6379> EXGET foo

1) "bar1"

2) (integer) 2

127.0.0.1:6379> EXSET foo bar2 ABS 100

OK

127.0.0.1:6379> EXGET foo

1) "bar2"

2) (integer) 100

Product Introduct ion · Commands ApsaraDB for Redis

80 > Document Version:20201014

EXGET
Syntax

EXGET <key>

Time complexity

O(1)

Description

This command is used to retrieve the value and version number of a TairString.

Parameters and options

key: the key of the TairString that you want to manage.

Returned values
The value and version number of the TairString is returned if the operation is successful.
Otherwise, an exception is returned.

Example

127.0.0.1:6379> EXSET foo bar ABS 100

OK

127.0.0.1:6379> EXGET foo

1) "bar"

2) (integer) 100

127.0.0.1:6379> DEL foo

(integer) 1

127.0.0.1:6379> EXGET foo

(nil)

EXSETVER
Syntax

EXSETVER <key> <version>

Time complexity

O(1)

Description

This command is used to specify the version number of a key.

Parameters and options

Parameter/o
ption Description

key The key of the TairString that you want to manage.

version The version number that you want to specify.

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 81

Returned values
1: the operation is successful.
0: the specified key does not exist.
Otherwise, an exception is returned.

Example

127.0.0.1:6379> EXSET foo bar

OK

127.0.0.1:6379> EXGET foo

1) "bar"

2) (integer) 1

127.0.0.1:6379> EXSETVER foo 2

(integer) 1

127.0.0.1:6379> EXGET foo

1) "bar"

2) (integer) 2

127.0.0.1:6379> EXSETVER not-exists 0

(integer) 0

EXINCRBY
Syntax

EXINCRBY |EXINCRBY <key> <num> [EX time] [PX time] [EXAT time] [EXAT time] [PXAT time] [NX |
XX] [VER version | ABS version] [MIN minval] [MAX maxval]

Time complexity

O(1)

Description

This command is used to increase or decrease the value of a TairString. The value of the num
parameter must be of long type.

Parameters and options

Parameter/o
ption Description

key The key of the TairString that you want to manage.

num The value by which the specified TairString is increased. The value must be an
integer.

EX The relative timeout of the specified key in seconds. A value of 0 specifies that
the key immediately expires.

EXAT The absolute timeout of the specified key in seconds. A value of 0 specifies that
the key immediately expires.

Product Introduct ion · Commands ApsaraDB for Redis

82 > Document Version:20201014

PX The relative timeout of the specified key in milliseconds. A value of 0 specifies
that the key immediately expires.

PXAT The absolute timeout of the specified key in milliseconds. A value of 0 specifies
that the key immediately expires.

NX Specifies that the value is written only if the specified key does not exist.

XX Specifies that the value is written only if the specified key exists.

VER

The version number of the specified key.

If the specified key exists, the version number specified by this parameter is
compared with the current version number:

If the version numbers match, the value of the TairString is increased by num
and the version number is increased by 1.

If the version numbers do not match, an error message is returned.

If the specified key does not exist or the current version number of the key is 0,
the specified version number does not take effect. The TairString data is
increased by num, and then the version number is set to 1.

ABS
The absolute version number of the key. Increases the value of the TairString
disregard of the current version number of the key, and then overwrites the
version number with the ABS value.

MIN The minimum value of the TairString.

MAX The maximum value of the TairString.

Parameter/o
ption Description

Returned values
The current value of the TairString is returned if the operation is successful.
Otherwise, an exception is returned.

Example

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 83

127.0.0.1:6379> EXINCRBY foo 100

(integer) 200

127.0.0.1:6379> EXINCRBY foo 100 MAX 150

(error) ERR increment or decrement would overflow

127.0.0.1:6379> FLUSHALL

OK

127.0.0.1:6379> EXINCRBY foo 100

(integer) 100

127.0.0.1:6379> EXINCRBY foo 100 MAX 150

(error) ERR increment or decrement would overflow

127.0.0.1:6379> EXINCRBY foo 100 MAX 300

(integer) 200

127.0.0.1:6379> EXINCRBY foo 100 MIN 500

(error) ERR increment or decrement would overflow

127.0.0.1:6379> EXINCRBY foo 100 MIN 500 MAX 100

(error) ERR min or max is specified, but not valid

127.0.0.1:6379> EXINCRBY foo 100 MIN 50

(integer) 300

EXINCRBYFLOAT
Syntax

EXINCRBYFLOAT |EXINCRBYFLOAT <key> <num> [EX time] [PX time] [EXAT time] [EXAT time]
[PXAT time] [NX | XX] [VER version | ABS version] [MIN minval] [MAX maxval]

Time complexity

O(1)

Description

This command is used to increase or decrease the value of a TairString. The value of the num
parameter must be of double type.

Parameters and options

Parameter/o
ption Description

key The key of the TairString that you want to manage.

num The value by which the specified TairString is increased. The value must be a
floating-point number.

EX The relative timeout of the specified key in seconds. A value of 0 specifies that
the key immediately expires.

EXAT The absolute timeout of the specified key in seconds. A value of 0 specifies that
the key immediately expires.

Product Introduct ion · Commands ApsaraDB for Redis

84 > Document Version:20201014

PX The relative timeout of the specified key in milliseconds. A value of 0 specifies
that the key immediately expires.

PXAT The absolute timeout of the specified key in milliseconds. A value of 0 specifies
that the key immediately expires.

NX Specifies that the value is written only if the specified key does not exist.

XX Specifies that the value is written only if the specified key exists.

VER

The version number of the specified key.

If the specified key exists, the version number specified by this parameter is
compared with the current version number:

If the version numbers match, the value of the TairString is increased by num
and the version number is increased by 1.

If the version numbers do not match, an error message is returned.

If the specified key does not exist or the current version number of the key is 0,
the specified version number does not take effect. The TairString data is
increased by num, and then the version number is set to 1.

ABS
The absolute version number of the key. Increases the value of the TairString
disregard of the current version number of the key, and then overwrites the
version number with the ABS value.

MIN The minimum value of the TairString.

MAX The maximum value of the TairString.

Parameter/o
ption Description

Returned values
The current value of the TairString is returned if the operation is successful.
Otherwise, an exception is returned.

Example

127.0.0.1:6379> EXSET foo 100

OK

127.0.0.1:6379> EXINCRBYFLOAT foo 10.123

"110.123"

127.0.0.1:6379> EXINCRBYFLOAT foo 20 MAX 100

(error) ERR increment or decrement would overflow

127.0.0.1:6379> EXINCRBYFLOAT foo 20 MIN 100

"130.123"

127.0.0.1:6379> EXGET foo

1) "130.123"

2) (integer) 3

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 85

EXCAS
Syntax

EXCAS <key> <newvalue> <version>

Time complexity

O(1)

Description

This command is used to change the value of a specified key only if the current version
number of the key matches the specified version number.

Parameters and options

Parameter/o
ption Description

key The key of the TairString that you want to manage.

newvalue The value of the newvalue parameter overwrites the value of the specified key if
the current version number of the key matches the specified version number.

version The version number to be matched against the current version number of the
specified key.

Returned values
["OK", "", version] is returned if the operation is successful. The quotation marks ("")
represent an empty string and version represents the current version number of the key.
If the operation fails, an error message is returned: ["ERR update version is stale", value,
version]. Value represents the current value of the key and version represents the current
version number of the key.
Otherwise, an exception is returned.

Example

127.0.0.1:6379> EXSET foo bar

OK

127.0.0.1:6379> EXCAS foo bzz 1

1) OK

2)

3) (integer) 2

127.0.0.1:6379> EXGET foo

1) "bzz"

2) (integer) 2

127.0.0.1:6379> EXCAS foo bee 1

1) ERR update version is stale

2) "bzz"

3) (integer) 2

Product Introduct ion · Commands ApsaraDB for Redis

86 > Document Version:20201014

EXCAD
Syntax

EXCAD <key> <version>

Time complexity

O(1)

Description

This command is used to delete a key if the current version number of the key matches the
specified version number.

Parameters and options

Parameter/o
ption Description

key The key of the TairString that you want to manage.

newvalue The value of the newvalue parameter overwrites the value of the specified key if
the current version number of the key matches the specified version number.

version The version number to be matched against the current version number of the
specified key.

Returned values
1: the operation is successful.
-1: the specified key does not exist.
0: the operation fails.
Otherwise, an exception is returned.

Example

127.0.0.1:6379> EXSET foo bar

OK

127.0.0.1:6379> EXGET foo

1) "bar"

2) (integer) 1

127.0.0.1:6379> EXCAD not-exists 1

(integer) -1

127.0.0.1:6379> EXCAD foo 0

(integer) 0

127.0.0.1:6379> EXCAD foo 1

(integer) 1

127.0.0.1:6379> EXGET foo

(nil)

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 87

This topic describes the commands supported by a TairHash.

Overview
A TairHash is a hash that allows you to specify the expiration time and version number of a field.
Similar to native Redis hashes, TairHash supports multiple commands and high performance in
data processing. For native Redis hashes, you can only specify the expiration time of keys.
However, TairHash allows you to specify the expiration time of both keys and fields and specify
versions of fields. The improved TairHash features help you simplify the development in most
scenarios. TairHashes use an efficient Active Expire algorithm to check the expiration time of
fields and delete expired fields. This process does not increase the database response time.

Key features:

You can set the expiration time and version number for each field.
Fields support the Active Expire and Passive Expire algorithms.
TairHash and native Redis hash use similar syntax.

Warning TairHashes are different from native Redis hashes. The commands that are
supported by TairHashes and native Redis hashes are not interchangeable.

Prerequisites
The commands described in this topic take effect only if the following conditions are met:

A performance-enhanced instance of ApsaraDB for Redis Enhanced Edition is used.
The TairHash to be managed is stored on the performance-enhanced instance.

Note You can manage both native Redis hashes and TairHashes on a performance-
enhanced instance. The commands described in this topic are not applicable to native
Redis hashes.

Memory consumption and expiration policies of TairHash
TairHash supports efficient and active expiration policies. However, this can increase the
memory consumption to some extent. For more information, see TairHash memory consumption and
expiration policies.

Commands

TairHash commands

Command Syntax Description

6.3.4. TairHash commands

Product Introduct ion · Commands ApsaraDB for Redis

88 > Document Version:20201014

https://help.aliyun.com/document_detail/162887.html#concept-2475095

EXHSET
EXHSET <key> <field> <value> [EX time]
[EXAT time] [PX time] [PXAT time] [NX/XX]
[VER/ABS version] [NOACTIVE]

Adds a field to a specified TairHash. If
the key does not exist, a new key holding
a TairHash is created. If the specified
field exists, this command overwrites the
value of the field. When you run this
command, the system uses the Passive
Expire algorithm to expire and delete
fields.

EXHMSET EXHMSET <key> <field> <value> [field
value...]

Sets specified fields to respective values
in the TairHash. If the key does not exist,
a new key holding a TairHash is created.
If the field already exists, this command
overwrites the value of the field. When
you run this command, the system uses
the Passive Expire algorithm to expire
and delete fields.

EXHPEXPIR
EAT

EXHPEXPIREAT <key> <field>
<milliseconds-timestamp> [VER/ABS
version] [NOACTIVE]

Specifies the absolute expiration time of
a field in a specified TairHash. Unit:
milliseconds. When you run this
command, the system uses the Passive
Expire algorithm to expire and delete
fields.

EXHPEXPIR
E

EXHPEXPIRE <key> <field> <milliseconds>
[NOACTIVE]

Specifies the absolute expiration time of
a field in a specified TairHash. Unit:
milliseconds. When you run this
command, the system uses the Passive
Expire algorithm to expire and delete
fields.

EXHEXPIRE
AT

EXHEXPIREAT <key> <field> <timestamp>
[NOACTIVE]

Specifies the absolute relative expiration
time of a filed in a specified TairHash.
Unit: seconds. When you run this
command, the system uses the Passive
Expire algorithm to expire and delete
fields.

EXHEXPIRE EXHEXPIRE <key> <field> <seconds>
[NOACTIVE]

Specifies the relative expiration time of a
filed in a specified TairHash. Unit:
seconds. When you run this command,
the system uses the Passive Expire
algorithm to expire and delete fields.

EXHPTTL EXHPTTL <key> <field>

Retrieves the remaining expiration time
of a field in a specified TairHash. Unit:
milliseconds. When you run this
command, the system uses the Passive
Expire algorithm to expire and delete
fields.

Command Syntax Description

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 89

EXHTTL EXHTTL <key> <field>

Retrieves the remaining expiration time
of a field in a specified TairHash. Unit:
seconds. When you run this command,
the system uses the Passive Expire
algorithm to expire and delete fields.

EXHVER EXHVER <key> <field>

Retrieves the current version number of
a field in a specified TairHash if the key
matches the specified key. When you run
this command, the system uses the
Passive Expire algorithm to expire and
delete fields.

EXHSETVER EXHSETVER <key> <field> <version>

Sets the current version number of a
field in the specified TairHash if the key
matches the specified key. When you run
this command, the system uses the
Passive Expire algorithm to expire and
delete fields.

EXHINCRBY

EXHINCRBY <key> <field> <num> [EX time]
[EXAT time] [PX time] [PXAT time]
[VER/ABS version] [MIN minval] [MAX
maxval]

Increases the value of a specified field
by an integer if the key matches the
specified key. If the specified key does
not exist, a TairHash is created. If the
specified field does not exist, this
command adds the field and sets the
value of the field to 0 before creating a
TairHash. You can also run the EX, EXAT,
PX, or PXAT command to specify the
expiration time for the field. When you
run this command, the system uses the
Passive Expire algorithm to expire and
delete fields.

EXHINCRBY
FLOAT

EXHINCRBYFLOAT <key> <field> <value>
[EX time] [EXAT time] [PX time] [PXAT
time] [VER/ABS version] [MIN minval]
[MAX maxval]

Increases a specified field value by a
floating-point number in a TairHash if the
key matches the specified key. If the
specified key does not exist, a TairHash
is created. If the specified field does not
exist, this command adds the field and
sets the value of the field to 0 before
creating a TairHash. You can also run the
EX, EXAT, PX, or PXAT command to specify
the expiration time for the field. When
you run this command, the system uses
the Passive Expire algorithm to expire
and delete fields.

Command Syntax Description

Product Introduct ion · Commands ApsaraDB for Redis

90 > Document Version:20201014

https://help.aliyun.com/document_detail/145970.html#concept-2353551/section-tf8-p9n-f0a

EXHGET EXHGET <key> <field>

Retrieves a value associated with the
specified field in a TairHash. A value of
nil is returned if the specified key or field
does not exist. When you run this
command, the system uses the Passive
Expire algorithm to expire and delete
fields.

EXHGETWIT
HVER EXHGETWITHVER <key> <field>

Retrieves the value and version number
of a field in the specified TairHash if the
key matches the specified key. A value of
nil is returned if the specified key or field
does not exist. When you run this
command, the system uses the Passive
Expire algorithm to expire and delete
fields.

EXHMGET EXHMGET <key> <field> [field ...]

Retrieves multiple field values in
TairHash data in each query if the key of
the TairHash data matches the specified
key. A value of nil is returned if the
specified key or fields do not exist. When
you run this command, the system uses
the Passive Expire algorithm to expire
and delete fields.

EXHMGETW
ITHVER EXHMGETWITHVER <key> <field> [field ...]

Retrieves the values and version
numbers of multiple fields in a specified
TairHash if the key matches the specified
key. A value of nil is returned if the
specified key or fields do not exist. When
you run this command, the system uses
the Passive Expire algorithm to expire
and delete fields.

EXHDEL EXHDEL <key> <field> <field> <field> ...

Deletes a field from a specified TairHash.
A value of 0 is returned if the specified
key or field does not exist. A value of 1 is
returned if the field is deleted. When you
run this command, the system uses the
Passive Expire algorithm to expire and
delete fields.

EXHLEN EXHLEN <key> [noexp]

Retrieves the number of fields in a
TairHash if the key matches the specified
key. The returned value may include the
number of expired fields that have not
been deleted. If you want to query only
the number of fields that are not expired,
you can specify the oexp parameter.

Command Syntax Description

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 91

EXHEXISTS EXHEXISTS <key> <field>

Checks whether a field exists in a
TairHash if the key matches the specified
key. When you run this command, the
system uses the Passive Expire algorithm
to expire and delete fields.

EXHSTRLEN EXHSTRLEN <key> <field>

Retrieves the length of a field value in
the TairHash if the key matches the
specified key. When you run this
command, the system uses the Passive
Expire algorithm to expire and delete
fields.

EXHKEYS EXHKEYS <key>

Retrieves all fields in a TairHash if the
key matches the specified key. The
returned result filters out expired fields.
To reduce response time, the system
does not delete these expired fields
when running this command.

EXHVALS EXHVALS <key>

Retrieves all field values in the TairHash
if the key matches the specified key. The
returned result filters out expired fields.
To reduce response time, the system
does not delete these expired fields
when running this command.

EXHGETALL EXHGETALL <key>

Retrieves all fields and associated values
in a TairHash if the key matches the
specified key. The returned result filters
out expired fields. To reduce response
time, the system does not delete these
expired fields when running this
command.

EXHSCAN EXHSCAN <key> <op> <subkey> [MATCH
pattern] [COUNT count]

Scans TairHashes if the key matches the
specified key. You can set the op
parameter to values, such as >, >=, <, <=,
==, ^, or $. This op parameter specifies a
scan method. You can also set the
MATCH parameter to specify a regular
expression and filter subkeys. The
COUNT parameter limits the number of
returned values. If you do not specify the
COUNT parameter, the default value is
set to 10. The returned result filters out
expired fields. To reduce response time,
the system does not delete these
expired fields when running this
command.

DEL DEL <key> [key ...] Deletes one or more TairHashes.

Command Syntax Description

Product Introduct ion · Commands ApsaraDB for Redis

92 > Document Version:20201014

https://redis.io/commands/del

EXHSET
Syntax

EXHSET <key> <field> <value> [EX time] [EXAT time] [PX time] [PXAT time] [NX | XX] [VER/ABS
version] [NOACTIVE]

Time complexity

O(1)

Description

This command is used to add a field to a specified TairHash. If the key does not exist, a new
key holding a TairHash is created. If the specified field exists, this command overwrites the
value of the field.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

value The value of the specified field. Each field can have only one value.

EX The relative expiration time of the specified field in seconds. A value of 0
specifies that the field does not expire.

EXAT The absolute expiration time of the specified field in seconds. A value of 0
specifies that the field does not expire.

PX The relative expiration time of the specified field in milliseconds. A value of 0
specifies that the field does not expire.

PXAT The absolute expiration time of the specified field in milliseconds. A value of 0
specifies that the field does not expire.

NX Specifies that the value is written only if the field does not exist.

XX Specifies that the value is written only if the field exists.

VER

The version number of the specified field.

If the specified field exists, the version number specified by this parameter is
matched against the current version number:

If the version numbers match, the TairHash is increased by num and the
version number is increased by 1.

If the version numbers do not match, an error message is returned.

If the specified field does not exist or the current version number of the field is
0, this parameter is ignored. The specified value is written to the field, and then
the version number is set to 1.

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 93

ABS
The absolute version number of the field. If you specify this parameter, the
system forcibly writes the specified value to the field regardless whether the
field exists. Then, the version number is overwritten with the specified ABS value.

NOACTIVE
When you specify the EX/EXAT/PX/PXAT parameters, you can specify the NOACTIV
E parameter to disable the active expiration policy for the field. This allows you to
reduce the memory consumption.

Parameter/o
ption Description

Returned values
1: a new field is created and a value is set.
0: the field exists and the specified value overwrites the current value.
-1: the XX parameter is specified and the specified field does not exist.
-1: the NX parameter is specified and the specified field exists.
An error message of "ERR update version is stale" is returned. The message indicates that
the value of the VER parameter does not match the current version number.
Otherwise, an exception is returned.

EXHGET
Syntax

EXHGET <key> <field>

Time complexity

O(1)

Description

This command is used to retrieve a value associated with the specified field in a TairHash.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

Returned values
The value of the field is returned if the field exists and the operation is successful.
nil: the key or field does not exist.
Otherwise, an exception is returned.

EXHMSET
Syntax

EXHMSET <key> <field> <value> [field value...]

Time complexity

Product Introduct ion · Commands ApsaraDB for Redis

94 > Document Version:20201014

O(1)

Description

This command is used to set specified fields to respective values in the TairHash. If the key
does not exist, a new key holding a TairHash is created. If the field already exists, this
command overwrites the value of the field.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

value The value of the specified field. Each field can have only one value.

Returned values
OK: the operation is successful.
Otherwise, an exception is returned.

EXHPEXPIREAT
Syntax

EXHPEXPIREAT <key> <field> <milliseconds-timestamp> [VER/ABS version] [NOACTIVE]

Time complexity

O(1)

Description

This command is used to specify the absolute expiration time of a field in a specified TairHash.
Unit: milliseconds.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

milliseconds-
timestamp The Unix timestamp. Unit: milliseconds.

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 95

VER

The version number of the specified field.

If the specified field exists, the version number specified by this parameter is
matched against the current version number:

If the version numbers match, the TairHash is increased by num and the
version number is increased by 1.

If the version numbers do not match, an error message is returned.

If the specified field does not exist or the current version number of the field is
0, this parameter is ignored. The specified value is written to the field, and then
the version number is set to 1.

ABS
The absolute version number of the field. If you specify this parameter, the
system forcibly writes the specified value to the field regardless whether the
field exists. Then, the version number is overwritten with the specified ABS value.

NOACTIVE
When you specify the EX/EXAT/PX/PXAT parameters, you can specify the NOACTIV
E parameter to disable the active expiration policy for the field. This allows you to
reduce the memory consumption.

Parameter/o
ption Description

Returned values
1: the field exists and a value is set.
0: the field does not exist.
Otherwise, an exception is returned.

EXHPEXPIRE
Syntax

EXHPEXPIRE <key> <field> <milliseconds> [VER/ABS version] [NOACTIVE]

Time complexity

O(1)

Description

This command is used to specify the relative expiration time of a filed in a specified TairHash.
Unit: milliseconds.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

milliseconds The relative expiration time of the specified field in milliseconds.

Product Introduct ion · Commands ApsaraDB for Redis

96 > Document Version:20201014

VER

The version number of the specified field.

If the specified field exists, the version number specified by this parameter is
matched against the current version number:

If the version numbers match, the TairHash is increased by num and the
version number is increased by 1.

If the version numbers do not match, an error message is returned.

If the specified field does not exist or the current version number of the field is
0, this parameter is ignored. The specified value is written to the field, and then
the version number is set to 1.

ABS
The absolute version number of the field. If you specify this parameter, the
system forcibly writes the specified value to the field regardless whether the
field exists. Then, the version number is overwritten with the specified ABS value.

NOACTIVE
When you specify the EX/EXAT/PX/PXAT parameters, you can specify the NOACTIV
E parameter to disable the active expiration policy for the field. This allows you to
reduce the memory consumption.

Parameter/o
ption Description

Returned values
1: the field exists and a value is set.
0: the field does not exist.
Otherwise, an exception is returned.

EXHEXPIREAT
Syntax

EXHEXPIREAT <key> <field> <timestamp> [VER/ABS version] [NOACTIVE]

Time complexity

O(1)

Description

This command is used to specify the absolute relative expiration time of a filed in a specified
TairHash. Unit: seconds.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

timestamp The Unix timestamp. Unit: seconds.

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 97

VER

The version number of the specified field.

If the specified field exists, the version number specified by this parameter is
matched against the current version number:

If the version numbers match, the TairHash is increased by num and the
version number is increased by 1.

If the version numbers do not match, an error message is returned.

If the specified field does not exist or the current version number of the field is
0, this parameter is ignored. The specified value is written to the field, and then
the version number is set to 1.

ABS
The absolute version number of the field. If you specify this parameter, the
system forcibly writes the specified value to the field regardless whether the
field exists. Then, the version number is overwritten with the specified ABS value.

NOACTIVE
When you specify the EX/EXAT/PX/PXAT parameters, you can specify the NOACTIV
E parameter to disable the active expiration policy for the field. This allows you to
reduce the memory consumption.

Parameter/o
ption Description

Returned values
1: the field exists and a value is set.
0: the field does not exist.
Otherwise, an exception is returned.

EXHEXPIRE
Syntax

EXHEXPIRE <key> <field> <seconds>

Time complexity

O(1)

Description

This command is used to specify the relative expiration time of a filed in a specified TairHash.
Unit: seconds.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

seconds The TTL value of the specified field. Unit: seconds.

Product Introduct ion · Commands ApsaraDB for Redis

98 > Document Version:20201014

VER

The version number of the specified field.

If the specified field exists, the version number specified by this parameter is
matched against the current version number:

If the version numbers match, the TairHash is increased by num and the
version number is increased by 1.

If the version numbers do not match, an error message is returned.

If the specified field does not exist or the current version number of the field is
0, this parameter is ignored. The specified value is written to the field, and then
the version number is set to 1.

ABS
The absolute version number of the field. If you specify this parameter, the
system forcibly writes the specified value to the field regardless whether the
field exists. Then, the version number is overwritten with the specified ABS value.

NOACTIVE
When you specify the EX/EXAT/PX/PXAT parameters, you can specify the NOACTIV
E parameter to disable the active expiration policy for the field. This allows you to
reduce the memory consumption.

Parameter/o
ption Description

Returned values
1: the field exists and a value is set.
0: the field does not exist.
Otherwise, an exception is returned.

EXHPTTL
Syntax

EXHPTTL <key> <field>

Time complexity

O(1)

Description

This command is used to retrieve the remaining expiration time of a field in a specified
TairHash. Unit: milliseconds.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

Returned values
-2: the specified key or field does not exist.
-1: the specified field exists but the TTL value is not specified.

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 99

The expiration time of the field in milliseconds is returned if the field exists and the
expiration time of the field is specified.
Otherwise, an exception is returned.

EXHTTL
Syntax

EXHTTL <key> <field>

Time complexity

O(1)

Description

This command is used to retrieve the remaining expiration time of a field in a specified
TairHash. Unit: seconds.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

Returned values
-2: the specified key or field does not exist.
-1: the specified field exists but the TTL value is not specified.
The expiration time of the field in seconds is returned if the field exists and the expiration
time of the field is specified.
Otherwise, an exception is returned.

EXHVER
Syntax

EXHVER <key> <field>

Time complexity

O(1)

Description

This command is used to retrieve the current version number of a field in a specified TairHash if
the key matches the specified key.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

Product Introduct ion · Commands ApsaraDB for Redis

100 > Document Version:20201014

Returned values
-1: the specified key does not exist.
-2: the specified field does not exist.
The version number of the specified field is returned if the operation is successful.
Otherwise, an exception is returned.

EXHSETVER
Syntax

EXHSETVER <key> <field> <version>

Time complexity

O(1)

Description

This command is used to set the current version number of a field in the specified TairHash if
the key matches the specified key.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

Returned values
0: the specified TairHash or field does not exist.
1: the version number is specified.
Otherwise, an exception is returned.

EXHINCRBY
Syntax

EXHINCRBY <key> <field> <num> [EX time] [EXAT time] [PX time] [PXAT time] [VER/ABS version]
[MIN minval] [MAX maxval]

Time complexity

O(1)

Description

This command is used to increase the value of a field by num in a TairHash if the key matches
the specified key. The value of the num parameter must be an integer. If the specified
TairHash does not exist, a TairHash is created. If the specified field does not exist, this
command adds the field and sets the value of the field to 0 before creating a TairHash. When
you run this command, the system uses a passive expiration algorithm to delete expired fields.

Parameters and options

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 101

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

num The integer by which you want to increase a specified field value.

EX The relative expiration time of the specified field in seconds. A value of 0
specifies that the field does not expire.

EXAT The absolute expiration time of the specified field in seconds. A value of 0
specifies that the field does not expire.

PX The relative expiration time of the specified field in milliseconds. A value of 0
specifies that the field does not expire.

PXAT The absolute expiration time of the specified field in milliseconds. A value of 0
specifies that the field does not expire.

VER

The version number of the specified field.

If the specified field exists, the version number specified by this parameter is
matched against the current version number:

If the version numbers match, the TairHash is increased by num and the
version number is increased by 1.

If the version numbers do not match, an error message is returned.

If the value of the VER parameter is 0, you do not need to check the version
number.

ABS

The absolute version number of the field. If you specify this parameter, the
system forcibly increases the TairHash by num regardless whether the field
exists. Then, the version number is overwritten with the specified ABS value. The
value of this parameter must not be 0.

MIN The minimum value of the field value. If the specified value is smaller than this
lower limit, an exception is returned.

MAX The maximum value of the field value. If the specified value is larger than this
upper limit, an exception is returned.

NOACTIVE
When you specify the EX/EXAT/PX/PXAT parameters, you can specify the NOACTIV
E parameter to disable the active expiration policy for the field. This allows you to
reduce the memory consumption.

Returned values
The value increased by num is returned if the operation is successful.
Otherwise, an exception is returned.

EXHINCRBYFLOAT
Syntax

Product Introduct ion · Commands ApsaraDB for Redis

102 > Document Version:20201014

EXHINCRBYFLOAT <key> <field> <num> [EX time] [EXAT time] [PX time] [PXAT time] [VER/ABS
version] [MIN minval] [MAX maxval]

Time complexity

O(1)

Description

This command is used to increase a specified field value by num in a TairHash if the key
matches the specified key. The value of the num parameter must be a floating-point number.
If the specified TairHash does not exist, a TairHash is created. If the specified field does not
exist, this command adds the field and sets the value of the field to 0 before creating a
TairHash. When you run this command, the system uses a passive expiration algorithm to
delete expired fields.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

num The increment (a floating-point number) to be added to the specified field value.

EX The relative expiration time of the specified field in seconds. A value of 0
specifies that the field does not expire.

EXAT The absolute expiration time of the specified field in seconds. A value of 0
specifies that the field does not expire.

PX The relative expiration time of the specified field in milliseconds. A value of 0
specifies that the field does not expire.

PXAT The absolute expiration time of the specified field in milliseconds. A value of 0
specifies that the field does not expire.

VER

The version number of the specified field.

If the specified field exists, the version number specified by this parameter is
matched against the current version number:

If the version numbers match, the TairHash is increased by num and the
version number is increased by 1.

If the version numbers do not match, an error message is returned.

If the value of the VER parameter is 0, you do not need to check the version
number.

ABS

The absolute version number of the field. If you specify this parameter, the
system forcibly increases the TairHash by num regardless whether the field
exists. Then, the version number is overwritten with the specified ABS value. The
value of this parameter must not be 0.

MIN The minimum value of the field value. If the specified value is smaller than this
lower limit, an exception is returned.

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 103

MAX The maximum value of the field value. If the specified value is larger than this
upper limit, an exception is returned.

NOACTIVE
When you specify the EX/EXAT/PX/PXAT parameters, you can specify the NOACTIV
E parameter to disable the active expiration policy for the field. This allows you to
reduce the memory consumption.

Parameter/o
ption Description

Returned values
The value increased by num is returned if the operation is successful.
Otherwise, an exception is returned.

EXHGETWITHVER
Syntax

EXHGETWITHVER <key> <field>

Time complexity

O(1)

Description

This command is used to retrieve the value and version number of a field in the specified
TairHash if the key matches the specified key.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

Returned values
The value and version number of the field is returned if the field exists and the operation is
successful.
nil: the key or field does not exist.
Otherwise, an exception is returned.

EXHMGET
Syntax

EXHMGET <key> <field> [field ...]

Time complexity

O(1)

Description

Product Introduct ion · Commands ApsaraDB for Redis

104 > Document Version:20201014

This command is used to retrieve multiple field values in a TairHash if the key matches the
specified key.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

Returned values
nil: the key does not exist.
An array is returned if the specified key and fields exist. Each element in the array
corresponds to a field value.
An array is returned if the specified key exists but some fields do not exist. Each element in
the array corresponds to a field value. The elements of the non-existing fields are displayed
as nil.
Otherwise, an exception is returned.

EXHMGETWITHVER
Syntax

EXHMGETWITHVER <key> <field> [field ...]

Time complexity

O(1)

Description

This command is used to retrieve the values and version numbers of multiple fields in a
specified TairHash if the key matches the specified key.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

Returned values
nil: the key does not exist.
An array is returned if the specified key and fields exist. Each element in the array
corresponds to a field value and a version number.
An array is returned if the specified key exists but some fields do not exist. Each element in
the array corresponds to a field value and a version number. The elements of the non-
existing fields are displayed as nil.
Otherwise, an exception is returned.

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 105

EXHDEL
Syntax

EXHDEL <key> <field> <field> <field> ...

Time complexity

O(1)

Description

This command is used to delete a field from a specified TairHash.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

Returned values
0: the specified key or field does not exist.
1: the operation is successful.
Otherwise, an exception is returned.

EXHLEN
Syntax

EXHLEN <key> [noexp]

Time complexity

O(1)

Description

This command is used to retrieve the number of fields in a TairHash if the key matches the
specified key. The returned value may include the number of expired fields that have not been
deleted.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

Product Introduct ion · Commands ApsaraDB for Redis

106 > Document Version:20201014

noexp

By default, the EXHLEN command does not delete or filter expired fields.
Therefore, the results may include the number of expired fields that have not
been deleted. If you only want to query the number of fields that are not expired,
you can specify the noexp parameter. When you specify the noexp parameter,

the response time of the EXHLEN command is based on the size of the Tairhash,
because the system scans all TairHashes.

The result of the EXHLEN command does not include the number of expired
fields that are not deleted.

Parameter/o
ption Description

Returned values
0: the specified key or field does not exist.
The number of fields in the TairHash is returned if the operation is successful.
Otherwise, an exception is returned.

EXHEXISTS
Syntax

EXHEXISTS <key> <field>

Time complexity

O(1)

Description

This command is used to check whether a field exists in a TairHash if the key matches the
specified key.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

Returned values
0: the specified key or field does not exist.
1: the specified field exists.
Otherwise, an exception is returned.

EXHSTRLEN
Syntax

EXHSTRLEN <key> <field>

Time complexity

O(1)

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 107

Description

This command is used to retrieve the length of a field value in the TairHash if the key matches
the specified key.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

field An element of the TairHash. A TairHash key can be mapped to multiple fields.

Returned values
0: the specified key or field does not exist.
The length of the specified field value is returned if the operation is successful.
Otherwise, an exception is returned.

EXHKEYS
Syntax

EXHKEYS <key>

Time complexity

O(1)

Description

This command is used to retrieve all fields in a TairHash if the key matches the specified key.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

Returned values
An empty array is returned if the specified key does not exist.
An array is returned if the specified key exists. Each element in the array corresponds to a
field.
Otherwise, an exception is returned.

EXHVALS
Syntax

EXHVALS <key>

Time complexity

O(1)

Description

Product Introduct ion · Commands ApsaraDB for Redis

108 > Document Version:20201014

This command is used to retrieve all field values in the TairHash if the key matches the
specified key.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

Returned values
An empty array is returned if the specified key does not exist.
An array is returned if the specified key exists. Each element in the array corresponds to a
field value.
Otherwise, an exception is returned.

EXHGETALL
Syntax

EXHGETALL <key>

Time complexity

O(1)

Description

This command is used to retrieve all fields and their values in a TairHash if the key matches
the specified key.

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

Returned values
An empty array is returned if the specified key does not exist.
An array is returned if the specified key exists. Each element in the array corresponds to a
field value.
Otherwise, an exception is returned.

EXHSCAN
Syntax

EXHSCAN <key> <op> <subkey> [MATCH pattern] [COUNT count]

Time complexity

O(1) and O(N)

Description

This command is used to scan TairHashes if the key matches the specified key.

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 109

Parameters and options

Parameter/o
ption Description

key The key of the TairHash that you want to manage.

op

The position from which a scan starts. Valid values:

>, specifies that the scan starts from the first field with the key greater than
subkey.

>=, specifies that the scan starts from the first field with the key greater than
or equal to subkey.

<, specifies that the scan starts from the first field with the key less than
subkey.

<=, specifies that the scan starts from the first field with the key less than or
equal to subkey.

==, specifies that the scan starts from the first field with the key equal to
subkey.

^, specifies that the scan starts from the first field.

$, specifies that the scan starts from the last field.

subkey
Specifies the position from which a scan starts. This parameter is specified
together with the op parameter. If op is set to ^ or $, this parameter does not
take effect.

MATCH The criteria used to filter the scanning result.

Returned values
An empty array is returned if the specified key does not exist.
An array is returned if the specified key exists. Each element in the array corresponds to a
field value.
Otherwise, an exception is returned.

This topic describes the commands supported by TairGISs.

Overview
A TairGIS is a data structure that uses R-tree indexes and supports Geographic Information
System (GIS) API operations. The GEO commands of Redis allows you to use GeoHash and Redis
SortedSet to query points. Compared with GEO commands, TairGIS allows you to query points,
lines, and planes, and provides more features.

Key features:

Supports R-tree indexing.
Allows you to query points, lines, and planes (including querying intersection relationships).

Prerequisites
The commands described in this topic take effect only if the following conditions are met:

6.3.5. TairGIS commands

Product Introduct ion · Commands ApsaraDB for Redis

110 > Document Version:20201014

A performance-enhanced instance of ApsaraDB for Redis Enterprise Edition is used.
The TairGIS data to be managed is stored on the performance-enhanced instance.

Commands

TairGIS commands

Command Syntax Description

GIS.ADD
GIS.ADD <area> <PolygonName>
<POLYGON> [<PolygonName2>
<POLYGON> ...]

Adds one or more polygons to a specified
area. The polygons are described in well-
known text (WKT). You can specify one or
more polygons.

Note WKT is a text markup
language that you can use to
represent vector geometry objects
on a map and the spatial reference
systems of spatial objects. WKT also
allows you to perform
transformations between spatial
reference systems.

GIS.GET GIS.GET <area> <PolygonName>

Retrieves the WKT information about a
polygon in a specified area. The
PolygonName parameter specifies the
polygon name.

GIS.DEL GIS.DEL <area> <PolygonName>
Deletes a polygon in a specified area.
The PolygonName parameter specifies
the polygon name.

GIS.SEARC
H

GIS.SEARCH <area> <POINT | LINESTRING |
POLYGON>

Queries a polygon that contains a
specified point, line, or plane in a
specified area. The name and WKT
information of the polygon are returned.

GIS.CONTAI
NS

GIS.CONTAINS <area> <POINT |
LINESTRING | POLYGON> [WITHOUTWKT]

Checks whether a polygon in a specified
area contains a specified point, line, or
plane. If you specify the WITHOUTWKT
parameter, the WKT information of the
polygon is not returned.

GIS.INTERS
ECTS

GIS.INTERSECTS <area> <POINT |
LINESTRING | POLYGON>

Queries the intersection relationship
between a polygon in a specified area
and a specified point, line, or plane.

GIS.GETALL GIS.GETALL <area> [WITHOUTWKT]

Queries all polygons in a specified area.
If you specify the WITHOUTWKT
parameter, the WKT information of the
polygons is not returned.

DEL DEL <key> [key ...] Deletes one or more TairGISs.

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 111

https://help.aliyun.com/document_detail/145971.html#concept-2353552/section-zp9-f5n-8cm
https://redis.io/commands/del

Parameters

Parameter Description

area The geometric area in which you want to manage the data.

PolygonName The name of the polygon that you want to manage.

POINT The well-known text (WKT) information that describes a point.

LINESTRING The WKT information that describes a line.

POLYGON The WKT information that describes a polygon.

GIS.ADD
Syntax

GIS.ADD <area> <polygonName> <polygonWkt> [<polygonName> <polygonWkt> ...]

Time complexity

O(log n)

Description

This command is used to add one or more polygons to a specified area. The polygons are
described in WKT. For example, 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))' . You can specify
one or more polygons.

Returned values
1: the operation is successful.
Expected result: If one or more polygon names exist in the area, the specified WKT
information overwrites the current WKT information and a value of 1 is returned.
Otherwise, an exception is returned.

Example

127.0.0.1:6379> GIS.ADD hangzhou campus 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))'

(integer) 1

127.0.0.1:6379> GIS.ADD hangzhou campus 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))'

(integer) 0

127.0.0.1:6379> GIS.GET hangzhou campus

"POLYGON((30 10,40 40,20 40,10 20,30 10))"

GIS.GET
Syntax

GIS.GET <area> <polygonName>

Time complexity

O(1)

Product Introduct ion · Commands ApsaraDB for Redis

112 > Document Version:20201014

Description

This command is used to retrieve the WKT information about a polygon in a specified area. The
PolygonName parameter specifies the polygon name.

Returned values
The WKT information is returned if the operation is successful.
nil: the specified area or polygon name does not exist.
Otherwise, an exception is returned.

Example

127.0.0.1:6379> GIS.ADD hangzhou campus 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))'

(integer) 1

127.0.0.1:6379> GIS.GET hangzhou campus

"POLYGON((30 10,40 40,20 40,10 20,30 10))"

127.0.0.1:6379> GIS.GET hangzhou not-exists

(nil)

127.0.0.1:6379> GIS.GET not-exists campus

(nil)

GIS.DEL
Syntax

GIS.DEL <area> <polygonName>

Time complexity

O(log n)

Description

This command is used to delete a polygon in a specified area. The PolygonName parameter
specifies the polygon name.

Returned values
OK: the operation is successful.
nil: the specified area or polygon name does not exist.
Otherwise, an exception is returned.

Example

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 113

127.0.0.1:6379> GIS.ADD hangzhou campus 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))'

(integer) 1

127.0.0.1:6379> GIS.GET hangzhou campus

"POLYGON((30 10,40 40,20 40,10 20,30 10))"

127.0.0.1:6379> GIS.DEL hangzhou not-exists

(nil)

127.0.0.1:6379> GIS.DEL not-exists campus

(nil)

127.0.0.1:6379> GIS.DEL hangzhou campus

OK

127.0.0.1:6379> GIS.GET hangzhou campus

(nil)

GIS.SEARCH
Syntax

GIS.SEARCH <area> <POINT/LINESTRING/POLYGONNAME>

Time complexity
Most desired time complexity: O(logM n).
Least desired time complexity: log(n).

Description

This command is used to query a polygon that contains a specified point, line, or plane in a
specified area. The name and WKT information of the polygon are returned.

Returned values
The WKT information is returned if the operation is successful.
nil: no data is found.
Otherwise, an exception is returned.

Example

Product Introduct ion · Commands ApsaraDB for Redis

114 > Document Version:20201014

127.0.0.1:6379> GIS.ADD hangzhou campus 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))'

(integer) 1

127.0.0.1:6379> GIS.SEARCH hangzhou 'POINT (30 11)'

1) "0"

2) 1) "campus"

 2) "POLYGON((30 10,40 40,20 40,10 20,30 10))"

127.0.0.1:6379> GIS.SEARCH hangzhou 'LINESTRING (30 10, 40 40)'

1) "0"

2) 1) "campus"

 2) "POLYGON((30 10,40 40,20 40,10 20,30 10))"

127.0.0.1:6379> GIS.SEARCH hangzhou 'POLYGON ((31 20, 29 20, 29 21, 31 31))'

1) "0"

2) 1) "campus"

 2) "POLYGON((30 10,40 40,20 40,10 20,30 10))"

GIS.CONTAINS
Syntax

GIS.CONTAINS <area> <POINT | LINESTRING | POLYGON> [WITHOUTWKT]

Time complexity
Most desired time complexity: O(logM n).
Least desired time complexity: log(n).

Description

This command is used to check whether a polygon in a specified area contains a specified
point, line, or plane.

Returned values
The name and WKT information about a polygon that contains the specified points, lines, or
planes are returned if the operation is successful. If you specify the WITHOUTWKT
parameter, the WKT information of the polygon is not returned.
nil: no data is found.
Otherwise, an exception is returned.

Example

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 115

127.0.0.1:6379> GIS.ADD hangzhou campus 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))'

(integer) 1

127.0.0.1:6379> GIS.CONTAINS hangzhou 'POINT (30 11)'

1) "0"

2) 1) "campus"

 2) "POLYGON((30 10,40 40,20 40,10 20,30 10))"

127.0.0.1:6379> GIS.CONTAINS hangzhou 'LINESTRING (30 10, 40 40)'

1) "0"

2) 1) "campus"

 2) "POLYGON((30 10,40 40,20 40,10 20,30 10))"

127.0.0.1:6379> GIS.CONTAINS hangzhou 'POLYGON ((31 20, 29 20, 29 21, 31 31))'

1) "0"

2) 1) "campus"

 2) "POLYGON((30 10,40 40,20 40,10 20,30 10))"

GIS.INTERSECTS
Syntax

GIS.INTERSECTS <area> <POINT/LINESTRING/POLYGONNAME>

Time complexity
Most desired time complexity: O(logM n).
Least desired time complexity: log(n).

Description

This command is used to query the intersection relationship between a polygon in a specified
area and a specified point, line, or plane.

Returned values
The WKT information of the specified polygon is returned if the operation is successful.
nil: no data is found.
Otherwise, an exception is returned.

Example

Product Introduct ion · Commands ApsaraDB for Redis

116 > Document Version:20201014

127.0.0.1:6379> GIS.ADD hangzhou campus 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))'

(integer) 1

127.0.0.1:6379> GIS.INTERSECTS hangzhou 'POINT (30 11)'

1) "0"

2) 1) "campus"

 2) "POLYGON((30 10,40 40,20 40,10 20,30 10))"

127.0.0.1:6379> GIS.INTERSECTS hangzhou 'LINESTRING (30 10, 40 40)'

1) "0"

2) 1) "campus"

 2) "POLYGON((30 10,40 40,20 40,10 20,30 10))"

127.0.0.1:6379> GIS.INTERSECTS hangzhou 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))'

1) "0"

2) 1) "campus"

 2) "POLYGON((30 10,40 40,20 40,10 20,30 10))"

127.0.0.1:6379>

GIS.GETALL
Syntax

GIS.GETALL <area> [WITHOUTWKT]

Time complexity

O(n)

Description

This command is used to query all polygons in a specified area. If you specify the WITHOUTWKT
parameter, the WKT information of the polygons is not returned.

Returned values
The name and WKT information of the polygon are returned if the operation is successful. If
you specify the WITHOUTWKT parameter, the WKT information of the polygons is not
returned.
nil: no data is found.
Otherwise, an exception is returned.

Example

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 117

127.0.0.1:6379> GIS.ADD hangzhou campus 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))'

(integer) 1

127.0.0.1:6379> GIS.GETALL hangzhou

1) "campus"

2) "POLYGON((30 10,40 40,20 40,10 20,30 10))"

127.0.0.1:6379> GIS.GETALL hangzhou WITHOUTWKT

1) "campus"

127.0.0.1:6379>

This topic describes the commands supported by TairBlooms.

Overview
TairBloom is a Bloom filter that supports dynamic scaling. TairBloom is a space-efficient
probabilistic data structure that consumes minimal memory to check whether an element exists.
TairBloom supports dynamic scaling and maintains a stable false positive rate during scaling.

For Redis data structures, such as hashes, sets, and strings, you can use bitmaps to achieve
similar features as the TairBloom. However, these data structures may consume a large amount
of memory, or fail to maintain a stable false positive rate during dynamic scaling. TairBloom can
be used to check whether large volumes of data exists. In this case, a certain false positive rate
is allowed. You can use the Bloom filter built in the TairBloom without further development or
the need to create an extra Bloom filter.

Key features:

Consumes minimal memory.
Enables dynamic scaling.
Maintains a stable custom false positive rate during scaling.

Prerequisites
The commands described in this topic take effect only if the following conditions are met:

A performance-enhanced instance of ApsaraDB for Redis Enhanced Edition is used.
The TairBloom to be managed is stored on the performance-enhanced instance.

Commands

TairBloom commands

Command Syntax Description

BF.RESERVE BF.RESERVE <key> <error_rate>
<capacity>

Creates an empty TairBloom
filter with a specified capacity.
The error_rate parameter
specifies the false positive
rate of the TairBloom filter.

6.3.6. TairBloom commands

Product Introduct ion · Commands ApsaraDB for Redis

118 > Document Version:20201014

BF.ADD BF.ADD <key> <item> Adds an item to a TairBloom
filter.

BF.MADD BF.ADD <key> <item> [item...]
Adds multiple items to a
TairBloom filter specified by
the key.

BF.EXISTS BF.EXISTS <key> <item>
Checks whether an item exists
in a TairBloom filter specified
by the key.

BF.MEXISTS BF.EXISTS <key> <item>
[item...]

Checks whether multiple items
exist in a TairBloom filter.

BF.INSERT
BF.INSERT <key> [CAPACITY
cap] [ERROR error] [NOCREATE]
ITEMS <item... >

Adds multiple items to a
TairBloom filter. You can
specify the capacity and false
positive rate and specify
whether to create a TairBloom
filter if the TairBloom filter
does not exist.

BF.DEBUG BF.DEBUG <key>

Retrieves the information
about a TairBloom filter. The
information includes the
number of layers, the number
of items at each layer, and the
false positive rate.

DEL DEL <key> [key ...]

Deletes one or more
TairBlooms.

Note The items
added to a TairBloom
cannot be deleted from the
TairBloom. You can run the
DEL command to delete the
TairBloom.

Command Syntax Description

BF.RESERVE
Syntax

BF.RESERVE <key> <error_rate> <capacity>

Time complexity

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 119

https://redis.io/commands/del

O(1)

Description

This command is used to create an empty TairBloom filter with a specified capacity. The
error_rate parameter specifies the false positive rate of the TairBloom filter.

Parameters and options

Parameter/o
ption Description

key The key of the TairBloom filter that you want to manage.

error_rate The required false positive rate that must be between 0 and 1. A lower value
indicates higher memory and CPU usage by the TairBloom filter.

capacity

The initial capacity of the TairBloom filter. This is the maximum number of items
that can be added to the TairBloom filter.

If the number of items that have been added to the TairBloom filter exceeds the
specified capacity, TairBloom expands the capacity by increasing the layers of the
Bloom filter. During the scaling process, the number of items in the Tairbloom
filter is increased exponentially while the performance is deceased on a linear
scale. After a layer is added to the filter, to query a specified item, TairBloom may
iterate through multiple layers of the filter. The capacity of each new layer is
double that of the previous layer. If your workloads require high performance, we
recommend that you add proper number of items to the TairBloom to avoid
automatic scaling.

Returned values
Expected result: OK.
An error message is returned for other unexpected results each.

BF.ADD
Syntax

BF.ADD <key> <item>

Time complexity

O(log N). N specifies the number of layers of the TairBloom.

Description

This command is used to add an item to a TairBloom filter.

Parameters and options

Parameter/o
ption Description

key The key of the TairBloom filter that you want to manage.

item The item that you want to add to the TairBloom filter.

Returned values

Product Introduct ion · Commands ApsaraDB for Redis

120 > Document Version:20201014

1: the specified item does not exist in the filter.
0: the specified item may exist in the filter.
An error message is returned for other unexpected results each.

BF.MADD
Syntax

BF.MADD <key> <item> [item...]

Time complexity

O(log N). N specifies the number of layers of the TairBloom.

Description

This command is used to add multiple items to a TairBloom filter specified by the key.

Parameters and options

Parameter/o
ption Description

key The key of the TairBloom filter that you want to manage.

item The items that you want to add to the TairBloom filter. You can specify multiple
items.

Returned values
Expected result: An array is returned. In the returned array, each value can be 1 or 0. If a
specified item does not exist, the value is 1. If a specified item may exist, the value is 0.
An error message is returned for other unexpected results each.

BF.EXISTS
Syntax

BF.EXISTS <key> <item>

Time complexity

O(log N). N specifies the number of layers of the TairBloom.

Description

This command is used to check whether an item exists in a TairBloom filter specified by the
key.

Parameters and options

Parameter/o
ption Description

key The key of the TairBloom filter that you want to manage.

item The item that you want to query.

Returned values

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 121

0: the specified item does not exist in the filter.
1: the specified item may exist in the filter.
An error message is returned for other unexpected results each.

BF.MEXISTS
Syntax

BF.MEXISTS <key> <item> [item...]

Time complexity

O(log N). N specifies the number of layers of the TairBloom.

Description

This command is used to check whether multiple items exist in a TairBloom filter.

Parameters and options

Parameter/o
ption Description

key The key of the TairBloom filter that you want to manage.

item The items that you want to query in the TairBloom filter. You can specify multiple
items.

Returned values
Expected result: An array is returned. In the returned array, each value can be 1 or 0. If a
specified item does not exist, the value is 0. If a specified item may exist, the value is 1.
An error message is returned for other unexpected results each.

BF.INSERT
Syntax

BF.INSERT <key> [CAPACITY cap] [ERROR error] [NOCREATE] ITEMS <item... >

Time complexity

O(log N). N specifies the number of layers of the TairBloom.

Description

This command is used to add multiple items to a TairBloom filter. You can specify the capacity
and false positive rate and specify whether to create a TairBloom filter if the TairBloom filter
does not exist.

Parameters and options

Parameter/o
ption Description

key The key of the TairBloom filter that you want to manage.

Product Introduct ion · Commands ApsaraDB for Redis

122 > Document Version:20201014

CAPACITY

The initial capacity of the TairBloom filter. This is the maximum number of items
that can be added to the TairBloom filter. If the filter exists, you do not need to
specify this parameter.

If the number of items that have been added to the TairBloom filter exceeds the
specified capacity, TairBloom expands the capacity by increasing the layers of the
Bloom filter. During the scaling process, the number of items in the Tairbloom
filter is increased exponentially while the performance is deceased on a linear
scale. After a layer is added to the filter, to query a specified item, TairBloom may
iterate through multiple layers of the filter. The capacity of each new layer is
double that of the previous layer. If your workloads require high performance, we
recommend that you add proper number of items to the TairBloom to avoid
automatic scaling.

ERROR
The required false positive rate of the TairBloom filter. If the filter exists, you do
not need to specify this parameter. The value must be between 0 and 1. A lower
value indicates higher memory and CPU usage by the TairBloom filter.

NOCREATE Specifies that a TairBloom filter is not automatically created if the filter does not
exist. This parameter cannot be specified together with CAPACITY or ERROR.

ITEMS All items that you want to add to the TairBloom filter.

Parameter/o
ption Description

Returned values
Expected result: An array is returned. In the returned array, each value can be 1 or 0. If a
specified item does not exist, the value is 1. If a specified item may exist, the value is 0.
An error message is returned for other unexpected results each.

BF.DEBUG
Syntax

BF.DEBUG <key>

Time complexity

O(log N). N specifies the number of layers of the TairBloom.

Description

This command is used to retrieve the information about a TairBloom filter. The information
includes the number of layers, the number of items at each layer, and the false positive rate.

Parameters and options

Parameter/o
ption Description

key The key of the TairBloom filter that you want to manage.

Returned values

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 123

Expected result: An array is returned. In the returned array, each value can be 1 or 0. If a
specified item does not exist, the value is 1. If a specified item may exist, the value is 0.
An error message is returned for other unexpected results each.

Memory usage test result

Capacity false positive:0.01 false positive:0.001 false positive:0.0001

100000 0.12MB 0.25MB 0.25MB

1000000 2MB 2MB 4MB

10000000 16MB 32MB 32MB

100000000 128MB 256MB 256MB

1000000000 2GB 2GB 4GB

This topic describes the commands supported by TairDocs.

Overview
A TairDoc is a document data structure. You can use TairDoc to add, modify, query, or delete
JavaScript Object Notation (JSON) data.

Key features:

Supports JSON standards.
Fully compatible with RedisJSON.
Supports the syntax of JSONPath and JSON Pointer.
Stores data in a binary tree and simplifies the retrieval of child elements.
Supports conversion from the JSON format to the Extensible Markup Language (XML) or YAML
Ain't Markup Language (YAML) format.

Prerequisites
The commands described in this topic take effect only if the following conditions are met:

A performance-enhanced instance of ApsaraDB for Redis Enterprise Edition is used.
The TairDoc to be managed is stored on the performance-enhanced instance.

Commands

TairDoc commands

Command Syntax Description

6.3.7. TairDoc commands

Product Introduct ion · Commands ApsaraDB for Redis

124 > Document Version:20201014

JSON.SET JSON.SET <key> <path> <json>
[NX or XX]

Writes a JSON value to a
TairDoc path of a specified key.
If the specified key does not
exist, the path must be the
root directory. If the specified
key and path exist, the
specified JSON value
overwrites the current JSON
value in the path.

JSON.GET

JSON.GET <key> [PATH]
[FORMAT <XML/YAML>]
[ROOTNAME <root>] [ARRNAME
<arr>]

Retrieves JSON data from a
TairDoc path of a specified key.

JSON.DEL JSON.DEL <key> [path]

Deletes JSON data from a
TairDoc path of a specified key.
If the path is not specified, the
key is deleted. This command
does not take effect if the key
or path does not exist.

JSON.TYPE JSON.TYPE <key> [path]
Retrieves the type of JSON
data from a TairDoc path of a
specified key.

JSON.NUMINCRBY JSON.NUMINCRBY <key> [path]
<value>

Increases JSON data in a
TairDoc path by a specified
value. The path must exist, and
both the JSON data and
increased value must be of int
or double type.

JSON.STRAPPEND JSON.STRAPPEND <key> [path]
<json-string>

Appends a string specified in
json-string to the end of the
string in a TairDoc path. If you
do not specify the path, the
root directory is used.

JSON.STRLEN JSON.STRLEN <key> [path]

Retrieves the JSON value
length in a TairDoc path. If you
do not specify the path, the
root directory is used.

JSON.ARRAPPEND JSON.ARRAPPEND <key> <path>
<json> [<json> ...]

Appends one or more JSON
values to the end of an array in
a TairDoc path.

JSON.ARRPOP JSON.ARRPOP <key> <path>
[index]

Removes an element specified
by index from an array in a
specified TairDoc path and
return the removed element.

Command Syntax Description

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 125

JSON.ARRINSERT JSON.ARRINSERT <key> <path>
<index> <json> [<json> ...]

Adds one or more JSON
elements to an array in a
TairDoc path. The index
parameter specifies the
position to which the JSON
elements are added.

JSON.ARRLEN JSON.ARRLEN <key> [path] Retrieves the length of the
array in a TairDoc path.

JSON.ARRTRIM JSON.ARRTRIM <key> <path>
<start> <stop>

Trims a JSON array in a TairDoc
path. The start value and the
stop value specify the range in
which the JSON data is
retained.

DEL DEL <key> [key ...] Deletes one or more TairDocs.

Command Syntax Description

JSON.SET
Syntax

JSON.SET <key> <path> <json> [NX | XX]

Time complexity

O(N)

Description

This command is used to write a JSON value to the path of a specified key. If the specified key
does not exist, the path must be the root directory. If the specified key and path exist, the
specified JSON value overwrites the current JSON value in the path.

Parameters and options

Parameter/o
ption Description

key The key of the TairDoc that you want to manage.

path

The TairDoc path where you want to manage JSON data.

If the specified key does not exist, the path must be the root directory.

If the specified key and path exist, the specified JSON value overwrites the
current JSON value in the path.

json If the specified key and path exist, the specified JSON value overwrites the
current JSON value in the TairDoc.

NX Specifies that a JSON value is written only if the required path does not exist.

XX Specifies that a JSON value is written only if the required path exists.

Returned values

Product Introduct ion · Commands ApsaraDB for Redis

126 > Document Version:20201014

https://redis.io/commands/del

OK: the operation is successful.
null: The operation fails. This occurs when you specify the NX or XX parameter.
Otherwise, an exception is returned.

Example

127.0.0.1:6379> JSON.SET doc . '{"foo": "bar", "baz" : 42}'

OK

127.0.0.1:6379> JSON.SET doc .foo '"flower"'

OK

127.0.0.1:6379> JSON.GET doc .foo

"flower"

127.0.0.1:6379> JSON.SET doc .not-exists 123 XX

127.0.0.1:6379> JSON.SET doc .not-exists 123 NX

OK

127.0.0.1:6379> JSON.GET doc .not-exists

123

JSON.GET
Syntax

JSON.GET <key> <path> [FORMAT <XML | YAML>] [ROOTNAME <root>] [ARRNAME <arr>]

Time complexity

O(N)

Description

This command is used to retrieve JSON data from a TairDoc path of a specified key.

Parameters and options

Parameter/o
ption Description

key The key of the TairDoc that you want to manage.

path The TairDoc path where you want to manage JSON data.

FORMAT The format of the JSON data to be returned. Valid values: XML and YAML.

ROOTNAME The tag that specifies a root element in an XML document.

ARRNAME The tag that specifies an array element in an XML document.

Returned values
The JSON data stored in the path is returned if the operation is successful.
Otherwise, an exception is returned.

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 127

Example

127.0.0.1:6379> JSON.SET doc . '{"foo": "bar", "baz" : 42}'

OK

127.0.0.1:6379> JSON.GET doc

{"foo":"bar","baz":42}

127.0.0.1:6379> JSON.GET doc .foo

"bar"

127.0.0.1:6379> JSON.GET doc .not-exists

ERR pointer illegal or array index error or object type is not array or map

127.0.0.1:6379> JSON.GET doc . format xml

<? xml version="1.0" encoding="UTF-8"? ><root><foo>bar</foo><baz>42</baz></root>

127.0.0.1:6379> JSON.GET doc . format xml rootname ROOT arrname ARRAY

<? xml version="1.0" encoding="UTF-8"? ><ROOT><foo>bar</foo><baz>42</baz></ROOT>

127.0.0.1:6379> JSON.GET doc . format yaml

foo: bar

baz: 42

JSON.DEL
Syntax

JSON.DEL <key> [path]

Time complexity

O(N)

Description

This command is used to delete JSON data from a TairDoc path of a specified key. If the path is
not specified, the key is deleted. This command does not take effect if the key or path does
not exist.

Parameters and options

Parameter/o
ption Description

key The key of the TairDoc that you want to manage.

path The TairDoc path where you want to manage JSON data.

Returned values
1: the operation is successful.
0: the operation fails.
Otherwise, an exception is returned.

Product Introduct ion · Commands ApsaraDB for Redis

128 > Document Version:20201014

Example

127.0.0.1:6379> JSON.SET doc . '{"foo": "bar", "baz" : 42}'

OK

127.0.0.1:6379> JSON.DEL doc .foo

1

127.0.0.1:6379> JSON.DEL doc .not-exists

ERR old item is null for remove or replace

127.0.0.1:6379> JSON.DEL not-exists

0

127.0.0.1:6379> JSON.GET doc

{"baz":42}

127.0.0.1:6379> JSON.DEL doc

1

127.0.0.1:6379> JSON.GET doc

127.0.0.1:6379>

JSON.TYPE
Syntax

JSON.TYPE <key> [path]

Time complexity

O(N)

Description

This command is used to retrieve the type of JSON data from a TairDoc path of a specified key.

Parameters and options

Parameter/o
ption Description

key The key of the TairDoc that you want to manage.

path The TairDoc path where you want to manage JSON data.

Returned values
The type of JSON data is returned if the operation is successful. The type includes boolean,
null, number, string, array, object, raw, reference, or const.
null: the specified key or path does not exist.
Otherwise, an exception is returned.

Example

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 129

127.0.0.1:6379> JSON.SET doc . '{"foo": "bar", "baz" : 42}'

OK

127.0.0.1:6379> JSON.TYPE doc

object

127.0.0.1:6379> JSON.TYPE doc .foo

string

127.0.0.1:6379> JSON.TYPE doc .baz

number

127.0.0.1:6379> JSON.TYPE doc .not-exists

127.0.0.1:6379>

JSON.NUMINCRBY
Syntax

JSON.NUMINCRBY <key> [path] <value>

Time complexity

O(N)

Description

This command is used to increase JSON data in a TairDoc path by a specified value. The path
must exist, and the JSON data and increased value must be both of the type of int or double.

Parameters and options

Parameter/o
ption Description

key The key of the TairDoc that you want to manage.

path The TairDoc path where you want to manage JSON data.

value The increment to be added to the JSON data in the specified path.

Returned values
The increased value in the specified path is returned if the operation is successful.
Otherwise, an exception is returned.

Example

Product Introduct ion · Commands ApsaraDB for Redis

130 > Document Version:20201014

127.0.0.1:6379> JSON.SET doc . '{"foo": "bar", "baz" : 42}'

OK

127.0.0.1:6379> JSON.NUMINCRBY doc .baz 1

43

127.0.0.1:6379> JSON.NUMINCRBY doc .baz 1.5

44.5

127.0.0.1:6379> JSON.NUMINCRBY doc .foo 1

ERR node not exists or not number type

127.0.0.1:6379> JSON.NUMINCRBY doc .not-exists 1

ERR node not exists or not number type

127.0.0.1:6379>

JSON.STRAPPEND
Syntax

JSON.STRAPPEND <key> [path] <json-string>

Time complexity

O(N)

Description

This command is used to append a string specified in json-string to the end of the string in a
TairDoc path. If you do not specify the path, the root directory is used.

Parameters and options

Parameter/o
ption Description

key The key of the TairDoc that you want to manage.

path The TairDoc path where you want to manage JSON data.

json-string The string to be appended to the specified path.

Returned values
The length of the increased value in the path is returned if the operation is successful.
-1: the specified key does not exist.
Otherwise, an exception is returned.

Example

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 131

127.0.0.1:6379> JSON.SET doc . '{"foo": "bar", "baz" : 42}'

OK

127.0.0.1:6379> JSON.STRAPPEND doc .foo rrrrr

8

127.0.0.1:6379> JSON.GET doc .foo

"barrrrrr"

127.0.0.1:6379> JSON.STRAPPEND doc .not-exists

ERR node not exists or not string type

127.0.0.1:6379> JSON.STRAPPEND not-exists abc

-1

JSON.STRLEN
Syntax

JSON.STRLEN <key> [path]

Time complexity

O(N)

Description

This command is used to retrieve the JSON value length in a TairDoc path. If you do not specify
the path, the root directory is used.

Parameters and options

Parameter/o
ption Description

key The key of the TairDoc that you want to manage.

path The TairDoc path where you want to manage JSON data.

Returned values
The length of the value in the path is returned if the operation is successful.
-1: the specified key does not exist.
Otherwise, an exception is returned.

Example

Product Introduct ion · Commands ApsaraDB for Redis

132 > Document Version:20201014

127.0.0.1:6379> JSON.SET doc . '{"foo": "bar", "baz" : 42}'

OK

127.0.0.1:6379> JSON.STRLEN doc .foo

3

127.0.0.1:6379> JSON.STRLEN doc .baz

ERR node not exists or not string type

127.0.0.1:6379> JSON.STRLEN not-exists

-1

JSON.ARRAPPEND
Syntax

JSON.ARRAPPEND <key> <path> <json> [<json> ...]

Time complexity

O(M×N). M specifies the number of JSON elements to be appended and N specifies the number
of elements in the array.

Description

This command is used to append one or more JSON values to the end of an array in a TairDoc
path.

Parameters and options

Parameter/o
ption Description

key The key of the TairDoc that you want to manage.

path The TairDoc path where you want to manage JSON data.

json The JSON value to be appended to a specified array.

Returned values
The number of elements in the array is returned if the operation is successful. The added
elements are included.
-1: the specified key does not exist.
Otherwise, an exception is returned.

Example

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 133

127.0.0.1:6379> JSON.SET doc . '{"id": [1,2,3]}'

OK

127.0.0.1:6379> JSON.GET doc .id

[1,2,3]

127.0.0.1:6379> JSON.ARRAPPEND doc .id null false true

6

127.0.0.1:6379> JSON.GET doc .id

[1,2,3,null,false,true]

127.0.0.1:6379> JSON.GET doc .id.2

3

127.0.0.1:6379> JSON.ARRAPPEND not-exists .a 1

-1

JSON.ARRPOP
Syntax

JSON.ARRPOP <key> <path> [index]

Time complexity

O(M×N). M specifies the child elements that the specified key contains and N specifies the
number of elements in the array.

Description

This command is used to remove an element specified by index from an array in a specified
TairDoc path and return the removed element.

Parameters and options

Parameter/o
ption Description

key The key of the TairDoc that you want to manage.

path The TairDoc path where you want to manage JSON data.

index
The index of the array, which specifies the value to be removed. If you do not
specify this parameter, the last value in the array is removed. A negative value
specifies reverse numbering from the end of the array.

Returned values
The removed element is returned if the operation is successful.
An error message is returned if the array is empty: 'ERR array index outflow'.
Otherwise, an exception is returned.

Example

Product Introduct ion · Commands ApsaraDB for Redis

134 > Document Version:20201014

127.0.0.1:6379> JSON.SET doc . '{"id": [1,2,3]}'

OK

127.0.0.1:6379> JSON.ARRPOP doc .id 1

2

127.0.0.1:6379> JSON.GET doc .id

[1,3]

127.0.0.1:6379> JSON.ARRPOP doc .id -1

3

127.0.0.1:6379> JSON.GET doc .id

[1]

127.0.0.1:6379> JSON.ARRPOP doc .id 10

ERR array index outflow

127.0.0.1:6379> JSON.ARRPOP doc .id

1

127.0.0.1:6379> JSON.ARRPOP doc .id

ERR array index outflow

127.0.0.1:6379>

JSON.ARRINSERT
Syntax

JSON.ARRINSERT <key> <path> <index> <json> [<json> ...]

Time complexity

O(M×N). M specifies the number of JSON elements to be appended and N specifies the number
of elements in the array.

Description

This command is used to add one or more JSON elements to an array in a TairDoc path. The
index parameter specifies the position to which the JSON elements are added.

Parameters and options

Parameter/o
ption Description

key The key of the TairDoc that you want to manage.

path The TairDoc path where you want to manage JSON data.

index
The index of the array, which specifies the value to be removed. If you do not
specify this parameter, the last value in the array is removed. A negative value
specifies reverse numbering from the end of the array.

json The JSON value to be inserted to a specified array.

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 135

Returned values
The number of elements in the array is returned if the operation is successful. The added
elements are included.
An error message is returned if the array is empty: 'ERR array index outflow'.
Otherwise, an exception is returned.

Example

127.0.0.1:6379> JSON.SET doc . '{"id": [2,3,5]}'

OK

127.0.0.1:6379> JSON.ARRINSERT doc .id 0 0 1

5

127.0.0.1:6379> JSON.GET doc .id

[0,1,2,3,5]

127.0.0.1:6379> JSON.ARRINSERT doc .id 4 4

6

127.0.0.1:6379> JSON.GET doc .id

[0,1,2,3,4,5]

127.0.0.1:6379>

JSON.ARRLEN
Syntax

JSON.ARRLEN <key> [path]

Time complexity

O(N)

Description

This command is used to retrieve the length of the array in a TairDoc path.

Parameters and options

Parameter/o
ption Description

key The key of the TairDoc that you want to manage.

path The TairDoc path where you want to manage JSON data.

Returned values
The length of the queried array is returned if the operation is successful.
-1: the specified key does not exist.
Otherwise, an exception is returned.

Example

Product Introduct ion · Commands ApsaraDB for Redis

136 > Document Version:20201014

127.0.0.1:6379> JSON.SET doc . '{"id": [2,3,5]}'

OK

127.0.0.1:6379> JSON.ARRLEN doc .id

3

127.0.0.1:6379> JSON.ARRLEN not-exists

-1

JSON.ARRTRIM
Syntax

JSON.ARRTRIM <key> <path> <start> <stop>

Time complexity

O(N)

Description

This command is used to trim a JSON array in a TairDoc path. The start value and the stop
value specify the range in which the JSON data is retained.

Parameters and options

Parameter/o
ption Description

key The key of the TairDoc that you want to manage.

path The TairDoc path where you want to manage JSON data.

start The start of the range in which elements are retained after a trim. The value is an
index that starts from 0. The element at the start position is retained.

stop The end of the range in which elements are retained after a trim. The value is an
index that starts from 0. The element at the end position is retained.

Returned values
The length of the trimmed array is returned if the operation is successful.
-1: the specified key does not exist.
Otherwise, an exception is returned.

Example

ApsaraDB for Redis Product Introduct ion · Commands

> Document Version:20201014 137

127.0.0.1:6379> JSON.SET doc . '{"id": [1,2,3,4,5,6]}'

OK

127.0.0.1:6379> JSON.ARRTRIM doc .id 3 4

2

127.0.0.1:6379> JSON.GET doc .id

[4,5]

127.0.0.1:6379> JSON.ARRTRIM doc .id 3 4

ERR array index outflow

127.0.0.1:6379> JSON.ARRTRIM doc .id -2 -5

ERR array index outflow

127.0.0.1:6379>

JSON Pointer and JSONPath
TairDoc supports the JSONPointer syntax and also supports some of the JSONPath syntax. The
following table shows the syntax examples.

JSONPointer JSONPath

127.0.0.1:6379> JSON.SET doc . '{"foo": "bar", "

baz" : [1,2,3]}'

OK

127.0.0.1:6379> JSON.GET doc .foo

"bar"

127.0.0.1:6379> JSON.GET doc .baz[0]

1

127.0.0.1:6379> JSON.SET doc "" '{"foo": "bar",

"baz" : [1,2,3]}'

OK

127.0.0.1:6379> JSON.GET doc /foo

"bar"

127.0.0.1:6379> JSON.GET doc /baz/0

1

The following table shows how TairDoc supports JSONPath and JSON Pointer.

Compatible item JSONPath JSONPointer

Root element . ""

An individual element in a path .a.b.c /a/b/c

Array .a[2] /a/2

Multiple elements in a path .a["b.c"] /a/b.c

Multiple elements in a path .a['b.c'] /a/b.c

Product Introduct ion · Commands ApsaraDB for Redis

138 > Document Version:20201014

ApsaraDB for Redis 5.0 significantly optimizes kernel performance and system stability. It
currently supports new features, such as the Redis Streams data type, account management,
and audit logging, to meet the needs in diverse scenarios.

Update description
Supports a new data type: Redis Streams. For more information, see Redis Streams.
Supports Manage database accounts.
Supports the log management feature. You can manage audit logs, operational logs, and slow
logs. You can query the records of commands used to manage databases, read/write
operations, and sensitive operations such as KEYS and FLUSHALL operations. You can also
monitor slow logs.
Supports timer, cluster, and dictionary APIs.
Supports the least frequently used (LFU) and least recently used (LRU) caching strategies for
Redis database (RDB) files.
Supports the Redis command line interface (redis-cli) instead of redis-trib.rb to manage
clusters. You need to write command code by using C language instead of Ruby language.
Supports the following commands for sorted sets: ZPOPMIN, ZPOPMAX, BZPOPMIN, and
BZPOPMAX.
Supports Active Defragmentation v2.
Supports enhanced performance of HyperLogLog.
Supports optimized statistical reports of the memory.
Supports the HELP subcommand for various commands that can include subcommands.
Supports performance stability when connections between databases and clients are
frequently disabled and enabled.
Supports Jemalloc 5.1.0.
Supports the CLIENT ID and CLIENT UNBLOCK commands.
Supports the LOLWUT command that is used to produce interesting outputs.
Discards the term "slave" in all scenarios unless you need to ensure backward compatibility of
APIs.
Optimizes the network layer.
Improves Lua script-related configuration.
Supports the dynamic-hz parameter to optimize CPU usage and response performance.
Reconstructs and improves Redis core code.

Note ApsaraDB for Redis 5.0 only supports the Standard Edition. We are working on
support for other editions.

7.Version description
7.1. Feature updates of ApsaraDB for Redis
5.0

ApsaraDB for Redis Product Introduct ion · Version descript ion

> Document Version:20201014 139

https://redis.io/topics/streams-intro
https://help.aliyun.com/document_detail/92665.html#task-kth-pr4-hfb
https://help.aliyun.com/document_detail/102015.html#concept-ddc-ydr-3gb
https://help.aliyun.com/document_detail/101713.html#concept-eqy-xgd-3gb
https://help.aliyun.com/document_detail/95874.html#concept-nw5-xmv-rfb
https://redis.io/commands/zpopmin
https://redis.io/commands/zpopmax
https://redis.io/commands/bzpopmin
https://redis.io/commands/bzpopmax
https://redis.io/commands/client-id
https://redis.io/commands/client-unblock
http://antirez.com/news/123

Alibaba Cloud has developed engine version 4.0 of ApsaraDB for Redis based on Redis 4.0 and
fixed several bugs to provide you with excellent performance. Engine version 4.0 of ApsaraDB for
Redis has all benefits of engine version 2.8 of ApsaraDB for Redis, and supports the following
features.

Lazyfree
Engine version 4.0 supports the Lazyfree feature. This feature can avoid congestion on Redis-
server caused by the DEL , FLUSHDB , FLUSHALL and RENAME commands and ensure service
stability. This feature is described as follows.

UNLINK

For engine versions earlier than 4.0, when ApsaraDB for Redis runs the DEL command, the
command returns OK only after releasing the memory of the target key. If the key contains
large amounts of data, for example, 10 million items of data in a hash table, other connections
have to wait a long time. To be compatible with the existing DEL syntax, engine version 4.0
uses the UNLINK command. The UNLINK command has the same effect and usage as the DEL

command, but the background thread releases memory when engine version 4.0 runs the UNLINK
command.

UNLINK key [key ...]

FLUSHDB/FLUSHALL

The FLUSHDB and FLUSHALL commands in engine version 4.0 allow you to specify whether to
use the Lazyfree feature to clear all memory.

FLUSHALL [ASYNC]

FLUSHDB [ASYNC]

RENAME

When ApsaraDB for Redis runs the RENAME OLDKEY NEWKEY command, if the specified new key
already exists, ApsaraDB for Redis deletes the existing new key first. If the key contains large
amounts of data, other connections have to wait a long time. To use the Lazyfree feature to
delete the key in ApsaraDB for Redis, apply the following configuration in the console:

lazyfree-lazy-server-del yes/no

Note

This parameter is not available in the console.

7.2. Features of engine version 4.0 of
ApsaraDB for Redis

Product Introduct ion · Version descript ion ApsaraDB for Redis

140 > Document Version:20201014

Expire or evict data

You can specify data expiration time and allow ApsaraDB for Redis to delete expired data.
However, when ApsaraDB for Redis deletes a large expired key, CPU jitter may occur. Engine
version 4.0 allows you to specify whether to use the Lazyfree feature to expire or evict data.

lazyfree-lazy-eviction yes/no

lazyfree-lazy-expire yes/no

New commands
SWAPDB

The SWAPDB command is used to exchange data between two databases. After ApsaraDB for
Redis runs the SWAPDB command, you can connect to the target database and check new data
directly without running the SELECT command.

127.0.0.1:6379> select 0

OK

127.0.0.1:6379> set key value0

OK

127.0.0.1:6379> select 1

OK

127.0.0.1:6379[1]> set key value1

OK

127.0.0.1:6379[1]> swapdb 0 1

OK

127.0.0.1:6379[1]> get key

"value0"

127.0.0.1:6379[1]> select 0

OK

127.0.0.1:6379> get key

"value1"

ZLEXCOUNT

The ZLEXCOUNT command is used for sorted sets and similar to the ZRANGEBYLEX command.
However, the ZRANGEBYLEX command returns the target members, and the ZLEXCOUNT

command returns the number of target members.

MEMORY

Engine versions earlier than 4.0 support the INFO MEMORY command to provide limited memory
information. Engine version 4.0 allows you to use the MEMORY command to obtain
comprehensive memory status of ApsaraDB for Redis.

ApsaraDB for Redis Product Introduct ion · Version descript ion

> Document Version:20201014 141

127.0.0.1:6379> memory help

1) "MEMORY DOCTOR - Outputs memory problems report"

2) "MEMORY USAGE <key> [SAMPLES <count>] - Estimate memory usage of key"

3) "MEMORY STATS - Show memory usage details"

4) "MEMORY PURGE - Ask the allocator to release memory"

5) "MEMORY MALLOC-STATS - Show allocator internal stats"

 MEMORY USAGE

The USAGE child command is used to check the memory usage of a specified key in ApsaraDB
for Redis.

Notice
Key-value pairs in ApsaraDB for Redis use memory. ApsaraDB for Redis also uses
memory when managing these key-value pairs.
The memory usage of keys such as hash tables, lists, sets, and sorted sets is
calculated based on sampling. The SAMPLES command controls the number of
samples.

 MEMORY STATS

Product Introduct ion · Version descript ion ApsaraDB for Redis

142 > Document Version:20201014

27.0.0.1:6379> memory stats

 1) "peak.allocated" // The maximum memory that ApsaraDB for Redis has used since startup.

 2) (integer) 423995952

 3) "total.allocated" //The current memory usage.

 4) (integer) 11130320

 5) "startup.allocated" //The memory that ApsaraDB for Redis uses after startup and initializati

on.

 6) (integer) 9942928

 7) "replication.backlog" //The memory of the backlog used in resuming an interrupted master-r

eplica replication. Default value: 10 MB.

 8) (integer) 1048576

 9) "clients.slaves" // The memory used in a master-replica replication.

 10) (integer) 16858

 11) "clients.normal" //The memory used by read and write buffers for common clients.

 12) (integer) 49630

 13) "aof.buffer" //The sum of the cache used for append-only file (AOF) persistence and the ca

che generated during the AOF rewrite operation.

 14) (integer) 3253

 15) "db. 0" //The memory used by metadata in each database.

 16) 1) "overhead.hashtable.main"

 2) (integer) 5808

 3) "overhead.hashtable.expires" //The memory used for managing data that has TTL configur

ed.

 4) (integer) 104

 17) "overhead.total" //The total memory usage for the preceding items.

 18) (integer) 11063904

 19) "keys.count" //The total number of keys in the current storage.

 20) (integer) 94

 21) "keys.bytes-per-key" //The average size of each key in the current memory.

 22) (integer) 12631

 23) "dataset.bytes" //The memory used by user data (= Total memory - Memory used by met

adata of ApsaraDB for Redis).

 24) (integer) 66416

 25) "dataset.percentage" //100 * dataset.bytes / (total.allocated - startup.allocated)

 26) "5.5934348106384277"

 27) "peak.percentage" // 100 * total.allocated / peak_allocated

 28) "2.6251003742218018"

 29) "fragmentation" //The memory fragmentation ratio.

 30) "1.1039986610412598"

ApsaraDB for Redis Product Introduct ion · Version descript ion

> Document Version:20201014 143

 MEMORY DOCTOR

This command is used to provide diagnostics and indicate hidden issues.

Peak memory: peak.allocated/total.allocated > 1.5. This indicates a possibly high memory fragmenta

tion ratio.

 High fragmentation: fragmentation > 1.4. This indicates a high memory fragmentation ratio.

 Big slave buffers: the average memory for each replica buffer is more than 10 MB. This may be cau

sed by high traffic of write operations on the master node.

 Big client buffers: the average memory for a common client buffer is more than 200 KB. This may be

caused by the improper use of pipelining or caused by Pub/Sub clients that delay processing messa

ges.

 MEMORY STATS and MALLOC PURGE

Both commands are valid only when you use jemalloc.

Least Frequently Used (LFU) mechanism and hotkeys
Engine version 4.0 supports allkey-lfu and volatile-lfu data eviction policies, and allows you to
use the OBJECT command to obtain the frequency that a specified key is used.

object freq user_key

Based on the LFU mechanism, you can use a combination of the SCAN and OBJECT FREQ
commands to find hotkeys. You can also use the Redis command line interface (redis-cli)
program as follows:

Product Introduct ion · Version descript ion ApsaraDB for Redis

144 > Document Version:20201014

$./redis-cli --hotkeys

Scanning the entire keyspace to find hot keys as well as

average sizes per key type. You can use -i 0.1 to sleep 0.1 sec

per 100 SCAN commands (not usually needed).

[00.00%] Hot key 'counter:000000000002' found so far with counter 87

[00.00%] Hot key 'key:000000000001' found so far with counter 254

[00.00%] Hot key 'mylist' found so far with counter 107

[00.00%] Hot key 'key:000000000000' found so far with counter 254

[45.45%] Hot key 'counter:000000000001' found so far with counter 87

[45.45%] Hot key 'key:000000000002' found so far with counter 254

[45.45%] Hot key 'myset' found so far with counter 64

[45.45%] Hot key 'counter:000000000000' found so far with counter 93

-------- summary -------

Sampled 22 keys in the keyspace!

hot key found with counter: 254 keyname: key:000000000001

hot key found with counter: 254 keyname: key:000000000000

hot key found with counter: 254 keyname: key:000000000002

hot key found with counter: 107 keyname: mylist

hot key found with counter: 93 keyname: counter:000000000000

hot key found with counter: 87 keyname: counter:000000000002

hot key found with counter: 87 keyname: counter:000000000001

hot key found with counter: 64 keyname: myset

This topic describes the feature updates in ApsaraDB for Redis 4.0.

Updates in 2019

Date Description

July 30, 2019 Physical IP addresses are not restricted by the value of the maxclients
parameter.

July 08, 2019 The following issue is fixed: The memory used by audit logs is released
repeatedly.

July 04, 2019
The RPOPLPUSH coredump issue is fixed.

The latency record is added for event looping.

June 20, 2019 The audit log feature is optimized to prevent the loss of operations logs
and frequent startup of the bio_audit thread.

7.3. ApsaraDB for Redis 4.0 release notes

ApsaraDB for Redis Product Introduct ion · Version descript ion

> Document Version:20201014 145

June 13, 2019

Key expiration and eviction are optimized.

When password-free access is enabled, you still need to pass password
verification if you access ApsaraDB for Redis instances over the public
network.

The DEL command is replaced with the UNLINK command.

May 05, 2019

The page cache is released automatically after the AOF file is written or
the RDB or AOF file is loaded.

The master role is distinguished from the replica role, and management
connections are distinguished from user connections in audit logs.

March 11, 2019 The following issue is fixed: The connection counter for a database in a
cluster does not work properly in some scenarios.

February 21, 2019 The following issue is fixed: Slow logs are not collected in some
scenarios.

January 24, 2019 Jemalloc is upgraded from 4.0.3 to 5.0.

January 24, 2019

The audit log feature is supported. This feature records the write
operations and other sensitive operations in logs.

Multithreading protection is added for some resources, and resource
isolation is optimized.

The exception handling feature of Redis is optimized to make sure that
exception logs are generated properly.

The following issue is fixed: An exception occurs due to a null pointer
when you run commands with long parameters.

January 07, 2019
The issue of abnormal log rotation is fixed.

The exception of the slow log feature caused by an initialization error is
fixed.

Date Description

Updates in 2018

Date Description

December 11, 2018

The debug assert command is optimized.

The following issue is fixed: The master node is affected when a replica
client runs commands.

The issue that may cause memory leakage is fixed.

Product Introduct ion · Version descript ion ApsaraDB for Redis

146 > Document Version:20201014

https://help.aliyun.com/document_detail/102015.html#concept-ddc-ydr-3gb

December 11, 2018
The ROLE command is available, which is used to view the role of the
current node.

The SENTINEL command is available.

November 15, 2018 Issues related to initializing and writing the AOF file are fixed.

October 17, 2018

If the check-whitelist-always parameter is set to yes for an ApsaraDB for
Redis instance, the whitelist is checked when other services in the same
VPC connect to the instance even if password-free access is enabled.

The following issue is fixed: The output of the INFO command is
abnormal.

October 10, 2018
The configuration items related to server startup are optimized.

The system checks whether the AOF file list is NULL when obtaining the
last AOF binlog during startup.

September 28, 2018 The timeout issue for status management during cluster migration is
fixed.

September 28, 2018
The following issue is fixed: An exception occurs under special
circumstances when the BRPOPLPUSH command in the AOF file is loaded
during startup.

Date Description

This topic describes the feature updates in ApsaraDB for Redis 5.0.

Updates in 2019

Date Description

June 30, 2019

Physical IP addresses are not restricted by the value of the maxclients
parameter.

When password-free access is enabled, you still need to pass password
verification if you access ApsaraDB for Redis instances over the public
network.

June 20, 2019 The adverse impacts on the expiration and eviction algorithms when the
number of databases reaches 256 are reduced.

7.4. ApsaraDB for Redis 5.0 release notes

ApsaraDB for Redis Product Introduct ion · Version descript ion

> Document Version:20201014 147

March 22, 2019

Compatible with open-source Redis 5.0.3.

The features of ApsaraDB for Redis 4.0 are supported.

The following client connection types are supported: dbaas, user, and
slave.

The memory leakage issue that occurs at an extremely low probability is
fixed.

The print issue is fixed for keys that are larger than 128 bytes.

Date Description

Product Introduct ion · Version descript ion ApsaraDB for Redis

148 > Document Version:20201014

Data serves as a core element for most businesses. Databases are used to store data and play a
key role in data management. ApsaraDB for Redis is a high-availability (HA) key-value database
service. This service helps you store large amounts of important data in various scenarios. This
topic describes the disaster recovery solutions provided by ApsaraDB for Redis.

Evolution of disaster recovery solutions
A variety of problems may occur during data management, such as software bugs, device
malfunctions, or power failures at data centers. A disaster recovery solution guarantees data
consistency and service availability. ApsaraDB for Redis provides optimized disaster recovery
solutions to achieve high availability in different scenarios.

The following figure shows how the disaster recovery solutions have evolved.

Disaster recovery solutions

All these solutions are available in ApsaraDB for Redis to meet different requirements. The
following sections describe these solutions in details.

Single-zone high availability
All ApsaraDB for Redis instances support a single-zone HA architecture. The HA system runs on
an independent platform to guarantee high availability across zones. Compared with on-
premises Redis databases, ApsaraDB for Redis enables more stable database management.

Standard master-replica instance

A standard master-replica instance runs in a master-replica architecture. If the HA system detects a
failure on the master node, the system switches the workloads from the master node to the
replica node and the replica node takes over the role of the master node. The original master
node works as the replica node after recovery. By default, data persistence is enabled for the
instance. The system automatically creates data backups on the instance. You can use the
backups to roll back or clone the instance. This mechanism avoids data loss caused by user
mistakes, and enables data reliability and disaster recovery.

High-availability solution of a standard master-replica instance

Master-replica cluster instance

A master-replica cluster instance consists of a configuration server, multiple proxy servers, and
multiple data shards.

The configuration server is a cluster management tool that provides global routing and
configuration information. This server uses a cluster architecture with three nodes and follows
the Raft protocol.
A proxy server runs in a standalone architecture. A cluster contains multiple proxy servers. The
cluster automatically balances loads and performs failovers among these proxy servers.
A data shard runs in a master-replica high-availability architecture. Similar to a standard
master-replica instance, if the master node fails, the HA system performs a failover to ensure
high availability, and updates the information on the proxy servers and configuration server.

High-availability solution of a master-replica cluster

8.Disaster recovery

ApsaraDB for Redis Product Introduct ion · Disaster recovery

> Document Version:20201014 149

https://help.aliyun.com/document_detail/52226.html#concept-qf3-kjh-tdb
https://help.aliyun.com/document_detail/52228.html#concept-tds-4mm-tdb

Zone-disaster recovery
Standard instances and cluster instances support zone-disaster recovery across two data
centers. If your workloads are deployed in a single region and require disaster recovery, you can
select the zones that support zone-disaster recovery when you create an ApsaraDB for Redis
instance. For example, you can select China (Hangzhou) Zone (B+F) or China (Hangzhou) (G+H)
from the Zone drop-down list in the console.

Create a zone-disaster recovery instance

When you create a multi-zone instance, the master node and replica node are deployed in
different zones and provided with the same specifications. The master node synchronizes data
to the replica node through a dedicated channel.

If a power failure or a network error occurs on the master node, the replica node takes over the
role of the master node. The system calls an API operation on the configuration server to update
routing information for proxy servers. The underlying network performs a failover based on the
precision of the routing information available in a backbone network. The master node provides
more precise Classless Inter-Domain Routing (CIDR) blocks than the replica node. In normal
conditions, the system transmits requests to the master node through precise CIDR blocks. If the
master node fails, the master node does not upload routing information to the backbone
network. The backbone network only provides less precise CIDR blocks of the replica node. The
system routes requests to the replica node according to the available routing information.

ApsaraDB for Redis provides an optimized Redis synchronization mechanism. Similar to global
transaction identifiers (GTIDs) of MySQL, ApsaraDB for Redis uses global operation identifiers
(OpIDs) to indicate synchronization offsets and runs lock-free threads in the background to
search OpIDs. The system synchronizes append-only file (AOF) binary logs (binlogs)
asynchronously from the master node to the replica node. You can throttle the synchronization
to ensure service performance.

Cross-region disaster recovery
ApsaraDB for Redis supports the Redis Global Replica solution. You can use a global replica
instance of ApsaraDB for Redis to run multiple child instances simultaneously across regions
worldwide. These child instances exchange data in real time. Different from earlier disaster
recovery solutions, child instances work as master nodes at the same time in this solution.

Note Redis Global Replica is tested on the Alibaba Cloud China site. Other Alibaba
Cloud sites do not support this solution.

The global replica instance of ApsaraDB for Redis consists of multiple child instances, multiple
synchronization channels, and a channel manager.

A child instance is a basic service unit on the global replica instance. All child instances can
process read and write requests.
The synchronization channels enable two-way synchronizations between child instances in
real time. If a synchronization is interrupted, the system can resume the synchronization from
the last breakpoint within a few days after the interruption.
The channel manager controls the lifecycle of the synchronization channels. If a child instance
fails, the channel manager switches the workloads from the failed child instance to another
child instance, and creates a new child instance. This failover process guarantees high

Product Introduct ion · Disaster recovery ApsaraDB for Redis

150 > Document Version:20201014

availability for your workloads.

Note The global replica instance synchronizes data asynchronously among child
instances to minimize the impact on the service performance.

When you manage the global replica instance, you can set the failover feature on your
application. If a failure occurs on a child instance in a region, the system switches the workloads
from the failed child instance to a child instance in another region to ensure service availability.

ApsaraDB for Redis provides multiple disaster recovery solutions to enable instance-level, zone-
level, and region-level high availability. You can select a solution to meet business
requirements.

ApsaraDB for Redis Product Introduct ion · Disaster recovery

> Document Version:20201014 151

ApsaraDB for Redis supports multiple architectures, persistent data storage, high availability,
auto scaling, and intelligent operations and maintenance.

Flexible architecture
Dual-node hot standby architecture

The system synchronizes data between the master node and replica node in real time. If the
master node fails, the system automatically fails over to the replica node and restores
services within a few seconds. The replica node takes over services. The master-replica
architecture ensures high availability of system services. For more information, see Standard
master-replica instances.

Cluster architecture

Cluster instances run in a distributed architecture. Each node uses a high-availability master-
replica structure to automatically perform the failover and disaster recovery. Multiple types of
cluster instances are applicable to various businesses. You can scale the database to improve
performance as needed. For more information, see Cluster master-replica instances.

Read/write splitting architecture

Read/write splitting instances consist of proxy servers, master-replica nodes, and read
replicas. Read/write splitting instances provide high availability (HA) and high performance.
Multiple specifications are available. The read/write splitting architecture allows a large
number of concurrent requests to read hot data from read replicas. This mechanism can
reduce the load on the master node and minimize operation and maintenance costs. For more
information, see Read/write splitting instances.

Data security
Persistent data storage

Based on the hybrid storage of memory and hard disks, ApsaraDB for Redis provides high-
speed data read/write capability and enables data persistence.

Replication and easy recovery

The system automatically replicates data every day and provides the powerful disaster
recovery solution. You can restore data in case of accidental data operations to minimize your
business losses.

Multi-layer network security protection
A Virtual Private Cloud (VPC) network isolates network transmission at the transport layer.
Anti-DDoS monitors and protects against Distributed-Denial-of-Service (DDoS) attacks.
The system supports more than 1,000 IP whitelists configured to control access risks from
requests.
Password authentication ensures secure and reliable access.

In-depth kernel optimization

Alibaba Cloud has performed in-depth engine optimization for the Redis source code to
prevent running out of memory, fix security vulnerabilities, and protect your business.

9.Features

Product Introduct ion · Features ApsaraDB for Redis

152 > Document Version:20201014

https://help.aliyun.com/document_detail/52226.html#concept-qf3-kjh-tdb
https://help.aliyun.com/document_detail/52228.html#concept-tds-4mm-tdb
https://help.aliyun.com/document_detail/62870.html#concept-zm4-3mh-tdb

High availability
Master-replica structure

Standard and cluster instances support the master-replica structure. They can prevent service
interruptions caused by a single point of failure (SPOF).

Automatic failure detection and recovery

The system automatically detects hardware failures. In the case of failures, the system
performs the failover operation and restores services within a few seconds.

Resource isolation

Instance-level resource isolation: ApsaraDB for Redis isolates resources among different
instances. A failure on an instance does not affect other instances. This improves the service
stability. Instance-level resource isolation is a better measure to ensure stability of individual
services.

Scalability
Data capacity scaling

ApsaraDB for Redis supports multiple types of memory. You can upgrade the memory based on
your needs.

Performance scaling

The cluster architecture supports auto scaling of the storage space and throughput
performance of the database system. This can eliminate the performance bottlenecks caused
by large amounts of data and high-QPS requirements. Therefore, you can easily handle
millions of read and write requests per second.

Intelligent O&M
Monitoring platform

This platform provides real-time monitoring information about the CPU usage, connections,
and disk utilization, and generates alerts. This allows you to learn about the up-to-date
instance status.

Graphical O&M platform

This platform allows you to perform frequent and high risk operations, such as instance
cloning, backup, and data restoration with one click.

Visualized DMS platform

The specialized data management service (DMS) platform supports visual data management.
This improves the efficiency of comprehensive research and development (R&D) and
operations and maintenance (O&M) efforts.

Database kernel version management

ApsaraDB for Redis supports automatic upgrades to fix vulnerabilities. This way, you do not
have to manage each kernel version. Parameter settings are optimized to maximize the
utilization of system resources.

ApsaraDB for Redis Product Introduct ion · Features

> Document Version:20201014 153

This topic describes how to use ApsaraDB for Redis in different scenarios to meet diverse
business demands, especially for high concurrency scenarios.

Gaming
ApsaraDB for Redis can serve as an important architecture component in the gaming industry.

Scenario 1: use ApsaraDB for Redis as a storage service

Gaming applications can be deployed in a simple architecture, where the main program runs
an Elastic Compute Service (ECS) instance, and the business data is stored in ApsaraDB for
Redis. ApsaraDB for Redis can be used for persistent storage. It uses a master-replica
deployment model to implement redundancy.

Scenario 2: use ApsaraDB for Redis as a caching service to accelerate connections to
applications

ApsaraDB for Redis can serve as a caching service to accelerate connections to applications.
Data is only stored on backend databases (RDS instances).

The high availability of ApsaraDB for Redis is essential to your business. If your ApsaraDB for
Redis service becomes unavailable, the RDS instances may be overwhelmed by the requests
sent from your applications. ApsaraDB for Redis adopts the master-replica architecture to
ensure high availability. The master is responsible for handling requests. When the master fails,
the replica takes control of the workloads. The failover is completely transparent to users.

E-commerce
ApsaraDB for Redis is widely used in the E-commerce industry for business such as commodity
presentation and recommendation.

Scenario 1: online shopping systems

An online shopping system is overwhelmed by user traffic during large promotional activities
such as flash sales. Most databases are incapable of handling the heavy load. To resolve this
issue, you can choose ApsaraDB for Redis for persistent storage.

Scenario 2: inventory management systems that support stock taking

ApsaraDB for Redis is used to count the inventory and RDS is used to store information about
the quantities of items. ApsaraDB for Redis instances are deployed on physical servers that
use SSD disks. Therefore, data can be synchronized to RDS at high speed.

Live streaming applications
Live streaming is strongly reliant on ApsaraDB for Redis, which is used to store user data and
chat records.

High availability

ApsaraDB for Redis can be deployed in a master-replica architecture to significantly improve
service availability.

High performance

10.Scenarios

Product Introduct ion · Scenarios ApsaraDB for Redis

154 > Document Version:20201014

ApsaraDB for Redis provides cluster instances to eliminate the performance bottleneck that is
caused by the single-thread mechanism of native Redis. Cluster instances can handle traffic
spikes during live streaming and meet high-performance requirements.

High scalability

ApsaraDB for Redis allows you to deal with traffic spikes during peak hours by scaling out an
instance with a few clicks. The upgrade is completely transparent to users.

ApsaraDB for Redis Product Introduct ion · Scenarios

> Document Version:20201014 155

You can find instructions for ApsaraDB for Redis related terms in this topic.

Term Description

ApsaraDB for Redis
ApsaraDB for Redis is a high-performance key-value storage system that
supports caching and storage. The system is developed on the basis of
BSD open-source protocols.

Instance identifier (ID)

An instance corresponds to a user space, and serves as the basic unit of
the ApsaraDB for Redis service. ApsaraDB for Redis has restrictions on
instance configurations, such as connections, bandwidth, and CPU
processing capacity. These restrictions vary according to different instance
types. You can view the list of instance identifiers that you have purchased
in the console.

Master-replica
instance

This is an ApsaraDB for Redis instance that contains a master-replica
structure. The master-replica instance provides limited capacity and
performance.

High-performance
cluster instance

This is an ApsaraDB for Redis instance that runs in a scalable cluster
architecture. Cluster instances provide better scalability and performance,
but they still have limited features.

Connection address

This is the host address for connecting to ApsaraDB for Redis. The
connection address is displayed as a domain name. To obtain the
connection address, choose Instance Information > Connection
Information.

Connection password

This is the password used to connect to ApsaraDB for Redis. The password
is in the format of Instance ID:custom password . For example, if you set
the password as 1234 when you purchase an instance and the allocated
instance ID is xxxx, the connection password is xxxx:1234 .

Eviction policy This is consistent with the Redis eviction policy. For more information, see
Using Redis as an LRU cache.

DB

This is the abbreviation of the word database to indicate a database in
ApsaraDB for Redis. Each ApsaraDB for Redis instance supports 256
databases numbered DB 0 to DB 255. By default, ApsaraDB for Redis writes
data to DB 0.

11.Terms

Product Introduct ion · T erms ApsaraDB for Redis

156 > Document Version:20201014

http://redis.io/topics/lru-cache

Compared with on-premises Redis databases deployed on your own servers, ApsaraDB for Redis
has many advantages, such as high data security, easy O&M, and kernel optimization.

Item ApsaraDB for Redis On-premises Redis

Security
protection

Supports Virtual Private Cloud (VPC)
for network isolation.

Supports whitelists for access control.

Supports Secure Socket Layer (SSL)
encryption.

Allows you to create multiple accounts
and grant different permissions to
them.

Supports audit logs, which allow you to
view request records. The data
sampling rate is 100%, and the
performance consumption is less than
5%.

Requires a self-built network security
system. It is difficult to construct such
a system and brings high costs.

Has data leakage risks owing to
security vulnerabilities in the default
access configuration of open-source
Redis.

Requires a third-party tool to
implement SSL encryption.

Has no account authentication system.

Does not support audit logs.

Backup
and
recovery

Supports backing up data to RDB and
AOF files.

Archives the incremental data in the
AOF file, which avoids the adverse
impact of rewriting the AOF file.

Does not support backup and recovery.

Rewrites AOF files irregularly, which
deteriorates service performance.

O&M

Supports over ten groups of
monitoring metrics and a minimum
monitoring frequency of 5
seconds/time.

Supports settings alerts based on
monitoring metrics.

Allows you to create instances of
different architectures as needed and
change the instance configuration.

Provides accurate big key analysis
based on the snapshots without
performance consumption.

Requires a complex third-party
monitoring tool to implement service
monitoring.

Stops services when you change the
specification or the architecture. In
addition, the specification or
architecture change operation is
complex.

Supports big key analysis based on
sampling, which is inaccurate.

12.Comparison between ApsaraDB for
Redis and on-premises Redis

ApsaraDB for
Redis

Product Introduct ion · Comparison between ApsaraDB for Redis and on-premises
Redis

> Document Version:20201014 157

https://help.aliyun.com/document_detail/107043.html#concept-lmv-qhf-vdb
https://help.aliyun.com/document_detail/84898.html#concept-jdh-mdv-h2b
https://help.aliyun.com/document_detail/92665.html#task-kth-pr4-hfb
https://help.aliyun.com/document_detail/101937.html#concept-wvt-zxp-3gb
https://help.aliyun.com/document_detail/43886.html#task-1715457
https://help.aliyun.com/document_detail/43887.html#concept-zyy-zgv-tdb
https://help.aliyun.com/document_detail/122088.html#task-645665
https://help.aliyun.com/document_detail/43884.html#concept-sj5-m2z-5db
https://help.aliyun.com/document_detail/86132.html#concept-nc2-vsl-l2b
https://help.aliyun.com/document_detail/26353.html#concept-mgf-z25-tdb

High
availability

Supports single-zone high availability.

Supports zone-based disaster
recovery.

Uses an independent and central
module to guarantee high availability,
which is stable and highly efficient in
decision-making. This module also
prevents the split-brain issue.

Allows you to deploy high-availability
architecture in an IDC based on the
Sentinel mode.

Allows you to deploy zone-based
disaster recovery architecture based
on the Sentinel mode.

Depends on the Sentinel mode to
guarantee high availability. The
construction cost is high and the
decision-making efficiency is low
during service peak hours. Split-brain
may occur, which brings loss to your
business.

Kernel
optimizatio
n

Provides performance-enhanced
instances based on multithreading.
The performance of a performance-
enhanced instance is three times that
of a standard-performance instance
with the same configuration.

Provides hybrid storage instances that
store data in both the memory and
disks. Hybrid storage instances can
manage hot and cold data at the field
level and effectively transfer data
between the memory and disks.

Supports cross-slot multi-key
operations in the cluster edition.

Does not have a performance-
enhanced edition.

Supports systems such as SSDB or Pika
as the persistent storage. However,
these systems are not well compatible
with the Redis protocol. They can
manage hot and cold data only at the
key level. Transferring big keys
between the memory and disks is
costly. These systems are difficult to
manage.

Does not support cross-slot multi-key
operations in an open-source Redis
cluster.

Item ApsaraDB for Redis On-premises Redis

Product Introduct ion · Comparison between ApsaraDB for Redis and on-premises
Redis

ApsaraDB for
Redis

158 > Document Version:20201014

https://help.aliyun.com/document_detail/100734.html#concept-h1v-s3s-2gb/section-u3t-f4t-2gb
https://help.aliyun.com/document_detail/100734.html#concept-h1v-s3s-2gb/section-h5s-zxn-fgb
https://help.aliyun.com/document_detail/126164.html#concept-1254543
https://help.aliyun.com/document_detail/126650.html#concept-1322770

	1.What is ApsaraDB for Redis?
	2.Overview and selection of ApsaraDB for Redis
	3.ApsaraDB for Redis Enhanced Edition (Tair)
	3.1. Overview
	3.2. Enhanced multi-threading performance
	3.3. Hybrid-storage instances

	4.Architectures
	4.1. Overview
	4.2. Standard master-replica instances
	4.3. Cluster master-replica instances
	4.4. Read/write splitting instances
	4.5. Instructions of read/write splitting instances

	5.Instance specifications
	5.1. Overview
	5.2. Community Edition
	5.2.1. Standard master-replica instance
	5.2.2. Master-replica cluster instances
	5.2.3. Read/Write Splitting
	5.2.4. Read/write splitting cluster instances

	5.3. Enhanced Edition
	5.3.1. Performance-enhanced cluster instances
	5.3.2. Performance-enhanced cluster instances
	5.3.3. Performance-enhanced read/write splitting instances
	5.3.4. Standard hybrid-storage instances
	5.3.5. Hybrid-storage cluster instances

	5.4. Phased-out instance types

	6.Commands
	6.1. Overview
	6.2. Community Edition
	6.2.1. Commands supported by Redis 2.8
	6.2.2. Commands supported by Redis 4.0
	6.2.3. Commands supported by Redis 5.0
	6.2.4. Unsupported commands
	6.2.5. Limits on the commands supported by cluster instances
	6.2.6. Commands supported by read/write splitting instances
	6.2.7. Redis commands developed by Alibaba Cloud

	6.3. Enhanced Edition
	6.3.1. Commands supported by performance-enhanced instances
	6.3.2. CAS and CAD commands
	6.3.3. TairString commands
	6.3.4. TairHash commands
	6.3.5. TairGIS commands
	6.3.6. TairBloom commands
	6.3.7. TairDoc commands

	7.Version description
	7.1. Feature updates of ApsaraDB for Redis 5.0
	7.2. Features of engine version 4.0 of ApsaraDB for Redis
	7.3. ApsaraDB for Redis 4.0 release notes
	7.4. ApsaraDB for Redis 5.0 release notes

	8.Disaster recovery
	9.Features
	10.Scenarios
	11.Terms
	12.Comparison between ApsaraDB for Redis and on-premises Redis

