
Alibaba Cloud

ApsaraDB for Redis
Best Practices

Document Version: 20200901

Alibaba Cloud

ApsaraDB for Redis
Best Practices

Document Version: 20200901

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and condit ions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be
deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba
Cloud-authorized channels, and use this document for your own legal business act ivit ies only. T he
content of this document is considered confident ial informat ion of Alibaba Cloud. You shall
st rict ly abide by the confident iality obligat ions. No part of this document shall be disclosed or
provided to any third party for use without the prior writ ten consent of Alibaba Cloud.

2. No part of this document shall be excerpted, t ranslated, reproduced, t ransmit ted, or
disseminated by any organizat ion, company or individual in any form or by any means without the
prior writ ten consent of Alibaba Cloud.

3. T he content of this document may be changed because of product version upgrade, adjustment,
or other reasons. Alibaba Cloud reserves the right to modify the content of this document
without not ice and an updated version of this document will be released through Alibaba Cloud-
authorized channels from t ime to t ime. You should pay at tent ion to the version changes of this
document as they occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. T his document serves only as a reference guide for your use of Alibaba Cloud products and
services. Alibaba Cloud provides this document based on the "status quo", "being defect ive", and
"exist ing funct ions" of its products and services. Alibaba Cloud makes every effort to provide
relevant operat ional guidance based on exist ing technologies. However, Alibaba Cloud hereby
makes a clear statement that it in no way guarantees the accuracy, integrity, applicability, and
reliability of the content of this document, either explicit ly or implicit ly. Alibaba Cloud shall not
take legal responsibility for any errors or lost profits incurred by any organizat ion, company, or
individual arising from download, use, or t rust in this document. Alibaba Cloud shall not , under
any circumstances, take responsibility for any indirect , consequent ial, punit ive, cont ingent ,
special, or punit ive damages, including lost profits arising from the use or t rust in this document
(even if Alibaba Cloud has been not ified of the possibility of such a loss).

5. By law, all the contents in Alibaba Cloud documents, including but not limited to pictures,
architecture design, page layout , and text descript ion, are intellectual property of Alibaba Cloud
and/or its affiliates. T his intellectual property includes, but is not limited to, t rademark rights,
patent rights, copyrights, and t rade secrets. No part of this document shall be used, modified,
reproduced, publicly t ransmit ted, changed, disseminated, dist ributed, or published without the
prior writ ten consent of Alibaba Cloud and/or its affiliates. T he names owned by Alibaba Cloud
shall not be used, published, or reproduced for market ing, advert ising, promot ion, or other
purposes without the prior writ ten consent of Alibaba Cloud. T he names owned by Alibaba Cloud
include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combinat ion, as well as the auxiliary
signs and patterns of the preceding brands, or anything similar to the company names, t rade
names, t rademarks, product or service names, domain names, patterns, logos, marks, signs, or
special descript ions that third part ies ident ify as Alibaba Cloud and/or its affiliates.

6. Please direct ly contact Alibaba Cloud for any errors of this document.

ApsaraDB for Redis Best Pract ices · Legal disclaimer

> Document Version:20200901 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that
the user must understand.

 Notice:

If the weight is set to 0, the server
no longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set network
type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

ApsaraDB for Redis Best Pract ices · Document convent ions

> Document Version:20200901 I

Table of Contents
1.Best Practices for Redis Enhanced Edition

1.1. Monitor user trajectories by using TairGIS

1.2. High-performance distributed locks

1.3. Concurrency control and optimistic locking

1.4. Rate limiter

1.5. TairHash memory consumption and expiration policies

2.Best Practices for All Editions

2.1. Migrate MySQL data to ApsaraDB for Redis

2.2. Online player score ranking

2.3. Correlation analysis on E-commerce store items

2.4. Publish and subscribe to messages

2.5. Pipeline

2.6. Transactions

2.7. Discovery and solutions of hotkey problems

2.8. ApsaraDB for Redis supports Double 11 Shopping Festival …

2.9. Use ApsaraDB for Redis to build a business system for handling flash sales …

2.10. Read/write splitting in Redis

2.11. JedisPool optimization

2.12. Analyze hotkeys in a specific sub-node of a cluster instance …

2.13. Use ApsaraDB for Redis to build a broadcasting channel information system …

2.14. Parse AOFs

2.15. How to discover hotkeys in Redis 4.0

2.16. Analyze memory usage of ApsaraDB for Redis

05

05

07

14

17

19

27

27

31

35

38

44

49

53

57

61

65

68

75

82

85

88

89

ApsaraDB for Redis Best Pract ices · T able of Contents

> Document Version:20200901 I

You can monitor user trajectories based on points, linestrings, and planes by using the TairGIS
data structure that is provided by ApsaraDB for Redis Enhanced Edition (Tair).

Background information
Location-based services (LBS) use various technologies to locate devices in real time, and
provide information and basic services for users and devices based on the mobile Internet. In
recent years, a large number of industrial applications and research projects have been
engaged in LBS technologies. LBS technologies play an important role in many applications.

In 2020, the COVID-19 pandemic poses huge health threats to human beings and presses the
pause button around the world. To prevent the COVID-19 pandemic from spreading, China has
taken proactive measures by using the power of the entire country. China has made great
achievements in controlling the spread of the pandemic. The cities across China start to recover
from the wounds of the COVID-19 pandemic. Gradually, employees go back to work, enterprises
resume production, and students go back to schools. The spreading of the pandemic in China is
basically under control, and the other countries and regions are taking efforts to flatten the
curve of the COVID-19 pandemic cases. The epidemic prevention and control are still facing
considerable challenges. LBS offers an efficient solution to handle these challenges. LBS allows
you to monitor user trajectories to identify risks and ensure the safety of people. LBS can also
facilitate epidemiological surveys.

ApsaraDB for Redis Community Edition supports native Redis GEO commands that are offered by
the open source Redis service. You can use the native Redis GEO commands to describe location
data. However, the native Redis GEO commands allow you to implement only limited features
due to the limited granularities of geographic data. Therefore, the Redis GEO commands offer
limited support for LBS applications. Performance-enhanced instances of ApsaraDB for Redis
Enhanced Edition (Tair) support TairGIS commands. TairGIS commands provide more features than
the native Redis GEO commands.

TairGIS uses R-tree indexes and supports Geographic Information System (GIS) API operations.
Redis supports GEO commands that are suitable for Geohash strings and sorted sets. The GEO
commands support geospatial indexing for one-dimensional arrays. This allows you to query
points. TairGIS supports indexing for two-dimensional arrays. This allows you to query points,
lines, and planes. You can use TairGIS to check intersection or inclusion relationships. TairGIS
provides more powerful features.

TairGIS allows you to significantly reduce the costs of developing LBS applications. One of the
typical applications of TairGIS is geofencing security systems for senior and child care.

1.Best Practices for Redis Enhanced
Edition
1.1. Monitor user trajectories by using
TairGIS

ApsaraDB for Redis Best Pract ices · Best Pract ices for Redis Enhanced Edit ion

> Document Version:20200901 5

https://help.aliyun.com/document_detail/145971.html#concept-2353552

Implementation methods
To monitor the trajectories of a specific group of users, you must obtain the location data of the
users. To obtain the location data, you can use the following two methods:

Use the Global Positioning System (GPS) service on the mobile phones of the users. In this
method, users must enable the GPS service on their mobile phones.
Cooperate with telecom carriers.

In scenarios similar to epidemic control, user trajectories are monitored to check whether the
users have been to high-risk areas, such as the areas where an epidemic outbreak occurs.
Therefore, you do not need to store the previous trajectory data of the users in most cases. You
only need to report alerts when users enter high-risk areas. This provides maximum protection
for user privacy.

You can use polygons to indicate high-risk areas based on the well-known text (WKT) language,
and store the polygons in TairGIS data. You can use points, linestrings, or polygons to indicate
user trajectories based on WKT, and store the points, the linestrings, or the polygons in TairGIS
data. Then, you can run the TairGIS commands to query the intersections between the user
trajectories and the high-risk areas to determine whether a user has passed through the high-
risk areas.

Note WKT is a text markup language that you can use to represent vector geometry
objects on a map and the spatial reference systems of spatial objects. WKT also allows you
to perform transformations between spatial reference systems.

The methods of processing location data varies based on the methods that you use to obtain
the location data. The following examples provide details.

Best Pract ices · Best Pract ices for Redis Enhanced Edit ion ApsaraDB for Redis

6 > Document Version:20200901

Examples
Use the GPS service to obtain the location data

After you obtain the current GPS data of a user, you can run the TairGIS GIS.CONTAINS command
to check whether the user location is in high-risk areas. If the user is on a road, you can use
the GPS data to locate the specific road. Then, run the GIS.INTERSECTS command to check
whether the user is moving towards a high-risk area. If the user is moving towards a high-risk
area, alerts are reported.

You can use WKT to describe the GPS data of a user as a point, for example, POINT(30 11) .
You can use WKT to describe the road information as a linestring, such as LINESTRING (30 10, 40

40) . The following sample code helps you understand how to implement the business logic.

GIS.ADD your_province your_location 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))' // Add the GPS inf

ormation of a user to TairGIS data.

GIS.CONTAINS your_province 'POINT (30 11)'

GIS.INTERSECTS your_province 'LINESTRING (30 10, 40 40)'

Cooperate with telecom carriers to obtain the location data

In scenarios where base stations are deployed by telecom carriers in a sparse manner, the
location data that you obtain indicates an area. The area may be a sector that is covered by a
base station or the entire coverage area of the base station. You can use WKT to describe the
area as a polygon, for example, POLYGON ((10 22, 30 45, 16 53, 10 22)) . You can run the
GIS.INTERSECTS command to analyze the intersections between the polygon and the high-risk
areas. The sample code is provided as follows:

GIS.ADD your_province your_location 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))' // Add the locatio

n information that you obtain from the base stations of the telecom carrier to the TairGIS data.

GIS.INTERSECTS your_province 'POLYGON ((10 22, 30 45, 16 53, 10 22))'

Note For more information about TairGIS commands, see TairGIS commands.

Summary
Performance-enhanced instances of ApsaraDB for Redis Enhanced Edition (Tair) provide the
TairGIS data structure. TairGIS provides an easy method for you to use LBS applications to store
and compute geographic data. TairGIS also allows you to deliver high performance in high-
concurrency scenarios.

1.2. High-performance distributed locks

ApsaraDB for Redis Best Pract ices · Best Pract ices for Redis Enhanced Edit ion

> Document Version:20200901 7

https://help.aliyun.com/document_detail/145971.html#concept-2353552/section-z46-ume-l72
https://help.aliyun.com/document_detail/145971.html#concept-2353552/section-js6-e0z-uh4
https://help.aliyun.com/document_detail/145971.html#concept-2353552/section-js6-e0z-uh4
https://help.aliyun.com/document_detail/145971.html#concept-2353552

Distributed locks are one of the most widely adopted features in large applications. You can
implement distributed locks based on Redis by using various methods. This topic describes and
analyzes common methods of implementing distributed locks. This topic also describes the best
practices on how ApsaraDB for Redis Enhanced Edition (Tair) implements high-performance
distributed locks. The best practices are based on the extensive experience of Alibaba Group in
using ApsaraDB for Redis Enhanced Edition (Tair) and distributed locks.

Distributed locks and scenarios
If multiple threads in a process need to have concurrent access to a specified resource, you can
use mutexes (also known as mutual exclusion locks) and read/write locks to create applications.
If multiple processes on a host need to have concurrent access to a specified resource, you can
use interprocess synchronization primitives, such as semaphores, pipelines, and shared memory.
However, if multiple hosts need to have concurrent access to a specified resource, you must use
distributed locks. The distributed locks are the mutual exclusion locks that have global
presence. You can apply distributed locks on the resources in distributed systems to avoid
logical failures by preventing race hazards.

Features of distributed locks
Mutual exclusion

Only one client can hold a lock at a given moment.

Deadlock free

Distributed locks use a lease-based locking mechanism. If a client acquires a lock and
encounters an exception, the lock is automatically released after a certain period. This
prevents resource deadlocks.

Consistency

Failovers may be triggered by external errors or internal errors. External errors include
hardware failures and network exceptions, and internal errors include slow queries and
system defects. After failovers are triggered, a replica serves as a master to implement high
availability for ApsaraDB for Redis. In this scenario, if services have high requirements for
mutual exclusion, the lock of the client must remain the same after the failovers.

Implement distributed locks based on native Redis databases

Best Pract ices · Best Pract ices for Redis Enhanced Edit ion ApsaraDB for Redis

8 > Document Version:20200901

Note The methods described in this section also apply to ApsaraDB for Redis Community
Edition.

Acquire a lock

Redis provides an easy method that you can use to acquire a lock. This easy method is to run
the SET command. A command example and the key parameters or options of the command
are described as follows:

SET resource_1 random_value NX EX 5

Description of key parameters or options

Parameter or option Description

resource_1
Specifies the key of the distributed lock. If the key exists, the
corresponding resource is locked and cannot be accessed by the other
clients.

random_value Specifies a random string. The value must be unique across clients.

EX
Specifies an expiration time for the key. The unit is seconds. You can also
use the PX option to set an expiration time that is measured in
milliseconds.

NX Sets the key only if the key does not exist in Redis.

In the sample code, the expiration time for the resource_1 key is set to five seconds.
Therefore, if the client does not release the key, the key expires in five seconds, and the
system reclaims the lock. Then, the other clients can lock and access the resource.

Release a lock

In most cases, you can run the DEL command to release a lock. However, this may cause the
following issue.

i. At the t1 time point, the key of the distributed lock is resource_1 for application 1, and the
expiration time for the resource_1 key is set to three seconds.

ii. Application 1 remains blocked for more than three seconds due to certain reasons, such as
a long response time. Therefore, the resource_1 key expires and the distributed lock is

ApsaraDB for Redis Best Pract ices · Best Pract ices for Redis Enhanced Edit ion

> Document Version:20200901 9

automatically released at the t2 time point.

iii. At the t3 time point, application 2 acquires the distributed lock.

iv. Application 1 resumes from the block and runs the DEL resource_1 command at the t4
time point to release the distributed lock that is held by application 2.

This example shows that a lock can be released only by the client that sets the lock.
Therefore, before a client runs the DEL command to release a lock, the client must run the GET
command to check whether the lock is set by the client. In most cases, a client uses the
following Lua script in Redis to release the lock that is set by the client:

if redis.call("get",KEYS[1]) == ARGV[1] then

return redis.call("del",KEYS[1])

else

return 0

end

Renew a lock

If a client cannot complete the required operations within the lock validity time, the client
must renew the clock. A lock can be released only by the client that sets the client. Similarly, a
lock can be renewed only by the client that sets the lock. In Redis, a client can use the
following Lua script to renew a lock:

if redis.call("get",KEYS[1]) == ARGV[1] then

return redis.call("expire",KEYS[1], ARGV[2])

else

return 0

end

Best Pract ices · Best Pract ices for Redis Enhanced Edit ion ApsaraDB for Redis

10 > Document Version:20200901

Implement distributed locks based on ApsaraDB for Redis Enhanced
Edition (Tair)
You can implement distributed locks by using the enhanced string commands of the
performance-enhanced instances provided by ApsaraDB for Redis Enhanced Edition (Tair). These
enhanced commands are an alternative to Lua scripts.

Acquire a lock

The method of acquiring a lock based on ApsaraDB for Redis Enhanced Edition (Tair) is the
same as that based on native Redis databases. The method is to run the SET command:

SET resource_1 random_value NX EX 5

Release a lock

The CAD command supported by ApsaraDB for Redis Enhanced Edition (Tair) provides an
efficient way for you to release a lock:

/* if (GET(resource_1) == my_random_value) DEL(resource_1) */

CAD resource_1 my_random_value

Renew a lock

You can run the following CAS command to renew a lock:

CAS resource_1 my_random_value my_random_value EX 10

Note The CAS command does not check whether the new value is the same as the
original value.

Sample code based on Jedis
Define the CAS and CAD commands

ApsaraDB for Redis Best Pract ices · Best Pract ices for Redis Enhanced Edit ion

> Document Version:20200901 11

https://help.aliyun.com/document_detail/145833.html#concept-2353547/section-dcp-pdf-67w
https://help.aliyun.com/document_detail/145833.html#concept-2353547/section-grp-odg-i2l

enum TairCommand implements ProtocolCommand {

CAD("CAD"), CAS("CAS");

private final byte[] raw;

TairCommand(String alt) {

raw = SafeEncoder.encode(alt);

}

@Override

public byte[] getRaw() {

return raw;

}

}

Acquire a lock

public boolean acquireDistributedLock(Jedis jedis,String resourceKey, String randomValue, int expire

Time) {

SetParams setParams = new SetParams();

setParams.nx().ex(expireTime);

String result = jedis.set(resourceKey,randomValue,setParams);

return "OK".equals(result);

}

Release a lock

public boolean releaseDistributedLock(Jedis jedis,String resourceKey, String randomValue) {

jedis.getClient().sendCommand(TairCommand.CAD,resourceKey,randomValue);

Long ret = jedis.getClient().getIntegerReply();

return 1 == ret;

}

Renew a lock

public boolean renewDistributedLock(Jedis jedis,String resourceKey, String randomValue, int expire

Time) {

jedis.getClient().sendCommand(TairCommand.CAS,resourceKey,randomValue,randomValue,"EX",Stri

ng.valueOf(expireTime));

Long ret = jedis.getClient().getIntegerReply();

return 1 == ret;

}

Best Pract ices · Best Pract ices for Redis Enhanced Edit ion ApsaraDB for Redis

12 > Document Version:20200901

Methods of ensuring lock consistency
The replications between masters and replicas are asynchronous. If a master crashes before
data changes are transferred to replicas and a failover is triggered, the data changes in the
buffer may not be replicated to the new master. This results in data inconsistency. Note that the
failover is triggered to ensure high availability and the new master is the original replica. If the
lost data is related to a distributed lock, the locking mechanism becomes faulty and service
exceptions occur. This topic introduces three methods that you can use to ensure lock
consistency.

Redlock

Redlock is proposed by the founders of the open source Redis project to ensure consistency.
Redlock is based on the calculation of probabilities. Assume that a single master-replica Redis
instance may lose a lock during a failover and the probability is k%. Note that the failover is
triggered to implement high availability. If you use Redlock to implement distributed locks,
you can calculate the probability at which N independent Redis instances lose locks at the
same time based on the following formula: Probability of losing locks = (k%)^N. Due to the
high stability of Redis, the probability is small, which can meet your service requirements.

Note When you implement Redlock, you do not have to ensure that all the locks in N
Redis instances take effect at the same time. In most cases, Redlock can meet your
business requirements if you ensure that the locks in M Redis nodes take effect at the
same time. Note that M is greater than 1 and less than or equal to N.

Redlock has the following disadvantages:

A client takes a long time to acquire and release a lock.
You must handle significant difficulties if you want to implement Redlock in the cluster or
standard master-replica instances of ApsaraDB for Redis.
Redlock consumes a large number of resources. To implement Redlock, you must create
multiple independent ApsaraDB for Redis instances or user-created Redis instances.

WAIT command

The WAIT command of Redis blocks the current client until all the previous write commands
are transferred from a master to a specified number of replicas. In the WAIT command, you can
specify a time-out period that is measured in milliseconds. The following WAIT command
example is used in ApsaraDB for Redis to ensure the consistency of distributed locks.

SET resource_1 random_value NX EX 5

WAIT 1 5000

If you run the WAIT command, a client continues to perform other operations only in two
scenarios after the client acquires a lock. One of the scenarios is that data is transferred to
the replicas. The other scenario is that the time-out period is reached. In this example, the
time-out period is 5,000 milliseconds. If the output of the WAIT command is 1, data is
replicated between the master and the replicas. In this case, data consistency is ensured. The
WAIT command is more cost-effective than Redlock.

The considerations of the WAIT command are described as follows:

ApsaraDB for Redis Best Pract ices · Best Pract ices for Redis Enhanced Edit ion

> Document Version:20200901 13

https://redis.io/topics/distlock#the-redlock-algorithm
https://redis.io/commands/wait

The WAIT command only blocks the client that sends the WAIT command, and does not
affect the other clients.
If the WAIT command returns a valid integer, the lock is transferred from the master to the
replicas. However, if a failover is triggered to implement high availability before the
command returns a successful response, data may be lost. In this case, the output of the
WAIT command only indicates a possible replication failure, and data integrity cannot be
ensured. After the WAIT command returns errors, you can acquire a lock again or verify data.
You do not have to run the WAIT command to release a lock. This is because the distributed
locks are mutually exclusive. Logical failures do not occur even if you release the lock after
a certain period.

ApsaraDB for Redis Enhanced Edition (Tair)

Redlock and the WAIT command offer the following benefits:

Redlock improves data consistency if the number of Redis nodes increases.
The WAIT command is cost-effective.

ApsaraDB for Redis Enhanced Edition (Tair) offers the following benefits:

The unique high availability (HA) and data persistence mechanisms of ApsaraDB for Redis
Enhanced Edition (Tair) help you ensure data security and service stability. ApsaraDB for
Redis Enhanced Edition (Tair) allows you to ensure high data consistency even if you do not
deploy multiple Redis nodes or use the WAIT command.
The CAS and CAD commands supported by the performance-enhanced instances help you
reduce the costs of developing and managing distributed locks and improve lock
performance.
Performance-enhanced instances of ApsaraDB for Redis Enhanced Edition (Tair) use a multi-
threading model. For more information, see Enhanced multi-threading performance. The
instances of this type provide the performance three times that provided by native Redis
databases with the same specifications. Therefore, the ApsaraDB for Redis service remains
available when highly concurrent distributed locks are used.

If a large number of requests are sent to concurrently access and update the shared resources
stored in Redis, an accurate and efficient concurrency control mechanism is required. The
mechanism must be able to help you prevent logical failures and data errors. One of the
mechanism examples is optimistic locking. Performance-enhanced instances of ApsaraDB for
Redis Enhanced Edition (Tair) provides the TairString data structure. Therefore, compared with
native Redis databases, ApsaraDB for Redis Enhanced Edition (Tair) allows you to implement
optimistic locking that delivers higher performance at lower costs.

1.3. Concurrency control and optimistic
locking

Best Pract ices · Best Pract ices for Redis Enhanced Edit ion ApsaraDB for Redis

14 > Document Version:20200901

https://help.aliyun.com/document_detail/126164.html#concept-1254543

Concurrency and last-writer-wins
The following figure shows a typical scenario where concurrent requests cause race hazards.

1. At the initial stage, the value of key_1 is hello . The values of this key are strings.

2. At the t1 time point, application 1 reads the value of key_1: hello .

3. At the t2 time point, application 2 reads the value of key_1: hello .

4. At the t3 time point, application 1 changes the value of key_1 to world .

5. At the t4 time point, application 2 changes the value of key_1 to universe .

The value of key_1 is determined by the last write. At the t4 time point, application 1 considers
the value of key_1 as world, but the actual value is universe. Therefore, the subsequent
operations may become faulty. This process explains what is last-writer-wins. To resolve the
issues that are caused by last-writer-wins, you must ensure the atomicity of the operations of
accessing and updating string data. In other words, you must convert the string data of the
shared resources into atomic variables. To do this, you can implement high-performance
optimistic locking by using the TairString data structure. This data structure is offered by the
performance-enhanced instances of ApsaraDB for Redis Enhanced Edition (Tair).

ApsaraDB for Redis Best Pract ices · Best Pract ices for Redis Enhanced Edit ion

> Document Version:20200901 15

Implement optimistic locking based on TairString
TairString, also known as an extended string (exString), is a string data structure that carries a
version number. Native Redis strings consist of only keys and values. TairString data consists of
keys, values, and version numbers. Therefore, TairString is more suitable for optimistic locking.
For more information about TairString commands, see TairString commands.

Note The TairString data structure is different from the native Redis string data
structure. Two sets of commands are provided for the two data structures. You can use only
one set of the commands in a system.

TairString has the following features:

A version number is provided for each key. The version number indicates the current version of
a key. If you run the EXSET command to create a key, the default version number of the key is
1.
If you run the EXGET command for a specified key, you can retrieve the values of two fields:
value and version.
Before you update a TairString value, the version is verified. If the verification fails, the
following error message is returned: ERR update version is stale .

After the TairString value is updated, the version number is automatically incremented by 1.
TairString integrates all the features of native Redis strings except bit operations.

Due to these features, the lock mechanism is native to TairString data. Therefore, TairString
provides an easy method for you to implement optimistic locking. An example is described as
follows:

while(true){

{value, version} = EXGET(key); // Retrieve the value and the version of the key.

value2 = update(...) ; // Save a new value to the value2 field.

ret = EXSET(key, value2, version); // Update the key and assign the return value to the ret variable.

if(ret == OK)

break; // If the return value is OK, the update is successful and the while loop exits.

else if (ret.contanis("version is stale"))

continue; // If the return value contains the "version is stale" error message, the update fails and the

while loop is repeated.

}

Note
If you delete TairString data and create new TairString data that has the same key as
the deleted TairString data, the key version of the new TairString data is 1. The new
TairString data does not inherit the key version of the deleted TairString data.
You can specify the ABS option to skip version verification and forcibly overwrite the
current version to update TairString data. For more information, see EXSET.

Best Pract ices · Best Pract ices for Redis Enhanced Edit ion ApsaraDB for Redis

16 > Document Version:20200901

https://help.aliyun.com/document_detail/145902.html#concept-2353550
https://help.aliyun.com/document_detail/145902.html#concept-2353550/section-vbp-rx3-ln9

Reduce resource consumption for optimistic locking
In the preceding sample code, if another client updates the shared resource after you run the
EXGET command, you receive an update failure message and the while loop is repeated. The
EXGET command is repeatedly run to retrieve the value and the version of the shared resource
before the update is successful. As a result, two I/O operations are performed to access Redis in
each while loop. However, by using the EXCAS command of TairString, you only need to send one
access request in each while loop. This results in a significant decrease in the consumption of
system resources and improves service performance in high concurrency scenarios.

When you run the EXCAS command, you can specify a version number in the command to verify
the version. If the verification is successful, the TairString value is updated. If the verification
fails, the following three elements are returned:

 update version is stale

value
version

If the update fails, the command returns the current version of the TairString data. You do not
have to run another query to retrieve the current version, and only one access request is
required for each while loop. An example is described as follows:

while(true){

{ret, value, version} = excas(key, new_value, old_version) // Use the CAS command to replace an origin

al value with a new value.

if(ret == OK)

break; // If the return value is OK, the update is successful and the while loop exits.

else (if ret.contanis("update version is stale")) // If the return value contains the "update version is st

ale" error message, the update fails. The values of the two variables are updated: value and old_versi

on.

update(value);

old_version = version;

}

In flash sale scenarios where the purchase time or the quantity is limited, you have to handle
traffic peaks that occur before and after the flash sales. You also have to prevent the accepted
purchase orders from exceeding the upper limit. To handle these challenges, performance-
enhanced instances of ApsaraDB for Redis Enhanced Edition (Tair) offer the TairString data
structure that provides a simple and efficient rate limiter. You can use the rate limiter to prevent
the accepted purchase orders from exceeding the upper limit. The solutions described in this
topic are also applicable to other scenarios where rate or traffic limiting and throttling are
required.

1.4. Rate limiter

ApsaraDB for Redis Best Pract ices · Best Pract ices for Redis Enhanced Edit ion

> Document Version:20200901 17

https://help.aliyun.com/document_detail/145902.html#concept-2353550/section-eaj-ag8-jrf

Rate limiter for flash sales
Based on the integration with Alibaba Tair, performance-enhanced instances of ApsaraDB for
Redis Enhanced Edition (Tair) provides the TairString data structure. TairString is more powerful
than native Redis strings. TairString offers all the features of native Redis strings except bit
operations.

The EXINCRBY and EXINCRBYFLOAT commands of TairString have similar functions to the INCRBY
and INCRBYFLOAT commands of native Redis strings. You can use these commands to increment
or decrement values. The EXINCRBY and EXINCRBYFLOAT commands support more options than
the two commands of the native Redis strings. These options include EX, NX, VER, MIN, and MAX.
For more information, see TairString commands. The solution described in this topic uses MIN and
MAX options.

Option Description

MIN Specifies the minimum TairString value.

MAX Specifies the maximum TairString value.

If you use native Redis strings to handle the challenges of flash sales, you have to implement
complex code logic and handle management difficulties. This may easily cause excess purchase
orders in flash sales. To be more specific, users receive prompts of successful purchases after all
the items are sold out in flash sales, which causes negative effects. TairString allows you to
compile and run simple code to limit the exact number of purchase orders. The pseudocode is
described as follows:

if(EXINCRBY(key_iphone, -1, MIN:0) == "would overflow")

run_out();

Best Pract ices · Best Pract ices for Redis Enhanced Edit ion ApsaraDB for Redis

18 > Document Version:20200901

https://help.aliyun.com/document_detail/145902.html#concept-2353550
https://help.aliyun.com/document_detail/145902.html#concept-2353550

Counters for rate limiting
Similar to Rate limiter for flash sales, you can specify the MAX option of the EXINCRBY command
to implement counters for rate limiting. The pseudocode is described as follows:

if(EXINCRBY(rate_limitor, 1, MAX:1000) == "would overflow")

traffic_control();

Counters for rate limiting can be applied to various scenarios. For example, you can use the
counters to limit the number of concurrent requests, the access frequency, and the number of
password changes. For example, in concurrency limiting scenarios, the number of concurrent
requests unexpectedly exceeds the system performance threshold. To prevent service crashes
and serious issues, you can use a rate limiter to control the number of concurrent requests. This
offers an appropriate temporary solution. This solution ensures that the system responds to the
concurrent requests in a timely manner if the number of the concurrent requests does not
exceed the performance threshold. The EXINCRBY command of TairString allows you to compile
simple code to set a rate limiter for concurrent requests. The sample code is described as
follows:

public boolean tryAcquire(Jedis jedis,String rateLimitor,int limiter){

try {

jedis.getClient().sendCommand(TairCommand.EXINCRBY,rateLimitor,"1","EX","1","MAX",String.valueOf(li

miter)); // Set a rate limiter.

jedis.getClient().getIntegerReply();

return true;

}catch (Exception e){

if(e.getMessage().contains("increment or decrement would overflow")){ // Check whether the result c

ontains error messages.

return false;

}

throw e;

}

}

Performance-enhanced instances of ApsaraDB for Redis Enhanced Edition (Tair) provide the
TairHash data structure. TairHash supports efficient and dynamic expiration policies, and these
policies provide a quick method for you to release memory. However, the adoption of these
policies increases the memory consumption of TairHash data. This topic describes the memory
consumption and the two expiration policies of TairHash data. This helps you handle the
tradeoff between data expiration efficiency and memory consumption, and reduce service costs.

1.5. TairHash memory consumption and
expiration policies

ApsaraDB for Redis Best Pract ices · Best Pract ices for Redis Enhanced Edit ion

> Document Version:20200901 19

https://help.aliyun.com/document_detail/145902.html#concept-2353550/section-r3q-c56-81d

Memory consumption comparison between native Redis hashes and
TairHash data
If no expiration time is specified, the amount of memory consumed by native Redis hashes is
similar to that consumed by TairHash data. The following tables provide testing details.

Test 1

Test environment

Item Test command Test condition

TairHash EXHSET tairhashkey field value The size of the field is 1 KB.

The size of the value is 1 KB.

The append only file (AOF) and
Redis database backup (RDB)
persistence policies are disabled.

The instance contains only one
node. No replicas are available.

Native Redis
hashes HSET hashkey field value

Test results

Number of fields Memory consumed by
TairHash data

Memory consumed by native
Redis hashes

10000 29.79 MB 29.79 MB

100000 297.02 MB 297.02 MB

1000000 2.9 GB 2.9 GB

Test 2

Test environment

Item Test command Test condition

TairHash EXHSET tairhashkey field value The size of the field is 64 bytes.

The size of the value is 10 KB.

The AOF and RDB persistence
policies are disabled.

The instance contains only one
node. No replicas are available.

Native Redis
hashes HSET hashkey field value

Test results

Number of fields Memory consumed by
TairHash data

Memory consumed by native
Redis hashes

Best Pract ices · Best Pract ices for Redis Enhanced Edit ion ApsaraDB for Redis

20 > Document Version:20200901

https://help.aliyun.com/document_detail/145970.html#concept-2353551/section-mhs-w3x-a5g

10000 104.17 MB 103.79 MB

100000 1.02 GB 1.02 GB

1000000 10.19 GB 10.19 GB

Number of fields Memory consumed by
TairHash data

Memory consumed by native
Redis hashes

Test 3

Test environment

Item Test command Test condition

TairHash EXHSET tairhashkey field value The size of the field is 64 bytes.

The size of the value is 64 bytes.

The AOF and RDB persistence
policies are disabled.

The instance contains only one
node. No replicas are available.

Native Redis
hashes HSET hashkey field value

Test results

Number of fields Memory consumed by
TairHash data

Memory consumed by native
Redis hashes

10000 2.39 MB 2.02 MB

100000 25.33 MB 19.31 MB

1000000 253.29 MB 191.1 MB

The test results show that if you do not specify expiration policies, the amount of memory
consumed by TairHash data is similar to or the same as that consumed by native Redis hashes. If
you specify the expiration time for the fields of TairHash data, expiration policies affect the
memory consumption of TairHash data.

ApsaraDB for Redis Best Pract ices · Best Pract ices for Redis Enhanced Edit ion

> Document Version:20200901 21

Expiration policies supported by TairHash
Similar to native Redis hashes, TairHash supports two expiration policies: active expiration and
passive expiration.

Active expiration

The active expiration policy of TairHash differs from that of native Redis hashes.

The native Redis service runs periodic tasks to select a key at random from the keys where
the expiration time is specified and to check whether the key expires. If the key expires, the
key is deleted. If the key does not expire, the key is retained. This results in an inefficient
process.
Performance-enhanced instances of ApsaraDB for Redis Enhanced Edition (Tair) also run
periodic tasks to check the TairHash fields where the expiration time is specified. If a field
expires, the field is deleted to release the consumed memory. In addition, performance-
enhanced instances of ApsaraDB for Redis Enhanced Edition (Tair) use min heaps to sort the
fields based on the expiration time of the fields. The system always selects the field that
expires before the other fields expire. The active expiration policy of TairHash is more
efficient than that of native Redis hashes, but requires additional memory. For more
information, see Memory consumption caused by active expiration.

Passive expiration

The passive expiration policy of TairHash is similar to that of native Redis hashes. If a client
accesses an expired field of TairHash data, the passive expiration policy is triggered and the
expired field is deleted to release the consumed memory. The following example describes
the passive expiration process of TairHash data.

i. A field of TairHash data expired a short of period ago, and is not deleted in an active way.
At this time, a client runs the EXHGET command to retrieve the field.

ii. An ApsaraDB for Redis Enhanced Edition (Tair) instance determines whether the field
expires.

iii. The field has expired. Therefore, the instance deletes the field to release the consumed
memory, and returns a null value to the client.

The passive expiration policy requires no additional memory. However, if an expired field is not
accessed by clients, the memory consumed by the expired field cannot be released.

For more information about the rules that determine when the two expiration policies take
effect, see Rules that determine when the expiration policies take effect. In actual business
scenarios, we recommend that you combine active expiration and passive expiration policies. For
more information, see Best practices.

Best Pract ices · Best Pract ices for Redis Enhanced Edit ion ApsaraDB for Redis

22 > Document Version:20200901

Rules that determine when the expiration policies take effect
The expiration policies of TairHash data take effect based on the following rules:

By default, active expiration and passive expiration are enabled at the same time.
Passive expiration takes effect for all the fields where the expiration time is specified in
TairHash data.
Active expiration takes effect for individual fields. If you run a command to specify the
expiration time for a field of TairHash data, you can add the NOACTIVE option to disable active
expiration for the field.

Note For more information about TairHash commands, see TairHash commands.

If you do not add the NOACTIVE option when you specify the expiration time, active expiration
takes effect and requires additional memory. For more information about the additional memory
consumption that is caused by active expiration, see Memory consumption caused by active
expiration.

Memory consumption caused by active expiration
Performance-enhanced instances of ApsaraDB for Redis Enhanced Edition (Tair) use min heaps
to sort all the fields of TairHash data based on the expiration time of the fields. The instances
also create indexes for the fields. After you specify the expiration time for a field of TairHash
data, an ApsaraDB for Redis Enhanced Edition (Tair) instance creates a heap node and adds the
heap node to a min heap. The heap node stores the field indexes that contain the key
information. This allows you to find and delete the corresponding TairHash data and fields after
the heap node expires. As a result, the memory that is consumed by the expired TairHash data
and fields is released. However, the system cannot immediately release the memory consumed
by the expired keys and fields after the command is run. This is because the heap node
references the field indexes that contain the key information. Therefore, if you use active
expiration, the following additional memory is required:

The memory consumed by the heap node
The memory consumed by the keys
The memory consumed by the fields where the expiration time is specified

The following tables about comparison testing offer an intuitive display of the memory
consumption of TairHash data. You can view the memory consumption of TairHash data in
different test scenarios: active expiration and passive expiration.

Compare the memory consumption of TairHash in different test
scenarios: active expiration and passive expiration

Test 1

Test environment

Item Test command Test condition

ApsaraDB for Redis Best Pract ices · Best Pract ices for Redis Enhanced Edit ion

> Document Version:20200901 23

https://help.aliyun.com/document_detail/145970.html#concept-2353551

TairHash data
where no
expiration time
is specified

 EXHSET tairhashkey field value The size of the field is 1 KB.

The size of the value is 1 KB.

The AOF and RDB persistence
policies are disabled.

The instance contains only one
node. No replicas are available.

TairHash data
where the
expiration time
is specified

 EXHSET tairhashkey field value EX 1

000

Item Test command Test condition

Test results

Number of fields
Memory consumed by the
TairHash data where no
expiration time is specified

Memory consumed by the
TairHash data where the
expiration time is specified

10000 29.79 MB 46.03 MB

100000 297.02 MB 460.36 MB

1000000 2.9 GB 4.6 GB

Test 2

Test environment

Item Test command Test condition

TairHash data
where no
expiration time
is specified

 EXHSET tairhashkey field value The size of the field is 64 bytes.

The size of the value is 64 bytes.

The AOF and RDB persistence
policies are disabled.

The instance contains only one
node. No replicas are available.

TairHash data
where the
expiration time
is specified

 EXHSET tairhashkey field value EX 1

000

Test results

Number of fields Memory consumed by
TairHash data

Memory consumed by native
Redis hashes

10000 2.39 MB 4.38 MB

100000 25.33 MB 45.16 MB

1000000 253.29 MB 451.66 MB

Test 3

Test environment

Best Pract ices · Best Pract ices for Redis Enhanced Edit ion ApsaraDB for Redis

24 > Document Version:20200901

Item Test command Test condition

TairHash data
where no
expiration time
is specified

 EXHSET tairhashkey field value
The size of the field is 64 bytes.

The size of the value is 64 bytes.

The AOF and RDB persistence
policies are disabled.

The instance contains only one
node. No replicas are available.

When a command is run to specify
the expiration time, the NOACTIVE
option is added to disable active
expiration.

TairHash data
where the
expiration time
is specified

 EXHSET tairhashkey field value EX 1

000 NOACTIVE

Test results

Number of fields Memory consumed by
TairHash data

Memory consumed by native
Redis hashes

10000 2.39 MB 2.39 MB

100000 25.33 MB 25.33 MB

1000000 253.29 MB 253.29 MB

ApsaraDB for Redis Best Pract ices · Best Pract ices for Redis Enhanced Edit ion

> Document Version:20200901 25

Best practices
TairHash supports the NOACTIVE option for the following commands:

EXHSET
EXHEXPIRE
EXHEXPIREAT
EXHPEXPIRE
EXHPEXPIREAT
EXHINCRBY
EXHINCRBYFLOAT

The Rules that determine when the expiration policies take effect section describes the rules
that determine when the expiration policies take effect. Based on these rules, if you run the
preceding commands to specify the expiration time for a field of TairHash data, you can add the
NOACTIVE option to disable active expiration. If you do not add this option, active expiration is
enabled. If you add the NOACTIVE option, active expiration does not apply to the target field
and no additional memory is required. For more information, see Additional memory caused by
active expiration. However, if active expiration is disabled and an expired field is not accessed
by clients, the system cannot release the memory consumed by the expired field.

Notice If you run the EXHGETALL, EXHKEYS, EXHVALS, or EXHSCAN command to access
TairHash data, passive expiration is not triggered. As a result, the system does not delete
the expired fields to release the memory that is consumed by these fields. However, the
system filters out the expired fields from the outputs of these commands to provide a quick
response for clients and reduce the risks of slow queries.

We recommend that you determine whether to use active expiration or on which data active
expiration takes effect based on your business characteristics. The following examples help you
determine whether to use and how to use active expiration.

If the data validity time is short and the data volume increases at a fast speed, we
recommend that you use active expiration. By using active expiration, the system can delete
the expired data at the earliest opportunity to release the memory that is consumed by the
expired data. The released memory can be used to store new data.
If the data validity time is long and the data volume increases at a slow speed, we
recommend that you do not use active expiration if possible. This reduces the total memory
consumption.
If cold data is clearly distinguished from hot data, you can apply active expiration on cold data
to improve the memory release efficiency. However, if you write hot data, we recommend that
you add the NOACTIVE option to disable active expiration. This helps you to improve the
expiration efficiency and reduce the memory consumption.

Best Pract ices · Best Pract ices for Redis Enhanced Edit ion ApsaraDB for Redis

26 > Document Version:20200901

You can efficiently migrate data from RDS MySQL or on-premises MySQL databases to ApsaraDB
for Redis by using the pipeline feature of ApsaraDB for Redis. You can also migrate data from RDS
databases that use other engines to ApsaraDB for Redis based on the steps described in this
topic.

Scenarios
You can use ApsaraDB for Redis as a cache between your applications and databases to expand
the service capabilities of traditional relational databases. In this way, you can optimize the
business ecosystem. This is one of the classic application scenarios of ApsaraDB for Redis. This
service stores hot data in the business. You can easily obtain common data in ApsaraDB for Redis
from your applications, or use ApsaraDB for Redis to save sessions of active users in interactive
applications. This service can greatly reduce the load on the backend relational database and
improve the user experience.

To use ApsaraDB for Redis as a cache, you must first transmit data from a relational database to
ApsaraDB for Redis. You cannot directly transmit tables in a relational database to the ApsaraDB
for Redis database that stores data in a key-value structure. Before the migration, you must
convert the source data to a special structure. This topic describes how to use the native tool to
easily and efficiently migrate tables from MySQL databases to ApsaraDB for Redis. You can use
the pipeline feature of ApsaraDB for Redis to transmit data in MySQL tables to hash tables of
ApsaraDB for Redis.

Note This topic describes Alibaba Cloud RDS MySQL instance as the migration source
and ApsaraDB for Redis instance as the migration destination. In this example, you install
the Linux environment that runs the migration command on the ECS instance. These
instances run in the same VPC, so they can interconnect with each other.

Similarly, you can migrate data from other relational databases to ApsaraDB for Redis. In this
migration, you need to extract data from the source database, convert the data format, and
then transmit the data to the heterogeneous database. This migration method is also suitable
for data migration between other heterogeneous databases.

2.Best Practices for All Editions
2.1. Migrate MySQL data to ApsaraDB for
Redis

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 27

Prerequisites
You have created an RDS MySQL instance as the source where table data is available for
migration.
You have created an ApsaraDB for Redis instance as the destination.
You have created an ECS instance that runs the Linux system.
These instances run in the same VPC of the same region.
You have added the internal IP address of the ECS instance to the whitelists of RDS MySQL and
ApsaraDB for Redis instances.
You have installed MySQL and Redis databases on the ECS instance to extract, convert, and
transmit data.

Note These prerequisites apply only when you migrate data in Alibaba Cloud. If you
want to migrate data in your on-premises environment, make sure that the Linux server that
performs migration can connect to the source relational database and the destination
ApsaraDB for Redis database.

Data before migration
This topic describes how to migrate the test data stored in the company table of the custm_info
database. The company table contains test data as shown in the following table.

This table includes six columns. After the migration, the value of the id column in the MySQL
table changes to the key of the hash table in ApsaraDB for Redis. The column names of other
columns change to the fields of the hash table, and the values of these columns change to the
values of the corresponding fields. You can modify the scripts and commands for the migration
according to actual scenarios.

Procedure
1. Analyze the source data structure, create the following migration script on the ECS

instance, and then save the script to the mysql_to_redis.sql file.

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

28 > Document Version:20200901

SELECT CONCAT(

"*12\r\n", #The number 12 specifies the number of the following fields, and depends on the data s

tructure of the MySQL table.

'$', LENGTH('HMSET'), '\r\n', #HMSET specifies the command that you use when writing data to Aps

araDB for Redis.

'HMSET', '\r\n',

'$', LENGTH(id), '\r\n', # id specifies the first field after you run the HMSET command for fields. This

field changes to the key of the hash table in ApsaraDB for Redis.

id, '\r\n',

'$', LENGTH('name'), '\r\n', # 'name' is passed to the hash table as a string field. Other fields such a

s 'sdate' are processed in the same way.

'name', '\r\n',

'$', LENGTH(name), '\r\n', #The name variable specifies the company name in the MySQL table. Thi

s variable changes to the value of the field generated by the 'name' parameter. Other fields such

as 'sdate' are processed in the same way.

name, '\r\n',

'$', LENGTH('sdate'), '\r\n',

'sdate', '\r\n',

'$', LENGTH(sdate), '\r\n',

sdate, '\r\n',

'$', LENGTH('email'), '\r\n',

'email', '\r\n',

'$', LENGTH(email), '\r\n',

email, '\r\n',

'$', LENGTH('domain'), '\r\n',

'domain', '\r\n',

'$', LENGTH(domain), '\r\n',

domain, '\r\n',

'$', LENGTH('city'), '\r\n',

'city', '\r\n',

'$', LENGTH(city), '\r\n',

city, '\r\n'

)

FROM company AS c

2. Run the following command on the ECS instance to migrate data.

mysql -h <MySQL host> -P <MySQL port> -u <MySQL username> -D <MySQL database name> -p --s

kip-column-names --raw < mysql_to_redis.sql | redis-cli -h <Redis host> --pipe -a <Redis password

>

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 29

Options

Option Description Example

-h

The endpoint of the RDS MySQL database.

Note This is the -h option following

mysql .

rm-
bp1xxxxxxxxxxxx.mysql.rds.al
iyuncs.com

Note Use the
endpoint for connecting
the Linux server to the
RDS MySQL database.

-P The service port of the RDS MySQL database. 3306

-u The username of the RDS MySQL database. testuser

-D The database where the MySQL table that you
want to migrate is located. mydatabase

-p

The password for connecting to the RDS
MySQL database.

Note

If you do not have any password,
you do not need to set this option.

To improve security, you can enter
-p and do not have the password
following this option. You can run
the command and then enter the
password according to the
command-line interface (CLI)
prompt.

Mysqlpwd233

--skip-
column-
names

The column name is not written into the query
result. No value is required.

--raw The output column value is not escaped. No value is required.

-h

Specifies the endpoint of ApsaraDB for Redis.

Note This is the -h option following

redis-cli .

r-
bp1xxxxxxxxxxxxx.redis.rds.al
iyuncs.com

Note Use the
endpoint for connecting
the Linux server to the
ApsaraDB for Redis
database.

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

30 > Document Version:20200901

--pipe Use the pipeline feature of ApsaraDB for Redis
to transmit data. No value is required.

-a

The password for connecting to ApsaraDB for
Redis.

Note If you do not have any
password or do not need a password, you
do not need to set this option.

Redispwd233

Option Description Example

Sample code

Note In the result, errors indicates the number of errors that occur when the
system runs the command, and replies indicates the number of responses the system
returns. If the value of errors is 0 and the value of replies equals the number of items
in the MySQL table, the migration is completed.

Data after migration
After the migration, one item in the MySQL table corresponds to one item in the hash table of
ApsaraDB for Redis. You can run the HGETALL command to query an item and view the following
result.

You can adjust the migration solution based on the query method required in actual scenarios.
For example, you can convert other columns in the MySQL table to the keys in the hash table
and convert the id column to a field, or ignore the id column.

Compared with Redis, the features of ApsaraDB for Redis are similar. You can use ApsaraDB for
Redis to create a ranking list for an online game.

Sample code

import java.util.ArrayList;

import java.util.List;

2.2. Online player score ranking

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 31

import java.util.List;

import java.util.Set;

import java.util.UUID;

import redis.clients.jedis.Jedis;

import redis.clients.jedis.Tuple;

public class GameRankSample {

static int TOTAL_SIZE = 20;

public static void main(String[] args)

{

//Connection information. This information can be obtained from the console

String host = "xxxxxxxxxx.m.cnhz1.kvstore.aliyuncs.com";

int port = 6379;

Jedis jedis = new Jedis(host, port);

try {

//Instance password

String authString = jedis.auth("password");//password

if (! authString.equals("OK"))

{

System.err.println("AUTH Failed: " + authString);

return;

}

//Key

String key = "Game name: Keep Running, Ali!" ; ;

//Clears any existing data

jedis.del(key);

//Generates several simulated players

List<String> playerList = new ArrayList<String>();

for (int i = 0; i < TOTAL_SIZE; ++i)

{

//Randomly generates an ID for each player

playerList.add(UUID.randomUUID().toString());

}

System.out.println("Inputs all players ");

//Records the score for each player

for (int i = 0; i < playerList.size(); i++)

{

//Randomly generates numbers as the scores of each simulated player

int score = (int)(Math.random()*5000);

String member = playerList.get(i);

System.out.println("Player ID:" + member + ", Player Score: " + score);

//Adds the player ID and score to SortedSet of the corresponding key

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

32 > Document Version:20200901

//Adds the player ID and score to SortedSet of the corresponding key

jedis.zadd(key, score, member);

}

//Prints out the ranking list of all players

System. out. println ();

System.out.println(" "+key);

System.out.println(" Ranking list of all players");

//Obtains the sorted list of players from SortedSet of the corresponding key

Set<Tuple> scoreList = jedis.zrevrangeWithScores(key, 0, -1);

for (Tuple item : scoreList) {

System.out.println("Player ID:"+item.getElement()+", Player Score:"+Double.valueOf(item.getScore()).i

ntValue());

}

//Prints out the top five players

System. out. println ();

System.out.println(" "+key);

System.out.println(" Top players");

scoreList = jedis.zrevrangeWithScores(key, 0, 4);

for (Tuple item : scoreList) {

System.out.println("Player ID:"+item.getElement()+", Player Score:"+Double.valueOf(item.getScore()).i

ntValue());

}

//Prints out a list of specific players

System. out. println ();

System.out.println(" "+key);

System.out.println(" Players with scores from 1,000 to 2,000");

//Obtains a list of players with scores from 1,000 to 2,000 from SortedSet of the corresponding key

scoreList = jedis.zrangeByScoreWithScores(key, 1000, 2000);

for (Tuple item : scoreList) {

System.out.println("Player ID:"+item.getElement()+", Player Score:"+Double.valueOf(item.getScore()).i

ntValue());

}

} catch (Exception e) {

e.printStackTrace();

}finally{

jedis.quit();

jedis.close();

}

}

}

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 33

Results
After you access the ApsaraDB for Redis instance with the correct address and password and run
the Java code, the following output is displayed:

Input all players

Player ID: 9193e26f-6a71-4c76-8666-eaf8ee97ac86. Score: 3,860

Player ID: db03520b-75a3-48e5-850a-071722ff7afb. Score: 4,853

Player ID: d302d24d-d380-4e15-a4d6-84f71313f27a. Score: 2,931

Player ID: bee46f9d-4b05-425e-8451-8aa6d48858e6. Score: 1,796

Player ID: ec24fb9e-366e-4b89-a0d5-0be151a8cad0. Score: 2,263

Player ID: e11ecc2c-cd51-4339-8412-c711142ca7aa. Score: 1,848

Player ID: 4c396f67-da7c-4b99-a783-25919d52d756. Score: 958

Player ID: a6299dd2-4f38-4528-bb5a-aa2d48a9f94a. Score: 2,428

Player ID: 2e4ec631-1e4e-4ef0-914f-7bf1745f7d65. Score: 4,478

Player ID: 24235a85-85b9-476e-8b96-39f294f57aa7. Score: 1,655

Player ID: e3e8e1fa-6aac-4a0c-af80-4c4a1e126cd1. Score: 4,064

Player ID: 99bc5b4f-e32a-4295-bc3a-0324887bb77e. Score: 4,852

Player ID: 19e2aa6b-a2d8-4e56-bdf7-8b59f64bd8e0. Score: 3,394

Player ID: cb62bb24-1318-4af2-9d9b-fbff7280dbec. Score: 3,405

Player ID: ec0f06da-91ee-447b-b935-7ca935dc7968. Score: 4,391

Player ID: 2c814a6f-3706-4280-9085-5fe5fd56b71c. Score: 2,510

Player ID: 9ee2ed6d-08b8-4e7f-b52c-9adfe1e32dda. Score: 63

Player ID: 0293b43a-1554-4157-a95b-b78de9edf6dd. Score: 1,008

Player ID: 674bbdd1-2023-46ae-bbe6-dfcd8e372430. Score: 2,265

Player ID: 34574e3e-9cc5-43ed-ba15-9f5405312692. Score: 3,734

Game name: Keep Running, Ali!

Ranking list of all players

Player ID: db03520b-75a3-48e5-850a-071722ff7afb. Score: 4,853

Player ID: 99bc5b4f-e32a-4295-bc3a-0324887bb77e. Score: 4,852

Player ID: 2e4ec631-1e4e-4ef0-914f-7bf1745f7d65. Score: 4,478

Player ID: ec0f06da-91ee-447b-b935-7ca935dc7968. Score: 4,391

Player ID: e3e8e1fa-6aac-4a0c-af80-4c4a1e126cd1. Score: 4,064

Player ID: 9193e26f-6a71-4c76-8666-eaf8ee97ac86. Score: 3,860

Player ID: 34574e3e-9cc5-43ed-ba15-9f5405312692. Score: 3,734

Player ID: cb62bb24-1318-4af2-9d9b-fbff7280dbec. Score: 3,405

Player ID: 19e2aa6b-a2d8-4e56-bdf7-8b59f64bd8e0. Score: 3,394

Player ID: d302d24d-d380-4e15-a4d6-84f71313f27a. Score: 2,931

Player ID: 2c814a6f-3706-4280-9085-5fe5fd56b71c. Score: 2,510

Player ID: a6299dd2-4f38-4528-bb5a-aa2d48a9f94a. Score: 2,428

Player ID: 674bbdd1-2023-46ae-bbe6-dfcd8e372430. Score: 2,265

Player ID: ec24fb9e-366e-4b89-a0d5-0be151a8cad0. Score: 2,263

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

34 > Document Version:20200901

Player ID: e11ecc2c-cd51-4339-8412-c711142ca7aa. Score: 1,848

Player ID: bee46f9d-4b05-425e-8451-8aa6d48858e6. Score: 1,796

Player ID: 24235a85-85b9-476e-8b96-39f294f57aa7. Score: 1,655

Player ID: 0293b43a-1554-4157-a95b-b78de9edf6dd. Score: 1,008

Player ID: 4c396f67-da7c-4b99-a783-25919d52d756. Score: 958

Player ID:9ee2ed6d-08b8-4e7f-b52c-9adfe1e32dda. Score:63

Game name: Keep Running, Ali!

Top players

Player ID: db03520b-75a3-48e5-850a-071722ff7afb. Score: 4,853

Player ID: 99bc5b4f-e32a-4295-bc3a-0324887bb77e. Score: 4,852

Player ID: 2e4ec631-1e4e-4ef0-914f-7bf1745f7d65. Score: 4,478

Player ID: ec0f06da-91ee-447b-b935-7ca935dc7968. Score: 4,391

Player ID: e3e8e1fa-6aac-4a0c-af80-4c4a1e126cd1. Score: 4,064

Game name: Keep Running, Ali!

Players scored between 1,000 and 2,000

Player ID: 0293b43a-1554-4157-a95b-b78de9edf6dd. Score: 1,008

Player ID: 24235a85-85b9-476e-8b96-39f294f57aa7. Score:1,655

Player ID: bee46f9d-4b05-425e-8451-8aa6d48858e6. Score: 1,796

Player ID: e11ecc2c-cd51-4339-8412-c711142ca7aa. Score: 1,848

You can use ApsaraDB for Redis to perform a correlation analysis on E-commerce store items.

Scenario introduction
The correlation between items is the case where multiple items are added to the same shopping
cart. The analysis results are crucial for the E-commerce industry and can be used to analyze
shopping behaviors. For example:

On the details page of a specific item, recommend related items to the user who is browsing
this page.
Recommend related items to a user who just added an item to the shopping cart.
Place highly correlated items together on the shelf.

You can use ApsaraDB for Redis to create a sorted set for each item. For a specific item, the set
consists of items that are added with this item to the shopping cart. Members of the set are
scored based on how often they appear in the same cart with that specific item. Each time item
A and item B appear in the same shopping cart, the respective sorted sets for item A and item B
in ApsaraDB for Redis are updated.

Sample code

package shop.kvstore.aliyun.com;

import java.util.Set;

2.3. Correlation analysis on E-commerce
store items

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 35

import java.util.Set;

import redis.clients.jedis.Jedis;

import redis.clients.jedis.Tuple;

public class AliyunShoppingMall {

public static void main(String[] args)

{

//ApsaraDB for Redis connection. This information can be obtained from the console

String host = "xxxxxxxx.m.cnhza.kvstore.aliyuncs.com";

int port = 6379;

Jedis jedis = new Jedis(host, port);

try {

//ApsaraDB for Redis instance password

String authString = jedis.auth("password");//password

if (! authString.equals("OK"))

{

System.err.println("AUTH Failed: " + authString);

return;

}

//Products

String key0="Alibaba Cloud: Product: Beer";

String key1 = "Alibaba Cloud: Product: Chocolate";

String key2 = "Alibaba Cloud: Product: Cola";

String key3 = "Alibaba Cloud: Product: Gum";

String key4 = "Alibaba Cloud: Product: Beef Jerky";

String key5="Alibaba Cloud: Product: Chicken Wings";

final String[] aliyunProducts=new String[]{key0,key1,key2,key3,key4,key5};

//Initialize to clear the possible existing data

for (int i = 0; i < aliyunProducts.length; i++) {

jedis.del(aliyunProducts[i]);

}

//Simulated shopping behaviors

for (int i = 0; i < 5; i++) { //Simulates the shopping behaviors of multiple customers

customersShopping(aliyunProducts,i,jedis);

}

System.out.println();

//Uses ApsaraDB for Redis to generate the correlated relationship between items

for (int i = 0; i < aliyunProducts.length; i++) {

System.out.println(">>>>>>>>>>and"+aliyunProducts[i]+"was purchased with <<<<<<<<<<<<<<<");

Set<Tuple> relatedList = jedis.zrevrangeWithScores(aliyunProducts[i], 0, -1);

for (Tuple item : relatedList) {

System.out.println("Item name:"+item.getElement()+", Purchased together times:"+Double.valueOf(ite

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

36 > Document Version:20200901

m.getScore()).intValue());

}

System.out.println();

}

} catch (Exception e) {

e.printStackTrace();

}finally{

jedis.quit();

jedis.close();

}

}

private static void customersShopping(String[] products, int i, Jedis jedis) {

//Simulates three simple shopping behaviors and randomly selects one as the behavior of the user

int bought=(int)(Math.random()*3);

if(bought==1){

//Simulated business logic: the user has purchased the following products:

System.out.println("User"+i+"purchased"+products[0]+","+products[2]+","+products[1]);

//Records the correlations between the items to SortSet in ApsaraDB for Redis

jedis.zincrby(products[0], 1, products[1]);

jedis.zincrby(products[0], 1, products[2]);

jedis.zincrby(products[1], 1, products[0]);

jedis.zincrby(products[1], 1, products[2]);

jedis.zincrby(products[2], 1, products[0]);

jedis.zincrby(products[2], 1, products[1]);

}else if(bought==2){

//Simulated business logic: the user has purchased the following products

System. out. println ("user" + i + "purchased" + products [4] + ", "+ products [2] +", "+ products [3]);

//Records the correlations between the items to SortSet in ApsaraDB for Redis

jedis.zincrby(products[4], 1, products[2]);

jedis.zincrby(products[4], 1, products[3]);

jedis.zincrby(products[3], 1, products[4]);

jedis.zincrby(products[3], 1, products[2]);

jedis.zincrby(products[2], 1, products[4]);

jedis.zincrby(products[2], 1, products[3]);

}else if(bought==0){

//Simulated business logic: the user has purchased the following products:

System.out.println("user"+i+"purchased"+products[1]+","+products[5]);

//Records the correlations between the items to SortSet in ApsaraDB for Redis

jedis.zincrby(products[5], 1, products[1]);

jedis.zincrby(products[1], 1, products[5]);

}

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 37

}

}

}

Results
After you access the ApsaraDB for Redis instance with the correct address and password and run
the Java code, the following output is displayed:

User 0 purchased Alibaba Cloud: Product: Chocolate, Alibaba Cloud: Product: Chicken Wings

User 1 purchased Alibaba Cloud: Product: Beef Jerky, Alibaba Cloud: Product: Cola, Alibaba Cloud: Pro

duct: Gum

User 2 purchased Alibaba Cloud: Product: Beer, Alibaba Cloud: Product: Cola, Alibaba Cloud: product:

Chocolate

User 3 purchased Alibaba Cloud: Product: Beef Jerky, Alibaba Cloud: Product: Cola, Alibaba Cloud: Pro

duct: Gum

User 4 purchased Alibaba Cloud: Product: Chocolate, Alibaba Cloud: Product: Chicken Wings

>>>>>>>>>>Alibaba Cloud: Product: Beer was purchased with<<<<<<<<<<<<<<<

Item Name: Alibaba Cloud: Product: Chocolate. Purchased together times: 1

Item name: Alibaba Cloud: Product:Cola. Purchased together times: 1

>>>>>>>>>>Alibaba Cloud: Product: Chocolate was purchased with<<<<<<<<<<<<<<<<<<<<

Item name: Alibaba Cloud: Product: Chicken Wings. Purchased together times: 2

Item name: Alibaba Cloud: Product: Beer. Purchased together times: 1

Item name: Alibaba Cloud: Product: Cola. Purchased together times: 1

>>>>>>>>>>Alibaba Cloud: Product: Cola was purchased with<<<<<<<<<<<<<<<<<

Item name: Alibaba Cloud:Product: Beef Jerky. Purchased together times: 2

Item name: Alibaba Cloud: Product: Gum. Purchased together times: 2

Item name: Alibaba Cloud: Product: Chocolate. Purchased together times: 1

Item name: Alibaba Cloud: Product: Beer. Purchased together times: 1

>>>>>>>>>>Alibaba Cloud: Product: Gum was purchased with<<<<<<<<<<<<<<<<<<<<

Item name: Alibaba Cloud: Product: Beef Jerky. Purchased together times: 2

Item name: Alibaba Cloud: Product: Cola. Purchased together times: 2

>>>>>>>>>>Alibaba Cloud: Product: Beef Jerky was purchased with<<<<<<<<<<<<<<<

Item name: Alibaba Cloud: Product: Cola. Purchased together times: 2

Item name: Alibaba Cloud: Product: Gum. Purchased together times: 2

>>>>>>>>>>Alibaba Cloud: Product: Chicken Wings was purchased with<<<<<<<<<<<<<<

Item name: Alibaba Cloud: Product: Chocolate. Purchased together times: 2

Similar to Redis, ApsaraDB for Redis provides publishing (pub) and subscription (sub) features.
ApsaraDB for Redis allows multiple clients to subscribe to messages published by a client.

2.4. Publish and subscribe to messages

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

38 > Document Version:20200901

Scenario introduction
It must be noted that messages published using ApsaraDB for Redis are "non-persistent". This
means the message publisher is only responsible for publishing a message and does not save
previously sent messages, whether or not these messages were received. Thus, messages are
"lost once published". Message subscribers can only receive messages that are subscribed. They
will not receive the earlier messages in the channel.

In addition, the message publisher (publish client) does not necessarily connect to a server
exclusively. While publishing messages, you can perform other operations (for example, the List
operations) from the same client at the same time. However, the message subscriber (subscribe
client) needs to connect to a server exclusively. That is, during the subscription period, the client
may not perform any other operations. Rather, the operations are blocked while the client is
waiting for messages in the channel. Therefore, message subscribers must use a dedicated
server connection or thread (see the following example).

Sample code
For the message publisher (publish client)

package message.kvstore.aliyun.com;

import redis.clients.jedis.Jedis;

public class KVStorePubClient {

private Jedis jedis;

public KVStorePubClient(String host,int port, String password){

jedis = new Jedis(host,port);

//KVStore instance password

String authString = jedis.auth(password);

if (! authString.equals("OK"))

{

System.err.println("AUTH Failed: " + authString);

return;

}

}

public void pub(String channel,String message){

System. out. println ("> Publish> channel: "+ channel +"> message sent: "+ message);

jedis.publish(channel, message);

}

public void close(String channel){

System.out.println(" >>> PUBLISH End > Channel:"+channel+" > Message:quit");

//The message publisher stops sending by sending a “quit” message

jedis.publish(channel, "quit");

}

}

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 39

For the message subscriber (subscribe client)

package message.kvstore.aliyun.com;

import redis.clients.jedis.Jedis;

import redis.clients.jedis.JedisPubSub;

public class KVStoreSubClient extends Thread{

private Jedis jedis;

private String channel;

private JedisPubSub listener;

public KVStoreSubClient(String host,int port, String password){

jedis = new Jedis(host,port);

//ApsaraDB for Redis instance password

String authString = jedis.auth(password); //password

if (! authString.equals("OK"))

{

System.err.println("AUTH Failed: " + authString);

return;

}

}

public void setChannelAndListener(JedisPubSub listener,String channel){

this.listener=listener;

this.channel=channel;

}

private void subscribe(){

if(listener==null | | channel==null){

System.err.println("Error:SubClient> listener or channel is null");

}

System.out.println(" >>> SUBSCRIBE > Channel:"+channel);

System.out.println();

//When the recipient is listening for subscribed messages, the process is blocked until the quit messa

ge is received (passively) or the subscription is canceled actively

jedis.subscribe(listener, channel);

}

public void unsubscribe(String channel){

System.out.println(" >>> UNSUBSCRIBE > Channel:"+channel);

System.out.println();

listener.unsubscribe(channel);

}

@Override

public void run() {

try{

System.out.println();

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

40 > Document Version:20200901

System.out.println();

System.out.println("---------Subscription begins-------");

subscribe();

System.out.println("----------Subscription ends-------");

System.out.println();

}catch(Exception e){

e.printStackTrace();

}

}

}

For the message listener

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 41

package message.kvstore.aliyun.com;

import redis.clients.jedis.JedisPubSub;

public class KVStoreMessageListener extends JedisPubSub{

@Override

public void onMessage(String channel, String message) {

System.out.println(" <<< SUBSCRIBE< Channel:" + channel + " >Message received:" + message);

System.out.println();

//When a quit message is received, the subscription is canceled (passively)

if(message.equalsIgnoreCase("quit")){

this.unsubscribe(channel);

}

}

@Override

public void onPMessage(String pattern, String channel, String message) {

// TODO Auto-generated method stub

}

@Override

public void onSubscribe(String channel, int subscribedChannels) {

// TODO Auto-generated method stub

}

@Override

public void onUnsubscribe(String channel, int subscribedChannels) {

// TODO Auto-generated method stub

}

@Override

public void onPUnsubscribe(String pattern, int subscribedChannels) {

// TODO Auto-generated method stub

}

@Override

public void onPSubscribe(String pattern, int subscribedChannels) {

// TODO Auto-generated method stub

}

}

Sample main process

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

42 > Document Version:20200901

package message.kvstore.aliyun.com;

import java.util.UUID;

import redis.clients.jedis.JedisPubSub;

public class KVStorePubSubTest {

//The connection information of ApsaraDB for Redis. This information can be obtained from the consol

e

static final String host = "xxxxxxxxxx.m.cnhza.kvstore.aliyuncs.com";

static final int port = 6379;

static final String password="password";//password

public static void main(String[] args) throws Exception{

KVStorePubClient pubClient = new KVStorePubClient(host, port,password);

final String channel = "KVStore Channel-A";

//The message sender starts sending messages, but there are no subscribers, so the messages will n

ot be received

pubClient.pub(channel, "Alibaba Cloud message 1: (No subscribers. This message will not be received)

");

// Message recipient

KVStoreSubClient subClient = new KVStoreSubClient(host, port,password);

JedisPubSub listener = new KVStoreMessageListener();

subClient.setChannelAndListener(listener, channel);

// Message recipient starts subscribing

subClient.start();

//The message sender continues sending messages

for (int i = 0; i < 5; i++) {

String message=UUID.randomUUID().toString();

pubClient.pub(channel, message);

Thread.sleep(1000);

}

// The message recipient cancels the subscription

subClient.unsubscribe(channel);

Thread.sleep(1000);

pubClient.pub(channel, "Alibaba Cloud message 2:(Subscription canceled. This message will not be rec

eived)");

//The message publisher stops sending by sending a “quit” message

//When other message recipients, if any, receive "quit" in listener.onMessage(), the "unsubscribe" ope

ration is performed.

pubClient.close(channel);

}

}

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 43

Output
After you access the ApsaraDB for Redis instance with the correct address and password and run
the preceding Java code, the following output is displayed.

>>> PUBLISH > Channel:KVStore Channel-A > Sends the message Aliyun Message 1: (No subscribers. T

his message will not be received)

----------Subscription starts-------

>>> SUBSCRIBE> Channel: KVStore Channel-A

>>> PUBLISH> Channel: KVStore Channel-A> sends message: 0f9c2cee-77c7-4498-89a0-1dc5a2f65889

<<< SUBSCRIBE< Channel:KVStore Channel-A >receives message: 0f9c2cee-77c7-4498-89a0-1dc5a2f658

89

>>> PUBLISH> Channel: KVStore Channel-A> sends message: ed5924a9-016b-469b-8203-7db63d06f812

<<< SUBSCRIBE< Channel:KVStore Channel-A >receives message: ed5924a9-016b-469b-8203-7db63d06f

812

>>> PUBLISH> Channel: KVStore Channel-A> sends message: f1f84e0f-8f35-4362-9567-25716b1531cd

<<< SUBSCRIBE< Channel:KVStore Channel-A >receives message: f1f84e0f-8f35-4362-9567-25716b1531

cd

>>> PUBLISH> Channel: KVStore Channel-A> sends message: 746bde54-af8f-44d7-8a49-37d1a245d21b

<<< SUBSCRIBE< Channel:KVStore Channel-A >receives message: 746bde54-af8f-44d7-8a49-37d1a245d

21b

>>> PUBLISH> Channel: KVStore Channel-A> sends message: 8ac3b2b8-9906-4f61-8cad-84fc1f15a3ef

<<< SUBSCRIBE< Channel:KVStore Channel-A >receives message: 8ac3b2b8-9906-4f61-8cad-84fc1f15a3

ef

>>> UNSUBSCRIBE> Channel: KVStore Channel-A

----------Subscription ends-------

>>> PUBLISH > Channel:KVStore Channel-A > sends the message Aliyun Message 2: (The subscription

has been canceled, so the message will not be received)

>>> PUBLISH ends> Channel:KVStore Channel-A > Message:quit

The preceding example demonstrates a situation with one publisher and one subscriber. There
can be multiple publishers, subscribers, and even multiple message channels. In such scenarios,
you are required to slightly change the code to fit the scenario.

Similar to Redis, ApsaraDB for Redis provides the pipeline feature.

2.5. Pipeline

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

44 > Document Version:20200901

Scenario introduction
A client interacts with a server through one-way pipelines, one for sending requests and the
other for receiving responses. You can send operation requests consecutively from the client to
the server. However, during this period, the server does not send the responses to each
operation request. The client receives the response to each request from the server until it
sends a quit message to the server.

Pipelines are useful, for example, when several operation commands need to be quickly
submitted to the server but the responses and operation results are not required immediately.
In this case, pipelines are used as a batch processing tool to optimize the performance. The
performance is enhanced because the overhead of the TCP connection is reduced.

However, the client using pipelines in the app connects to the server exclusively, and non-
pipeline operations are blocked until the pipelines are closed. If you need to perform other
operations at the same time, you can establish a dedicated connection for pipeline operations
to separate them from conventional operations.

Sample code 1
Performance comparison

package pipeline.kvstore.aliyun.com;

import java.util.Date;

import redis.clients.jedis.Jedis;

import redis.clients.jedis.Pipeline;

public class RedisPipelinePerformanceTest {

static final String host = "xxxxxx.m.cnhza.kvstore.aliyuncs.com";

static final int port = 6379;

static final String password = "password";

public static void main(String[] args) {

Jedis jedis = new Jedis(host, port);

//ApsaraDB for Redis instance password

String authString = jedis.auth(password); // password

if (! authString.equals("OK")) {

System.err.println("AUTH Failed: " + authString);

jedis.close();

return;

}

//Executes several commands consecutively

final int COUNT=5000;

String key = "KVStore-Tanghan";

// 1 ---Without using pipeline operations---

jedis.del(key);//Initializes the key

Date ts1 = new Date();

for (int i = 0; i < COUNT; i++) {

//Sends a request and receives the response

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 45

//Sends a request and receives the response

jedis.incr(key);

}

Date ts2 = new Date();

System.out.println("Without Pipeline > value is:"+jedis.get(key)+" > Time elapsed:" + (ts2.getTime() - t

s1.getTime())+ "ms");

//2 ---Using pipeline operations---

jedis.del(key);//Initializes the key

Pipeline p1 = jedis.pipelined();

Date ts3 = new Date();

for (int i = 0; i < COUNT; i++) {

//Sends the request

p1.incr(key);

}

// Receives the response

p1.sync();

Date ts4 = new Date();

System.out.println("Using Pipeline > value is:"+jedis.get(key)+" > Time elapsed:" + (ts4.getTime() - ts3

.getTime())+ "ms");

jedis.close();

}

}

Output 1
After you access the ApsaraDB for Redis instance with the correct address and password and run
the preceding Java code, the following output is displayed. The output shows that the
performance is enhanced with pipelines.

Without pipelines > value: 5000 > Time elapsed: 5844 ms

With pipelines > value: 5000 > Time elapsed: 78 ms

Sample code 2
With pipelines defined in Jedis, responses are processed in two methods, as shown in the
following sample code:

package pipeline.kvstore.aliyun.com;

import java.util.List;

import redis.clients.jedis.Jedis;

import redis.clients.jedis.Pipeline;

import redis.clients.jedis.Response;

public class PipelineClientTest {

static final String host = "xxxxxxxx.m.cnhza.kvstore.aliyuncs.com";

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

46 > Document Version:20200901

static final int port = 6379;

static final String password = "password";

public static void main(String[] args) {

Jedis jedis = new Jedis(host, port);

//ApsaraDB for Redis instance password

String authString = jedis.auth(password);// password

if (! authString.equals("OK")) {

System.err.println("AUTH Failed: " + authString);

jedis.close();

return;

}

String key = "KVStore-Test1";

jedis.del(key);//Initialization

// -------- Method 1

Pipeline p1 = jedis.pipelined();

System.out.println("-----Method 1-----");

for (int i = 0; i < 5; i++) {

p1.incr(key);

System.out.println("Pipeline sends requests");

}

// After sending all requests, the client starts receiving responses

System.out.println("Sending requests completed. Start to receive response");

List<Object> responses = p1.syncAndReturnAll();

if (responses == null | | responses.isEmpty()) {

jedis.close();

throw new RuntimeException("Pipeline error: no responds received");

}

for (Object resp : responses) {

System.out.println("Pipeline receives response: " + resp.toString());

}

System.out.println();

//-------- Method 2

System.out.println("-----Method 2-----");

jedis.del(key);//Initialization

Pipeline p2 = jedis.pipelined();

//Declare the responses first

Response<Long> r1 = p2.incr(key);

System.out.println("Pipeline sends requests");

Response<Long> r2 = p2.incr(key);

System.out.println("Pipeline sends requests");

Response<Long> r3 = p2.incr(key);

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 47

Response<Long> r3 = p2.incr(key);

System.out.println("Pipeline sends requests");

Response<Long> r4 = p2.incr(key);

System.out.println("Pipeline sends requests");

Response<Long> r5 = p2.incr(key);

System.out.println("Pipeline sends requests");

try{

r1.get(); //Errors occur because the client has not started receiving responses

}catch(Exception e){

System.out.println(" <<< Pipeline error: the client has not started receiving responses >>> ");

}

// After sending all requests, the client starts receiving responses

System.out.println("Sending requests completed. Start to receive response");

p2.sync();

System.out.println("Pipeline receives response: " + r1.get());

System. Out. println ("Pipeline receives response:" + r2.get ());

System. Out. println ("Pipeline receives response:" + r3.get ());

System. Out. println ("Pipeline receives response:" + r4.get ());

System. Out. println ("Pipeline receives response:" + r5.get ());

jedis.close();

}

}

Output 2
After you access the ApsaraDB for Redis instance with the correct address and password and run
the preceding Java code, the following output is displayed.

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

48 > Document Version:20200901

----- Method 1 -----

Pipeline sends a request

Pipeline sends a request

Pipeline sends a request

Pipeline sends a request

Pipeline sends a request

After sending all requests, the client starts receiving responses.

Pipeline receives response 1

Pipeline receives response 2

Pipeline receives response 3

Pipeline receives response 4

Pipeline receives response 5

----- Method 2 -----

Pipeline sends a request

Pipeline sends a request

Pipeline sends a request

Pipeline sends a request

Pipeline sends a request

<Pipeline error: The client has not started receiving responses>

After sending all requests, the client starts receiving responses.

Pipeline receives response 1

Pipeline receives response 2

Pipeline receives response 3

Pipeline receives response 4

Pipeline receives response 5

ApsaraDB for Redis supports a mechanism to define transactions, as in Redis.

Scenario introduction
The transaction feature allows you to use the MULTI, EXEC, DISCARD, WATCH, and UNWATCH
commands to execute atomic transactions.

Note that the definition of transaction in Redis is different from that in relational databases. If
an operation fails or the transaction is canceled by the DISCARD command, Redis does not
perform the "transaction rollback".

Sample code 1: Two clients operate on different keys

package transcation.kvstore.aliyun.com;

import java.util.List;

import redis.clients.jedis.Jedis;

import redis.clients.jedis.Transaction;

2.6. Transactions

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 49

http://redis.io/topics/transactions

import redis.clients.jedis.Transaction;

public class KVStoreTranscationTest {

static final String host = "xxxxxx.m.cnhza.kvstore.aliyuncs.com";

static final int port = 6379;

static final String password = "password";

//**Note that these two keys have different content

static String client1_key = "KVStore-Transcation-1";

static String client2_key = "KVStore-Transcation-2";

public static void main(String[] args) {

Jedis jedis = new Jedis(host, port);

//ApsaraDB for Redis instance password

String authString = jedis.auth(password);//password

if (! authString.equals("OK")) {

System.err.println("authentication failed: " + authString);

jedis.close();

return;

}

jedis.set(client1_key, "0");

//Starts another thread to simulate another client

new KVStoreTranscationTest().new OtherKVStoreClient().start();

Thread.sleep(500);

Transaction tx = jedis.multi();//Starts the transaction

//The following operations are collectively submitted to the server as "atomic operations"

tx.incr(client1_key);

tx.incr(client1_key);

Thread.sleep(400);//The suspension of the thread does not affect the consecutively executed operati

ons in a transaction. Other thread operations cannot be executed.

tx.incr(client1_key);

Thread.sleep(300);//The suspension of the thread does not affect the consecutively executed operati

ons in a transaction. Other thread operations cannot be executed.

tx.incr(client1_key);

Thread.sleep(200);//The suspension of the thread does not affect the consecutively executed operati

ons in a transaction. Other thread operations cannot be executed.

tx.incr(client1_key);

List<Object> result = tx.exec();//Submits the operation for execution

//Parses and prints out the results

for(Object rt : result){

System.out.println("Client 1 > in transaction> "+rt.toString());

}

jedis.close();

}

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

50 > Document Version:20200901

class OtherKVStoreClient extends Thread{

@Override

public void run() {

Jedis jedis = new Jedis(host, port);

//ApsaraDB for Redis instance password

String authString = jedis.auth(password); //password

if (! authString.equals("OK")) {

System.err.println("AUTH Failed: " + authString);

jedis.close();

return;

}

jedis.set(client2_key, "100");

for (int i = 0; i < 10; i++) {

try {

Thread.sleep(300);

} catch (InterruptedException e) {

e.printStackTrace();

}

System.out.println("Client 2 > "+jedis.incr(client2_key));

}

jedis.close();

}

}

}

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 51

Output 1
After you access the ApsaraDB for Redis instance with the correct address and password and run
the preceding Java code, the following output is displayed. Here, we can see that Client 1 and
Client 2 are in different threads. The operations in the transaction submitted by Client 1 are
executed sequentially. Client 2 requests for operating on another key during this period, but the
operation is blocked and Client 2 has to wait until all the operations in the Client 1 transaction
have been completed.

Client 2 > 101

Client 2 > 102

Client 2 > 103

Client 2 > 104

Client 1> in transaction> 1

Client 1> in transaction> 2

Client 1> in transaction> 3

Client 1> in transaction> 4

Client 1> in transaction> 5

Client 2> 105

Client 2> 106

Client 2> 107

Client 2> 108

Client 2> 109

Client 2> 110

Sample code 2: Two clients operate on the same key
By slightly modifying the preceding code, we can have the two clients operate on the same key.
The other parts of the code remain unchanged.

......

// *** Note that the content of these two keys is now the same

static String client1_key = "KVStore-Transcation-1";

static String client2_key = "KVStore-Transcation-1";

......

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

52 > Document Version:20200901

Output 2
After the modified Java code is executed, the output is displayed as follows. We can see that the
two clients are in different threads but operate on the same key. However, while Client 1 uses
the transaction mechanism to operate on this key, Client 2 is blocked and has to wait until all
the operations in the Client 1 transaction are completed.

Client 2> 101

Client 2> 102

Client 2> 103

Client 2> 104

Client 1> in transaction> 105

Client 1> in transaction> 106

Client 1> in transaction> 107

Client 1> in transaction> 108

Client 1> in transaction> 109

Client 2> 110

Client 2> 111

Client 2> 112

Client 2> 113

Client 2> 114

Client 2> 115

Frequently queried keys in Redis are hotkeys. If not taken care of, hotkeys may cause serious
services problems. You can find the solutions for hotkey problems in this topic.

2.7. Discovery and solutions of hotkey
problems

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 53

Overview
Causes

There are two causes of hotkey problems:

The size of user consumption data is much greater than that of production data, as in the
cases of hot sale items, hot news, hot issue comments, and celebrity broadcasts.

Hotkey problems tend to occur unexpectedly, for example, the sales price promotion of
popular commodities during Double 11 Shopping Festival. When one of these commodities is
browsed or purchased tens of thousands of times, a large number of requests occur, which
causes a hotkey problem. Similarly, hotkey problems tend to occur in scenarios where there
are more writes than reads. For example, hot news, hot issue comments, and celebrity
broadcasts.

In these cases, the hotkey access is much higher than the access of other Redis keys.
Therefore, most of the access traffic is centralized to a specific Redis instance, and the Redis
instance may reach a performance bottleneck.

When a piece of data is accessed on the server, the data is usually split or sliced. During this
process, the corresponding key is accessed on the server. When the access traffic exceeds the
performance threshold of the server, the hotkey key problem occurs.

Impact of hotkey problems
The traffic is concentrated and reaches the upper limit of the physical network adapter.
Too many requests queue up, crashing the sharding service of the cache.
The database is overloaded. A service avalanche occurs.

As mentioned above, when the number of hotkey requests on a server exceeds the upper limit
of the network adapter on the server, the server stops providing other services due to the
excessive concentration of traffic. If the distribution of hotspots is too dense, a large number of
hotkeys are cached. When the cache capacity is exhausted, the sharding service of the cache
crashes. After the cache service crashes, the newly generated requests are cached on the
background database. Due to its poor performance, this database is prone to exhaustion when
handling a large number of requests. The exhaustion of the database leads to a service
avalanche and a dramatic downgrading of the performance.

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

54 > Document Version:20200901

Common solutions
Reconstruct the server or client to improve the performance.

Server cache solution

The client sends requests to the server. The server is a multi-thread service, and a local cache
space based on the cache LRU policy is available. When the server is congested, it directly
repatriates the requests rather than forwarding them to the database. Only after the
congestion is cleared can the server send the requests from the client to the database and re-
write the data to the cache. By using this solution, the cache is accessed and rebuilt.

However, this solution has the following problems:

Cache building problem of the multi-thread service when the cache fails
Cache building problem when the cache is missing
Dirty reading problem

"MemCache + Redis" solution

In this solution, a separate cache is deployed on the client to resolve the hotkey problem. The
client first accesses the service layer and then the cache layer of the same server. This solution
has the following advantages: nearby access, high speeds, and no bandwidth limit. However, it
has the following disadvantages:

Wasted memory resources
Dirty reading problem

Local cache solution

Using the local cache incurs the following problems:

Hotspots must be detected in advance.
The cache capacity is limited.
The inconsistency duration is long.
The omission of hotkeys.

If traditional hotkey solutions are all defective, how can the hotkey problems be resolved?

ApsaraDB for Redis solution for hotkey problems
Read/write splitting solution

The following describes the functions of different nodes in the architecture:

Load balancing is implemented at the SLB layer.
Read/write splitting and automatic routing are implemented at the proxy layer.
Write requests are processed by the master node.
Read requests are processed by the read-only node.
High availability (HA) is implemented on the replica node and the master node.

In practice, the client sends requests to SLB, and SLB distributes these requests to multiple
proxies. The proxies identify and classify the requests and distribute them. For example, a proxy
sends all write requests to the master node and all read requests to the read-only node. But the
read-only node in the module can be expanded to solve the problem of hotkey reading.
Read/write splitting supports flexible scaling for hotkey reading and can store a large number of
hotkeys. It is client-friendly.

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 55

Hotspot data solution

In this solution, hotkeys are discovered and stored to resolve the hotkey problem. The client
accesses SLB and distributes requests to a proxy through SLB. Then, the proxy forwards the
requests to the background Redis by the means of routing.

A cache is added on the server. Specifically, a local cache is added to the proxy. This cache uses
the LRU algorithm to cache hotspot data. A hotspot data calculation module is added to the
background database node to return the hotspot data.

The proxy architecture has the following benefits:

The proxy caches the hotspot data locally, and its reading capability is horizontally scalable.
The database node regularly calculates the hotspot data set.
The database feeds the hotspot data back to the proxy.
The proxy architecture is completely transparent to the client, and no compatibility is
required.

Process hotkeys

Read hotspot data

The processing of hotkeys is divided into two jobs: writing and reading. During the data writing
process, SLB receives data K1 and writes it to a Redis database through a proxy. If K1 becomes a
hotkey after the calculation conducted by the background hotspot module, the proxy caches
the hotspot. In this way, the client can directly access K1 the next time, without using Redis. The
proxy can be horizontally expanded, so the accessibility of the hotspot data can be enhanced
infinitely.

Discover hotspot data

The database first counts the requests that occur in a cycle. When the number of requests
reaches the threshold, the database locates the hotkeys and stores them in an LRU list. When a
client attempts to access data by sending a request to the proxy, Redis enters the feedback
phase and marks the data if it finds that the target access point is a hotspot.

The database uses the following methods to calculate the hotspots:

Hotspot statistics based on statistical thresholds.
Hotspot statistics based on the statistical cycle.
Statistics collection method based on the version number without resetting the initial value.
Calculating hotspots on the database has little impact on the performance and only occupies
a small amount of memory.

Comparison of two solutions
The preceding analysis shows that compared with the traditional solutions, Alibaba Cloud has
made significant improvements in resolving the hotkey problem. The read/write splitting
solution and the hotspot data solution can be expanded horizontally. These two solutions are
transparent to the client, though they cannot ensure complete data consistency. The
read/write splitting solution supports storing a larger amount of hotspot data, while the proxy-
based hotspot data solution is more cost-effective.

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

56 > Document Version:20200901

ApsaraDB for Redis works as an important support for processing surging e-commerce
promotions and orders during Double 11 Shopping Festival.

Background
ApsaraDB for Redis provides multiple editions as follows: standard single-replica edition,
standard dual-replica edition, and cluster edition.

The standard single-replica edition and standard dual-replica edition feature high compatibility
and support Lua scripting and geographical location-based computing. The cluster edition
provides large capacities and high performance, and solves the issues caused by single-server
performance limits due to Redis single-thread model.

ApsaraDB for Redis works in a two-node hot standby structure by default and supports backup
and recovery. Also, the Redis source code team of Alibaba Cloud constantly optimizes and
upgrades the ApsaraDB for Redis service, and provides powerful security protections. This topic
simplifies some scenarios of Double 11 Shopping Festival and describes the features of ApsaraDB
for Redis. Actual scenarios are more complex.

2.8. ApsaraDB for Redis supports Double 11
Shopping Festival

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 57

Store social relations for hundreds of millions of users in Weitao
community
Weitao community carries social relations for hundreds of millions of Taobao users. Taobao users
can specify a list of followers and merchants can maintain the data of regular customers or
followers. The following figure shows the overall social relations.

To express these social relations, a traditional relational database model requires complex
business design and results in poor user experience. A cluster instance of ApsaraDB for Redis
caches followers chains of Weitao community. This simplifies the storage of followers data, and
ensures excellent user experience during Double 11 Shopping Festival. Hash tables store
followers data of Weitao community. The following figure shows the storage structure. You can
call required API operations to query the following data:

Whether Users A and B are followers of each other
List of items User A is following

Paginate comments to live videos in Tmall based on a cursor
When mobile users view live videos during Double 11 Shopping Festival, they can obtain more
comments to the live videos in three ways:

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

58 > Document Version:20200901

Pull down for incremental comments: obtain a specified number of incremental comments
from the specified position up.
Pull-down refresh: obtain a specified number of the latest comments.
Pull up for incremental comments: obtain a specified number of incremental comments from
the specified position down.

The mobile live video streaming system uses ApsaraDB for Redis to optimize the business
scenario. This ensures the success rate of comments to live videos and supports more than
50,000 transactions per second (TPS) and response time in milliseconds. The live video streaming
system writes two types of data for each live video, including indexes and comments. The
system writes indexes in sorted sets to sort comments, and stores the comments in hash tables.
You can obtain an index ID from the indexes and retrieve a list of comments by reading the hash
tables. The following figure shows the process of writing comments.

After a user refreshes the list, the background retrieves the corresponding comments. This
process is as follows:

1. Obtain the current index ID.

2. Retrieve the index list.

3. Obtain the comments.

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 59

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

60 > Document Version:20200901

Sort orders in Cainiao order fulfillment center
After a user buys a commodity during Double 11 Shopping Festival, Cainiao warehouse and
distribution system generates and processes a corresponding logistics order. The decision-
making system generates an order fulfillment plan based on the order data. Therefore, the
warehouse and distribution system can provide intelligent and collaborative services across
each stage. The plan specifies the time for issuing the order to the warehouse, the time for
outbound delivery, the time for item collection, and the time for delivering the item. The order
fulfillment center provides the logistics service according to the order fulfillment plan. Due to
the limited capacities of warehouses and distribution, the system processes the earliest orders
in priority. Therefore, ApsaraDB for Redis sorts the orders by priority before the order fulfillment
center issues them to the warehouse or for delivery.

The order fulfillment center uses ApsaraDB for Redis to sort logistics orders and determine the
priorities of these orders.

The flash sales strategy is commonly used for promotion activities and brand marketing in the e-
commerce industry. This strategy can help you increase the number of unique visitors and
customer loyalty of your platform. An excellent business system can improve the stability of
your platform and ensure the fairness of flash sales. This improves user experience and the
reputation of your platform, and maximizes the benefits of flash sales. This topic describes how
to use the caching feature of ApsaraDB for Redis to build a highly concurrent business system for
handling flash sales.

2.9. Use ApsaraDB for Redis to build a
business system for handling flash sales

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 61

Characteristics of flash sales
A flash sales activity is intended to sell scarce or special commodities for specified quantities in a
timed manner, and attract a large number of buyers. However, only a few buyers place orders
during the promotion. A flash sales activity brings visits and order requests dozens or hundreds
of times that in regular sales activities on your platform within a short time period.

A flash sales activity is divided into three phases:

Before the promotion: Buyers keep refreshing the commodity details page. As a result, the
number of requests for this page instantaneously spikes.
During the promotion: Buyers place orders. The number of order requests reaches the
instantaneous peak.
After the promotion: Some buyers that have successfully placed orders keep querying order
status or cancel orders. Most buyers keep refreshing the commodity details page and wait for
opportunities to place orders after other buyers cancel their orders.

In most cases, a database uses row-level locking to handle requests submitted by buyers. The
database allows only requests that hold the lock to query inventory data and place orders.
However, the database is incapable of handling high concurrency in this case. The service may
be blocked by a large number of requests, which is considered a server crash to the buyers.

Business system for handling flash sales
During a flash sales activity, the business system may receive a large amount of user traffic.
However, only a few of the requests are valid. Based on the hierarchy of the system
architecture, you can identify and block invalid requests in advance in each phase.

Use the browser cache and Content Delivery Network (CDN) to process user traffic that request
static content

Before a flash sales activity, buyers keep refreshing the commodity details page. As a result, the
number of requests for this page instantaneously spikes. To resolve this issue, you must present
details about commodities for flash sales and details about regular commodities on different
web pages. Use static elements to present details about commodities for flash sales. Static data
can be cached in the browser and on CDN, except for the place order function that requires
interaction between the browser and server. In this way, only a small fraction of the traffic
incurred by refreshing the page before the promotion flows to the server.

Use a read/write splitting instance of ApsaraDB for Redis to cache content and block invalid
requests

CDN is used to filter and block user traffic in phase 1. In phase 2, you can use a read/write
splitting instance of ApsaraDB for Redis to block invalid requests. In phase 2, the business
system is responsible for retrieving data. The read/write splitting instance is capable of handling
more than 600,000 queries per second, which completely meets the business demands.

Use the data control module to cache the data of commodities for flash sales to the read/write
splitting instance, and specify the flag that indicates the promotion activity begins:

"goodsId_count": 100 //The total number of commodities.

"goodsId_start": 0 //The flag that indicates the promotion activity begins.

"goodsId_access": 0 //The number of order requests that have been accepted.

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

62 > Document Version:20200901

1. Before the promotion activity begins, the value of the goodsId_Start flag retrieved by the
server cluster is 0, which indicates that the promotion activity has not started.

2. After the data control module changes the value of the goodsId_start flag to 1, the
promotion activity begins.

3. The server cluster then caches the goodsId_start flag and accepts order requests. The
cluster updates the number of accepted order requests in goodsId_access. The number of
remaining commodities is calculated as follows: goodsId_count - goodsId_access.

4. After the number of placed orders reaches the value of goodsId_count, the business system
blocks subsequent order requests. The number of remaining commodities is set to 0.

In this way, the business system accepts only a small fraction of the order requests. In case of
high concurrency, it is acceptable that more traffic may flow to the system. Therefore, you can
control the percentage of order requests that the system accepts.

Use a master-replica instance of ApsaraDB for Redis to cache inventory data and accelerate
inventory deduction

After the business system receives an order request, the system checks the order information
and deducts the inventory. To avoid retrieving data directly from the backend database, you can
use a master-replica instance of ApsaraDB for Redis to deduct the inventory. The master-replica
instance supports more than 100,000 QPS. ApsaraDB for Redis can help you optimize inventory
query, block invalid order requests, and increase the overall throughput of the business system
for handling flash sales.

You can use the data control module to cache the inventory data to the ApsaraDB for Redis
instance before the promotion activity begins. The instance stores the commodity data for
promotion in a hash table.

"goodsId" : {

"Total": 100

"Booked": 100

}

To deduct the inventory, the server runs the following Lua script and connects to the ApsaraDB
for Redis instance to obtain the permission on placing orders. Lua ensures the atomicity across
multiple commands because Redis is a single-thread model.

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 63

local n = tonumber(ARGV[1])

if not n or n == 0 then

return 0

end

local vals = redis.call("HMGET", KEYS[1], "Total", "Booked");

local total = tonumber(vals[1])

local blocked = tonumber(vals[2])

if not total or not blocked then

return 0

end

if blocked + n <= total then

redis.call("HINCRBY", KEYS[1], "Booked", n)

return n;

end

return 0

Run the SCRIPT LOAD command to cache the Lua script to the ApsaraDB for Redis instance in
advance, and then run the EVALSHA command to execute the script. This method requires less
network bandwidth than directly running the EVAL command.

redis 127.0.0.1:6379>SCRIPT LOAD "lua code"

"438dd755f3fe0d32771753eb57f075b18fed7716"

redis 127.0.0.1:6379>EVALSHA 438dd755f3fe0d32771753eb57f075b18fed7716 1 goodsId 1

If the ApsaraDB for Redis instance returns the value n as the number of commodities that buyers
have ordered, the flash sales system determines that the current inventory deduction is
successful.

Use a master-replica instance of ApsaraDB for Redis to asynchronously write order data to the
database based on message queues

The flash sales business system writes order data to the database after successful inventory
deduction. For a few commodities, the system can directly perform operations in the database. If
the number of commodities for promotion is more than 10,000 or 100,000, lock conflicts may occur
and cause performance bottlenecks in the database. Therefore, to avoid direct operations in the
database, the flash sales system writes order data to message queues to complete the order
process.

1. The ApsaraDB for Redis instance provides message queues in a list structure.

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

64 > Document Version:20200901

orderList {

[0] = {Order content}

[1] = {Order content}

[2] = {Order content}

...

}

2. The flash sales business system writes order content to the ApsaraDB for Redis instance.

LPUSH orderList {Order content}

3. The asynchronous order module sequentially retrieves order data from the ApsaraDB for
Redis instance and writes order data to the database.

BRPOP orderList 0

The ApsaraDB for Redis instance provides message queues and asynchronously writes order
data to the database to complete the order process.

The data control module manages synchronization of promotion data

At the start, the flash sales business system uses the read/write splitting instance of ApsaraDB
for Redis to block invalid traffic and allows a fraction of valid traffic to continue the order
process. Afterward, the flash sales business system has to process more traffic caused by order
authentication failures and returning orders. Therefore, the data control module regularly
computes data in the database, and synchronizes the data to the master-replica instance and
then to the read/write splitting instance.

ApsaraDB for Redis read/write splitting instances support multiple read replicas, providing high-
performance service for more-reading and less-writing scenarios.

Background
In ApsaraDB for Redis, whether in the master-replica edition or the cluster edition, replica serves
as a standby database and does not provide external services. When high availability is enabled
and the primary master fails, the replica can be promoted to the master to take over read and
write operations. In this architecture, read and write requests are completed on the master
node with high consistency, but the performance is limited by the number of master nodes.
Often, even when the user data is small, the cluster specification still needs to be updated
because the traffic and the concurrency is too high.

In business scenarios where there are more reads than writes, ApsaraDB for Redis provides a
read/write splitting specification that is transparent, flexible, highly available, and high-
performance. This specification helps users minimize the cost.

Archietecture

2.10. Read/write splitting in Redis

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 65

Redis cluster mode has several roles, including redis-proxy, Master, replica, and HA. In a
read/write splitting instance, the read-only replica role is added to take over the read traffic.
The replica serves as a hot standby and does not provide services. This architecture remains
compatible with existing cluster specifications. The proxy forwards the read and write requests
to the master node or a read-only replica accordingly by weight. The highly available (HA)
cluster is responsible for monitoring the health status of nodes. When an exception occurs, the
replica will take over or the read-only replica will be rebuilt to perform critical operations, and
the route will be updated.

Typically, according to the data synchronization methods of master nodes and read-only
replicas, there are two replication types: star replication and cascading replication.

Star replication

In the star replication, data volumes are replicated on multiple nodes in parallel. Since the
master node is connected to all other read-only replica nodes, there is no need to failover a
replica node in the event of a failure thus reducing the duration of recovery.

Redis uses a single-thread and single-process model. The data replication between the master
node and the replica node is processed in the main thread. The CPU utilization on the master
node due to data synchronization increases with the number of read-only replicas. Therefore,
the write performance of the cluster is diminished by the increasing number of read-only replica
nodes. In the star replication, the outbound bandwidth of the master node also increases with
the number of read-only replicas. The tradeoffs between these two replication types is one of
latency and throughput. Due to the high CPU utilization on the master node and the heavy
network load, the low-latency star replication delivers lower throughput than the cascading
replication. The performance of the entire cluster is limited by the master node.

Cascading replication

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

66 > Document Version:20200901

All read-only replica nodes are replicated sequentially on intermediate and tail nodes, as shown
in the following figure. The master node only needs to synchronize the data to the replica node
and the first read-only replica on the replication chain.

Cascading replication solves the extension problem of star replication. In theory, the number of
read-only replicas can increase infinitely, and the performance of the entire cluster will increase
accordingly.

In a chain replication, the longer the replication chain, the greater the delay between the
original master node and the read-only replica at the end of the chain.This shortcoming is
usually acceptable, since that the read/write splitting is mainly used in scenarios that have low
requirements on consistency. However, if a node in the replication chain fails, all data on the
downstream nodes will be delayed significantly. What's worse, this may lead to a full
synchronization that is passed to the end of the replication chain, and reduce the service
performance. To solve this problem, the Redis read/write splitting uses an optimized binlog
replication provided by Alibaba Cloud to minimize the probability of full synchronization.

In light of the preceding discussions and comparisons, Redis chooses a cascading replication
architecture for read/write splitting.

Advantages of Redis read/write splitting
Transparent and compatible

Redis read/write splitting uses redis_proxy to forward requests. There are certain restrictions on
the use of multi-sharding commands. This feature is fully compatible with the upgrade from the
master-replica edition to the single-sharding read/write splitting, and the upgrade from the
cluster specification to the multi-sharding read/write splitting.

The user establishes a connection with redis-proxy, a Redis proxy that supports read/write
splitting. The proxy recognizes whether the request sent by the client is read or write, and then
performs load balancing according to the weight. The proxy forwards write requests to the
master and read requests to the read-only replica. The master also supports read requests by
default, which can be controlled by weight.

You can purchase instances of read/write splitting specifications and use them directly with any
client, with no modification to the business. You can enjoy an improved service performance
almost at no cost.

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 67

Highly available

The high availability module (HA) monitors the health of all nodes to ensure instance
availability. If the master node fails, the HA module redirects the requests to a new master
node. If a read-only replica fails, the HA module can detect it promptly, create a new read-only
replica, and turn the failed node offline.

In addition to the HA module, redis-proxy can also detect the state of each read-only replica in
real time. During a read-only replica failure, redis_proxy automatically reduces the weight of this
node. If a read-only replica fails multiple times, redis-proxy will temporarily block this node.
After the node recovers, its weight will be resumed to a normal level.

HA and redis_proxy work together to minimize the business awareness of backend exceptions
and improve service availability.

High performance

In business scenarios where there are more reads than writes, using the cluster edition directly
is not the best solution. The read/write splitting provides more options, and you can choose the
best specification based on the business scenario to make full use of the read-only replicas.

Multiple specifications are available: 1 master + 1 read-only replica, 1 master + 3 read-only
replicas, and 1 master + 5 read-only replicas. You can submit a ticket if you need a different
specification. This service provides 0.6 million QPS and 192 MB/s service capability. This service
breaks the resource limit of a single machine since it is fully compatible with all commands. In
the following versions, there will be no specification limit, and users can increase or decrease
the number of read-only replicas based on the business traffic.

Specification QPS Bandwidth

1 master 80 to 100 thousand reads and
writes 10 to 48 MB

1 master + 1 read-only replica 0.1 million writes + 0.1 million
reads 20 to 64 MB

1 master + 3 read-only replicas 0.1 million writes + 0.3 million
reads 40 to 128 MB

1 master + 5 read-only replicas 0.1 million writes + 0.5 million
reads 60 to 192 MB

Concluding remarks

The asynchronous replication of the Redis master-replica edition may read old data from the
read-only replica, so read/write splitting feature requires the business to tolerate a certain
degree of data inconsistency. The following editions will grant users more flexibility in
parameter configurations, such as the allowed maximum delay time.

Proper values of JedisPool parameters allow you to improve the performance of Redis. This topic
describes how to use JedisPool and configure the resource pool parameters. This topic also
describes recommended parameter configurations to optimize JedisPool.

2.11. JedisPool optimization

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

68 > Document Version:20200901

How to use JedisPool
Jedis 2.9.0 is used in this example. The following sample code shows the Maven dependency:

<dependency>

<groupId>redis.clients</groupId>

<artifactId>jedis</artifactId>

<version>2.9.0</version>

<scope>compile</scope>

</dependency>

Jedis manages the resource pool by using Apache Commons-pool2. When you define JedisPool,
we recommend that you consider the GenericObjectPoolConfig parameter (resource pool). The
following sample code shows how to use this parameter.

GenericObjectPoolConfig jedisPoolConfig = new GenericObjectPoolConfig();

jedisPoolConfig.setMaxTotal(...);

jedisPoolConfig.setMaxIdle(...);

jedisPoolConfig.setMinIdle(...);

jedisPoolConfig.setMaxWaitMillis(...) ;

...

The following example shows how to initialize JedisPool:

// redisHost specifies the IP address of the instance. redisPort specifies the port of the instance. redi

sPassword specifies the password of the instance. The timeout parameter specifies both the connecti

on timeout and the read/write timeout.

JedisPool jedisPool = new JedisPool(jedisPoolConfig, redisHost, redisPort, timeout, redisPasswor//d);

// Run the following command:

Jedis jedis = null;

try {

jedis = jedisPool.getResource();

// Specific commands

jedis.executeCommand()

} catch (Exception e) {

logger.error(e.getMessage(), e);

} finally {

// In JedisPool mode, the Jedis resource is returned to the resource pool.

if (jedis ! = null)

jedis.close();

}

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 69

Parameters
The Jedis connection is a resource managed by JedisPool in the connection pool. JedisPool is a
thread-safe pool of connections. It allows you to keep all resources within a manageable range.
Specify the GenericObjectPoolConfig parameter properly can improve the performance of Redis
and reduce the resource consumption. The following two tables list some important parameters
and provide recommended configurations.

Parameters related to resource settings and resource usage

Parameter Description Default
value Recommendation

maxTotal The maximum number of connections
that are supported by the pool. 8

For more information, see
Recommendations for key
parameters.

maxIdle The maximum number of idle connections
in the pool. 8

For more information, see
Recommendations for key
parameters.

minIdle The minimum number of idle connections
in the pool. 0

For more information, see
Recommendations for key
parameters.

blockWhen
Exhausted

Specifies whether the client must wait
when the resource pool is exhausted.
The following maxWaitMillis parameter
takes effect only when this parameter is
set to true.

true We recommend that you
use the default value.

maxWaitMil
lis

The maximum number of milliseconds
that the client needs to wait when no
connection is available.

A value of
-1
specifies
that the
connection
will never
time out.

We recommend that you
do not use the default
value.

testOnBorr
ow

Specifies whether connections will be
validated by using the PING command
before they are borrowed from the pool.
Invalid connections will be removed from
the pool.

false

We recommend that you
set this parameter to
false when the workload
is heavy. This allows you
to reduce the
consumption caused by a
ping test.

testOnRetu
rn

Specifies whether connections will be
validated using the PING command
before they are returned to the pool.
Invalid connections will be removed from
the pool.

false

We recommend that you
set this parameter to
false when the workload
is heavy. This allows you
to reduce the
consumption caused by a
ping test.

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

70 > Document Version:20200901

jmxEnabled Specifies whether to enable JMX
monitoring. true

We recommend that you
enable JMX monitoring.
Note that the feature of
your application also
needs to be enabled.

Parameter Description Default
value Recommendation

Idle Jedis object detection consists of the following four parameters. testWhileIdle is the switch
of this feature.

Parameters related to idle resource detection

Parameter Description Default value Recommendation

testWhileIdle
Specifies whether to
enable the idle
resource detection.

false true

timeBetweenEvictionR
unsMillis

Specifies the cycle of
idle resources
detection. Unit:
milliseconds.

A value of -1 specifies
that no idle resource
are detected.

We recommend that
you specify this
parameter and set it
to a proper value as
needed. You can also
use the default
configuration in
JedisPoolConfig.

minEvictableIdleTimeM
illis

The minimum idle time
in milliseconds of a
resource in the
resource pool. When
the upper limit is
reached, the idle
resource will be
evicted.

180000 (30 minutes)

The default value is
suitable for most
cases. You can also
use the configuration
in JeidsPoolConfig
based on your
business
requirements.

numTestsPerEvictionR
un

The number of
resources to be
detected at each idle
resource detection.

3

You can change the
value based on your
application
connections. A value
of -1 specifies that
idle resource
detection will be
performed on all
connections.

Jedis provides JedisPoolConfig that uses some configurations of GenericObjectPoolConfig for idle
resource detection.

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 71

public class JedisPoolConfig extends GenericObjectPoolConfig {

public JedisPoolConfig() {

// defaults to make your life with connection pool easier :)

setTestWhileIdle(true);

//

setMinEvictableIdleTimeMillis(60000);

//

setTimeBetweenEvictionRunsMillis(30000);

setNumTestsPerEvictionRun(-1);

}

}

Note You can view all default values in
org.apache.commons.pool2.impl.BaseObjectPoolConfig.

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

72 > Document Version:20200901

Recommendations for key parameters
maxTotal: The maximum number of connections.

To set a proper value of maxTotal, you need to take into account the following factors:

The required concurrent connections based on business requirements.
The amount of time that is consumed by the client to run the command.
The limit of Redis resources. For example, the product of multiplying maxTotal by the number
of nodes (applications) must be smaller than the supported maximum number of connections
in Redis. You can view the maximum connections on the Instance Information page in the
ApsaraDB for Redis console.
The resource that is cost to create and release connections. When the number of connections
created and released is large for each request, the creation and release process takes a
heavy toll.

The time for running a command to obtain a resource consists of the time to borrow or return the
resource, the time consumed for JedisPool to run the command, and the time for network
connection. For example, the average time consumed to run a command to obtain a resource is
about 1 ms, the queries per second (QPS) of a connection is about 1,000, and the expected QPS is
50,000. In this case, the required theoretical pool size is 50 (50,000/1,000 = 50).

But this is only a theoretical value. To reserve some resources, the value of the maxTotal
parameter can be larger than the theoretical value. However, if this value is too large, the
connections will consume a large amount of client and server resources. On the other hand, for
servers like Redis that has a high QPS, if a large number of commands block, even a large
resource pool cannot solve this problem.

maxIdle and minIdle

maxIdle is the actual maximum number of connections required by the business. maxTotal
includes the number of idle connections as a surplus. If the value of maxIdle is too small on
heavily loaded systems, new Jedis (extra connections) will be created to serve the requests.
Therefore, minIdle specifies the minimum number of established connections that need to be
kept in the pool.

The connection pool reaches its best performance when maxTotal = maxIdle. This way, the
performance is not affected by the scaling of the connection pool. We recommend that you set
the values of both parameters to the same value during peak hours of your services. However, if
the number of concurrent connections is small or the value of the maxIdle parameter is too
large, the connection resources will be wasted.

You can evaluate the size of the connection pool used by each node based on the actual total
QPS and the number of clients that call Redis.

Retrieve proper values based on monitoring data

In actual scenarios, a more reliable method is to try to retrieve optimal values based on
monitoring data. You can use JMX monitoring or other monitoring tools to discover proper values.

FAQ
Insufficient resources

In the following cases, you cannot obtain resources from the resource pool.

Timeout:

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 73

redis.clients.jedis.exceptions.JedisConnectionException: Could not get a resource from the pool

...

Caused by: java.util.NoSuchElementException: Timeout waiting for idle object

at org.apache.commons.pool2.impl.GenericObjectPool.borrowObject(GenericObjectPool.java:449)

When you set the blockWhenExhausted parameter to false, the time specified by
borrowMaxWaitMillis is not used and the borrowObject call will block until an idle connection
is available.

redis.clients.jedis.exceptions.JedisConnectionException: Could not get a resource from the pool

...

Caused by: java.util.NoSuchElementException: Pool exhausted

at org.apache.commons.pool2.impl.GenericObjectPool.borrowObject(GenericObjectPool.java:464)

This exception may not be caused by limited pool size. For more information, see
Recommendations for key parameters. To fix this issue, we recommend that you check the
network, parameters of the resource pool, the resource pool monitoring (JMX monitoring), the
code (for example, the reason may be that jedis.close() is not executed), slow queries, and
DNS.

Preload JedisPool

The project may quickly time out after it is started if you specify a small timeout value. JedisPool
does not create a Jedis connection in the connection pool when it defines the maximum number
of resources and the minimum number of idle resources. If no idle connection exists in the pool, a
 new Jedis connection is created. This connection will be released to the pool after it is used.

However, it may take a long period of time to create a new connection and release it every time.
Therefore, we recommend that you preload JedisPool with the minimum number of idle
connections after JedisPool is defined. The following example shows how to repload JedisPool:

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

74 > Document Version:20200901

List<Jedis> minIdleJedisList = new ArrayList<Jedis>(jedisPoolConfig.getMinIdle());

for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {

Jedis jedis = null;

try {

jedis = pool.getResource();

minIdleJedisList.add(jedis);

jedis.ping();

} catch (Exception e) {

logger.error(e.getMessage(), e);

} finally {

}

}

for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {

Jedis jedis = null;

try {

jedis = minIdleJedisList.get(i);

jedis.close();

} catch (Exception e) {

logger.error(e.getMessage(), e);

} finally {

}

}

You can use the imonitor command developed by Alibaba Cloud to monitor the request status of
a specific node in the Redis cluster, and use redis-faina to discover hotkeys and commands from
the monitoring data.

Background information
When you use the ApsaraDB for Redis cluster edition, if the hotkey traffic on a specific node is
too large, other services in the server may fail to continue. If the cache of the hotkey exceeds
the current cache capacity, the sharding service of the cache will crash.

You can use Performance monitoring and Alert settings to monitor the cluster status in real time
and set alert rules. When you discover an overloaded sub-node, you can use the imonitor
command to view the client request of the node, and use redis-faina to analyze the hotkey.

2.12. Analyze hotkeys in a specific sub-
node of a cluster instance

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 75

https://help.aliyun.com/document_detail/43887.html#concept-zyy-zgv-tdb
https://help.aliyun.com/document_detail/43884.html#concept-sj5-m2z-5db

Prerequisites
You have activated an ECS instance that can interconnect with the ApsaraDB for Redis cluster
edition.
You have installed Python and Telnet in the ECS instance.

Note The sample environment in this topic is CentOS 7.4 and Python 2.7.5.

Procedure
1. In the ECS instance, use Telnet to connect to the Redis cluster.

i. Use # telnet <host> <port> to connect to the Redis cluster.

Note host is the connection address of the Redis cluster. port is the
connection port (the default port number is 6379).

ii. Enter auth <password> for verification.

Note password is the password for the Redis cluster.

Note If +OK is returned, the connection is successful.

2. Use imonitor <db_idx> to collect the request data of the target node.

Note

The imonitor command is similar to the info command and the iscan command. This
command added a parameter to the monitor command, and the user can specify the
node to run the monitor command. In this command, the value range of db_idx is [0,
nodecount). You can obtain the value of nodecount by running the info command or
viewing the instance topology in the console.

In this example, the value of db_idx of the target node is 0.

If +OK is returned, the output of of monitored request records continues.

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

76 > Document Version:20200901

3. Collect the monitoring data based on your business requirements and enter the QUIT
command. Press Enter to close the Telnet connection.

4. Store the monitoring data to a .txt file, and delete the plus sign (+) at the beginning of the
line. You can replace this sign by using the text editing tool. The stored file is as follows:

5. Create a Python script for request analysis, and save it as redis-faina.py. The code is as
follows:

#! /usr/bin/env python

import argparse

import sys

from collections import defaultdict

import re

line_re_24 = re.compile(r"""

^(? P<timestamp>[\d\.]+)\s(\(db\s(? P<db>\d+)\)\s)?"(? P<command>\w+)"(\s"(? P<key>[^(? <! \\

)"]+)(? <! \\)")?(\s(? P<args>. +))? $

""", re.VERBOSE)

line_re_26 = re.compile(r"""

^(? P<timestamp>[\d\.]+)\s\[(? P<db>\d+)\s\d+\.\d+\.\d+\.\d+:\d+]\s"(? P<command>\w+)"(\s"(?

P<key>[^(? <! \\)"]+)(? <! \\)")?(\s(? P<args>. +))? $

""", re.VERBOSE)

class StatCounter(object):

def __init__(self, prefix_delim=':', redis_version=2.6):

self.line_count = 0

self.skipped_lines = 0

self.commands = defaultdict(int)

self.keys = defaultdict(int)

self.prefixes = defaultdict(int)

self.times = []

self._cached_sorts = {}

self.start_ts = None

self.last_ts = None

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 77

self.last_entry = None

self.prefix_delim = prefix_delim

self.redis_version = redis_version

self.line_re = line_re_24 if self.redis_version < 2.5 else line_re_26

def _record_duration(self, entry):

ts = float(entry['timestamp']) * 1000 * 1000 # microseconds

if not self.start_ts:

self.start_ts = ts

self.last_ts = ts

duration = ts - self.last_ts

if self.redis_version < 2.5:

cur_entry = entry

else:

cur_entry = self.last_entry

self.last_entry = entry

if duration and cur_entry:

self.times.append((duration, cur_entry))

self.last_ts = ts

def _record_command(self, entry):

self.commands[entry['command']] += 1

def _record_key(self, key):

self.keys[key] += 1

parts = key.split(self.prefix_delim)

if len(parts) > 1:

self.prefixes[parts[0]] += 1

@staticmethod

def _reformat_entry(entry):

max_args_to_show = 5

output = '"%(command)s"' % entry

if entry['key']:

output += ' "%(key)s"' % entry

if entry['args']:

arg_parts = entry['args'].split(' ')

ellipses = ' ...' if len(arg_parts) > max_args_to_show else ''

output += ' %s%s' % (' '.join(arg_parts[0:max_args_to_show]), ellipses)

return output

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

78 > Document Version:20200901

def _get_or_sort_list(self, ls):

key = id(ls)

if not key in self._cached_sorts:

sorted_items = sorted(ls)

self._cached_sorts[key] = sorted_items

return self._cached_sorts[key]

def _time_stats(self, times):

sorted_times = self._get_or_sort_list(times)

num_times = len(sorted_times)

percent_50 = sorted_times[int(num_times / 2)][0]

percent_75 = sorted_times[int(num_times * . 75)][0]

percent_90 = sorted_times[int(num_times * . 90)][0]

percent_99 = sorted_times[int(num_times * . 99)][0]

return (("Median", percent_50),

("75%", percent_75),

("90%", percent_90),

("99%", percent_99))

def _heaviest_commands(self, times):

times_by_command = defaultdict(int)

for time, entry in times:

times_by_command[entry['command']] += time

return self._top_n(times_by_command)

def _slowest_commands(self, times, n=8):

sorted_times = self._get_or_sort_list(times)

slowest_commands = reversed(sorted_times[-n:])

printable_commands = [(str(time), self._reformat_entry(entry)) \

for time, entry in slowest_commands]

return printable_commands

def _general_stats(self):

total_time = (self.last_ts - self.start_ts) / (1000*1000)

return (

("Lines Processed", self.line_count),

("Commands/Sec", '%. 2f' % (self.line_count / total_time))

)

def process_entry(self, entry):

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 79

def process_entry(self, entry):

self._record_duration(entry)

self._record_command(entry)

if entry['key']:

self._record_key(entry['key'])

def _top_n(self, stat, n=8):

sorted_items = sorted(stat.iteritems(), key = lambda x: x[1], reverse = True)

return sorted_items[:n]

def _pretty_print(self, result, title, percentages=False):

print title

print '=' * 40

if not result:

print 'n/a\n'

return

max_key_len = max((len(x[0]) for x in result))

max_val_len = max((len(str(x[1])) for x in result))

for key, val in result:

key_padding = max(max_key_len - len(key), 0) * ' '

if percentages:

val_padding = max(max_val_len - len(str(val)), 0) * ' '

val = '%s%s\t(%. 2f%%)' % (val, val_padding, (float(val) / self.line_count) * 100)

print key,key_padding,'\t',val

print

def print_stats(self):

self._pretty_print(self._general_stats(), 'Overall Stats')

self._pretty_print(self._top_n(self.prefixes), 'Top Prefixes', percentages = True)

self._pretty_print(self._top_n(self.keys), 'Top Keys', percentages = True)

self._pretty_print(self._top_n(self.commands), 'Top Commands', percentages = True)

self._pretty_print(self._time_stats(self.times), 'Command Time (microsecs)')

self._pretty_print(self._heaviest_commands(self.times), 'Heaviest Commands (microsecs)')

self._pretty_print(self._slowest_commands(self.times), 'Slowest Calls')

def process_input(self, input):

for line in input:

self.line_count += 1

line = line.strip()

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

80 > Document Version:20200901

match = self.line_re.match(line)

if not match:

if line ! = "OK":

self.skipped_lines += 1

continue

self.process_entry(match.groupdict())

if __name__ == '__main__':

parser = argparse.ArgumentParser()

parser.add_argument(

'input',

type = argparse.FileType('r'),

default = sys.stdin,

nargs = '?',

help = "File to parse; will read from stdin otherwise")

parser.add_argument(

'--prefix-delimiter',

type = str,

default = ':',

help = "String to split on for delimiting prefix and rest of key",

required = False)

parser.add_argument(

'--redis-version',

type = float,

default = 2.6,

help = "Version of the redis server being monitored",

required = False)

args = parser.parse_args()

counter = StatCounter(prefix_delim = args.prefix_delimiter, redis_version = args.redis_version)

counter.process_input(args.input)

counter.print_stats()

Note The preceding script is from redis-faina.

6. Run the python redis-faina imonitorOut.txt command to parse the monitoring data. imonitorO
ut.txt is the monitoring data stored in the example.

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 81

https://github.com/facebookarchive/redis-faina

Note In the preceding analysis result, Top Keys displays the most requested keys
during this time period, and Top Commands displays the most frequently used
commands. You can solve the hotkey problem based on the analysis results.

2.13. Use ApsaraDB for Redis to build a
broadcasting channel information system

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

82 > Document Version:20200901

You can use ApsaraDB for Redis to build a broadcasting channel information system that has a
low latency and can handle high traffic volumes.

Background information
The broadcasting channel is one of the key features of the live broadcasting system. Except for
the broadcasting window, online users, online gifts, comments, likes, rankings, and other data
generated in the live broadcast is time-limited, highly interactive, and delay-sensitive. Redis
cache service is a suitable solution to handle such data.

The best practice in this topic introduces how to use ApsaraDB for Redis to build a broadcasting
channel information system. This topic describes the construction methods for three information
types:

Real-time ranking information
Counting information
Timeline information

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 83

Real-time ranking information
The real-time ranking information includes an online user list, a list of online gifts, and live
comments. Live comments are similar to a message ranking list that is sorted based on the
message dimension. The sorted set structure in Redis is suitable to handle the real-time ranking
information.

The Redis set is stored in a hash table. The time complexity of the insert, delete, edit, and
search operations is O(1). Each member in the set is associated with a score to facilitate sorting
and other operations. The following example describes the added and returned live comments
to explain how the sorted set works to build a broadcasting channel information system.

Uses "unix timestamp + milliseconds" as the score to record the last five live comments in the
user55 broadcasting channel.

redis> ZADD user55:_danmu 1523959031601166 message111111111111

(integer) 1

11.160.24.14:3003> ZADD user55:_danmu 1523959031601266 message222222222222

(integer) 1

11.160.24.14:3003> ZADD user55:_danmu 1523959088894232 message33333

(integer) 1

11.160.24.14:3003> ZADD user55:_danmu 1523959090390160 message444444

(integer) 1

11.160.24.14:3003> ZADD user55:_danmu 1523959092951218 message5555

(integer) 1

Returns the last three live comments:

redis> ZREVRANGEBYSCORE user55:_danmu +inf -inf LIMIT 0 3

1) "message5555"

2) "message444444"

3) "message33333"

Returns three live comments within the specified time period:

redis> ZREVRANGEBYSCORE user55:_danmu 1523959088894232 -inf LIMIT 0 3

1) "message33333"

2) "message222222222222"

3) "message111111111111"

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

84 > Document Version:20200901

Counting information
In case of the user-related data, the counting information includes the number of unread
messages, followers, and fans, and the experience value. The hash structure in Redis is suitable
to process this type of data. For example, the number of followers can be processed as follows:

redis> HSET user:55 follower 5

(integer) 1

redis> HINCRBY user:55 follower 1 //The number of followers +1

(integer) 6

redis> HGETALL user:55

1) "follow"

2) "6"

Timeline information
The timeline information is a list of information sorted in time order. For example, the
broadcaster moments and new posts. This type of information is arranged in a fixed
chronological order and can be stored using a Redis list or an ordered list. The example is as
follows:

redis> LPUSH user:55_recent_activitiy '{datetime:201804112010,type:publish,title:The show starts, con

tent:Come on}'

(integer) 1

redis> LPUSH user:55_recent_activitiy '{datetime:201804131910,type:publish,title: Ask for a leave, cont

ent: Sorry, I have plans today.}'

(integer) 2

redis> LRANGE user:55_recent_activitiy 0 10

1) "{datetime:201804131910,type:publish,title:\xe8\xaf\xb7\xe5\x81\x87\",content:\xe6\x8a\xb1\xe6\

xad\x89\xef\xbc\x8c\xe4\xbb\x8a\xe5\xa4\xa9\xe6\x9c\x89\xe4\xba\x8b\xe9\xb8\xbd\xe4\xb8\x80\

xe5\xa4\xa9}"

2) "{datetime:201804112010,type:publish,title:\xe5\xbc\x80\xe6\x92\xad\xe5\x95\xa6,content:\xe5\x8

a\xa0\xe6\xb2\xb9}"

Related resources
For more information about how to eliminate potential risks and locate business performance
bottlenecks, see Analyze memory usage of ApsaraDB for Redis.
For more information about how to handle high concurrency, see ApsaraDB for Redis cluster
edition.

Records of command executions and key changes are stored in append-only files (AOFs). You
can parse AOFs to track these records.

2.14. Parse AOFs

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 85

https://help.aliyun.com/document_detail/141763.html#task-2316836
https://help.aliyun.com/document_detail/52228.html#concept-tds-4mm-tdb

Redis persistence modes
Redis Database (RDB) snapshot mode: This mode creates point-in-time snapshots of your
dataset at specified intervals. Keys and values are encoded as Redis strings and stored in RDB
snapshots.
AOF persistence mode: Similar to the binlog, AOFs keep a record of data changes that occur by
writing each change to the end of the file. You can restore the entire dataset by replaying the
AOF from the beginning to the end.

Details of the AOF persistence mode
A Redis client communicates with the Redis server through a protocol called REdis Serialization
Protocol (RESP). RESP can serialize the following types of data:

Simple strings:

A string that starts with a plus sign (+) and ends with rn. Example: +OKrn.

Error messages:

A string that starts with a minus sign (-) and ends with rn. Example: -ERR Readonlyrn.

Integers

A data structure that starts with a colon (:), ends with rn, and contains an integer between
the beginning and the end. Example: (:1rn).

Large strings

A string structure that starts with a dollar sign ($)followed by the string length (less than 512
MB) and rn, and ends with the string content and rn. Example: $0rnrn.

Arrays

A data structure that starts with an asterisk symbol (*), followed by array elements that are
separated by rn. The above four data types can be used as array elements. Example:
*1rn$4rnpingrn.

The Redis client sends an array command to the server. The server responds based on the
implementation method of the command and records the responses in the AOF.

Parse AOFs
The following example shows how to parse an AOF by invoking hiredis with Python:

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

86 > Document Version:20200901

#! /usr/bin/env python

""" A Redis appendonly file parser

"""

import logging

import hiredis

import sys

if len(sys.argv) ! = 2:

print sys.argv[0], 'AOF_file'

sys.exit()

file = open(sys.argv[1])

line = file.readline()

cur_request = line

while line:

req_reader = hiredis.Reader()

req_reader.setmaxbuf(0)

req_reader.feed(cur_request)

command = req_reader.gets()

try:

if command is not False:

print command

cur_request = ''

except hiredis.ProtocolError:

print 'protocol error'

line = file.readline()

cur_request += line

file.close

The AOF is parsed into the following format, where you can check the operations performed on a
specific key. After you obtain the following results, you can view the operations related to a
specific key at any time.

['PEXPIREAT', 'RedisTestLog', '1479541381558']

['SET', 'RedisTestLog', '39124268']

['PEXPIREAT', 'RedisTestLog', '1479973381559']

['HSET', 'RedisTestLogHash', 'RedisHashField', '16']

['PEXPIREAT', 'RedisTestLogHash', '1479973381561']

['SET', 'RedisTestLogString', '79146']

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 87

High performance is the most prominent feature of Redis. A robust Redis performance is crucial
to ensure the service availability. A reduced Redis performance can be caused by multiple
reasons. The hotkey problem is one of the most common reasons. The discovery of hotkeys is
the first step to improve Redis performance. This topic describes how to use the new features of
Redis 4.0 to discover the hotkeys.

Background
Redis 4.0 added two data eviction strategies: allkey-lfu and volatile-lfu. You can also run the
OBJECT command to obtain the access frequency of a specific key, as shown in the following
figure.

The native Redis client also added the --hotkeys option to help you discover hotkeys in your
business.

Note This topic describes how to discover hotkeys to optimize the performance of Redis.
This topic is suitable for users who are familiar with the basic features of ApsaraDB for Redis
and are seeking advanced skills. If you are not familiar with Redis, we recommend that you
read Product Overview.

Prerequisites
You have activated an ECS instance that can interconnect with the ApsaraDB for Redis
instance.
You have installed a Redis version later than Redis 4.0 on the ECS instance.

Note You can use the redis-cli tool based on these prerequisites.

The maxmemory-policy parameter of the ApsaraDB for Redis instance is set to volatile-lfu or a
llkeys-lfu.

Note For more information about how to modify the parameters, see Parameter
overview and configuration guide.

2.15. How to discover hotkeys in Redis 4.0

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

88 > Document Version:20200901

https://help.aliyun.com/document_detail/26342.html#concept-m3j-s5z-sdb
https://help.aliyun.com/document_detail/43885.html#concept-q1w-kxn-tdb

Procedure
1. When there is an ongoing business, use the following command to query the hotkey.

redis-cli -h r-***************.redis.rds.aliyuncs.com -a <password> --hotkeys

Note This topic uses redis-benchmark to simulate a scenario featuring a high
volume of writes.

Option descriptions

Option Description

-h Specifies the server hostname.

-a Specifies the password for Redis Auth.

--hotkeys Used to query hotkeys.

Results
The following example shows the result of running this command.

The summary part in the result is the hotkey.

The data structure in ApsaraDB for Redis has a significant impact on service performance. If the
number of big keys is large, the service performance or even service stability may deteriorate.
Regular memory analysis and optimization can ensure service stability and efficiency. To avoid
impacts on online services, you can run the BGSAVE command to generate an RDB file and use
redis-rdb-tools and SQLite to analyze the file offline.

2.16. Analyze memory usage of ApsaraDB
for Redis

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 89

https://help.aliyun.com/document_detail/38689.html#concept-zm4-dy5-ydb

Prerequisites
A Linux-based Elastic Compute Service (ECS) instance is created.
The SQLite database is installed on the ECS instance.

Create an RDB file
For an ApsaraDB for Redis instance, back up the instance and download the backup data as an
RDB file in the ApsaraDB for Redis console. For more information, see Back up and restore data
in the console.

For an on-premises Redis database, run the BGSAVE command on the client to generate an
RDB file.

Introduction to redis-rdb-tools
You need to use redis-rdb-tools to generate a memory snapshot from the RDB file that is
obtained. redis-rdb-tools is a Python tool used to parse RDB files. It supports the following
features:

Generate a memory snapshot.
Convert data in an RDB file to JSON format.
Compare two RDB files to find their differences.

Install redis-rdb-tools
You can install redis-rdb-tools in either of the following ways:

Install it from Python Package Index (PyPI) on the ECS instance.

pip install rdbtools

Install it from source code on the ECS instance.

git clone https://github.com/sripathikrishnan/redis-rdb-tools

cd redis-rdb-tools

sudo python setup.py install

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

90 > Document Version:20200901

https://help.aliyun.com/document_detail/43886.html#concept-up2-fmg-tdb/section-3pv-4sf-80e

Use redis-rdb-tools to generate a memory snapshot
Run the following command on the ECS instance to generate a memory snapshot in CSV format:

rdb -c memory dump.rdb > memory.csv

The memory snapshot contains the following data:

Database ID
Data type
Key
Memory usage (in bytes), including the memory occupied by the key-value pair and other
values

Note The memory usage is a theoretical approximation. Generally, it is slightly lower
than the actual value.

Encoding

A sample CSV file is as follows:

$head memory.csv

database,type,key,size_in_bytes,encoding,num_elements,len_largest_element

0,string,"orderAt:377671748",96,string,8,8,

0,string,"orderAt:413052773",96,string,8,8,

0,sortedset,"Artical:Comments:7386",81740,skiplist,479,41,

0,sortedset,"pay:id:18029",2443,ziplist,84,16,

0,string,"orderAt:452389458",96,string,8,8

Import the CSV file to the SQLite database
SQLite is a lightweight relational database. After importing the CSV file to the SQLite database,
you can use SQL statements to analyze the data in the CSV file.

Note
The SQLite version must be 3.16.0 or later.
Before importing the CSV file, delete the comma (,) at the end of each line in the CSV
file.

Run the following commands to import the CSV file:

sqlite3 memory.db

sqlite> create table memory(database int,type varchar(128),key varchar(128),size_in_bytes int,encodin

g varchar(128),num_elements int,len_largest_element varchar(128));

sqlite>.mode csv memory

sqlite>.import memory.csv memory

ApsaraDB for Redis Best Pract ices · Best Pract ices for All Edit ions

> Document Version:20200901 91

Analyze the memory snapshot generated by redis-rdb-tools
After importing the CSV file to the SQLite database, you can use SQL statements to analyze the
data in the CSV file. For example:

Query the number of keys in the memory.

sqlite>select count(*) from memory;

Query the total memory usage.

sqlite>select sum(size_in_bytes) from memory;

Query the top 10 keys with the highest memory usage.

sqlite>select * from memory order by size_in_bytes desc limit 10;

Query lists with over 1,000 elements.

sqlite>select * from memory where type='list' and num_elements > 1000;

Best Pract ices · Best Pract ices for All Edit ions ApsaraDB for Redis

92 > Document Version:20200901

	1.Best Practices for Redis Enhanced Edition
	1.1. Monitor user trajectories by using TairGIS
	1.2. High-performance distributed locks
	1.3. Concurrency control and optimistic locking
	1.4. Rate limiter
	1.5. TairHash memory consumption and expiration policies

	2.Best Practices for All Editions
	2.1. Migrate MySQL data to ApsaraDB for Redis
	2.2. Online player score ranking
	2.3. Correlation analysis on E-commerce store items
	2.4. Publish and subscribe to messages
	2.5. Pipeline
	2.6. Transactions
	2.7. Discovery and solutions of hotkey problems
	2.8. ApsaraDB for Redis supports Double 11 Shopping Festival
	2.9. Use ApsaraDB for Redis to build a business system for handling flash sales
	2.10. Read/write splitting in Redis
	2.11. JedisPool optimization
	2.12. Analyze hotkeys in a specific sub-node of a cluster instance
	2.13. Use ApsaraDB for Redis to build a broadcasting channel information system
	2.14. Parse AOFs
	2.15. How to discover hotkeys in Redis 4.0
	2.16. Analyze memory usage of ApsaraDB for Redis

