Alibaba Cloud

Tablestore

Best Practices

Document Version: 20201231

(-] Alibaba Cloud



Tablestore Best Practices-Legal disclaimer

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be deemed
as your total acceptance of this legal disclaimer.

1.

You shall download and obt ain this document from the Alibaba Cloud website or other Alibaba Cloud-
aut horized channels, and use this document for your own legal business activities only. The content of
this document is considered confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided to any third party for
use wit hout the prior written consent of Alibaba Cloud.

. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminated by

any organization, company or individual in any form or by any means without the prior written consent of
Alibaba Cloud.

. The content of this document may be changed because of product version upgrade, adjustment, or

other reasons. Alibaba Cloud reserves the right to modify the content of this document without notice
and an updated version of this document will be released through Alibaba Cloud-aut horized channels
from time to time. You should pay attention to the version changes of this document as they occur and
download and obt ain the most up-to-date version of this document from Alibaba Cloud-aut horized
channels.

. This document serves only as a reference guide for your use of Alibaba Cloud products and services.

Alibaba Cloud provides this document based onthe "status quo", "being defective", and "existing
functions" of its products and services. Alibaba Cloud makes every effort to provide relevant operational
guidance based on existing technologies. However, Alibaba Cloud hereby makes a clear statement that
it in no way guarantees the accuracy, integrity, applicability, and reliability of the content of this
document, either explicitly or implicitly. Alibaba Cloud shall not take legal responsibility for any errors or
lost profits incurred by any organization, company, or individual arising from download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, take responsibility for any indirect,
consequential, punitive, contingent, special, or punitive damages, including lost profits arising from t he
use or trust inthis document (evenif Alibaba Cloud has been notified of the possibility of such a loss).

. By law, allthe contents in Alibaba Cloud documents, including but not limited to pictures, architecture

design, page layout, and text description, are intellectual property of Alibaba Cloud and/or its
affiliates. This intellect ual property includes, but is not limited to, trademark rights, patent rights,
copyrights, and trade secrets. No part of this document shall be used, modified, reproduced, publicly
transmitted, changed, disseminated, distributed, or published wit hout the prior written consent of
Alibaba Cloud and/or its affiliates. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for marketing, advertising, promotion, or ot her purposes wit hout the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited to, "Alibaba Cloud",
"Aliyun", "HiChina", and other brands of Alibaba Cloud and/or its affiliates, which appear separately or in
combination, as well as the auxiliary signs and patterns of the preceding brands, or anyt hing similar to
the company names, trade names, trademarks, product or service names, domain names, patterns,
logos, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates.

. Please directly contact Alibaba Cloud for any errors of this document.

> Document Version: 20201231



Tablestore

Best Practices-Document conventio
ns

Document conventions

Style

/\ Danger

warning

) Notice

@ Note

Bold

Courier font

Italic

(1 or [alb]

{} or {a|b}

Description

A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

A note indicates supplemental
instructions, best practices, tips, and
other content.

Closing angle brackets are used to
indicate a multi-level menu cascade.

Bold formatting is used for buttons ,
menus, page names, and other Ul
elements.

Courier font is used for commands

ltalic formatting is used for parameters
and variables.

This format is used for an optional value,
where only one item can be selected.

This format is used for a required value,
where only one item can be selected.

Example

& Danger:

Resetting will result in the loss of user
configuration data.

warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

p Notice:

If the weight is set to 0, the server no
longer receives new requests.

@ Note:

You can use Ctrl + A to select all files.

Click Settings> Network> Set network
type.

Click OK.

Runthe cd /d C:/window command to
enter the Windows system folder.

bae log list --instanceid

Instance_ID

ipconfig [-all|-t]

switch {active|stand}

> Document Version: 20201231



Tablestore Best Practices-Table of Contents

Table of Contents

1.Table operations &=t s e s e 05

2.Data operations =2 s e e e s e s 1

> Document Version: 20201231



Tablestore Best Practices-Table operations

1.Table operations

This topic provides you with best practices fortable design.

A well-designed primary key

Tablestore dynamically divides table data into partitions based on the partition key, and each partition
is hosted on one server node. The partition key is used as the minimum partition unit. Data under the
same partition key value cannot split further. Applications must balance data distribution and access
distribution across partitions to leverage the capability of Tabelstore.

Tablestore sorts the rows in a table by primary key. A well-designed primary key can better balance
data distribution across partitions. T his way, the high scalability of Tablestore can be fully utilized.

When you select a partition key, take note of the following items:

e Data of all rows in one partition key value cannot exceed 10 GB.
@ Note Although 10 GB is not a hard limitation, this is recommended to avoid a hotspot.

e Dataindifferent partition key value of the same table are logically independent.
e Do not concentrate the access load on a small range of consecutive partition key value.
Examples

For example, a table stores records of the transactions of all students using their student ID cards in a
university. The primary key columns include CardID, SellerID, DevicelD, and OrderNumber. CardID indicates
the ID of a student card, SellerlD indicates the ID of a seller, DevicelD indicates the ID of a point-of-sale
device, and OrderNumber indicates the number of an order. The records abide by the following
conventions:

e Eachstudent card corresponds to one CardID, and each seller corresponds to one SelleriD.
e Each point-of-sale device corresponds to a globally unique DevicelD.

e Foreach purchase generated by a point-of-sale device, one OrderNumber is recorded. An
OrderNumber generated by a device is unique to the device, but is not globally unique. For example,
different point-of-sale devices may generate two separate purchase records using the same
OrderNumber.

e Each OrderNumber generated by the same point-of-sale device has a different time stamp. New
purchase records have larger sequential OrderNumbers than the previous purchase records.

e Every purchase record is written into the table in real time.

To optimize the use of Tablestore, consider the following partition keys when you design the primary
key of atable in Tablestore:

Partitioning mode Description

Using CardID as the partition key for the table is
recommended. Generally, the number of purchase
records for each card on each day is similar, thereby
the access pressure for each partition is balanced.
This allows for an efficient utilization of the
reserved read/write throughput.

Use CardID as the partition key for the table

> Document Version: 20201231 5



Best Practices-Table operations Tablestore

Partitioning mode Description

Using SellerID as the partition key for the table is not
recommended. The number of sellers in a school is
relatively small, and some sellers may generate a
large number of purchase records and become hot
spots. This does not help to balance access
pressure for each partition.

Use SellerID as the partition key for the table

Using DevicelD as the partition key for the table is
recommended. Even though the number of purchase
records for each seller per day varies, the number of
purchase records generated by each purchase
device per day can be estimated. This estimation is
calculated based on a the order processing speed
of a cashier, which determines the number of
purchase records that can be generated by their
purchase device per day. Therefore, DevicelD is
suitable as the partition key of the table to
guarantee a balanced distribution of access
pressure.

Using DevicelD as the partition key for the table

Using OrderNumber as the partition key for the table
is not recommended. The OrderNumber is not
recommended due to the sequential increase of
purchase orders generated at the same time,
resulting in grouped orders in the same time period.

Use OrderNumber as the partition key for the table This restricts the effectiveness of the read /write
throughput. If OrderNumber must be the partition
key, you can hash it and use the resulting hash value
as the OrderNumber prefix. This process will allow
for even distribution of the data and reduce
distribution pressure.

Summary

We recommend that you use CardID or DevicelD, instead of SellerlD or OrderNumber, as the partition key
of the table. After you specify the partition key, you can design the remaining primary key columns
based on the actual requirements of your application.

Spliced partition key

For optimized Tablestore use, we recommend that the data volume of a single partition key value does
not exceed 10 GB. If the total data volume for all rows in a single table partition key value exceeds 10
GB, you can splice multiple original primary key columns into a partition key when you design the table.

Example

As in the preceding student card purchase record example, assume the primary key columns are
DevicelD, SellerD, CardID, and OrderNumber. DevicelD is the partition key for this table and the total
data volume from all rows of a single DevicelD may exceed 10 GB. In this case, splice DevicelD, SelleriD,
and CardID as the first primary key column (partition key) of the table.

The following table shows the original table:

6 > Document Version: 20201231



Tablestore Best Practices-Table operations

DevicelD SellerlD CardID OrderNumber attrs
16 'a100' 66661 200001
54 'a100' 6777 200003
54 'a1001' 6777 200004
167 'a101' 283408 200002

The following table shows the partition key created by splicing DevicelD, SellerID, and CardID:

CombineDevicelDSellerIDCardID OrderNumber attrs
'16:a100:66661' 200001
'167:a101:283408' 200002
'54:a1001:6777' 200004
'54:a100:6777' 200003

In the original table, the two rows whose DevicelDs are 54 indicates two purchase records that have the
same partition key value. In the newly created table, these two purchase records have dif ferent
partition key values. You can reduce the total data volume for each partition key value in the table by
splicing multiple primary key columns to form a partition key.

Create the partition key by splicing DevicelD, SelleriD, and CardID instead of splicing DevicelD and SellerID.
This is because in the table mentioned in the previous section, all purchase records with the same
DevicelD have the same SellerID. The problem of too much data in a single partition cannot be resolved
only by splicing DevicelD and SellerID.

Splicing the primary key columns to form a table presents some disadvantages. DevicelD is an INTEGER
primary key column. In the original table, the purchase records whose DevicelDs are 54 are listed before
those whose DevicelDs are 167. After splicing the first three primary key columns into a STRING primary
key column, the purchase records whose DevicelDs are 54 are listed after those whose DevicelDs are 167.
If the application must read all purchase records whose DevicelDs range from 15 to 100, the preceding
table is not optimal.

To address this situation, you can add zeros in front of the DevicelDs. The number of zeros to add is
determined by the maximum number of digits for DevicelDs. If the DevicelD ranges from 0 to 999999,
you can add zeros so that all DevicelDs have 6 digits, and then splice. The following table shows the
resulting table:

CombineDevicelDSellerIDCardID OrderNumber attrs
'000016:a100:66661" 200001
'000054:a1001:6777' 200004
'000054:a100:6777" 200003
'000167:a101:283408' 200002

> Document Version: 20201231 7



Best Practices-Table operations Tablestore

However, even after zeros are padded in front of the IDs, the table is still not fully optimized. This is
because of the two rows whose DevicelDs are 54 and the row whose SelleriD is 'a1001' is listed afterthe

row whose SellerD is 'a100'. T his discrepancy is caused by : asthe connector, which influences the
lexicographic order. As a result, '000054:a1001' is lexicographically less than '000054:a100:', but 'a1001'
is greaterthan 'a100'.

To resolve this issue, choose a character that is less than the ASCIl code of all other available
characters. In this table, the SellerID value uses letters and digits. We recommend that youuse , asthe
connector because the ASClicode for , is lessthanthe ASCIl code of all characters available forthe
SellerID.

The following table shows the result afteryou use , and then splice the partition key.

CombineDeviceiDSellerIDCardID OrderNumber attrs
'000016,a100,66661' 200001
'000054,a100,6777' 200003
'000054,a1001,6777' 200004
'000167,a101,283408' 200002

In the preceding table produced by splicing the partition key, the record order is consistent with that of
the original table.

Summary

If the total datasize for all rows in a single partition key value exceeds 10 GB, you can splice multiple
primary key columns to form a partition key to minimize the data size of an individual partition key value.
When you splice the partition key, take note of the following items:

e When you choose the primary key columns to splice, make sure that the original rows of the same
partition key value have different partition key values after splicing.

e When you splice INTEGER primary key columns, you can add zeros before the numbers to make the
rows order remain the same.

e When you select a connector, consider its effect on the lexicographical order of the new partition
key. The ideal method is to select a connector with an ASCIl code that is less than all other available
characters.

Add hash prefixes in partition key

Examples

We recommend that you do not use OrderNumber as the partition key for the table. Purchase records
are always written in the latest OrderNumber range because OrderNumbers increase sequentially. As a
result, earlier OrderNumber ranges do not experience any written pressure. This causes an imbalance in
access pressure, which results in inefficient use of the reserved read/write throughput. If you must use a
sequentially increasing key value as the partition key, splice a hash prefix to the partition key. This way,
the OrderNumbers are randomly distributed throughout the table to better balance the access
pressure.

The following table shows the purchase records using OrderNumber as the partition key.

8 > Document Version: 20201231



Tablestore Best Practices-Table operations

OrderNumber DevicelD SelleriD CardID attrs
200001 16 'a100' 66661

200002 167 'a101' 283408

200003 54 'a100' 6777

200004 54 'a1001" 6777

200005 66 'b304' 178994

As an example, for the OrderNumbers, you can use the md5 algorithmto calculate a prefix (other
hashing algorithms are permitted) and splice it to create the HashOrderNumber. As the hash strings
calculated by the md5 algorithm may be too long, you can take only the first few digits to achieve a
random distribution of records of sequential OrderNumbers. In this example, the first 4 digits are used to
produce the following table.

HashOrderNumber DevicelD SellerID CardID attrs
'2e38200004' 54 'a1001" 6777

'a5a9200003' 54 'a100' 6777

'c335200005' 66 'b304' 178994

'db6e200002 167 'a101' 283408

'ddba200001' 16 'a100' 66661

When you subsequently access the purchase records, use the same algorithmto calculate the hash
prefix of the OrderNumber to get the HashOrderNumber that corresponds to a purchase record. One
disadvantage of adding a hash prefix to the partition key is that the originally contiguous records are
dispersed. As a result, the GetRange operation cannot be used to get a range of logically consecutive
records.

Write data in parallel

When T ablestore tables are split into multiple partitions, these partitions are distributed across multiple
Tablestore servers. If a batch of data is ordered by the primary key to be uploaded to Tablestore, and
the data is written in the same order, this may concentrate the written pressure on a certain partition.
This partition may have high pressure, whereas the other partitions remain idle. This operation does not
fully utilize the reserved read/write throughput and may impact the data import speed.

To resolve this issue, use one of the following methods to increase the data import speed:

e Disrupt the original data order and import the data. Make sure that the written data is evenly
distributed across each partition.

e Use multiple worker threads to import data in parallel. Split a large data set into multiple smaller sets.
The worker threads then randomly selects a smaller set to import.

Distinguish cold data and hot data

> Document Version: 20201231 9



Best Practices-Table operations Tablestore

Data are often time sensitive Use the student transaction records described in the preceding section as
an example. Some purchase records may have a higher access probability because applications
frequently query the latest record, and process and compile statistics based on the latest records.
However, previous purchase records continue to occupy storage space and become cold.

If a large volume of cold datais included in a table, the reserved read/write throughput is ineffectively
utilized, and results in unbalanced access pressure across the partitions. For example, the cards of
students who graduated no longer generate purchase records. If the card IDs increase based on the
date they were applied for and are used as the partition key, the records whose CardID belongs to
graduate students do not have access pressure but waste reserved read/write throughput.

To effectively manage time sensitive data, use different tables to separate cold and hot data and set
a different reserved read/write throughput for each table. For example, purchase records may be
divided into different tables according to month. A new table is created for each month. New purchase
records are constantly written to the table for the current month and query operations are also
performed. A high reserved read/write throughput can be set forthe table with the latest purchase
records of the current month to satisfy its access needs. A low reserved write throughput and a high
reserved read throughput can be set for previous tables of the past few months in which little or no
new data is written, but queries are still performed. A low reserved read/write throughput can be set
fortables that have exceeded their maintenance period such as historical records of a year or longer.
These tables can be exported to restore in an 0SS archive, or deleted.

10 > Document Version: 20201231



Tablestore Best Practices-Data operations

2.Data operations

This topic provides you with best practices for data operations.

Split tables based on access frequency differences among attribute
columns

If rows of atable have many attribute columns, but each operation accesses only a portion of these
columns, you can split the table into multiple tables. The attribute columns of different access
frequencies can be placed into different tables.

For example, in a merchandise management system, rows contain the item quantity, item price, and item
description. ltem quantities and prices are INT EGER values that consume little storage space. tem
descriptions are STRING values that consume more storage space. ltem descriptions are modified
infrequently because most operations update item quantities and prices without modifying the item
descriptions. The table can be split into two tables. One table contains item quantities and prices, and
the other contains item descriptions.

Compress text-based attribute columns

If an attribute column contains a large amount of text, the attribute columns can be compressed and
stored as BINARY data in Tablestore. T his process saves space and reduces the capacity units consumed
by access operations to reduce the cost of Tablestore usage.

Store attribute column in OSS

Tablestore limits the size of a single attribute column to 2 MB. If you must store a file that exceeds 2
MB, we recommend that you use Alibaba Cloud Object Storage Service (0SS).0SS is an open storage
service provided by Alibaba Cloud to storage a large amount of data. Compared to Tablestore, 0SS
stores files at a lower unit price. Therefore, OSS is more suitable for storing objects.

If OSS cannot be used, the attribute column whose value is greater than 2 MB can be split into multiple
smaller rows, and stored in Tablestore.

Add error retry intervals

Tablestore may encounter hardware or software problems, which result in some requests of the
application to fail and return retries errors. If the request from an application fails and returns a try
again error, we recommend that you wait a period of time before you try the request again. As a best
practice, randomized or exponentially-increasing backoffs are helpful to avoid an avalanche effect.

> Document Version: 20201231 11


https://www.alibabacloud.com/product/oss

	1.Table operations
	2.Data operations

