
Alibaba CloudAlibaba Cloud

Tablestore
Best Practices

Document Version: 20201231

Alibaba CloudAlibaba Cloud

Tablestore
Best Practices

Document Version: 20201231

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

Tablest ore Best Pract ices··Legal disclaimer

> Document Version: 20201231 I

Document conventions
St yleSt yle Descript ionDescript ion ExampleExample

 DangerDanger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:Danger:

Resetting will result in the loss of user
configuration data.

 WarningWarning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not iceNot ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not eNot e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ingsSet t ings > Net workNet work> Set net workSet net work
t ypet ype.

BoldBold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OKOK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

Tablest ore Best Pract ices··Document convent io
ns

> Document Version: 20201231 I

Table of Contents
1.Table operations

2.Data operations

05

11

Tablest ore Best Pract ices··Table of Cont ent s

> Document Version: 20201231 I

This topic provides you with best pract ices for table design.

A well-designed primary keyA well-designed primary key
Tablestore dynamically divides table data into part it ions based on the part it ion key, and each part it ion
is hosted on one server node. The part it ion key is used as the minimum part it ion unit . Data under the
same part it ion key value cannot split further. Applications must balance data distribution and access
distribution across part it ions to leverage the capability of Tabelstore.

Tablestore sorts the rows in a table by primary key. A well-designed primary key can better balance
data distribution across part it ions. This way, the high scalability of Tablestore can be fully ut ilized.

When you select a part it ion key, take note of the following items:

Data of all rows in one part it ion key value cannot exceed 10 GB.

Not e Not e Although 10 GB is not a hard limitat ion, this is recommended to avoid a hotspot.

Data in different part it ion key value of the same table are logically independent.

Do not concentrate the access load on a small range of consecutive part it ion key value.

Examples

For example, a table stores records of the transactions of all students using their student ID cards in a
university. The primary key columns include CardID, SellerID, DeviceID, and OrderNumber. CardID indicates
the ID of a student card, SellerID indicates the ID of a seller, DeviceID indicates the ID of a point-of-sale
device, and OrderNumber indicates the number of an order. The records abide by the following
conventions:

Each student card corresponds to one CardID, and each seller corresponds to one SellerID.

Each point-of-sale device corresponds to a globally unique DeviceID.

For each purchase generated by a point-of-sale device, one OrderNumber is recorded. An
OrderNumber generated by a device is unique to the device, but is not globally unique. For example,
different point-of-sale devices may generate two separate purchase records using the same
OrderNumber.

Each OrderNumber generated by the same point-of-sale device has a different t ime stamp. New
purchase records have larger sequential OrderNumbers than the previous purchase records.

Every purchase record is writ ten into the table in real t ime.

To optimize the use of Tablestore, consider the following part it ion keys when you design the primary
key of a table in Tablestore:

Partit ioning mode Description

Use CardID as the partit ion key for the table

Using CardID as the partit ion key for the table is
recommended. Generally, the number of purchase
records for each card on each day is similar, thereby
the access pressure for each partit ion is balanced.
This allows for an efficient utilization of the
reserved read/write throughput.

1.Table operations1.Table operations

Tablest ore Best Pract ices··Table operat ions

> Document Version: 20201231 5

Use SellerID as the partit ion key for the table

Using SellerID as the partit ion key for the table is not
recommended. The number of sellers in a school is
relatively small, and some sellers may generate a
large number of purchase records and become hot
spots. This does not help to balance access
pressure for each partit ion.

Using DeviceID as the partit ion key for the table

Using DeviceID as the partit ion key for the table is
recommended. Even though the number of purchase
records for each seller per day varies, the number of
purchase records generated by each purchase
device per day can be estimated. This estimation is
calculated based on a the order processing speed
of a cashier, which determines the number of
purchase records that can be generated by their
purchase device per day. Therefore, DeviceID is
suitable as the partit ion key of the table to
guarantee a balanced distribution of access
pressure.

Use OrderNumber as the partit ion key for the table

Using OrderNumber as the partit ion key for the table
is not recommended. The OrderNumber is not
recommended due to the sequential increase of
purchase orders generated at the same time,
resulting in grouped orders in the same time period.
This restricts the effectiveness of the read /write
throughput. If OrderNumber must be the partit ion
key, you can hash it and use the resulting hash value
as the OrderNumber prefix. This process will allow
for even distribution of the data and reduce
distribution pressure.

Partit ioning mode Description

Summary

We recommend that you use CardID or DeviceID, instead of SellerID or OrderNumber, as the part it ion key
of the table. After you specify the part it ion key, you can design the remaining primary key columns
based on the actual requirements of your application.

Spliced partit ion keySpliced partit ion key
For optimized Tablestore use, we recommend that the data volume of a single part it ion key value does
not exceed 10 GB. If the total data volume for all rows in a single table part it ion key value exceeds 10
GB, you can splice mult iple original primary key columns into a part it ion key when you design the table.

Example

As in the preceding student card purchase record example, assume the primary key columns are
DeviceID, SellerID, CardID, and OrderNumber. DeviceID is the part it ion key for this table and the total
data volume from all rows of a single DeviceID may exceed 10 GB. In this case, splice DeviceID, SellerID,
and CardID as the first primary key column (part it ion key) of the table.

The following table shows the original table:

Best Pract ices··Table operat ions Tablest ore

6 > Document Version: 20201231

DeviceID SellerID CardID OrderNumber attrs

16 'a100' 66661 200001 ...

54 'a100' 6777 200003 ...

54 'a1001' 6777 200004 ...

167 'a101' 283408 200002 ...

The following table shows the part it ion key created by splicing DeviceID, SellerID, and CardID:

CombineDeviceIDSellerIDCardID OrderNumber attrs

'16:a100:66661' 200001 ...

'167:a101:283408' 200002 ...

'54:a1001:6777' 200004 ...

'54:a100:6777' 200003 ...

In the original table, the two rows whose DeviceIDs are 54 indicates two purchase records that have the
same part it ion key value. In the newly created table, these two purchase records have different
part it ion key values. You can reduce the total data volume for each part it ion key value in the table by
splicing mult iple primary key columns to form a part it ion key.

Create the part it ion key by splicing DeviceID, SellerID, and CardID instead of splicing DeviceID and SellerID.
This is because in the table mentioned in the previous sect ion, all purchase records with the same
DeviceID have the same SellerID. The problem of too much data in a single part it ion cannot be resolved
only by splicing DeviceID and SellerID.

Splicing the primary key columns to form a table presents some disadvantages. DeviceID is an INTEGER
primary key column. In the original table, the purchase records whose DeviceIDs are 54 are listed before
those whose DeviceIDs are 167. After splicing the first three primary key columns into a STRING primary
key column, the purchase records whose DeviceIDs are 54 are listed after those whose DeviceIDs are 167.
If the application must read all purchase records whose DeviceIDs range from 15 to 100, the preceding
table is not optimal.

To address this situation, you can add zeros in front of the DeviceIDs. The number of zeros to add is
determined by the maximum number of digits for DeviceIDs. If the DeviceID ranges from 0 to 999999,
you can add zeros so that all DeviceIDs have 6 digits, and then splice. The following table shows the
result ing table:

CombineDeviceIDSellerIDCardID OrderNumber attrs

'000016:a100:66661' 200001 ...

'000054:a1001:6777' 200004 ...

'000054:a100:6777' 200003 ...

'000167:a101:283408' 200002 ...

Tablest ore Best Pract ices··Table operat ions

> Document Version: 20201231 7

However, even after zeros are padded in front of the IDs, the table is st ill not fully optimized. This is
because of the two rows whose DeviceIDs are 54 and the row whose SellerID is 'a1001' is listed after the
row whose SellerID is 'a100'. This discrepancy is caused by : as the connector, which influences the
lexicographic order. As a result , '000054:a1001' is lexicographically less than '000054:a100:', but 'a1001'
is greater than 'a100'.

To resolve this issue, choose a character that is less than the ASCII code of all other available
characters. In this table, the SellerID value uses letters and digits. We recommend that you use , as the

connector because the ASCII code for , is less than the ASCII code of all characters available for the
SellerID.

The following table shows the result after you use , and then splice the part it ion key.

CombineDeviceiDSellerIDCardID OrderNumber attrs

'000016,a100,66661' 200001 ...

'000054,a100,6777' 200003 ...

'000054,a1001,6777' 200004 ...

'000167,a101,283408' 200002 ...

In the preceding table produced by splicing the part it ion key, the record order is consistent with that of
the original table.

Summary

If the total data size for all rows in a single part it ion key value exceeds 10 GB, you can splice mult iple
primary key columns to form a part it ion key to minimize the data size of an individual part it ion key value.
When you splice the part it ion key, take note of the following items:

When you choose the primary key columns to splice, make sure that the original rows of the same
part it ion key value have different part it ion key values after splicing.

When you splice INTEGER primary key columns, you can add zeros before the numbers to make the
rows order remain the same.

When you select a connector, consider its effect on the lexicographical order of the new part it ion
key. The ideal method is to select a connector with an ASCII code that is less than all other available
characters.

Add hash prefixes in partit ion keyAdd hash prefixes in partit ion key
Examples

We recommend that you do not use OrderNumber as the part it ion key for the table. Purchase records
are always written in the latest OrderNumber range because OrderNumbers increase sequentially. As a
result , earlier OrderNumber ranges do not experience any written pressure. This causes an imbalance in
access pressure, which results in inefficient use of the reserved read/write throughput. If you must use a
sequentially increasing key value as the part it ion key, splice a hash prefix to the part it ion key. This way,
the OrderNumbers are randomly distributed throughout the table to better balance the access
pressure.

The following table shows the purchase records using OrderNumber as the part it ion key.

Best Pract ices··Table operat ions Tablest ore

8 > Document Version: 20201231

OrderNumber DeviceID SellerID CardID attrs

200001 16 'a100' 66661 ...

200002 167 'a101' 283408 ...

200003 54 'a100' 6777 ...

200004 54 'a1001' 6777 ...

200005 66 'b304' 178994 ...

As an example, for the OrderNumbers, you can use the md5 algorithm to calculate a prefix (other
hashing algorithms are permitted) and splice it to create the HashOrderNumber. As the hash strings
calculated by the md5 algorithm may be too long, you can take only the first few digits to achieve a
random distribution of records of sequential OrderNumbers. In this example, the first 4 digits are used to
produce the following table.

HashOrderNumber DeviceID SellerID CardID attrs

'2e38200004' 54 'a1001' 6777 ...

'a5a9200003' 54 'a100' 6777 ...

'c335200005' 66 'b304' 178994 ...

'db6e200002 167 'a101' 283408 ...

'ddba200001' 16 'a100' 66661 ...

When you subsequently access the purchase records, use the same algorithm to calculate the hash
prefix of the OrderNumber to get the HashOrderNumber that corresponds to a purchase record. One
disadvantage of adding a hash prefix to the part it ion key is that the originally contiguous records are
dispersed. As a result , the GetRange operation cannot be used to get a range of logically consecutive
records.

Write data in parallelWrite data in parallel
When Tablestore tables are split into mult iple part it ions, these part it ions are distributed across mult iple
Tablestore servers. If a batch of data is ordered by the primary key to be uploaded to Tablestore, and
the data is writ ten in the same order, this may concentrate the written pressure on a certain part it ion.
This part it ion may have high pressure, whereas the other part it ions remain idle. This operation does not
fully ut ilize the reserved read/write throughput and may impact the data import speed.

To resolve this issue, use one of the following methods to increase the data import speed:

Disrupt the original data order and import the data. Make sure that the written data is evenly
distributed across each part it ion.

Use mult iple worker threads to import data in parallel. Split a large data set into mult iple smaller sets.
The worker threads then randomly selects a smaller set to import.

Distinguish cold data and hot dataDistinguish cold data and hot data

Tablest ore Best Pract ices··Table operat ions

> Document Version: 20201231 9

Data are often t ime sensit ive Use the student transaction records described in the preceding sect ion as
an example. Some purchase records may have a higher access probability because applications
frequently query the latest record, and process and compile stat ist ics based on the latest records.
However, previous purchase records continue to occupy storage space and become cold.

If a large volume of cold data is included in a table, the reserved read/write throughput is ineffect ively
utilized, and results in unbalanced access pressure across the part it ions. For example, the cards of
students who graduated no longer generate purchase records. If the card IDs increase based on the
date they were applied for and are used as the part it ion key, the records whose CardID belongs to
graduate students do not have access pressure but waste reserved read/write throughput.

To effect ively manage t ime sensit ive data, use different tables to separate cold and hot data and set
a different reserved read/write throughput for each table. For example, purchase records may be
divided into different tables according to month. A new table is created for each month. New purchase
records are constantly writ ten to the table for the current month and query operations are also
performed. A high reserved read/write throughput can be set for the table with the latest purchase
records of the current month to satisfy its access needs. A low reserved write throughput and a high
reserved read throughput can be set for previous tables of the past few months in which lit t le or no
new data is writ ten, but queries are st ill performed. A low reserved read/write throughput can be set
for tables that have exceeded their maintenance period such as historical records of a year or longer.
These tables can be exported to restore in an OSS archive, or deleted.

Best Pract ices··Table operat ions Tablest ore

10 > Document Version: 20201231

This topic provides you with best pract ices for data operations.

Split tables based on access frequency differences among attributeSplit tables based on access frequency differences among attribute
columnscolumns
If rows of a table have many attribute columns, but each operation accesses only a port ion of these
columns, you can split the table into mult iple tables. The attribute columns of different access
frequencies can be placed into different tables.

For example, in a merchandise management system, rows contain the item quantity, item price, and item
descript ion. Item quantit ies and prices are INTEGER values that consume lit t le storage space. Item
descript ions are STRING values that consume more storage space. Item descript ions are modified
infrequently because most operations update item quantit ies and prices without modifying the item
descript ions. The table can be split into two tables. One table contains item quantit ies and prices, and
the other contains item descript ions.

Compress text-based attribute columnsCompress text-based attribute columns
If an attribute column contains a large amount of text, the attribute columns can be compressed and
stored as BINARY data in Tablestore. This process saves space and reduces the capacity units consumed
by access operations to reduce the cost of Tablestore usage.

Store attribute column in OSSStore attribute column in OSS
Tablestore limits the size of a single attribute column to 2 MB. If you must store a file that exceeds 2
MB, we recommend that you use Alibaba Cloud Object Storage Service (OSS).OSS is an open storage
service provided by Alibaba Cloud to storage a large amount of data. Compared to Tablestore, OSS
stores files at a lower unit price. Therefore, OSS is more suitable for storing objects.

If OSS cannot be used, the attribute column whose value is greater than 2 MB can be split into mult iple
smaller rows, and stored in Tablestore.

Add error retry intervalsAdd error retry intervals
Tablestore may encounter hardware or software problems, which result in some requests of the
application to fail and return retries errors. If the request from an application fails and returns a try
again error, we recommend that you wait a period of t ime before you try the request again. As a best
pract ice, randomized or exponentially-increasing backoffs are helpful to avoid an avalanche effect.

2.Data operations2.Data operations

Tablest ore Best Pract ices··Dat a operat ions

> Document Version: 20201231 11

https://www.alibabacloud.com/product/oss

	1.Table operations
	2.Data operations

