
Alibaba Cloud
ApsaraDB for HBase

Development Guide
Issue: 20200320

ApsaraDB for HBase Development Guide / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
 conditions of this legal disclaimer before you read or use this document. If you
have read or used this document, it shall be deemed as your total acceptance of this
 legal disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or
provided to any third party for use without the prior written consent of Alibaba
Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted
, or disseminated by any organization, company, or individual in any form or by
any means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
 occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
 products and services. Alibaba Cloud provides the document in the context
that Alibaba Cloud products and services are provided on an "as is", "with all
 faults" and "as available" basis. Alibaba Cloud makes every effort to provide
relevant operational guidance based on existing technologies. However, Alibaba
 Cloud hereby makes a clear statement that it in no way guarantees the accuracy
, integrity, applicability, and reliability of the content of this document, either
explicitly or implicitly. Alibaba Cloud shall not bear any liability for any errors
 or financial losses incurred by any organizations, companies, or individuals
arising from their download, use, or trust in this document. Alibaba Cloud shall
 not, under any circumstances, bear responsibility for any indirect, consequent

Issue: 20200320 I

ApsaraDB for HBase Development Guide / Legal disclaimer

ial, exemplary, incidental, special, or punitive damages, including lost profits
arising from the use or trust in this document, even if Alibaba Cloud has been
notified of the possibility of such a loss.

5. By law, all the contents in Alibaba Cloud documents, including but not limited
to pictures, architecture design, page layout, and text description, are intellectu
al property of Alibaba Cloud and/or its affiliates. This intellectual property
includes, but is not limited to, trademark rights, patent rights, copyrights, and
 trade secrets. No part of this document shall be used, modified, reproduced,
publicly transmitted, changed, disseminated, distributed, or published without
the prior written consent of Alibaba Cloud and/or its affiliates. The names owned
 by Alibaba Cloud shall not be used, published, or reproduced for marketing,
advertising, promotion, or other purposes without the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited
 to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba Cloud
and/or its affiliates, which appear separately or in combination, as well as the
auxiliary signs and patterns of the preceding brands, or anything similar to the
 company names, trade names, trademarks, product or service names, domain
names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates.

6. Please contact Alibaba Cloud directly if you discover any errors in this document
.

II Issue: 20200320

ApsaraDB for HBase Development Guide / Legal disclaimer

Issue: 20200320 III

ApsaraDB for HBase Development Guide / Document conventions

Document conventions
Style Description Example

A danger notice indicates a
situation that will cause major
system changes, faults, physical
 injuries, and other adverse
results.

Danger:
Resetting will result in the loss
of user configuration data.

A warning notice indicates a
situation that may cause major
system changes, faults, physical
 injuries, and other adverse
results.

Warning:
Restarting will cause business
interruption. About 10
minutes are required to restart
an instance.

A caution notice indicates
 warning information,
supplementary instructions,
and other content that the user
must understand.

Notice:
If the weight is set to 0, the
server no longer receives new
requests.

A note indicates supplemental
instructions, best practices, tips
, and other content.

Note:
You can use Ctrl + A to select
all files.

> Closing angle brackets are used
 to indicate a multi-level menu
cascade.

Click Settings > Network > Set
network type.

Bold Bold formatting is used for
buttons, menus, page names,
and other UI elements.

Click OK.

Courier font Courier font is used for
commands.

Run the cd /d C:/window
command to enter the Windows
system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b] This format is used for an
optional value, where only one
item can be selected.

ipconfig [-all|-t]

Issue: 20200320 I

ApsaraDB for HBase Development Guide / Document conventions

Style Description Example
{} or {a|b} This format is used for a

required value, where only one
item can be selected.

switch {active|stand}

II Issue: 20200320

ApsaraDB for HBase Development Guide / Document conventions

Issue: 20200320 III

ApsaraDB for HBase Development Guide / Contents

Contents
Legal disclaimer...I
Document conventions...I
1 HBase best practices...1

1.1 Data compression and encoding.. 1
1.2 Read optimization... 2
1.3 Write optimization.. 5
1.4 Read/Write splitting.. 7
1.5 Pre-split.. 82 HBase table design... 9
2.1 Rowkey design...9
2.2 Schema design...15

IV Issue: 20200320

ApsaraDB for HBase Development Guide / 1 HBase best practices

1 HBase best practices
1.1 Data compression and encoding

Currently, ApsaraDB for HBase platform supports the following compression
algorithms: LZO, ZSTD, GZ, LZ4, SNAPPY, and NONE. NONE means that the
compression is disabled.
The following table compares the compression rates and speeds of the compression
 algorithms in different scenarios.
Business type Size of an uncompressed table

LZO (compression rate/decompression speed, Unit: MB/s)

ZSTD (compression rate/decompression speed, Unit: MB/s)

LZ4 (compression rate/decompression speed, Unit: MB/s)
Monitoring 419.75 TB 5.82/372 13.09/256 5.19/463.8
Logs 77.26 TB 4.11/333 6.0/287 4.16/496.1
Risk control 147.83 TB 4.29/297.7 5.93/270 4.19/441.38
Transaction
records

108.04 TB 5.93/316.8 10.51/288.3 5.55/520.3

Recommendations:
• We recommend that you use the LZ4 compression algorithm for the scenarios with high response time (RT) requirements.• We recommend that you use the ZSTD compression algorithm for scenarios with low RT requirements, such as monitoring and Internet of Things (IoT) scenarios.

Encoding
ApsaraDB for HBase supports DataBlockEncoding, which compresses data by
reducing the duplicate parts in HBase KeyValue. We recommend that you use DIFF
for DATA_BLOCK_ENCODING.

Procedure
Follow these steps to modify the compression encoding:

1. Modify the COMPRESSION property of the table.
alter 'test', {NAME => 'f', COMPRESSION => 'lz4', DATA_BLOCK_ENCODING
 =>'DIFF'}
2. The modifications do not take effect immediately. You must perform
 a major compaction for the modifications to take effect. Major

Issue: 20200320 1

ApsaraDB for HBase Development Guide / 1 HBase best practices
compactions are time consuming, and we recommend that you perform a
major compaction during off-peak hours.
major_compact 'test'

For more information, see Exploration of ApsaraDB for HBase compression encoding.

1.2 Read optimization
ApsaraDB for HBase is highly flexible and adaptable to multiple scenarios. The
following section describes optimizations for read operations. During production,
you may encounter errors such as Full GC, Out of Memory (OOM), Region in
Transition (RIT), and high read latency. While upgrading your hardware may solve
some of these problems, a more feasible approach is to optimize HBase based on
your needs.
We divide the optimizations into:
Client optimization, server optimization, and platform optimization (implemented
in ApsaraDB for HBase).

Use batch GET requests instead of single GET requests.
This greatly decreases the number of RPC calls between the client and server,
significantly increasing throughput.
 Result[] re= table.get(List<Get> gets)

Check whether an appropriate cache size is set for SCAN operations
SCAN operations require the server to return a large amount of data per request
. When the client calls a SCAN operation, the server returns data to the client in
batches. This is designed to reduce workloads on both the server and client when
 a large amount of data is transmitted at a time. The data is cached locally. The
default maximum number of cached records is 100. Some SCAN operations may
return large amounts of data (hundreds or tens of thousands) over RPC requests.
We recommend that you extend the size of the cache based on your needs.
scan.setCaching(int caching) // Set this parameter to 1000 if SCAN
operations may return large amounts of data.

2 Issue: 20200320

https://yq.aliyun.com/articles/618633?spm=a2c4g.11186623.2.11.21442ac0mKpbe2

ApsaraDB for HBase Development Guide / 1 HBase best practices

Request a specified column family or column name
ApsaraDB for HBase is a column-oriented database. Data is stored based on column
families, where each column family is a separate database. We recommend that you
 specify the column family or column name when you perform queries to reduce
Input/Output (I/O).

Disable caching when you access ApsaraDB for HBase offline
When you access ApsaraDB for HBase offline, the entire data is read at one time. In
 this case, caching is not required. We recommend that you disable BlockCache for
offline reads.
scan.setBlockCache(false)

Server optimization
Request balancing

Check the status of the read workload during peak hours. You can view the status
 in the ApsaraDB for HBase console. If there is obvious hotspotting, the ultimate
 solution is to redesign the rowkey to balance the workloads. An intermediate
solution is to split the hotspotting regions.

Whether the BlockCache is set properly
BlockCache is important for read performance as a read cache. If a lot of data is
requested, we recommend that you use a server with a core-to-memory ratio of 1
:4. For example, a machine with 8 cores and 32 GB memory or a machine with 16
cores and 64 GB memory. You can increase the value of BlockCache and decrease
the value of Memstore.
You can set hfile.block.cache.size to 0.5 and set
hbase.regionserver.global.memstore.size to 0.3 in the console of ApsaraDB for
HBase, and then click Restart.

Issue: 20200320 3

ApsaraDB for HBase Development Guide / 1 HBase best practices

The number of HFiles
During read operations, HFiles need to be opened frequently. The number of I/O
operations increases in proportion to the number of HFiles, increasing read latency
. To reduce this effect, we recommend that you perform a major compaction during
 off-peak hours.

Whether compaction consumes a large amount of system resources
Compaction is mainly used to merge multiple smaller HFiles into one larger HFile.
This operation improves the read performance of subsequent read operations, but
also consumes large amounts of resources. Typically, a minor compaction does not
consume a large amount of system resources unless the configuration is inappropri
ate. Do not perform a major compaction during peak hours. We recommend that
you perform a major compaction during off-peak hours.

Whether the Bloomfilter is properly set
Bloomfilter is mainly used to filter HFiles during queries to avoid unnecessary I/O
 operations. Bloomfilter can improve the read performance. Generally, when you
create a table, the default value of BLOOMFILTER is set to ROW.

Platform optimization
Whether the rate of data localization is too low (The platform has been optimized by Alibaba
Cloud.)

If you have local HFiles, we recommend that you use Short-Circuit Local Read.
During restart or expand operations, ApsaraDB for HBase automatically merges
 regions that have been moved. This ensures that the localization rate is not
negatively affected. Furthermore, performing a regular major compaction helps
improve the localization rate.

4 Issue: 20200320

ApsaraDB for HBase Development Guide / 1 HBase best practices

Short-Circuit Local Read (enabled by default)
Normally, Hadoop Distributed File System (HDFS) performs read operations
through DataNode. Short-Circuit Local Read can be enabled to bypass DataNode
and allow the client to directly read local data.

Hedged Read (enabled by default)
The system prioritizes Short-Circuit Local Read to read local data. However, in
some special cases, the local read operation may fail for a short time due to disk
problems or network problems. The Hedged Read operation has been developed
 to solve this problem. The basic working principle of Hedged Read is as follows:
when a client initiates a local read request, and no result is returned after a period
 of time, the client will send the same request to DataNodes. If a result is returned,
all subsequent results are discarded.

Disable swap (disabled by default)
When there is insufficient physical memory, part of the hard disk space is used
as swap. This operation may cause high latency. Swap is disabled by default for
ApsaraDB for HBase. However, disabling swap will cause high anon-rss, and the
page reclaim operation cannot reclaim enough pages. This may cause the kernel
to become unresponsive. To this effect, ApsaraDB for HBase has taken the relevant
isolation measures to avoid this situation.

1.3 Write optimization
ApsaraDB for HBase writes data into HLog and Memory based in the Log-Structured
Merge (LSM) mode. This means that ApsaraDB for HBase does not perform random
input/output (I/O) operations, providing high performance and stability for

Issue: 20200320 5

ApsaraDB for HBase Development Guide / 1 HBase best practices

write operations. In most database solutions, write operations are optimized for
reliability at the cost of performance.

Batch write
The batch write feature is provided to decrease the number of Remote Procedure
Calls (RPC).
HTable.put(List<Put>)

Auto Flush
You can greatly improve write performance by setting Autoflush to false. However
, we recommend that you wait until 2 MB of data is buffered (hbase.client.write.
buffer) or the hbase.flushcommits() command is called before you call Autoflush on
 a RegionServer. The data is not written to the remote database.
HTable.setWriteBufferSize(writeBufferSize) can be used to set the buffer size.

Server optimization
WAL Flag

You can disable Write Ahead Log (WAL) to greatly improve write performance. This
 is because when WAL is disabled, no writes are performed to HLog, which reduces
the number of I/O operations. Only in-memory writes to Memstore are performed.
This operation is applicable to scenarios where performance is prioritized over
reliability.

Increase the memory size of Memstore
You can also increase the value of Memstore and reduce the value of BlockCache to
improve write performance. This is the opposite of read optimization.

Check whether a large number of HFile files are generated
At high write speeds, a large number of HFiles are generated. This is because the
merge speed of HFiles are slower than that of write operations.
To ensure efficient usage of resources, we recommend that you perform a major
compaction during off-peak hours. If the number of HFiles cannot be reduced, we
recommend that you add more nodes.

6 Issue: 20200320

ApsaraDB for HBase Development Guide / 1 HBase best practices

1.4 Read/Write splitting
ApsaraDB for HBase provides three basic read and write APIs: read (GET, SCAN),
write (PUT). In actual use, there may be instances where you want to perform
these operations at the same time without interfering with each other. However,
read/write splitting is not enabled by default. To achieve this effect, perform the
following steps:
• If your business handles high volumes of reads and writes and you want to prioritize reads over writes, we recommend that you implement read/write splitting.• If your business handles a large volume of SCAN and GET requests, it is desired that SCAN requests do not affect the performance of GET requests.

Related configurations:
• hbase.ipc.server.callqueue.read.ratio
• hbase.ipc.server.callqueue.scan.ratio

Description:
• Setting the hbase.ipc.server.callqueue.read.ratio to 0.5 indicates that 50% of the

threads are used for read requests.
• If you also set hbase.ipc.server.callqueue.scan.ratio to 0.5, 50% of the read

threads are used for SCAN requests, which means that 25% of the total threads
are used for SCAN requests.

Procedure
• Click the cluster in the ApsaraDB for HBase console and select Parameter

Configuration.
• Modify the configuration based on the read/write status of the business.
• The modifications take effect only after the cluster is restarted. Restarting the

cluster will not cause major business interruptions, but may cause network

Issue: 20200320 7

ApsaraDB for HBase Development Guide / 1 HBase best practices

jitters. We recommend that you restart the cluster during off-peak hours to
prevent any potential negative effects.

Configure the preceding parameters based on your business needs. The parameters
 are not specified by default. This indicates that read and write operations share
threads.

1.5 Pre-split
First-time users of ApsaraDB for HBase may be unfamiliar with the service. These
users may fail to specify the number of regions when creating tables, as well as use
inappropriate rowkey design, which cause hotspotting.
The following statement is the most commonly used statement for creating a table:
create 't3',{NAME => 'f1',COMPRESSION => 'snappy' }, { NUMREGIONS => 50,
SPLITALGO => 'HexStringSplit' }
• The NUMREGIONS parameter specifies the number of regions. Typically, each region should be between 6 and 8 GB. If you have a large cluster, we recommend that you increase the number of regions based on the recommended region size.• The SPLITALGO parameter indicates the split algorithm used to split rowkeys

. ApsaraDB for HBase supports three pre-split algorithms: HexStringSplit,
DecimalStringSplit, and UniformSplit.
Use scenarios for where each split algorithm is used:
- HexStringSplit: The rowkey is prefixed with a hexadecimal string.- DecimalStringSplit: The rowkey is prefixed with a decimal string.- UniformSplit: The prefix of the rowkey has no particular pattern.
For more information about the rowkey, see Rowkey design.

• For more information about the compression algorithms, see Data compression and
encoding.

8 Issue: 20200320

https://www.alibabacloud.com/help/doc-detail/59035.htm
https://www.alibabacloud.com/help/doc-detail/59373.htm
https://www.alibabacloud.com/help/doc-detail/59373.htm

ApsaraDB for HBase Development Guide / 2 HBase table design

2 HBase table design
2.1 Rowkey design

Rowkey design is an important factor that affects the performance of ApsaraDB
for HBase. The following text provides a collection of common problems and their
solutions:
Rows are sorted in lexicographical order by rowkey. This design optimizes
scanning and allows you to store related rows or adjacent rows that will be read
 together. However, poor rowkey design is a common cause of hotspotting.
Hotspotting occurs when a large amount of traffic is concentrated on one or a small
 number of nodes in a cluster. Traffic refers to operations such as reads and writes.
If the traffic overloads the server that hosts a region, the performance of the region
 will degrade and may even cause the region to become unavailable. This may also
have adverse effects on other regions in the same region server because the server
cannot provide services for the requested load. Therefore, it is important to design
data access patterns that can distribute load evenly across clusters.
To prevent hotspotting during write operations, the rowkey must be designed so
 that data can be written to as many regions as possible at the same time. Try to
avoid writing data to only one region, unless it is necessary for the data to be in one
 region.
The following sections describe common methods to prevent hotspotting. Each
method has its own pros and cons.

Salting
Salting in HBase refers to placing a random number at the beginning of a rowkey
. This operation randomly assigns a prefix to each rowkey to cause it to sort
differently than usual. The number of the possible prefixes corresponds to the
 number of regions to which you want to distribute data. If you notice rowkey
 patterns that appear repeatedly in other more evenly distributed rows, we
recommend that you use salting. In the following example, salting distributes the
 load across multiple region servers. The example also illustrates the negative
impact salting has on read operations.

Issue: 20200320 9

ApsaraDB for HBase Development Guide / 2 HBase table design

The following table shows a few rowkeys, which are divided into regions based
on their prefixes. For example, rowkeys that have the prefix 'a' are distributed to
 Region A, and rowkeys that have the prefix 'b' are distributed to Region B. The
rowkeys of the following table all start with 'f'. Therefore, these rows are distribute
d to a single region.
foo0001
foo0002
foo0003
foo0004

To distribute the rows evenly across different regions, you need four salts: a, b, c,
and d. Each letter prefix corresponds to a different region, which distributes the
rowkeys across four different regions. The following rowkeys are prefixed with a
different letter each, and are written to four different regions at the same time. The
throughput is four times that of writing all the data to one region.
a-foo0003
b-foo0001
c-foo0004
d-foo0002

When you insert a new row, a random prefix from one of the four possible salt
values is assigned to the row.
a-foo0003
b-foo0001
c-foo0003
c-foo0004
d-foo0002

When salting is performed, prefixes are assigned at random, which improves
the throughput of write operations. However, the original order of the rows are
affected, which increases the workload of read operations.

Hashing
Compared with salting, hashing is the use of a one-way hash to generate a
consistent prefix instead of a randomly generated prefix. This allows you to
specify the same prefix for specific rows in a way that distributes the load across
region servers, but allows for predictability during read operations. You can use
deterministic hash to refactor a rowkey on the client and retrieve the row by using
the GET operation.

10 Issue: 20200320

ApsaraDB for HBase Development Guide / 2 HBase table design

Take the example described in the salting section. You can use a one-way hash
to obtain the rowkey foo0003 and predict the prefix a. You can then combine the
rowkey and prefix to obtain the row. This method can be further optimized. For
example, always make the specific rowkey pairs in the same region.

Reversing the Key
Another common method used to prevent hotspotting is to reverse a fixed-length
or numeric rowkey so that the most frequently changed part (the least significant
digit) is in the front. This randomizes the rowkey at the cost of row order.

Monotonically increasing rowkeys or time series data
When data is written to an ApsaraDB for HBase cluster, the process is locked
. During this time, all clients will wait for a region (a single node) to become
unlocked. After the write operation completes, the cycle starts again. This problem
 frequently occurs when monotonically increasing or time series data are used as
rowkeys. This also applies to sequential rowkeys, which orders non-sequential data
in a sequential order, causing hotspotting. Therefore, try to avoid using timestamps
 or sequences (for example, 1, 2, 3) as rowkeys.
If you need to import files ordered by time (such as logs) to ApsaraDB for HBase,
we recommend that you reference OpenTSDB documentation. The documentation
 includes a page that describes the pattern for ApsaraDB for HBase. The format of
rowkey in OpenTSDB is [metric_type] [event_timestamp]. At first glance, this seems
 to contradict the idea of not using timestamps as rowkeys. However, OpenTSDB
 puts metric_type before event_timestamp. There are hundreds of metric_type
values which are enough to distribute the load across the regions. Therefore, the
PUT operations can still be distributed across various regions of the table, despite a
 continuous data input stream.

Minimize row and column sizes
In ApsaraDB for HBase, values are stored as cells in the system. To find a cell, you
 need to know the row, column name, and timestamp. Typically, if the size of the
rows or column names is too large or even larger than the size of the value, some
interesting scenarios may occur. There is an index in the storefiles of ApsaraDB for
 HBase that is used to facilitate random access to values. However, if the coordinate
s required to access a cell is too large, the index may consume a large amount of
memory and is ultimately exhausted. To solve this problem, you can set a larger

Issue: 20200320 11

ApsaraDB for HBase Development Guide / 2 HBase table design

region size, or use smaller rows and column names. You can also use compression
to solve this problem to a greater degree.
In most cases, minor inefficiencies do not have great impacts on performance.
However, in big data scenarios, it cannot be ignored. because column families,
properties, and rowkeys may be repeated hundreds of millions of times in the data.

Column family
Make sure that the name of the column family is as small as possible. We
recommend that you use only one character. (For example, use f)

Properties
Although the detailed property names (such as myVeryImportantAttribute) are easy
 to understand, we recommend that you use short property names (for example, via
) in ApsaraDB for HBase.

Rowkey length
Make the rowkey short enough to be readable, which is helpful for obtaining data. (
for example, Get vs. Scan). The short rowkey is useless for data access, but it is not
better than a longer rowkey on improving the retrieve capabilities of get/scan. You
need tradeoffs when you design rowkeys.

Byte pattern
The long type has 8 bytes. You can save unsigned integers up to 18,446,744,073,709,
551,615 within 8 bytes. If you store the preceding number as a string, assuming that
 each character takes up on byte, the number of bytes required to store the number
is nearly three times the original.
You can use the following sample code to test this:
// long
//
long l = 1234567890L;
byte[] lb = Bytes.toBytes(l);
System.out.println("long bytes length: " + lb.length); // Returns 8

String s = String.valueOf(l);
byte[] sb = Bytes.toBytes(s);
System.out.println("long as string length: " + sb.length); //
Returns 10

// hash
//
MessageDigest md = MessageDigest.getInstance("MD5");
byte[] digest = md.digest(Bytes.toBytes(s));

12 Issue: 20200320

ApsaraDB for HBase Development Guide / 2 HBase table design
System.out.println("md5 digest bytes length: " + digest.length);
 // Returns 16

String sDigest = new String(digest);
byte[] sbDigest = Bytes.toBytes(sDigest);
System.out.println("md5 digest as string length: " + sbDigest.length);
 // Returns 26

However, binary representation makes the data hard to read outside the code. In
the following example, a shell is displayed when you want to add a value:
hbase(main):001:0> incr 't', 'r', 'f:q', 1
COUNTER VALUE = 1

hbase(main):002:0> get 't', 'r'
COLUMN CELL
 f:q timestamp=1369163040570
, value=\x00\x00\x00\x00\x00\x00\x00\x01
1 row(s) in 0.0310 seconds

The shell tries to print a string, but in this case, it can only print a hexadecimal. The
 same thing happens when the rowkey is in the region. That will be fine if you know
 what is stored, but it may be hard to understand the result if any data can be put in
the same cell. This is the most important consideration.

Reverse timestamp
A common problem in databases is finding the latest version of a row. In this case
, a reversed timestamp can be used as part of the rowkey to facilitate sorting. This
technology includes appending (Long. MAX_VALUE-timestamp) to the end of a key.
For example, [key] [reverse_timestamp].
You can use [key] to scan the value of the latest [key] in the table and obtain the first
 record. The rowkeys of ApsaraDB for HBase are sorted in a sequential order, so the
key is the first and before any other older rowkeys.
This technique can be used instead of requesting the version numbers in order to
permanently save all versions (or for an extended period of time). In addition, you
can quickly obtain other versions by using the same scan technique.

Rowkey and column family
The rowkey is within a column family. Therefore, the same rowkey can exist in each
 column family of the same table without any conflicts.

Issue: 20200320 13

ApsaraDB for HBase Development Guide / 2 HBase table design

Rowkeys cannot be modified
Rowkeys cannot be modified. The only way to modify a rowkey is to delete it and
then insert a new one. We recommend that you use a well-designed rowkey from
the beginning (or before you insert a large amount of data).

Relationship between the rowkey and the region split
If the table has been pre-splitted, the next step is to understand how rowkeys
are distributed across the region boundaries. Consider using displayable 16-bit
characters as the key part of the rowkey to explain the importance. For example,
0000000000000000 to ffffffffffffffff. You can obtain 10 regions by using Bytes.split
to specify the key ranges. This is a splitting method when you create a region with
Admin.createTable(byte[] startKey, byte[] endKey, numRegions).
48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48
 // 0
54 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
 // 6
61 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -68
 // =
68 -124 -124 -124 -124 -124 -124 -124 -124 -124 -124 -124 -124 -124 -
124 -126 // D
75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 72
 // K
82 18 18 18 18 18 18 18 18 18 18 18 18 18 18 14
 // R
88 -40 -40 -40 -40 -40 -40 -40 -40 -40 -40 -40 -40 -40 -40 -44
 // X
95 -97 -97 -97 -97 -97 -97 -97 -97 -97 -97 -97 -97 -97 -97 -102
 // _
102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102
 // f

The problem is that the data will be stored in the first two regions and the last
 region, which causes heavy workloads on these regions due to uneven data
distribution. You can refer to the ASCII Table to understand the reason. Based on
 the ASCII table, 0 is the 48th and f is the 102nd. Only the values [0-9] and [a-f] are
 meaningful, so the values of the range from 58th to 96th will not appear in the
keyspace and the regions in the middle within this range will never be used. To pre-
split the keyspace in this example, you need to customize the split.
Tutorial 1: Pre-splitting tables is a good practice. However, when you pre-split
tables, make sure that all regions have the corresponding keyspaces. Although
the preceding example is about the keyspace of the 16-bit key, the solution is also
applicable to other keyspaces.

14 Issue: 20200320

ApsaraDB for HBase Development Guide / 2 HBase table design

Tutorial 2: Although the 16-bit key is not preferred (usually used for the data that
can be displayed), it can still be used with the pre-splittling tables if all regions have
 the corresponding keyspaces.
The following case shows how to pre-split a 16-bit rowkey.
public static boolean createTable(Admin admin, HTableDescriptor table
, byte[][] splits)
throws IOException {
 try {
 admin.createTable(table, splits);
 return true;
 } catch (TableExistsException e) {
 logger.info("table " + table.getNameAsString() + " already exists
");
 // the table already exists...
 return false;
 }
}

public static byte[][] getHexSplits(String startKey, String endKey,
int numRegions) {
 byte[][] splits = new byte[numRegions-1][];
 BigInteger lowestKey = new BigInteger(startKey, 16);
 BigInteger highestKey = new BigInteger(endKey, 16);
 BigInteger range = highestKey.subtract(lowestKey);
 BigInteger regionIncrement = range.divide(BigInteger.valueOf(
numRegions));
 lowestKey = lowestKey.add(regionIncrement);
 for(int i=0; i < numRegions-1;i++) {
 BigInteger key = lowestKey.add(regionIncrement.multiply(BigInteger
.valueOf(i)));
 byte[] b = String.format("%016x", key).getBytes();
 splits[i] = b;
 }
 return splits;
}

2.2 Schema design
You can create and update schemas of ApsaraDB for HBase by using HBase Shell or
Admin in the Java API.
Before you modify column families, disable the following table:
Configuration config = HBaseConfiguration.create();
HBaseAdmin admin = new HBaseAdmin(config);
String table = "Test";

admin.disableTable(table); // Disable the table

HColumnDescriptor f1 = ...;
admin.addColumn(table, f1); // Add a column family
HColumnDescriptor f2 = ...;
admin.modifyColumn(table, f2); // Modify a column family
HColumnDescriptor f3 = ...;
admin.modifyColumn(table, f3); // Modify a column family

Issue: 20200320 15

ApsaraDB for HBase Development Guide / 2 HBase table design

admin.enableTable(table);

Update schema
After you change a table or a column family (including the encoding algorithm,
compaction pressure format, and block size), the changes will take effect the next
time when a major compaction is performed or the StoreFile is rewritten.

Rules for table schema design
• The size of a region is between 10 GB and 50 GB.
• The size of a cell must be no larger than 10 MB. If the size of a cell exceeds 10

MB, you need to use Medium-sized Objects (MOBs). (currently not supported by
 ApsaraDB for HBase, which will be supported in version 2.0). If the size of a cell
 is even larger and the MOBs is not applicable, you can store it directly in Object
Storage Service (OSS).

• Typically, a table contains one to three column families. Do not design an
ApsaraDB for HBase table in the same way as an RDBMS table.

• A table can be divided into about 50 to 100 regions based on the rowkeys. We
recommend that you define one or two column families for a table. Note: Each
column family is continuous and different column families are separated.

• Make your column family name as short as possible because each value in the
storage contains a column family name (ignoring prefix encoding).

• If you store data and logs on different devices based on time, define rowkeys
 consisting of device IDs and times. You can then create a table where no
additional data is written to old regions except during specific time periods.
In this case, you minimize the number of active regions, but maintain a large
number of old regions that do not have new writes. Having a large number of
regions is acceptable because only active regions consume resources.

Number of column families
Currently, ApsaraDB for HBase is not optimized for more than one column family.
We recommend that you make the number of column families as small as possible.
The flushing and compaction operations are performed on one region. If a flush is
triggered on a column family that has a large amount of data, the adjacent column
families will also be flushed even though the amount of data they carry is small.

16 Issue: 20200320

ApsaraDB for HBase Development Guide / 2 HBase table design

The compaction operation is now triggered based on the number of all files in a
column family, rather than the file size.
When flushing and compaction involve multiple column families, many redundant
I/O operations are performed. To solve this problem, you need to make flushing and
 compaction operations working on only one column family.
Try to operate on only one column family in the schema. Group columns with
similar usage rates into one column family so that you can access only one column
family each time to improve efficiency.

Column family cardinality
If there are multiple column families in a table, make sure that the cardinalities (
such as the number of rows) among column families do not differ too much. For
example, column family A contains one million rows and column family B contains
 one billion rows. The data of column family A may be distributed by rowkeys to
many regions (and region servers). This will make scanning column family A very
inefficient.

Number of versions
The number of row versions is configured per column family by the HColumnDes
criptor parameter. The default value is 3. This parameter is very important,
because ApsaraDB for HBase does not overwrite a value and it only appends data
 later. The early versions distinguished by the timestamp will be deleted when
your run a major compaction. The usage of the HColumnDescriptor parameter is
described in the data model section. The value of this version can be increased or
decreased based on the specific application.
We recommend that you do not set the maximum number of versions to a high level
 (for example, hundreds or more) unless old data is very important to you. This
causes the storage of files to become extremely large.

Minimum number of versions
Similar to the maximum number of row versions, the minimum number of versions
 is also configured per column family by HColumnDescriptor parameter. The
default value is 0, which means that the feature is disabled. The minimum number
 of versions is used together with the Time To Live (TTL) parameter. You can
configure the parameters such as: save valuable data for the last T seconds, up to

Issue: 20200320 17

ApsaraDB for HBase Development Guide / 2 HBase table design

N versions, but at least M versions (M is the minimum version number, and M <N).
This parameter is enabled for a column family only during the time to live and must
 be less than the number of row versions.

Supported data types
ApsaraDB for HBase supports the bytes-in/bytes-out interface through Put and
Result, so anything that can be converted into byte arrays can be saved as values.
The input can be strings, numbers, complex objects, or even images as long as they
can be converted into bytes.
There is an actual length limit for a value. (For example, saving 10-50 MB objects
to ApsaraDB for HBase may negatively affect the query performance.) All rows in
ApsaraDB for HBase follow the HBase data model including versioning. When you
design the schema, take these into account as well as the block size of the column
families.

TTL
You can set TTL seconds for the column family. ApsaraDB for HBase will automatica
lly delete data after it times out. The time zone of TTL in ApsaraDB for HBase is UTC
.
The stored files that contain expired rows can be deleted by minor compaction. To
disable this feature, you can set the hbase.store.delete.expired.storefile parameter
to false, or set the minimum number of versions to a non-zero value.
The latest version of ApsaraDB for HBase will support storing the specified time
in each cell. Cell TTLs are submitted as a property of the update request (such as
Appends, Increments, and Puts) by using Mutation#setTTL. If the TTL property is
set, it will be applied to all cells updated by this operation. There are two obvious
differences between cell TTL handling and ColumnFamily TTLs:
1. The Cell TTLs are measured in the unit of milliseconds instead of seconds.
2. The TTL of a cell cannot exceed the valid time set by ColumnFamily TTLs.

18 Issue: 20200320

	Contents
	Legal disclaimer
	Document conventions
	1 HBase best practices
	1.1 Data compression and encoding
	1.2 Read optimization
	1.3 Write optimization
	1.4 Read/Write splitting
	1.5 Pre-split

	2 HBase table design
	2.1 Rowkey design
	2.2 Schema design

