
Alibaba Cloud

Message Queue for Apache
Kafka

Best practices

Document Version: 20210330

Alibaba Cloud

Message Queue for Apache
Kafka

Best practices

Document Version: 20210330

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

Message Queue for Apache Kafka Best pract ices·Legal disclaimer

> Document Version: 20210330 I

Document conventions
St yle Descript ion Example

 Danger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:

Resetting will result in the loss of user
configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ings > Net work > Set net work
t ype .

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

Message Queue for Apache Kafka Best pract ices·Document convent io
ns

> Document Version: 20210330 I

Table of Contents
1.Best practices for producers

2.Best practices for subscribers

05

10

Message Queue for Apache Kafka Best pract ices·Table of Cont ent s

> Document Version: 20210330 I

This art icle describes the best pract ices of Message Queue for Apache Kafka producers to help you
reduce errors when you send messages. The best pract ices in this art icle are writ ten based on a Java
client. A Java client shares the basic concepts and ideas with other programming languages, but its
implementation details may be different.

Message sending
Sample code for sending a message:

Future<RecordMetadata> metadataFuture = producer.send(new ProducerRecord<String, String>(
 topic, // The topic of the message.
 null, // The partition number. We recommend that you set this parameter to null, and then the producer
automatically allocates a partition number.
 System.currentTimeMillis(), // The timestamp.
 String.valueOf(value.hashCode()), // The key of the message.
 value // The value of the message.
));

For more information about the complete sample code, see Overview.

Key and Value fields
Message Queue for Apache Kafka version 0.10.2.2 has the following two message fields:

Key: the identifier of a message.

Value: the content of a message.

To facilitate tracing, set a unique key for each message. When you need to track the sending and
consumption of a message, you can use a unique key to query the sending and consumption logs of the
message.

If you want to send a large number of messages, we recommend that you implement the st icky
part it ioning strategy instead of sett ing a key. For more information about the st icky part it ioning
strategy, see the St icky part it ioning strategy sect ion of this art icle.

Not ice Message Queue for Apache Kafka version 0.11.0 or later supports headers. If you
need to use headers, upgrade your broker to version 2.2.0.

Retry
In a distributed environment, a message may fail to be sent due to network issues. This may occur after
a message is sent but ACK failure occurs, or a message fails to be sent.

Message Queue for Apache Kafka uses a virtual IP address (VIP) network architecture where connections
are closed after they are idle for more than 30 seconds. Therefore, inact ive producers or consumers may
receive the "Connection reset by peer" error message. In this case, we recommend that you resend the
message.

You can set the following retry parameters based on your business needs:

 retries : the number of retries. We recommend that you set this parameter to 3 .

 retry.backoff.ms : the interval between retries. We recommend that you set this parameter to

1.Best practices for producers

Message Queue for Apache Kafka Best pract ices·Best pract ices for pr
oducers

> Document Version: 20210330 5

https://www.alibabacloud.com/help/doc-detail/68344.htm#task-68344-zh

 1000 .

Asynchronous transmission
Messages are sent in asynchronous mode. To obtain the sending result , you can call the
metadataFuture.get(t imeout, TimeUnit.MILLISECONDS) method.

Thread safety
Producers are thread-safe and they can send messages to all of the topics. In most cases, one
application corresponds to one producer.

ACKs
ACKs have the following sett ings:

 acks=0 : No response is returned from the broker. In this mode, the performance is high, but the risk
of data loss is also high.

 acks=1 : A response is returned when data is writ ten to the leader. In this mode, the performance
and the risk of data loss are moderate. Data loss may occur if the leader fails.

 acks=all : A response is returned when data is writ ten to the leader and synchronized to the
followers. In this mode, the performance is low, but the risk of data loss is also low. Data loss occurs
if the leader and the followers fail at the same t ime.

We recommend that you set acks=1 for regular services and set acks=all for key services.

Capability improvement for message sending
A Message Queue for Apache Kafka topic has mult iple part it ions. Before the Message Queue for
Apache Kafka producer sends messages to the broker, the producer needs to select a part it ion of a
topic to send messages to. To send mult iple messages to the same part it ion, the producer packages
relevant messages into a batch and sends the messages to the broker in batches. When the producer
processes messages in batches, it incurs addit ional overheads. Small batches can result in a large
number of requests that are generated by the producer. The requests queue on the producer and the
broker and also lead to high CPU utilizat ion. This prolongs the duration of message sending and
increases the consumption latency. When the producer sends messages to the broker, a suitable size of
each batch can reduce requests from the producer to the broker. This can also increase the throughput
and lower the latency for message sending.

The Message Queue for Apache Kafka producer manages batches based on two parameters:

 batch.size : the volume of cached messages that are sent to each part it ion. This parameter specifies
the total number of bytes in all of the messages in a batch, rather than the number of messages.
When the volume of cached messages reaches the specified upper limit , a network request is
triggered. Then, the producer sends the messages to the broker in a batch.

 linger.ms : the maximum storage duration for each message in the cache. If a message is stored
longer than the specified t ime limit in the cache, the producer immediately sends the message to the
broker without considering the sett ing of the batch.size parameter.

Therefore, the batch.size and linger.ms parameters work together to determine when the Message
Queue for Apache Kafka producer sends messages in batches to the broker. You can set these two
parameters based on your business needs.

Sticky partit ioning strategy

Best pract ices·Best pract ices for pr
oducers

Message Queue for Apache Kafka

6 > Document Version: 20210330

Only messages to be sent to the same part it ion can be packaged into the same batch. The part it ioning
strategy of the Message Queue for Apache Kafka producer determines how to generate a batch. You
can use the Part it ioner class to select a suitable part it ion for the Message Queue for Apache Kafka
producer based on your business needs. For messages that have a key, the default part it ioning strategy
of the Message Queue for Apache Kafka producer is to hash the key of each message, and then select
a part it ion based on the hash result . Messages with the same key are sent to the same part it ion.

For messages that do not have a key, the default part it ioning strategy of the Message Queue for
Apache Kafka producer in versions earlier than 2.4 is to recycle all of the part it ions of a topic, and then
send messages to each part it ion by polling. However, this default part it ioning strategy may cause
higher latency because a large number of small batches may be generated. In view of the low efficiency
of this default part it ioning strategy for key-free messages, the st icky part it ioning strategy is introduced
in Message Queue for Apache Kafka version 2.4.

The st icky part it ioning strategy can reduce the small batches, which are generated because the key-
free messages scatter in different part it ions. When a batch is full of messages, the producer randomly
selects another part it ion and sends subsequent messages to this part it ion. In this strategy, messages
are sent to the same part it ion in a short t ime, but messages can be evenly distributed in each part it ion
when the producer works longer. This strategy can avoid part it ion skew of messages, and improve the
overall performance with lower latency.

If you are using the Message Queue for Apache Kafka producer in version 2.4 or later, the producer uses
the st icky part it ioning strategy by default . If you are using the producer in a version earlier than 2.4, you
can set the partitioner.class parameter to specify a part it ioning strategy based on the principles of
the st icky part it ioning strategy.

To implement the st icky part it ioning strategy, you can use the following Java sample code. The
implementation logic of this code is to change part it ions based on a specific interval.

Message Queue for Apache Kafka Best pract ices·Best pract ices for pr
oducers

> Document Version: 20210330 7

public class MyStickyPartitioner implements Partitioner {
 // Record the time of the last partition change.
 private long lastPartitionChangeTimeMillis = 0L;
 // Record the current partition.
 private int currentPartition = -1;
 // The interval between partition changes. Set the interval based on your business needs.
 private long partitionChangeTimeGap = 100L;
 public void configure(Map<String, ? > configs) {}
 /**
 * Compute the partition for the given record.
 *
 * @param topic The topic name
 * @param key The key to partition on (or null if no key)
 * @param keyBytes serialized key to partition on (or null if no key)
 * @param value The value to partition on or null
 * @param valueBytes serialized value to partition on or null
 * @param cluster The current cluster metadata
 */
 public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster clust
er) {
 // Query the information about all partitions.
 List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
 int numPartitions = partitions.size();
 if (keyBytes == null) {
 List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
 int availablePartitionSize = availablePartitions.size();
 // Determine the available partitions.
 if (availablePartitionSize > 0) {
 handlePartitionChange(availablePartitionSize);
 return availablePartitions.get(currentPartition).partition();
 } else {
 handlePartitionChange(numPartitions);
 return currentPartition;
 }
 } else {
 // For messages that have a key, select a partition based on the hash value of the key.
 return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
 }
 }
 private void handlePartitionChange(int partitionNum) {
 long currentTimeMillis = System.currentTimeMillis();
 // If the interval between partition changes is longer than the specified time, select another partition. If n
ot, select the same partition.
 if (currentTimeMillis - lastPartitionChangeTimeMillis >= partitionChangeTimeGap
 || currentPartition < 0 || currentPartition >= partitionNum) {
 lastPartitionChangeTimeMillis = currentTimeMillis;
 currentPartition = Utils.toPositive(ThreadLocalRandom.current().nextInt()) % partitionNum;
 }
 }
 public void close() {}
}

Best pract ices·Best pract ices for pr
oducers

Message Queue for Apache Kafka

8 > Document Version: 20210330

OOM
Based on the design of batches in Message Queue for Apache Kafka , Message Queue for Apache Kafka
caches messages and then sends them in batches. However, if excessive messages are cached, an out
of memory (OOM) error may occur.

When the total size of all cached messages exceeds the cache size that is specified by the buffer.me
mory parameter, the producer sends these messages to the broker. In this case, the sett ings of the
batch.size and linger.ms parameters are ignored.

The default cache size that is specified by the buffer.memory parameter is 32 MB, which is sufficient
for a single producer.

Not ice If you enable mult iple producers on the same Java virtual machine (JVM), an OOM
error may occur because each producer may occupy 32 MB of the cache space.

In most cases, you do not need to enable mult iple producers during production. To avoid OOM errors
in special scenarios, you must set the buffer.memory parameter.

Partit ionally ordered messages
In each part it ion, messages are stored in the order that they are sent, and therefore are ordered.

By default , to improve the availability, Message Queue for Apache Kafka does not ensure the absolute
order of messages in a single part it ion. A small number of messages become out of order during
upgrade or downtime due to failovers. Messages in a failed part it ion will be moved to other part it ions.

For Professional Edit ion instances that are billed in subscript ion mode, if your business requires
messages to be strict ly ordered in a part it ion, select local storage when you create a topic.

Message Queue for Apache Kafka Best pract ices·Best pract ices for pr
oducers

> Document Version: 20210330 9

This topic describes the best pract ices of Message Queue for Apache Kafka subscribers to help you
reduce the possibility of message consumption errors.

Basic process of message consumption
Message Queue for Apache Kafka subscribers use the following message consumption process:

1. Poll data.

2. Execute the consumption logic.

3. Poll data again.

Load balancing
Each consumer group can contain mult iple consumer instances. Specifically, you can enable mult iple
Message Queue for Apache Kafka consumers and set the group.id parameter to the same value for
the consumers. Consumer instances in the same consumer group consume the subscribed topics in load
balancing mode.

For example, consumer group A has subscribed to topic A and enabled consumer instances C1, C2, and
C3. In this case, each message sent to topic A will only be sent to one of C1, C2, and C3. By default ,
Message Queue for Apache Kafka evenly transfers messages to different consumer instances to
balance the consumption loads.

To achieve load balancing in consumption, Message Queue for Apache Kafka evenly distributes the
part it ions of subscribed topics to the consumer instances. Therefore, the number of consumer
instances cannot be greater than the number of part it ions. Otherwise, some instances may not be
assigned with any part it ions and will be in the dry-run state. In addit ion, load balancing is triggered not
only during first launch, but also when a consumer instance is restarted, increased, or decreased.

Each Message Queue for Apache Kafka topic contains 16 part it ions by default , which is sufficient for
most scenarios. In addit ion, the number of part it ions will be adjusted for cloud services based on the
capacity.

Multiple subscriptions
Message Queue for Apache Kafka supports the following modes:

A consumer group subscribes to mult iple topics.

A consumer group can subscribe to mult iple topics. Messages from mult iple topics are evenly
consumed by consumers in the consumer group. For example, consumer group A has subscribed to
topic A, topic B, and topic C, so the messages from the three topics are evenly consumed by
consumers in consumer group A.

The following sample code for subscript ion to mult iple topics by a consumer group is provided:

String topicStr = kafkaProperties.getProperty("topic");
String[] topics = topicStr.split(",");
for (String topic: topics) {
subscribedTopics.add(topic.trim());
}
consumer.subscribe(subscribedTopics);

Mult iple consumer groups subscribe to a topic.

2.Best practices for subscribers

Best pract ices·Best pract ices for su
bscribers

Message Queue for Apache Kafka

10 > Document Version: 20210330

Mult iple consumer groups can subscribe to the same topic, and each consumer group separately
consumes all messages under the topic. For example, consumer groups A and B have both subscribed
to topic A. Each message sent to topic A will be transferred to the consumer instances in both
consumer groups A and B. The two processes are independent of each other without mutual effects.

One consumer group for a single application
We recommend that you configure one consumer group for one application. Specifically, different
applications correspond to different pieces of code. If you need to write different pieces of code in
the same application, you must prepare mult iple different kafka.propert ies, such as kafka1.propert ies
and kafka2.propert ies.

Consumer offset
Each topic contains mult iple part it ions, and each part it ion counts the total number of current
messages, which is the maximum offset MaxOffset.

In Message Queue for Apache Kafka , a consumer sequentially consumes messages in the part it ion and
records the number of consumed messages, which is ConsumerOffset.

Number of unconsumed messages (accumulated messages) = MaxOffset - ConsumerOffset

Consumer offset committing
Message Queue for Apache Kafka provides the following consumer offset committ ing parameters for
consumers:

enable.auto.commit: The default value is true.

auto.commit.interval.ms: The default value is 1000, indicating 1 second.

After you set the two parameters, the system checks the last consumer offset committ ing t ime before
each data polling. If the interval between this t ime and the current t ime exceeds the interval specified
by the auto.commit.interval.ms parameter, the consumer commits a consumer offset.

Therefore, if the enable.auto.commit parameter is set to true, you must ensure that all the data polled
last t ime has been consumed before each poll. Otherwise, unconsumed messages may be skipped.

To control offset committ ing, you must set the enable.auto.commit parameter to false and call the
commit(offsets) function.

Consumer offset resetting
The consumer offset is reset in the following scenarios:

No offset has been committed to the broker, for example, when the consumer is brought online for
the first t ime.

A message is pulled from an invalid offset. For example, the maximum offset in a part it ion is 10, but
the consumer starts consumption from offset 11.

On the Java client, you can configure the following resett ing policies by using the auto.offset.reset
parameter.

latest: Reset the consumer offset to the maximum offset.

earliest: Reset the consumer offset to the minimum offset.

none: Do not reset the consumer offset.

Message Queue for Apache Kafka Best pract ices·Best pract ices for su
bscribers

> Document Version: 20210330 11

Not e

We recommend that you set this parameter to latest instead of earliest to prevent heavily
repetit ive consumption when consumption starts from the beginning due to an invalid
offset.

If you manage the offset, you can set the parameter to none.

Large message pulling
During consumption, the consumer act ively pulls messages from the broker. When the consumer pulls
large messages, you need to control the pulling speed by modifying the following parameters:

max.poll.records: If the size of a message exceeds 1 MB, we recommend that you set this parameter
to 1.

fetch.max.bytes: Set this parameter to a value that is slightly larger than the size of a single
message.

max.part it ion.fetch.bytes: Set this parameter to a value that is slightly larger than the size of a single
message.

Large messages are pulled one by one.

Message duplication and consumption idempotence
In Message Queue for Apache Kafka , the semantics for consumption is consuming each message "at
least once". Specifically, a message is delivered at least once to ensure that the message will not be
lost. However, this does not ensure that messages are not duplicated. When a network error occurs or
the client restarts, a small number of messages may be duplicated. In this case, if the application
consumer is sensit ive to message duplication (for example, order transactions), the messages must be
idempotent.

The following common pract ices are for database applications:

When you send a message, pass in a key as a unique sequence ID.

When you consume a message, check whether the key has been consumed. If yes, skip the message. If
no, consume the message once.

Certainly, if the application is not sensit ive to duplication of a few messages, the idempotence check is
not required.

Consumption failure
Message Queue for Apache Kafka messages are consumed one by one in a part it ion. If the consumer
fails to execute the consumption logic after it receives a message, for example, a message fails to be
processed due to dirty data on the application server, you can use the following methods to handle
this issue:

Make the system keep trying to execute the consumption logic upon failure. This method may block
the consumption thread at the current message, result ing in message accumulation.

Message Queue for Apache Kafka is not designed to process failed messages. Therefore, you can
print failed messages or store them to a service. For example, you can create a topic that is
dedicated to store failed messages. Then, you can check the failed messages regularly, analyze the
causes, and take appropriate measures.

Consumption latency

Best pract ices·Best pract ices for su
bscribers

Message Queue for Apache Kafka

12 > Document Version: 20210330

In Message Queue for Apache Kafka , the consumer automatically pulls messages from the broker to
consume. Therefore, if the consumer can consume the data promptly, the latency is low. If the latency
is high, f irst check whether any messages are accumulated, and then increase the consumption speed.

Consumption blocking and accumulation
The most common issue on a consumer is consumption accumulation. The most common causes for
accumulation are as follows:

Consumption is slower than production. In this case, you need to increase the consumption speed. For
more information, see Consumption speed increase.

The consumer is blocked.

After receiving a message, the consumer executes the consumption logic and usually makes some
remote calls. If the consumer waits for the call result at this t ime, the consumer may keep wait ing,
causing the consumption process to suspend.

The consumer needs to try to prevent consumption thread blocking. If the consumer waits for the call
result , we recommend that you set a t imeout period for wait ing, so that the consumption is considered
failed if no result is returned within the set t imeout period.

Consumption speed increase
You can increase the consumption speed in either of the following ways:

Add consumer instances.

You can add consumer instances in a process and ensure that each instance corresponds to one
thread. Alternatively, you can deploy mult iple consumer instance processes. When the number of
instances exceeds the number of part it ions, the speed cannot be increased and some consumer
instances become idle.

Add consumption threads.

Adding a consumer instance is essentially the same as adding a consumption thread to increase the
speed. Therefore, to improve the performance, it is more important to add a consumption thread.
You can perform the following basic steps:

i. Define a thread pool.

ii. Poll data.

iii. Submit data to the thread pool for concurrent processing.

iv. Poll data again after the concurrent processing result is returned.

Message filtering
Message Queue for Apache Kafka does not provide any semantics for f iltering messages. You can use
either of the following methods to filter messages:

If a few types of messages need to be filtered, you can use mult iple topics to filter them.

If many types of messages need to be filtered, we recommend that you filter the messages by
services on the client.

You can select either of the methods as required or integrate both methods.

Message broadcasting

Message Queue for Apache Kafka Best pract ices·Best pract ices for su
bscribers

> Document Version: 20210330 13

Message Queue for Apache Kafka does not provide semantics for broadcasting a message. You can
simulate message broadcasting by creating different consumer groups.

Subscription relationship
To facilitate troubleshooting, we recommend that consumer instances in the same consumer group
subscribe to the same topics.

Best pract ices·Best pract ices for su
bscribers

Message Queue for Apache Kafka

14 > Document Version: 20210330

	1.Best practices for producers
	2.Best practices for subscribers

