
Alibaba CloudAlibaba Cloud

Cloud Native Distributed
Database PolarDB-X

SQL Reference

Document Version: 20220601

Alibaba CloudAlibaba Cloud

Cloud Native Distributed
Database PolarDB-X

SQL Reference

Document Version: 20220601

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Legal disclaimer

> Document Version: 20220601 I

Document conventions
St yleSt yle Descript ionDescript ion ExampleExample

 DangerDanger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:Danger:

Resetting will result in the loss of user
configuration data.

 WarningWarning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not iceNot ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not eNot e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ingsSet t ings > Net workNet work> Set net workSet net work
t ypet ype.

BoldBold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OKOK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Document convent io
ns

> Document Version: 20220601 I

Table of Contents
1.SQL limits

2.Instructions for sharding function

2.1. Overview

2.2. HASH

2.3. STR_HASH

2.4. UNI_HASH

2.5. RANGE_HASH

2.6. RIGHT_SHIFT

2.7. MM

2.8. DD

2.9. WEEK

2.10. MMDD

2.11. YYYYDD

2.12. YYYYMM

2.13. YYYYWEEK

3.Manage DDL tasks

3.1. Overview

3.2. Job management statements

3.3. Control parameters for DDL execution engine

3.4. Considerations and limits

3.5. Best practices

4.DDL

4.1. CREATE TABLE

4.2. DROP TABLE

4.3. ALTER TABLE

4.4. TRUNCATE TABLE

08

10

10

12

13

17

18

19

20

21

21

22

23

24

25

27

27

27

36

37

39

44

44

64

64

70

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Table of Cont ent s

> Document Version: 20220601 I

4.5. RENAME TABLE

4.6. CREATE INDEX

4.7. DROP INDEX

4.8. CREATE VIEW

4.9. DROP VIEW

4.10. DDL FAQ

5.DML

5.1. SELECT

5.2. Subquery

5.3. INSERT

5.4. REPL ACE

5.5. UPDATE

5.6. DELETE

5.7. Limits of global secondary indexes on DML

6.SHOW

6.1. SHOW HELP

6.2. Rule and topology query statements

6.3. Slow SQL queries

6.4. Statistics queries

6.5. SHOW PROCESSLIST

6.6. SHOW GLOBAL INDEX

6.7. SHOW INDEX

6.8. SHOW METADATA LOCK

7.DAL

7.1. Manage accounts and permissions

7.2. CHECK TABLE

7.3. CHECK GLOBAL INDEX

7.4. KILL

70

71

74

75

75

76

78

78

81

86

88

89

90

92

93

93

95

101

103

111

113

116

118

121

121

126

127

131

SQL Reference··Table of Cont ent s Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

II > Document Version: 20220601

7.5. USE

8.Sequence

8.1. Overview

8.2. Limits

8.3. Explicit sequences

8.4. Implicit sequences

9.Outline

9.1. Usage notes

9.2. Error codes

10.Prepare SQL

10.1. Introduction to the prepared statement protocol

11.Hint

11.1. Overview

11.2. Read/write splitting

11.3. Specify a custom time-out period for an SQL statement

11.4. Specify database shards where an SQL statement is to be executed …

11.5. Scan all or some of the table shards in all or some of the database shards …

11.6. Automatic protection against high-risk SQL statements

11.7. INDEX HINT

12.Functions

12.1. Functions

12.2. Date and time functions

12.3. String functions

12.4. Conversion functions

12.5. Aggregate functions

12.6. Mathematical functions

12.7. Comparison functions

12.8. Bit functions

132

133

133

137

138

148

155

155

157

158

158

160

160

162

163

164

167

170

170

173

173

176

179

182

182

183

185

185

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Table of Cont ent s

> Document Version: 20220601 III

12.9. Flow control functions

12.10. Information functions

12.11. Encryption functions and compression functions

12.12. Window functions

12.13. Other functions

12.14. GROUPING SETS, ROLLUP, and CUBE extensions

13.Operator

13.1. Logical operators

13.2. Arithmetic operators

13.3. Comparison operators

13.4. Bitwise operators

13.5. Assignment operators

13.6. Operator precedence

14.Data types

14.1. Data types

14.2. Numeric data types

14.3. String data types

14.4. Collation types

14.5. Date and time data types

15.Practical SQL statements

15.1. TRACE

15.2. Cross-schema queries

15.3. Multiple statements

15.4. EXPL AIN and execution plans

16.Error codes

185

186

187

188

193

194

207

207

207

207

208

208

209

211

211

211

211

211

212

214

214

214

216

217

230

SQL Reference··Table of Cont ent s Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

IV > Document Version: 20220601

PolarDB-X 1.0is highly compatible with the MySQL protocol and the Structured Query Language (SQL)
syntax of MySQL. However, some limits are imposed on the SQL statements for PolarDB-X 1.0. This is
because the architecture of distributed databases differs from that of single-instance databases. This
topic describes the limits of SQL statements in PolarDB-X 1.0.

General limits on the SQL statementsGeneral limits on the SQL statements
PolarDB-X 1.0 does not support custom data types or custom functions.

PolarDB-X 1.0 does not support stored procedures, triggers, or cursors.

PolarDB-X 1.0 does not support temporary tables.

PolarDB-X 1.0 does not support compound statements, such as BEGIN...END, LOOP...END LOOP,
REPEAT...UNTIL...END REPEAT, and WHILE...DO...END WHILE.

PolarDB-X 1.0 does not support flow control statements, such as IF and WHILE statements.

PolarDB-X 1.0 does not support foreign key.

Limits on the SQL syntaxLimits on the SQL syntax
DDL

You cannot execute the CREATE TABLE tbl_name LIKE old_tbl_name statement for table
sharding.

You cannot execute the CREATE TABLE tbl_name SELECT statements for table sharding.

You cannot execute the RENAME statement to rename mult iple tables at a t ime.

You cannot execute the ALTER TABLE statement to change shard key fields.

PolarDB-X 1.0 does not support data definit ion language (DDL) operations across schemas, such as
 CREATE TABLE db_name.tbl_name (...) .

For more information about DDL statements, see DDL.

DML

PolarDB-X 1.0 does not support the following statements: SELECT INTO OUTFILE, INTO DUMPFILE,
and INTO var_name.

PolarDB-X 1.0 does not support STRAIGHT_JOIN or NATURAL JOIN operations.

PolarDB-X 1.0 does not support subqueries in UPDATE SET clauses.

PolarDB-X 1.0 does not support INSERT DELAYED statements.

PolarDB-X 1.0 does not support variable references and operations in SQL statements. For
example, you cannot execute the following statement: SET @c=1, @d=@c+1; SELECT @c, @d .

You cannot perform the INSERT, REPLACE, UPDATE, or DELETE operations on broadcast tables in
flexible transactions.

For more information about data manipulation language (DML) statements, see DML.

Subqueries

PolarDB-X 1.0 does not support subqueries in HAVING or JOIN ON clauses.

PolarDB-X 1.0 does not support the ROW functions in the scalar subqueries that use equal signs (=)
as operators.

1.SQL limits1.SQL limits

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SQL limit s

> Document Version: 20220601 8

https://www.alibabacloud.com/help/doc-detail/71323.htm#multiTask2157
https://www.alibabacloud.com/help/doc-detail/71274.htm#multiTask3341

For more information about subqueries, see Subqueries.

Database management

PolarDB-X 1.0 does not support the combination of LIMIT and COUNT in SHOW WARNINGS
statements.

PolarDB-X 1.0 does not support the combination of LIMIT and COUNT in SHOW ERRORS statements.

Operators that are not supported by PolarDB-X 1.0

PolarDB-X 1.0 does not support the assignment operators ':='

For more information about operators, see Operators.

Functions that are not supported by PolarDB-X 1.0

Full-text search functions. For more information, see Full-Text Search Functions.

XML functions. For more information, see XML Functions.

Global transaction identifier (GTID) functions. For more information, see Functions Used with Global
Transaction Identifiers (GTIDs)

Enterprise encryption functions. For more information, see MySQL Enterprise Encryption.

For more information about functions, see Functions.

Keywords that are not supported by PolarDB-X 1.0

MILLISECOND

MICROSECOND

SQL Reference··SQL limit s Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

9 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/71295.htm
https://www.alibabacloud.com/help/doc-detail/71266.htm#multiTask241
https://dev.mysql.com/doc/refman/5.7/en/fulltext-search.html
https://dev.mysql.com/doc/refman/5.7/en/xml-functions.html
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html
https://dev.mysql.com/doc/refman/5.7/en/enterprise-encryption.html
https://www.alibabacloud.com/help/doc-detail/71269.htm#multiTask9024

PolarDB-X 1.0 is a database service that supports both database sharding and table sharding. This
topic describes the sharding functions of PolarDB-X 1.0.

Sharding methodSharding method
In PolarDB-X 1.0, the sharding method of a logical table is defined by a sharding function and a
sharding key (including the MySQL data type of the key). The sharding function contains the number of
shards and the routing algorithm. The database shard and table shard of a logical table in PolarDB-X
1.0 are generated with the same sharding method only when the same sharding function and sharding
key are used. If the database shard and table shard are generated with the same sharding method,
PolarDB-X 1.0 can locate a unique physical database shard and physical table shard based on the value
of the sharding key. If the sharding methods used for the database sharding and table sharding of a
logical table are different, and no condit ions are specified for database sharding and table sharding in
the SQL statement, PolarDB-X 1.0 scans all database shards or all table shards to query data.

Support for database sharding and table shardingSupport for database sharding and table sharding

Sharding function Description
Support database
sharding

Support table sharding

HASH
Performs a simple
modulo operation.

Yes Yes

STR_HASH Returns a substring. Yes Yes

UNI_HASH
Performs a simple
modulo operation.

Yes Yes

RIGHT_SHIFT
Performs a signed right
shift on the value of the
database shard key.

Yes Yes

RANGE_HASH
Performs hashing when
two sharding keys are
required.

Yes Yes

MM
Performs hashing by
month.

No Yes

DD
Performs hashing by
date.

No Yes

WEEK
Performs hashing by
week.

No Yes

MMDD
Performs hashing by
month and date.

No Yes

2.Instructions for sharding function2.Instructions for sharding function
2.1. Overview2.1. Overview

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Inst ruct ions for shard
ing funct ion

> Document Version: 20220601 10

https://www.alibabacloud.com/help/doc-detail/71276.htm#multiTask728
https://www.alibabacloud.com/help/doc-detail/95513.htm#multiTask4295
https://www.alibabacloud.com/help/doc-detail/71279.htm#multiTask1115
https://www.alibabacloud.com/help/doc-detail/71290.htm#multiTask799
https://www.alibabacloud.com/help/doc-detail/71284.htm#multiTask833
https://www.alibabacloud.com/help/doc-detail/71294.htm#multiTask578
https://www.alibabacloud.com/help/doc-detail/71310.htm#multiTask602
https://www.alibabacloud.com/help/doc-detail/71311.htm#multiTask623
https://www.alibabacloud.com/help/doc-detail/71332.htm#multiTask655

YYYYMM
Performs hashing by
year and month.

Yes Yes

YYYYWEEK
Performs hashing by
year and week.

Yes Yes

YYYYDD
Performs hashing by
year and date.

Yes Yes

Sharding function Description
Support database
sharding

Support table sharding

Support for global secondary indexesSupport for global secondary indexes
PolarDB-X 1.0 supports Global secondary indexes. In terms of data storage, each GSI corresponds to a
logical table that stores index data. This table is called an index table.

PolarDB-X 1.0 also allows you to specify the sharding method of the index table when you create a
GSI. Index tables and normal logical tables support the same sharding functions. For more
information, see Use global secondary indexes.

Supported data typesSupported data types

Shar
ding
funct
ion

Data
type

INT
BIGIN
T

MEDI
UMIN
T

SMAL
LINT

TINYI
NT

VARC
HAR

CHAR DATE
DATE
TIME

TIME
STA
MP

Othe
r
type

HASH √ √ √ √ √ √ √ × × × ×

UNI_
HASH

√ √ √ √ √ √ √ × × × ×

RANG
E_HA
SH

√ √ √ √ √ √ √ × × × ×

RIGH
T_SHI
FT

√ √ √ √ √ × × × × × ×

STR_
HASH

× × × × × √ √ × × × ×

MM × × × × × × × √ √ √ ×

DD × × × × × × × √ √ √ ×

WEEK × × × × × × × √ √ √ ×

MMD
D

× × × × × × × √ √ √ ×

SQL Reference··Inst ruct ions for shard
ing funct ion

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

11 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/71334.htm#topic1014
https://www.alibabacloud.com/help/doc-detail/71335.htm#multiTask1103
https://www.alibabacloud.com/help/doc-detail/71337.htm#multiTask1081
https://www.alibabacloud.com/help/doc-detail/182179.htm#concept-1946505
https://www.alibabacloud.com/help/doc-detail/182180.htm#task-1946506
https://www.alibabacloud.com/help/doc-detail/71276.htm#multiTask728
https://www.alibabacloud.com/help/doc-detail/71279.htm#multiTask1115
https://www.alibabacloud.com/help/doc-detail/71284.htm#multiTask833
https://www.alibabacloud.com/help/doc-detail/71290.htm#multiTask799
https://www.alibabacloud.com/help/doc-detail/95513.htm#multiTask4295
https://www.alibabacloud.com/help/doc-detail/71294.htm#multiTask578
https://www.alibabacloud.com/help/doc-detail/71310.htm#multiTask602
https://www.alibabacloud.com/help/doc-detail/71311.htm#multiTask623
https://www.alibabacloud.com/help/doc-detail/71332.htm#multiTask655

YYYY
MM

× × × × × × × √ √ √ ×

YYYY
WEEK

× × × × × × × √ √ √ ×

YYYY
DD

× × × × × × × √ √ √ ×

Shar
ding
funct
ion

Data
type

INT
BIGIN
T

MEDI
UMIN
T

SMAL
LINT

TINYI
NT

VARC
HAR

CHAR DATE
DATE
TIME

TIME
STA
MP

Othe
r
type

Sharding function syntaxSharding function syntax
PolarDB-X 1.0 is compatible with the Data Definit ion Language (DDL) table statements in MySQL. It also
provides the drds_partition_options keyword for database sharding and table sharding, as shown
in the following statements.

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 (create_definition,...)
 [table_options]
 [drds_partition_options]
 [partition_options]
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 [(create_definition,...)]
 [table_options]
 [drds_partition_options]
 [partition_options]
 select_statement
drds_partition_options:
 DBPARTITION BY
 { {HASH|YYYYMM|YYYYWEEK|YYYYDD|...}([column])}
 [TBPARTITION BY
 { {HASH|MM|DD|WEEK|MMDD|YYYYMM|YYYYWEEK|YYYYDD|...}(column)}
 [TBPARTITIONS num]
]

This topic describes how to use the HASH function.

NoteNote
The UNI_HASH functions perform simple modulo operations. The output of the UNI_HASH functions can
be evenly distributed only when the values in the part it ioning key column are evenly distributed.

LimitsLimits
The part it ioning key must be an integer or a string.

2.2. HASH2.2. HASH

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Inst ruct ions for shard
ing funct ion

> Document Version: 20220601 12

https://www.alibabacloud.com/help/doc-detail/71334.htm#topic1014
https://www.alibabacloud.com/help/doc-detail/71335.htm#multiTask1103
https://www.alibabacloud.com/help/doc-detail/71337.htm#multiTask1081

Routing methodRouting method
If different part it ioning keys are used to execute the HASH function for database shards and table
shards, divide the value of the database shard key by the number of database shards and find the
remainder. If the key value is a string, the string is f irst converted into a hash value and then used for
route calculat ion. For example, HASH(8) is equivalent to 8 % D , where D indicates the number
of database shards. HASH("ABC") is equivalent to hashcode("ABC").abs() % D .

If the same part it ioning key is used to execute the HASH function for database shards and table
shards, divide the value of the part it ioning key by the total number of table shards and find the
remainder. Assume that two database shards are created, each database shard contains four table
shards, table shards 0 to 3 are stored in database shard 0, and table shards 4 to 7 are stored in
database shard 1. Based on this routing method, the key value 15 is distributed to table shard 7 in
database shard 1. The equation is ((15 % (2*4) = 7)).

ScenariosScenarios
The HASH function can be used in the following scenarios:

Part it ion databases by user ID or order ID.

Use a string as the part it ioning key.

Examples

Assume that you want to execute the HASH function to create non-part it ioned tables in database
shards based on the ID column. You can execute the following Data Definit ion Language (DDL)
statement to create tables:

create table test_hash_tb (
 id int,
 name varchar(30) DEFAULT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by HASH(ID);

This topic describes how to use the STR_HASH function.

NoteNote
Table shards that are created with the STR_HASH function are applicable only to point query scenarios.
Range queries for a service trigger a full table scan, which causes a slow response.

LimitsLimits
The part it ioning key must be a string (CHAR or VARCHAR).

The parameters of the STR_HASH function cannot be modified after a table is created.

The version of the PolarDB-X 1.0 instance must be 5.3.5 or later.

ScenariosScenarios
The STR_HASH function is applicable to scenarios that require precise routing where only one table or
database shard corresponds to the value of one part it ioning key. This value must be a string.

2.3. STR_HASH2.3. STR_HASH

SQL Reference··Inst ruct ions for shard
ing funct ion

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

13 > Document Version: 20220601

For example, an Internet finance application part it ions data into database shards by year and month
of the year by using the YYYYMM function, and then part it ions data into table shards by order ID. In
this application, the last three characters of each order ID are an integer that ranges from 000 to 999.
This application is required to route the last three characters of each order ID in a physical database
shard to one physical table shard. Therefore, the application uses the YYYYMM function to part it ion
data into database shards and then uses the STR_HASH function to part it ion data into table shards.
To meet the requirements of the application, each database shard contains 1,024 table shards. The
following SQL statement is used to create the required shards:

create table test_str_hash_tb (
 id int NOT NULL AUTO_INCREMENT,
 order_id varchar(30) NOT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by YYYYMM(`create_time`)
tbpartition by STR_HASH(`order_id`, -1, 3, 1) tbpartitions 1024;

This SQL statement finds the last three characters of each order ID, converts them into an integer
(000 to 999), and then performs the modulo operation to calculate the appropriate table shard. The
total number of table shards is 1,024. The routing result ensures that each physical table shard
corresponds to the value of only one part it ioning key. The default part it ioning function of PolarDB-X
1.0 cannot achieve this effect because the hashCode function may convert strings into integers that
are not unique. One physical table shard may correspond to the values of mult iple part it ioning keys.

Typical scenarios of point query

The STR_HASH function is applicable to scenarios where a string is used as the part it ioning key. Point
query is used in most scenarios, such as querying transaction orders and logist ics orders by ID.

SyntaxSyntax
The STR_HASH function allows you to truncate the string value of a part it ioning key into a substring by
specifying the start posit ion subscript and end posit ion subscript. Then, the function uses this substring
as a string or an integer input to calculate the routes of specific physical database shards and table
shards. For more information, see the following syntax:

STR_HASH(shardKey [, startIndex, endIndex [, valType [, randSeed]]])

Parameters

Parameter Description

shardKey The name of the partit ioning key column.

startIndex

The start posit ion subscript of the substring. The posit ions of the
characters in the original string start at 0. This means that the value 0
indicates the first character in the original string. To disable truncation,
retain the default value of -1.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Inst ruct ions for shard
ing funct ion

> Document Version: 20220601 14

endIndex

The end posit ion subscript of the target substring. The posit ions of the
characters in the original string start at 0. This means that the value 0
indicates the first character in the original string. To disable truncation,
retain the default value of -1.

Not e Not e Note the following values of startIndex and endIndex:

For startIndex == j && endIndex = k (j>=0, k>=0
,k>j) , the [j, k) range of the original string is
used as the substring. For example:

For the ABCDEFG string, the value of the [1,5)
range is BCDE .

For the ABCDEFG string, the value of the [2,2)
range is '' .

For the ABCDEFG string, the value of the [4,100)
 range is EFG .

For the ABCDEFG string, the value of the [100,10
5) range is '' .

For startIndex == -1 && endIndex = k (k>=0) , the
last K characters of the original string are used as the
substring. If the original string contains fewer than K
characters, the entire string is used as the substring.

For startIndex = k && endIndex == -1 (k>=0) , the
first K characters of the original string are used as the
substring. If the original string contains fewer than K
characters, the entire string is used as the substring.

For startIndex == -1 && endIndex == -1 , no
truncation is performed. The substring is the same as the
original string.

valType

The type of the substring that is used for calculating routes of
database shards and table shards. Valid values:

0 (default): PolarDB-X 1.0 uses the substring as a string to calculate
routes.

1: PolarDB-X 1.0 uses the substring as an integer to calculate routes.
The integer value of the substring cannot be greater than
9223372036854775807 and cannot be a floating-point number.

Parameter Description

SQL Reference··Inst ruct ions for shard
ing funct ion

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

15 > Document Version: 20220601

randSeed

The value of a random seed that PolarDB-X 1.0 uses to calculate the
hash value of routes when the substring is used as a string. This value
is used only when the STR_HASH function cannot achieve even data
distribution by using the default random seed. The default value is 31.
You can set this parameter to other values such as 131, 13131, and
1313131.

Not eNot e

This parameter can be set only when valType is set to 0.

After you set this parameter, you must redistribute data by
manually exporting all data and then importing it with the
new partit ioning algorithm.

Parameter Description

ExamplesExamples
Assume that the data type of order_id is VARCHAR(32). You want to use order_id as the part it ioning key
to part it ion data into four database shards and eight table shards.

Assume that you want to use the last four characters of the order_id string as an integer to calculate
the routes of the database shards and table shards. You can use the following SQL statement to
create tables:

create table test_str_hash_tb (
 id int NOT NULL AUTO_INCREMENT,
 order_id varchar(32) NOT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by STR_HASH(`order_id`, -1, 4, 1)
tbpartition by STR_HASH(`order_id`, -1, 4, 1) tbpartitions 2;

Assume that you want to use the characters from the third character (starIndex = 2) to the seventh
character (endIndex = 7) of the order_id string as a substring to calculate the routes of the database
and table shards. You can use the following SQL statement to create tables:

create table test_str_hash_tb (
 id int NOT NULL AUTO_INCREMENT,
 order_id varchar(32) NOT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by STR_HASH(`order_id`, 2, 7)
tbpartition by STR_HASH(`order_id`, 2, 7) tbpartitions 2;

Assume that you want to use the first f ive characters of the order_id string as a substring to
calculate the routes of the database shards and table shards. You can use the following SQL
statement to create tables:

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Inst ruct ions for shard
ing funct ion

> Document Version: 20220601 16

create table test_str_hash_tb (
 id int NOT NULL AUTO_INCREMENT,
 order_id varchar(32) NOT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by STR_HASH(`order_id`, 5, -1)
tbpartition by STR_HASH(`order_id`, 5, -1) tbpartitions 2;

FAQFAQ
Q: What are the differences between dbpartition by STR_HASH(order_id) and dbpartition by
HASH(order_id) ?

A: STR_HASH and HASH both use the value of a string to calculate the hash routes of database shards
and table shards. However, they use different route algorithms. STR_HASH allows you to truncate the
original string into a substring, which it uses to create tables. STR_HASH also uses the UNI_HASH
algorithm when the routes of database shards and table shards are calculated based on the hash value
of a string. HASH performs a simple modulo operation to obtain the hash value of a string.

This topic describes how to use UNI_HASH.

ConsiderationsConsiderations
The UNI_HASH functions perform simple modulo operations. The hash output can be evenly distributed
only when the values in the sharding column are evenly distributed.

LimitsLimits
The data type of shard keys must be integers or strings.

The version of the PolarDB-X 1.0 instance must be 5.1.28-1508068 or later.

Routing methodRouting method
UNI_HASH is used in the following scenarios:

When you run the UNI_HASH function to perform database sharding, the values of the database
shard key are divided by the number of database shards to obtain the remainders. If the key values
are strings, the strings are converted to hash values. Then, the hash values are calculated to
complete route computing. For example, HASH('8') is equivalent to 8 % D . Letter D indicates
the number of database shards.

Assume that you run the UNI_HASH function to implement database sharding and table sharding by
using the same shard key. The values of the database shard key are divided by the number of
database shards to obtain the remainders. Then, data is evenly routed to each table shard of the
database shard.

ScenariosScenarios
Database sharding is implemented based on user IDs or order IDs.

The data type of shard keys is an integer or a string.

The database sharding must be implemented for two logical tables by using the same shard key. The

2.4. UNI_HASH2.4. UNI_HASH

SQL Reference··Inst ruct ions for shard
ing funct ion

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

17 > Document Version: 20220601

number of table shards for one table is different from that for the other table. The two tables are
often joined by using the shard key.

Use casesUse cases
Assume that you must run the UNI_HASH function to implement sharding by using the values of the ID
column and each database shard contains four tables. You can execute the following data definit ion
language (DDL) statement to create tables:

create table test_hash_tb (
 id int,
 name varchar(30) DEFAULT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by UNI_HASH(ID)
tbpartition by UNI_HASH(ID) tbpartitions 4;

Comparison with HASHComparison with HASH

Comparison scenario UNI_HASH HASH

Database sharding is
implemented and table sharding
is not implemented.

The two functions use the same routing method. In this method, the
values of the database shard key are divided by the number of
database shards to obtain the remainders.

Sharding is implemented by using
the same shard key.

The results that are routed to
database shards by using the
same key value do not change as
the number of table shards
changes.

The results that are routed to
database shards by using the
same key value change as the
number of table shards changes.

Sharding must be implemented
for two logical tables by using
the same shard key. However, the
number of table shards for one
logical table is different from
that for the other logical table.

When one table is joined with the
other table by using the shard
key, a cross-database join does
not occur.

When one table is joined with the
other table by using the shard
key, a cross-database join occurs.

This topic describes how to use the RANGE_HASH function.

ScenariosScenarios
The RANGE_HASH function is applicable to scenarios where two part it ioning keys are required but only
one part it ioning key value is available during queries.

LimitsLimits
The two part it ioning keys must be of the same data type, which can be the string or number type.

The two part it ioning keys cannot be modified.

The part it ioning keys do not support range query.

2.5. RANGE_HASH2.5. RANGE_HASH

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Inst ruct ions for shard
ing funct ion

> Document Version: 20220601 18

When data is inserted, the last N characters of the two part it ioning keys must be the same.

A string must contain no less than N characters.

The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later.

Routing methodRouting method
Calculate the hash value based on the last N characters of either part it ioning key, then divide by the
number of database shards and find the remainder. The letter N indicates the third parameter in the
function. For example, during calculat ion of the RANGE_HASH(COL1, COL2, N) funct ion, COL1 is
preferentially selected, and then its last N characters are truncated for calculat ion. If COL1 does not
exist , COL2 is selected and truncated for calculat ion.

ExamplesExamples
Assume that PolarDB-X 1.0 has eight physical database shards. You want to part it ion data into
database shards by buyer ID and order ID. However, only one of these IDs is available during queries. You
can use the following Data Definit ion Language (DDL) statement to create order tables:

create table test_order_tb (
 id int,
 buyer_id varchar(30) DEFAULT NULL,
 order_id varchar(30) DEFAULT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
 dbpartition by RANGE_HASH(buyer_id,order_id, 10)
 tbpartition by RANGE_HASH (buyer_id,order_id, 10) tbpartitions 3;

This topic describes how to use the RIGHT_SHIFT function.

LimitsLimits
The shard key must be an integer.

The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..

Routing methodRouting method
The RIGHT_SHIFT function performs a signed right shift on the value of the database shard key. The
function then divides the result ing integer by the number of database or table shards and finds the
remainder. Note that the value of the shard key must be an integer. You can specify the number of bits
to shift by running a data definit ion language (DDL) statement.

Not e Not e The number of bits to shift cannot exceed the number of bits used to represent an
integer.

ScenariosScenarios
The RIGHT_SHIFT function can produce more even hashing when the lower-digit parts of most shard key
values are similar but the higher-digit parts vary greatly.

2.6. RIGHT_SHIFT2.6. RIGHT_SHIFT

SQL Reference··Inst ruct ions for shard
ing funct ion

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

19 > Document Version: 20220601

For example, assume you have the following four shard key values: 0x0100 , 0x0200 , 0x 0300
and 0x0400 . The rightmost eight bits of each value are 0. Services may use the rightmost bits as
flags. In this case, using the remainder method on the original values can result in less effect ive hashing.
You can use RIGHT_SHIFT (shardKey, 8) to shift the values of the keys eight bits to the right and
obtain the following values: 0x01 , 0x02 , 0x03 and 0x04 . These new values result in
relat ively even hashing. If a database is divided into four shards, each value corresponds to one shard.

Use casesUse cases
For example, assume that you are using the ID column as the shard key. You may want to shift the
values of this column four bits to the right for hashing purposes. In this case, you can run the following
statement:

create table test_hash_tb (
 id int,
 name varchar(30) DEFAULT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by RIGHT_SHIFT(id, 8)
tbpartition by RIGHT_SHIFT(id, 8) tbpartitions 4;

This topic describes how to use the MM function.

LimitsLimits
The part it ioning key must be of the DATE, DATETIME, or TIMESTAMP type.

This function can be used only for part it ioning data into table shards, not into database shards.

When you use the MM function to part it ion data into table shards, ensure that each database shard
has no more than 12 table shards. This is because a year has 12 months.

The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..

Routing methodRouting method
To obtain the table shard subscript, divide by the month of the year in the t ime value of the database
shard key.

ScenariosScenarios
The MM function is applicable to scenarios where data needs to be part it ioned into table shards by
month. The name of a table shard indicates a specific month.

ExamplesExamples
Assume that you want to part it ion data into database shards by user ID and then create a physical
table shard for each month based on the create_time column. You can use the following Data
Definit ion Language (DDL) statement to create tables:

2.7. MM2.7. MM

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Inst ruct ions for shard
ing funct ion

> Document Version: 20220601 20

create table test_mm_tb (
 id int,
 name varchar(30) DEFAULT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by HASH(id)
tbpartition by MM(create_time) tbpartitions 12;

This topic describes how to use the DD function.

LimitsLimits
The part it ioning key must be of the DATE, DATETIME, or TIMESTAMP type.

This function can be used only for part it ioning data into table shards, not into database shards.

When you use the DD function to part it ion data into table shards, ensure that each database shard
has no more than 31 table shards. This is because a month cannot have more than 31 days.

The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..

Routing methodRouting method
To obtain the table shard subscript, divide by the day in the t ime value of the database shard key.

ScenariosScenarios
The DD function is applicable to scenarios where data needs to be part it ioned into table shards by day.
The name of a table shard indicates a specific day.

ExamplesExamples
Assume that you want to part it ion data into database shards by user ID and then create a physical
table shard for each day based on the create_time column. You can use the following Data
Definit ion Language (DDL) statement to create tables:

create table test_dd_tb (
 id int,
 name varchar(30) DEFAULT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by HASH(id)
tbpartition by DD(create_time) tbpartitions 31;

This topic describes how to use the WEEK function.

LimitsLimits

2.8. DD2.8. DD

2.9. WEEK2.9. WEEK

SQL Reference··Inst ruct ions for shard
ing funct ion

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

21 > Document Version: 20220601

The part it ioning key must be of the DATE, DATETIME, or TIMESTAMP type.

This function can be used only for part it ioning data into table shards, not into database shards.

When you use the WEEK function to part it ion data into table shards, ensure that each database
shard has no more than seven table shards. This is because a week has seven days.

The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..

Routing methodRouting method
To obtain the table shard subscript, divide by the day of the week in the t ime value of the database
shard key.

ScenariosScenarios
The WEEK function is applicable to scenarios where data needs to be part it ioned into table shards by
each day of a week. The name subscript of a table shard indicates a specific day of a week, from
Monday to Sunday.

ExamplesExamples
Assume that you want to part it ion data into database shards by user ID and then create a physical
table shard for each day of the week (Monday to Sunday) based on the create_time column. You
can use the following Data Definit ion Language (DDL) statement to create tables:

create table test_week_tb (
 id int,
 name varchar(30) DEFAULT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by HASH(name)
tbpartition by WEEK(create_time) tbpartitions 7;

This topic describes how to use the MMDD function.

LimitsLimits
The part it ioning key must be of the DATE, DATETIME, or TIMESTAMP type.

This function can be used only for part it ioning data into table shards, not into database shards.

When you use the MMDD function to part it ion data into table shards, ensure that each database
shard has no more than 366 table shards. This is because a year cannot have more than 366 days.

The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..

Routing methodRouting method
To obtain the table shard subscript, divide by the day in the t ime value of the part it ioning key of a
database shard.

ScenariosScenarios

2.10. MMDD2.10. MMDD

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Inst ruct ions for shard
ing funct ion

> Document Version: 20220601 22

The MMDD function is applicable to scenarios where data needs to be part it ioned into table shards by
day of a year. The name subscript of a table shard indicates a specific day of a year.

ExamplesExamples
Assume that you want to part it ion data into database shards by user ID and then create a physical
table shard for each day and month based on the create_time column. You can use the following
Data Definit ion Language (DDL) statement to create tables:

create table test_mmdd_tb (
 id int,
 name varchar(30) DEFAULT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by HASH(name)
tbpartition by MMDD(create_time) tbpartitions 366;

This topic describes how to use the YYYYDD function.

LimitsLimits
A shard key must be of the DATE, DATETIME, or TIMESTAMP type.

Before you use the YYYYDD function, determine the total number of physical table shards that are
required based on a specific cycle, such as two years. The YYYYDD function can be used to create
only one table shard for each day within a cycle.

When a date recurs in the next cycle, data generated on the date may be routed to the same table
shards that store data generated on the same date in the last cycle. For example, if you specify a
two-year cycle start ing from March 1, 2012, data generated on March 1, 2014 in the next cycle may
be routed to the same table shard that stores data generated on March 1, 2012. The table shard to
which the data is routed depends on the number of table shards.

The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later.

Routing methodRouting method
You can use the YYYYDD function to calculate hash values based on the years and days in the t ime
values of a database shard key. Then, the function divides the hash values by the number of database
shards to obtain the remainders. As a result , data is part it ioned based on the remainders.

For example, if you specify parameters for the YYYYDD function in the YYYYDD('2012-12-31
12:12:12') format, the remainder is calculated based on the following formula: (2012 x 366 +
366)%D , in which D indicates the number of database shards. The calculat ion result indicates that
December 31, 2012 is the 366th day of year 2012.

ScenariosScenarios
The YYYYDD function is suitable for scenarios in which data needs to be part it ioned into database
shards by year and day of the year. We recommend that you use this function with tbpartition by
YYYYDD(ShardKey) .

2.11. YYYYDD2.11. YYYYDD

SQL Reference··Inst ruct ions for shard
ing funct ion

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

23 > Document Version: 20220601

ExampleExample
In this example, the PolarDB-X 1.0 instance has two nodes. By default , each node has eight database
shards. The data must be part it ioned based on the following requirements:

Data is part it ioned into the database shards by year and day of the year.

Data generated on the same day is part it ioned into the same table shard. Each day within two years
corresponds to an independent table shard.

A query is directly distributed to a specific physical table shard of a database shard if shard keys are
specified in the query.

The YYYYDD function can meet the preceding requirements. You require that each day within two years
correspond to a table shard. Therefore, a total of 732 (366 x 2) physical table shards must be created
because a year has up to 366 days. A PolarDB-X 1.0 instance has 16 database shards. The number of
physical table shards in each database shard is calculated in the following two steps: 1. Divide the total
number of physical table shards that must be created by the number of database shards. 2. Round the
result up to the next nearest integer. In this case, the number of physic table shards is 46, which is the
nearest integer to 45.75 (732/16). We recommend that the number of table shards be an integer
mult iple of the number of database shards.

You can use the following Data Definit ion Language (DDL) statement to create tables:

create table test_yyyydd_tb (
 id int,
 name varchar(30) DEFAULT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by YYYYDD(create_time)
tbpartition by YYYYDD(create_time) tbpartitions 46;

This topic describes how to use the YYYYMM function.

LimitsLimits
The part it ioning key must be of the DATE, DATETIME, or TIMESTAMP type.

Before you use the YYYYMM function, you must determine the total number of physical table shards
required. This number can be determined based on a cycle, such as 2 years. The YYYYMM function can
be used only to create a separate table shard for each month within a cycle.

When a month reoccurs after a cycle has completed, data from that month may be routed to the
same table shard in the same database shard. For example, with a two-year cycle start ing in March
2012, data from March 2014 may be routed to the same table shard as data from March 2012. The
specific table shard to which the data is routed depends on the number of table shards.

The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..

Routing methodRouting method
Calculate the hash value based on the year and month of the t ime value of the database shard key.
Then divide by the number of database shards and find the remainder.

2.12. YYYYMM2.12. YYYYMM

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Inst ruct ions for shard
ing funct ion

> Document Version: 20220601 24

For example, the YYYYMM('2012-12-31 12:12:12') funct ion is equivalent to (2012 × 12 + 12) %
D , where D indicates the number of database shards. The calculat ion result indicates that December
31, 2012 is in the 12nd month of 2012.

ScenariosScenarios
The YYYYMM function is applicable to scenarios where data needs to be part it ioned into database
shards by year and month of the year. We recommend that you use this function with tbpartition
YYYYMM(ShardKey) .

ExamplesExamples
Assume that a PolarDB-X 1.0 instance has eight physical database shards and that you have the
following requirements:

Part it ion data into the database shards by year and month of the year.

Distribute data from the same month to the same table shard and ensure that each month within
two years corresponds to a separate table shard.

Directly distribute a query by part it ioning key of database shards and table shards to a specific
physical table shard of a database shard.

The YYYYMM function can meet the preceding requirements. You require that each month within two
years correspond to a table shard. Therefore, a total of 24 physical table shards must be created,
because a year has 12 months (12 × 2 = 24).PolarDB-X 1.0 has eight database shards. Therefore, three
physical table shards must be created in each database shard (24/8 = 3).

You can use the following Data Definit ion Language (DDL) statement to create tables:

create table test_yyyymm_tb (
 id int,
 name varchar(30) DEFAULT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by YYYYMM(create_time)
tbpartition by YYYYMM(create_time) tbpartitions 3;

This topic describes how to use the YYYYWEEK function.

LimitsLimits
The part it ioning key must be of the DATE, DATETIME, or TIMESTAMP type.

Before you use the YYYYWEEK function,you must determine the total number of physical table shards
required. This number can be determined based on a cycle, such as 2 years. The YYYYWEEK function
can be used only to create a separate table shard for each week within a cycle.

When a week reoccurs after a cycle has completed, data from that week may be routed to the same
table shard in the same database shard. For example, with a two-year cycle start ing on the first week
of 2012, data from the first week of 2014 may be routed to the same table shard as data from the
first week of 2012. The specific table shard to which the data is routed depends on the number of
table shards.

2.13. YYYYWEEK2.13. YYYYWEEK

SQL Reference··Inst ruct ions for shard
ing funct ion

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

25 > Document Version: 20220601

The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..

Routing methodRouting method
Calculate the hash value based on the year and week of the t ime value of the database shard key.
Then divide by the number of database shards and find the remainder.

For example, the YYYYWEEK('2012-12-31 12:12:12') funct ion is equivalent to (2013 × 54 + 1) %
D , where D indicates the number of database shards. The calculat ion result indicates that the
December 31, 2012 is in the first week of 2013.

ScenariosScenarios
The YYYYWEEK function is applicable to scenarios where data needs to be part it ioned into database
shards by year and week of the year. We recommend that you use this function with tbpartition by
YYYYWEEK(ShardKey) .

ExamplesExamples
Assume that a PolarDB-X 1.0 instance has eight physical database shards and that you have the
following requirements:

Part it ion data into the database shards by year and week of the year.

Distribute data from the same week to the same table shard and ensure that each week within two
years corresponds to a separate table shard.

Directly distribute a query by part it ioning key of database shards and table shards to a specific
physical table shard of a database shard.

The YYYYWEEK function can meet the preceding requirements. You require that each week within two
years correspond to a table shard. Therefore, a total of 106 physical table shards must be created,
because a year has up to 53 weeks (53 × 2 = 106). PolarDB-X 1.0 has eight database shards. Therefore,
14 physical table shards must be created in each database shard (106/8 = 13.25, rounded to 14). We
recommend that the number of table shards be an integer mult iple of the number of database shards.

You can use the following Data Definit ion Language (DDL) statement to create tables:

create table test_yyyyweek_tb (
 id int,
 name varchar(30) DEFAULT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by YYYYWEEK(create_time)
tbpartition by YYYYWEEK(create_time) tbpartitions 14;

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Inst ruct ions for shard
ing funct ion

> Document Version: 20220601 26

PolarDB-X 1.0 introduces a DDL execution engine that is used by the DRDS instances of V5.3.12 or later
to support the DDL task management feature. This feature allows you to view the status of DDL
execution tasks, resume the failed DDL tasks, and roll back the failed DDL tasks.

Concepts related to DDL task managementConcepts related to DDL task management
Before you use the DDL task management feature, we recommend that you understand the following
concepts:

DDL task: a task that corresponds to the process of executing a DDL statement.

Management statement: an SQL statement that is specific to PolarDB-X 1.0 and is executed to view
or manage DDL tasks.

Task ID: the unique identifier of a DDL task. A task ID is a 64-bit long signed integer.

Task status: the status of a DDL task.

For more information about the syntax of task management statements and how to use these
statements, see Job management statements.

Job management statements are extended Structured Query Language (SQL) statements dedicated to
PolarDB-X 1.0. They can be used to query the details of data definit ion language (DDL) jobs and resume
or roll back failed DDL jobs. This topic describes the syntax and usage of job management statements.

Query a jobQuery a job
You can query the details of a DDL job in the DDL queue where the DDL job may be either in a non-
PENDING state as it is being executed or in the PENDING state due to failures.

Not e Not e Jobs that have been executed are in the COMPLETED state and are automatically
cleared. You cannot query these jobs by executing the SHOW DDL statement.

Syntax

SHOW [FULL] DDL

Parameter Description

3.Manage DDL tasks3.Manage DDL tasks
3.1. Overview3.1. Overview

3.2. Job management statements3.2. Job management statements

SQL Reference··Manage DDL t asks Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

27 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/139530.htm#multiTask14544

FULL

Queries all information of a DDL job. If you do not specify this parameter, only
the following common information is displayed.

JOB_ID

OBJECT_SCHEMA

OBJECT_NAME

JOB_TYPE

PHASE

STATE

PROGRESS

START_TIME

END_TIME

ELAPSED_TIME

REMARK

PHY_PROCESS

BACKFILL_PROGRESS

Parameter Description

Descript ion of the fields in the result set

Field Description

JOB_ID The unique ID of the DDL job. It is a long 64-bit signed integer.

PARENT_JOB_ID

The unique ID of the DDL parent job. It is a long 64-bit signed integer.

Not e Not e If no parent job exists, this field is set to 0.

SERVER The information of the DRDS server node that executes the DDL job.

OBJECT_SCHEMA
The schema name of the object corresponding to the DDL job. For example,
this field can be the name of the current database.

OBJECT_NAME
The name of the object corresponding to the DDL job. For example, this field
can be the name of the table where the current DDL statement is executed.

NEW_OBJECT_NAME

The new name of the object corresponding to the DDL job.

Not e Not e This field is valid only when you execute RENAME TABLE. It
indicates the target table name.

JOB_TYPE The type of the DDL job.

PHASE The phase where the DDL job is located.

STATE The status of the DDL job.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Manage DDL t asks

> Document Version: 20220601 28

PROGRESS The progress of the DDL job.

START_TIME The time when the execution of the DDL job started.

END_TIME The time when the execution of the DDL job ended.

ELAPSED_TIME The time elapsed after the execution of the DDL job ended. Unit: milliseconds.

DDL_STMT The original DDL statement.

REMARK

The remarks of the DDL job.

Not e Not e This field displays the failure cause of the DDL job when the
DDL job is in the PENDING state.

Field Description

Example

Create a logical table that is part it ioned into table shards in a database shard. Query the details of
the job when the job is being executed.

i. Execute the CREATE TABLE DDL statement on a connection.

mysql> create table test_mdb_mtb (c1 int not null auto_increment primary key, c2 varc
har(10), c3 date) dbpartition by hash(c1) tbpartition by hash(c1) tbpartitions 64;

ii. Query the details of the DDL job on another connection.

mysql> show full ddl\G
*************************** 1. row ***************************
 JOB_ID: 1103792075578957824
PARENT_JOB_ID: 0
 SERVER: 1:102:10.81.69.55
OBJECT_SCHEMA: ddltest
OBJECT_NAME: test_mdb_mtb
NEW_OBJECT_NAME:
 JOB_TYPE: CREATE_TABLE
 PHASE: EXECUTE
 STATE: RUNNING
 PROGRESS: 90%
START_TIME: 2019-08-29 14:29:58.787
 END_TIME: 2019-08-29 14:30:07.177
ELAPSED_TIME(MS): 8416
 DDL_STMT: create table test_mdb_mtb (c1 int not null auto_increment primary key, c2
varchar(10), c3 date) dbpartition by hash(c1) tbpartition by hash(c1) tbpartitions 64
 REMARK:

Resume a jobResume a job
You can resume a pending DDL job that is suspended due to failures.

SQL Reference··Manage DDL t asks Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

29 > Document Version: 20220601

Not e Not e Before you resume the job, execute the SHOW DDL statement to check the causes for
the interruption or failure. Resume the job only after the failure causes are eliminated. Otherwise,
the same problem persists when you attempt to resume the job.

Syntax

RECOVER DDL { ALL | <job_id> [, <job_id>] ... }

Parameter Description

ALL
Resumes all DDL jobs that are in the PENDING state. Note that this parameter
causes the pending DDL jobs to be executed serially. Use it with caution.

job_id
The ID of the pending DDL job. This ID is displayed in the execution result of the
SHOW DDL statement.

Example

Create a logical table that is part it ioned into table shards in a database shard and interrupt the job
during execution. Execute the SHOW DDL statement to query the status and job_id of the job.
Then, execute the RECOVER DDL statement to resume the job until the table is created.

i. Interrupt the CREATE TABLE DDL job during execution.

mysql> create table test_mdb_mtb (c1 int not null auto_increment primary key, c2 varc
har(10), c3 date) dbpartition by hash(c1) tbpartition by hash(c1) tbpartitions 64;
^C^C -- query aborted

ii. Query the information about the DDL job. The interrupted DDL job is in the PENDING state.

mysql> show ddl\G
*************************** 1. row ***************************
 JOB_ID: 1103796219480006656
OBJECT_SCHEMA: ddltest
OBJECT_NAME: test_mdb_mtb
 JOB_TYPE: CREATE_TABLE
 PHASE: EXECUTE
 STATE: PENDING
 PROGRESS: 33%
START_TIME: 2019-08-29 14:46:26.769
 END_TIME: 2019-08-29 14:46:29.691
ELAPSED_TIME(MS): 2922
 DDL_STMT: create table test_mdb_mtb (c1 int not null auto_increment primary key, c2
varchar(10), c3 date) dbpartition by hash(c1) tbpartition by hash(c1) tbpartitions 64
 REMARK: The job has been interrupted unexpectedly

iii. Execute the RECOVER DDL statement to resume the job.

mysql> recover ddl 1103796219480006656;
Query OK, 0 rows affected (7.28 sec)

iv. Execute CHECK TABLE to check the consistency of the table.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Manage DDL t asks

> Document Version: 20220601 30

mysql> check table test_mdb_mtb;
+--+-------+----------+----------+
| TABLE | OP | MSG_TYPE | MSG_TEXT |
+--+-------+----------+----------+
| ddltest_1562056402230oymk.test_mdb_mtb | check | status | OK |
+--+-------+----------+----------+
1 row in set (2.24 sec)

Roll back a jobRoll back a job
You can roll back a pending DDL job that is suspended due to failures.

Not e Not e You can only roll back CREATE TABLE and RENAME TABLE DDL jobs. For other DDL jobs
that cannot be rolled back, we recommend that you resume the pending DDL jobs before you
perform other DDL operations.

Syntax

ROLLBACK DDL <job_id> [, <job_id>] ...

Parameter Description

job_id
The ID of the pending DDL job. This ID is displayed in the execution result of the
SHOW DDL statement.

Example

Create a logical table that is part it ioned into table shards in a database shard and interrupt the job
during execution. Execute the SHOW DDL statement to query the status and job_id of the job.
Then, execute the ROLLBACK DDL statement to roll back the job.

i. Interrupt the CREATE TABLE DDL job during execution.

mysql> create table test_mdb_mtb (c1 int not null auto_increment primary key, c2 varc
har(10), c3 date) dbpartition by hash(c1) tbpartition by hash(c1) tbpartitions 64;
^C^C -- query aborted

ii. Query the information about the DDL job. The interrupted DDL job is in the PENDING state.

SQL Reference··Manage DDL t asks Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

31 > Document Version: 20220601

mysql> show ddl\G
*************************** 1. row ***************************
 JOB_ID: 1103797850607083520
OBJECT_SCHEMA: ddltest
OBJECT_NAME: test_mdb_mtb
 JOB_TYPE: CREATE_TABLE
 PHASE: EXECUTE
 STATE: PENDING
 PROGRESS: 40%
START_TIME: 2019-08-29 14:52:55.660
 END_TIME: 2019-08-29 14:52:58.885
ELAPSED_TIME(MS): 3225
 DDL_STMT: create table test_mdb_mtb (c1 int not null auto_increment primary key, c2
varchar(10), c3 date) dbpartition by hash(c1) tbpartition by hash(c1) tbpartitions 64
 REMARK: The job has been interrupted unexpectedly

iii. Execute the ROLLBACK DDL statement to roll back the job.

mysql> rollback ddl 1103797850607083520;
Query OK, 0 rows affected (6.42 sec)

iv. Rollback is successful. The table does not exist .

mysql> show tables like 'test_mdb_mtb';
Empty set (0.00 sec)

Cancel a jobCancel a job
You can cancel a running DDL job that is not in the PENDING state.

Syntax

CANCEL DDL <job_id> [, <job_id>] ...

Parameter Description

job_id
The ID of the DDL job that is not in the PENDING state. This ID is displayed in the
execution result of the SHOW DDL statement.

Example

Create a logical table that is part it ioned into table shards in a database shard. Execute the CANCEL
DDL statement to cancel the job. Execute the SHOW DDL statement to query the status and job_id
 of the job. Later, you can resume or roll back the job.

i. Execute the CREATE TABLE DDL statement on a connection.

mysql> create table test_mdb_mtb (c1 int not null auto_increment primary key, c2 varc
har(10), c3 date) dbpartition by hash(c1) tbpartition by hash(c1) tbpartitions 64;

ii. Query the information of the running DDL job by executing the SHOW DDL statement on another
connection.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Manage DDL t asks

> Document Version: 20220601 32

mysql> show ddl\G
*************************** 1. row ***************************
 JOB_ID: 1103798959568478208
OBJECT_SCHEMA: ddltest
OBJECT_NAME: test_mdb_mtb
 JOB_TYPE: CREATE_TABLE
 PHASE: EXECUTE
 STATE: RUNNING
 PROGRESS: 26%
START_TIME: 2019-08-29 14:57:20.058
 END_TIME: 2019-08-29 14:57:22.284
ELAPSED_TIME(MS): 2243
 DDL_STMT: create table test_mdb_mtb (c1 int not null auto_increment primary key, c2
varchar(10), c3 date) dbpartition by hash(c1) tbpartition by hash(c1) tbpartitions 64
 REMARK:

iii. Execute the CANCEL DDL statement to cancel the execution of the DDL job.

mysql> cancel ddl 1103798959568478208;
Query OK, 2 rows affected (0.03 sec)

iv. Execute the SHOW DDL statement to query the status of the DDL job. The DDL job has been
canceled and is in the PENDING state.

mysql> show ddl\G
*************************** 1. row ***************************
 JOB_ID: 1103798959568478208
OBJECT_SCHEMA: ddltest
OBJECT_NAME: test_mdb_mtb
 JOB_TYPE: CREATE_TABLE
 PHASE: EXECUTE
 STATE: PENDING
 PROGRESS: 87%
START_TIME: 2019-08-29 14:57:20.058
 END_TIME: 2019-08-29 14:57:28.899
ELAPSED_TIME(MS): 8841
 DDL_STMT: create table test_mdb_mtb (c1 int not null auto_increment primary key, c2
varchar(10), c3 date) dbpartition by hash(c1) tbpartition by hash(c1) tbpartitions 64
 REMARK: ERR-CODE: [TDDL-4636][ERR_DDL_JOB_ERROR] The job '1103798959568478208' has
been cancelled.

Delete a jobDelete a job
You can delete a pending DDL job that is suspended due to failures, and clear the corresponding
caches.

Warning Warning Be cautious about executing REMOVE DDL to delete a DDL job. After you delete a
pending job, the intermediate state during the DDL execution is exposed, causing disturbance to
subsequent operations. Therefore, when you are not sure whether the pending job can be securely
deleted, do not execute the REMOVE DDL statement to delete the job. You can preferably resume
or roll back the job to make the job exit the PENDING state first .

Syntax

SQL Reference··Manage DDL t asks Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

33 > Document Version: 20220601

REMOVE DDL { ALL PENDING | <job_id> [, <job_id>] ... }

Parameter Description

ALL PENDING Deletes all jobs that are in the PENDING state and clears internal caches.

job_id
The ID of the pending DDL job. This ID is displayed in the execution result of the
SHOW DDL statement.

Example

Assume that two tables exist in the database and a referential integrity relat ionship is established
between the two tables. When you attempt to delete the parent table, an error is reported because
tables with the referential integrity constraint cannot be deleted. In this case, if you do not want
another attempt to delete the table, you can delete the DDL job.

i. In the database, create two parent-child tables with the referential integrity relat ionship.

mysql> show create table test_parent\G
*************************** 1. row ***************************
Table: test_parent
Create Table: CREATE TABLE `test_parent` (
`id` int(11) NOT NULL,
`pkey` int(11) NOT NULL,
`col` int(11) DEFAULT NULL,
PRIMARY KEY (`id`,`pkey`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`id`)
1 row in set (0.01 sec)
mysql> show create table test_child\G
*************************** 1. row ***************************
Table: test_child
Create Table: CREATE TABLE `test_child` (
`id` int(11) DEFAULT NULL,
`parent_id` int(11) DEFAULT NULL,
KEY `parent_id` (`parent_id`),
CONSTRAINT `test_child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `test_parent` (`i
d`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`parent_id`)
1 row in set (0.02 sec)

ii. Attempt to delete the parent table. Due to the referential integrity constraint, an error is
reported.

mysql> drop table test_parent;
ERROR 4636 (HY000): [f518265d0066000][10.81.69.55:3306][ddltest]ERR-CODE: [TDDL-4636]
[ERR_DDL_JOB_ERROR] Not all physical operations have been done successfully: expected
9,
but done 0. Caused by: 1217:DDLTEST_1562056402230OYMK_7WW7_0007:Cannot delete or upda
te a parent row: a foreign key constraint fails on `test_parent`;1217:DDLTEST_1562056
4022
30OYMK_7WW7_0000:Cannot delete or update a parent row: a foreign key constraint fails
on `test_parent`;1217:DDLTEST_1562056402230OYMK_7WW7_0002:Cannot delete or update a p
are
nt row: a

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Manage DDL t asks

> Document Version: 20220601 34

iii. Query the DDL job.

mysql> show ddl\G
*************************** 1. row ***************************
 JOB_ID: 1103806757547171840
OBJECT_SCHEMA: ddltest
OBJECT_NAME: test_parent
 JOB_TYPE: DROP_TABLE
 PHASE: EXECUTE
 STATE: PENDING
 PROGRESS: 0%
START_TIME: 2019-08-29 15:28:19.240
 END_TIME: 2019-08-29 15:28:19.456
ELAPSED_TIME(MS): 216
 DDL_STMT: drop table test_parent
 REMARK: ERR-CODE: [TDDL-4636][ERR_DDL_JOB_ERROR] Not all physical operations hav
e been done successfully: expected 9, but done 0. Caused by: 1217:DDLTEST_1562056402
230OYMK_7WW7_0007:Cannot delete or update a parent row: a foreign key constraint fail
s on `test_pare ...

iv. The DDL job violates the referential integrity constraint when you attempt to delete the table.
As a result , the delete operation fails. At this t ime, if you execute CHECK TABLE, you can see that
the table is st ill consistent.

mysql> check table test_parent;
+---------------------------------------+-------+----------+----------+
| TABLE | OP | MSG_TYPE | MSG_TEXT |
+---------------------------------------+-------+----------+----------+
| ddltest_1562056402230oymk.test_parent | check | status | OK |
+---------------------------------------+-------+----------+----------+
1 row in set (0.05 sec)

v. However, the table is inaccessible because a pending job exists for the table.

mysql> show tables like 'test_parent';
Empty set (0.00 sec)
mysql> show create table test_parent;
ERROR 4642 (HY000): [f5185a78b066000][10.81.69.55:3306][ddltest]ERR-CODE: [TDDL-4642]
[ERR_UNKNOWN_TABLE] Unknown table 'ddltest.test_parent'

vi. In this case, the table delet ion job is not executed and the table structure is st ill consistent. It
seems that you can choose to roll back the failed DDL operation. However, the DROP TABLE
statement does not allow rollback operations. Therefore, you must choose to delete the failed
DDL job.

mysql> remove ddl 1103806757547171840;
Query OK, 1 row affected (0.02 sec)

vii. After the DDL job is deleted, the table recovers to be accessible.

SQL Reference··Manage DDL t asks Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

35 > Document Version: 20220601

mysql> show tables like 'test_parent';
+-------------------+
| TABLES_IN_DDLTEST |
+-------------------+
| test_parent |
+-------------------+
1 row in set (0.01 sec)

You can change the operations of the data definit ion language (DDL) execution engine by sett ing
related parameters. This topic describes how to set parameters related to the DDL execution engine.

ParametersParameters
You can set the following parameters in the PolarDB-X 1.0 console as needed.

Parameter Scope of impact Default value

ENABLE_ASYNC_DDL Databases and statements TRUE (enabled)

PURE_ASYNC_DDL_MODE
Databases, sessions, and
statements

FALSE (disabled)

MAX_TABLE_PARTIT IONS_PER_DB Databases and statements 128

ENABLE_ASYNC_DDLENABLE_ASYNC_DDL
Descript ion

This parameter is set to TRUE by default , indicating that the new DDL execution engine is used.

If you set this parameter to FALSE, PolarDB-X 1.0 uses the DDL execution engine of a version earlier
than v5.3.12, and the PURE_ASYNC_DDL_MODE and MAX_TABLE_PARTITIONS_PER_DB parameters
do not take effect. We recommend that you submit a t icket to determine whether to set this
parameter to FALSE. For more information, see Submit a t icket.

Usage

Database level: Set this parameter on the Parameter Sett ings page in the PolarDB-X 1.0 console.
The value that you set takes effect for the entire database. For more information, see Set
parameters.

Statement level: Add a hint, such as /*+TDDL:cmd_extra(ENABLE_ASYNC_DDL=FALSE)*/ , at the
beginning of a DDL statement, so that this parameter can take effect only for this statement.

PURE_ASYNC_DDL_MODEPURE_ASYNC_DDL_MODE
Descript ion

This parameter takes effect only when ENABLE_ASYNC_DDL is set to TRUE.

3.3. Control parameters for DDL execution3.3. Control parameters for DDL execution
engineengine

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Manage DDL t asks

> Document Version: 20220601 36

https://workorder-intl.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/91769.htm#multiTask1528

When you set this parameter to FALSE, the client connects to PolarDB-X 1.0 to execute a DDL
statement in synchronous blocking mode. In this way, the client returns a response after it
completes the DDL job. After the client is disconnected from PolarDB-X 1.0, the ongoing DDL job
may be interrupted.

When you set this parameter to TRUE, the client connects to PolarDB-X 1.0 to execute a DDL
statement in asynchronous mode. In this way, the client returns a response when a DDL request is
received, and the DDL job continues to be run in the background. You can run the SHOW DDL
statement to view the status of the DDL job. For more information about how to use this
statement, see Job management statements.

We recommend that you set this parameter to TRUE when enabling asynchronous mode is explicit ly
required to prevent unexpected disconnection between the client and PolarDB-X 1.0. Otherwise,
we recommend that you set this parameter to its default value (FALSE) to ensure that the DDL
operations in PolarDB-X DRDS are compatible with those in the ApsaraDB RDS for MySQL instance.

Usage

Database level: Set this parameter on the Parameter Sett ings page in the PolarDB-X 1.0 console.
The value that you set takes effect for the entire database. For more information, see Set
parameters.

Session level:

After the client connects to PolarDB-X 1.0, execute the set PURE_ASYNC_DDL_MODE=true or s
et PURE_ASYNC_DDL_MODE=1 statement to enable the asynchronous mode for this session.

Execute the set PURE_ASYNC_DDL_MODE=false or set PURE_ASYNC_DDL_MODE=0 statement to
restore the default synchronous mode for this session.

Statement level: Add a hint, such as /*+TDDL:cmd_extra(PURE_ASYNC_DDL_MODE=TRUE)*/ , at the
beginning of a DDL statement, so that this parameter can take effect only for this statement.

MAX_TABLE_PARTITIONS_PER_DBMAX_TABLE_PARTITIONS_PER_DB
Descript ion

This parameter takes effect only when ENABLE_ASYNC_DDL is set to TRUE.

If the number of table shards in a single physical database exceeds the limit specified by this
parameter, the DDL job stops and an error is reported.

Not e Not e The value range of this parameter is 1 to 65535. The default value is 128.

Usage

Database level: Set this parameter on the Parameter Sett ings page in the PolarDB-X 1.0 console.
The value that you set takes effect for the entire database. For more information, see Set
parameters.

Statement level: Add a hint, such as /*+TDDL:cmd_extra(MAX_TABLE_PARTITIONS_PER_DB=400)*/ ,
at the beginning of a DDL statement, so that this parameter can take effect only for this
statement.

3.4. Considerations and limits3.4. Considerations and limits

SQL Reference··Manage DDL t asks Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

37 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/139530.htm#multiTask14544
https://www.alibabacloud.com/help/doc-detail/91769.htm#multiTask1528
https://www.alibabacloud.com/help/doc-detail/91769.htm#multiTask1528

The new DDL execution engine introduces the task management feature. As a result , statement
behavior is different from that in earlier versions. This topic describes the considerations and limits of
the task management feature.

ConsiderationsConsiderations
If the DDL statement of a DDL task is executed, you can ignore the status of the DDL task. The DDL
tasks that are executed are automatically deleted.

After the DDL statement of a DDL task is executed, we recommend that you immediately execute the
CHECK TABLE statement to check the consistency of the logical tables that correspond to the DDL
task.

After you execute a DDL task management statement to resume, roll back, or delete a DDL task, we
recommend that you execute the CHECK TABLE statement to check the consistency of the logical
tables that correspond to the DDL task.

If a DDL statement fails to be executed, an error code and an error message are returned. You can
also execute the SHOW DDL statement to view the cause of the failure in the pending DDL task. The
cause of the failure is indicated by the REMARK f ield.

Not ice Not ice We recommend that you identify the cause of the failure in a DDL task and how to
handle the failure before you execute a DDL task management statement to resume, roll back, or
delete the DDL task. Otherwise, the DDL task management statement may fail to be executed.

If a DDL statement fails to be executed and the corresponding DDL task is in the pending state, the
status of the table that you want to use becomes inaccessible for security considerations. Then, no
responses are displayed after a statement such as SHOW TABLES is executed. An error may occur
after you execute a DML statement or perform another operation. The error message may indicate
that the table is unknown or does not exist . The table that you want to use can be
accessed only after the pending DDL task is resumed or rolled back to make this table enter the
consistent state.

If you use the IF NOT EXISTS clause in the CREATE TABLE statement or use the IF EXISTS
clause in the DROP TABLE statement, some errors that occur during execution do not cause the
execution of the DDL statement to fail. However, the errors are recorded in warnings . Check
whether a message that indicates the number of warnings is returned after you execute the DDL
statement. For example, the following message may be returned: 1 warning . Execute the SHOW
WARNINGS statement to check the warnings. This way, you can avoid missing important information.

On a client such as the Data Management (DMS) client,you can configure PURE_ASYNC_DDL_MODE to
execute DDL statements in asynchronous mode. This prevents the DDL statement execution from
being interrupted due to t imeout. This configuration is suitable for scenarios in which the t ime
required to execute a DDL statement cannot be est imated and the t imeout-based interruption for
the connection between the client and the PolarDB-X 1.0 instance is enabled on the client. After the
DDL statement is executed, you can execute the SHOW DDL statement on the client to view the
status of the corresponding DDL task.

LimitsLimits
Only the CREATE TABLE and RENAME TABLE operations can be rolled back.

The RECOVER DDL and ROLLBACK DDL statements cannot be combined or repeated for a pending DDL
task. For example, you cannot execute ROLLBACK DDL to roll back a failed task and then execute
RECOVER DDL to recover the task after the rollback fails. Such combinations of operations may cause

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Manage DDL t asks

> Document Version: 20220601 38

inconsistency in the logical tables. If operation combinations are required to meet your business
needs, Submit a t icket.

Execute the REMOVE DDL statement only when the database security is ensured. If you execute the
 REMOVE DDL statement when the database security is not ensured, the intermediate states of DDL

tasks may be revealed and the logical tables may be inconsistent. If problems occur or the security of
the table data is compromised due to the misuse of REMOVE DDL , Submit a t icket.

By default , a maximum of 128 table shards can be created for a single physical database. You can
change the limit by using the parameters shown in the following sample code.

mysql> create table test_mdb_mtb (c1 int not null auto_increment primary key, c2 varchar(
10), c3 date) dbpartition by hash(c1) tbpartition by hash(c1) tbpartitions 129;
ERROR 4647 (HY000): [f5bd90594800000][30.25.86.55:8527][JICHEN_LOCAL_APP]ERR-CODE: [TDDL-
4647][ERR_TABLE_PARTITIONS_EXCEED_LIMIT] The number of table partitions '129' exceeds the
upper limit '128'. Please specify less table partitions or adjust the value of the parame
ter MAX_TABLE_PARTITIONS_PER_DB.
mysql> /*+TDDL:cmd_extra(MAX_TABLE_PARTITIONS_PER_DB=400)*/create table test_mdb_mtb (c1
int not null auto_increment primary key, c2 varchar(10), c3 date) dbpartition by hash(c1)
tbpartition by hash(c1) tbpartitions 129;
Query OK, 0 rows affected (2.64 sec)

A maximum of 65,535 pending DDL tasks can be accumulated in the task queue of the DDL execution
engine. If the number of pending DDL tasks exceeds this limit , you cannot execute DDL statements. In
this case, you must execute REMOVE DDL to remove unwanted pending tasks. This limit cannot be
changed by modifying parameters.

This topic describes the best pract ices for processing a job in the PENDING state.

BackgroundBackground
In this scenario, an engine is started for a new DDL job. If the DDL job fails or is interrupted due to
exceptions, the job enters the PENDING state. In this case, you must take measures to process and
resume the job. Otherwise, subsequent DDL statements in this job cannot be executed and an error is
returned.

How it worksHow it works
You can execute the SHOW [FULL] DDL statement to query DDL job details and identify the failure
cause. You can view an error message in the REMARK f ield.

The following list describes the common methods for processing a job in the PENDING state. You can
select a method based on your business requirements.

Troubleshoot and resolve an issue. For example, check whether the issue is caused by errors in the
data. If the issue is caused by duplicates, remove duplicates. If the issue persists, check whether the
issue is caused by limits. If the issue is caused by limits, check whether you can lift the limits. After
you resolve the issue, execute the RECOVER DDL statement to resume the job in the PENDING
state.

3.5. Best practices3.5. Best practices

SQL Reference··Manage DDL t asks Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

39 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

If you cannot resolve the issue that causes a job failure, the DDL statements in the job cannot be
executed. In this case, you can execute the REMOVE DDL statement to delete the job. Before you
execute the REMOVE DDL statement, ensure that the DDL statements in the job are not executed.
Otherwise, the table status that is returned by the SHOW statement may be inconsistent with the
actual table status. After you delete the DDL job, the table can be queried again.

If you want to delete a table that a DDL job fails to query, you can execute the REMOVE DDL
statement to delete the job. Then, you can execute the DROP TABLE IF EXISTS statement to
delete the table. Before you delete a table, make sure that the table is empty or the data on the
table is no longer needed. You must use the IF EXISTS keyword in the DROP TABLE
statement. This ensures that the table can be forcibly deleted.

ExamplesExamples
The following examples show how to process a DDL job in the PENDING state.

1. Create a table without specifying a primary key. Then, insert duplicate rows into the table. The
result indicates that the value 1 for the id column duplicates.

mysql> create table test_pending (id int not null, age int) dbpartition by hash(id);
Query OK, 0 rows affected (0.33 sec)
mysql> insert into test_pending values(1,10),(1,20),(2,20),(3,30);
Query OK, 4 rows affected (0.10 sec)
mysql> select * from test_pending order by id;
+------+------+
| id | age |
+------+------+
1	10
1	20
2	20
3	30
+------+------+
4 rows in set (0.10 sec)

2. Configure a primary key for the table. The result indicates that the id column is incorrectly
configured. In this case, the DDL statement fails because the values for the id column are not
unique.

mysql> alter table test_pending add primary key (id);
ERROR 4636 (HY000): [f5be83373466000][10.81.69.55:3306][ddltest]ERR-CODE: [TDDL-4636][E
RR_DDL_JOB_ERROR] Not all physical operations have been done successfully: expected 9,
but done 8. Caused by: 1062:DDLTEST_1562056402230OYMK_7WW7_0001:Duplicate entry '1' for
key 'PRIMARY' on `test_pending`;.

3. Execute the SHOW FULL DDL statement to query the job status and the failure cause. The result
indicates that the physical DDL statement fails because a physical table contains duplicate column
values.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Manage DDL t asks

> Document Version: 20220601 40

mysql> show full ddl\G
*************************** 1. row ***************************
 JOB_ID: 1106733441212637184
 PARENT_JOB_ID: 0
 SERVER: 1:102:10.81.69.55
 OBJECT_SCHEMA: ddltest
 OBJECT_NAME: test_pending
 NEW_OBJECT_NAME:
 JOB_TYPE: ALTER_TABLE
 PHASE: EXECUTE
 STATE: PENDING
 PROGRESS: 77%
 START_TIME: 2019-09-06 17:17:55.002
 END_TIME: 2019-09-06 17:17:55.273
ELAPSED_TIME(MS): 271
 DDL_STMT: alter table test_pending add primary key (id)
 REMARK: ERR-CODE: [TDDL-4636][ERR_DDL_JOB_ERROR] Not all physical operations
have been done successfully: expected 9, but done 8. Caused by: 1062:DDLTEST_1562056402
230OYMK_7WW7_0001:Duplicate entry '1' for key 'PRIMARY' on `test_pending`;.

Cont ent in t he REMARK f ieldCont ent in t he REMARK f ield:

 Not all physical operations have been done successfully: expected 9, but done 8. : You
attempt to execute nine physical DDL statements on the logical table. Eight statements are
executed, but one statement fails. This causes a failure in the DDL job. The DDL job enters the
PENDING state.

 Caused by: 1062:DDLTEST_1562056402 230OYMK_7WW7_0001:Duplicate entry '1' for key 'PRIM
ARY' on 'test_pending'; : This indicates the root cause of the failure. The value 1 for the id
column duplicates in the physical table test_pending . The physical table is stored in the
physical database DDLTEST_1562056402 230OYMK_7WW7_0001 . Therefore, the id column cannot
be used as the primary key.

4. Check the table for errors. The result indicates that the logical table status returned is inconsistent
with the actual logical table status.

mysql> check table test_pending;
+--+-------+----------+--------------------------
---+
| TABLE | OP | MSG_TYPE | MSG_TEXT
|
+--+-------+----------+--------------------------
---+
| ddltest_1562056402230oymk.test_pending | check | Error | Table 'DDLTEST_1562056402
230OYMK_7WW7_0001.test_pending' find incorrect columns 'id', please recreate table |
+--+-------+----------+--------------------------
---+
1 row in set (0.04 sec)

5. Check whether subsequent statements in the job can be executed. The result indicates that an
error is returned when you execute the DROP TABLE statement.

SQL Reference··Manage DDL t asks Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

41 > Document Version: 20220601

mysql> drop table test_pending;
ERROR 4644 (HY000): [f5beae39d466000][10.81.69.55:3306][ddltest]ERR-CODE: [TDDL-4644][E
RR_PENDING_DDL_JOB_EXISTS] Another DDL job '1106733441212637184' with operation 'ALTER_
TABLE' is pending on ddltest.test_pending in ddltest. Please use SHOW DDL to check it,
and then recover or rollback it using RECOVER DDL or ROLLBACK DDL, or just remove it us
ing REMOVE DDL if you confirm that the pending job can be discarded.

6. Use one of the following methods to process the job. For more information about the common
methods, see the "How it works" sect ion. The following code shows the effect of each method.

Remove duplicates from the table. Then, resume the DDL job to configure a primary key for the
table.

a. Remove duplicates from the table. Before you perform this operation, make sure that you
need only one copy of the data. If you want to execute the DELETE statement to remove
duplicates, log on to your PolarDB-X 1.0 instance.If an error message is returned when you
log on to the PolarDB-X 1.0 instance, you can connect to a backend ApsaraDB RDS for
MySQL database based on the error message.

mysql> delete from test_pending where id=1 and age=20;
Query OK, 1 row affected (0.07 sec)
mysql> select * from test_pending order by id;
+------+------+
| id | age |
+------+------+
1	10
2	20
3	30
+------+------+
3 rows in set (0.02 sec)

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Manage DDL t asks

> Document Version: 20220601 42

b. After you remove duplicates, resume the DDL job in the PENDING state. The result indicates
that the DDL job resumes, the record of the job failure is cleared, and the primary key is
configured for the table.

mysql> recover ddl 1106733441212637184;
Query OK, 0 rows affected (1.28 sec)
mysql> show full ddl\G
Empty set (0.00 sec)
mysql> show create table test_pending\G
*************************** 1. row ***************************
 Table: test_pending
Create Table: CREATE TABLE `test_pending` (
 `id` int(11) NOT NULL,
 `age` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `auto_shard_key_id` (`id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`id`)
1 row in set (0.02 sec)
mysql> check table test_pending;
+--+-------+----------+----------+
| TABLE | OP | MSG_TYPE | MSG_TEXT |
+--+-------+----------+----------+
| ddltest_1562056402230oymk.test_pending | check | status | OK |
+--+-------+----------+----------+
1 row in set (0.10 sec)

Delete the failed DDL job, delete the table, and then create the table again. Before you delete
the table, make sure that the data on the table is no longer needed.

mysql> remove ddl 1106733441212637184;
Query OK, 1 row affected (0.02 sec)
mysql> drop table if exists test_pending;
Query OK, 0 rows affected (0.44 sec)
mysql> show tables like 'test_pending';
Empty set (0.01 sec)

SQL Reference··Manage DDL t asks Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

43 > Document Version: 20220601

This topic describes the syntax, clauses, parameters, and basic methods for creating a table by
executing a data definit ion language (DDL) statement.

ConsiderationsConsiderations
PolarDB-X 1.0 does not allow you to directly create a database by executing a DDL statement. You
can log on to the console of the cloud native distributed database to create a database. For more
information about how to create a database, see Create a database.

PolarDB-X 1.0 supports global secondary indexes (GSIs) only when the MySQL version is 5.7 or later
and the PolarDB-X 1.0 instance version is 5.4.1 or later. For more information about the basic
principles, see Global secondary indexes.

4.DDL4.DDL
4.1. CREATE TABLE4.1. CREATE TABLE

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 44

https://www.alibabacloud.com/help/doc-detail/50070.htm#multiTask1273
https://www.alibabacloud.com/help/doc-detail/182179.htm

CREATE [SHADOW] TABLE [IF NOT EXISTS] tbl_name
 (create_definition, ...)
 [table_options]
 [drds_partition_options]
create_definition:
 col_name column_definition
 | mysql_create_definition
 | [UNIQUE] GLOBAL INDEX index_name [index_type] (index_sharding_col_name,...)
 [global_secondary_index_option]
 [index_option] ...
GSI-related syntax
global_secondary_index_option:
 [COVERING (col_name,...)]
 [drds_partition_options]
Clauses for sharding
drds_partition_options:
 DBPARTITION BY db_partition_algorithm
 [TBPARTITION BY table_partition_algorithm [TBPARTITIONS num]]
db_sharding_algorithm:
 HASH([col_name])
 | {YYYYMM|YYYYWEEK|YYYYDD|YYYYMM_OPT|YYYYWEEK_OPT|YYYYDD_OPT}(col_name)
 | UNI_HASH(col_name)
 | RIGHT_SHIFT(col_name, n)
 | RANGE_HASH(col_name, col_name, n)
table_sharding_algorithm:
 HASH(col_name)
 | {MM|DD|WEEK|MMDD|YYYYMM|YYYYWEEK|YYYYDD|YYYYMM_OPT|YYYYWEEK_OPT|YYYYDD_OPT}(col_name)
 | UNI_HASH(col_name)
 | RIGHT_SHIFT(col_name, n)
 | RANGE_HASH(col_name, col_name, n)
MySQL DDL syntax
index_sharding_col_name:
 col_name [(length)] [ASC | DESC]
index_option:
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'
index_type:
 USING {BTREE | HASH}

Not e Not e The PolarDB-X 1.0 DDL syntax is based on the MySQL syntax. The preceding code lists
the syntax that is different from the MySQL syntax. For more information about the syntax, see
MySQL documentation.

Clauses and parameters for shardingClauses and parameters for sharding
 DBPARTITION BY hash(partition_key) : This clause specifies the database shard key and the

database sharding algorithm.

 TBPARTITION BY { HASH(column) | {MM|DD|WEEK|MMDD|YYYYMM|YYYYWEEK|YYYYDD|YYYYMM_OPT|YYYYWEE
K_OPT|YYYYDD_OPT}(column) : Optional. This clause specifies the method that is used to map data to

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

45 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/create-table.html

a physical table. It is the same as the DBPARTITION BY clause by default .

 TBPARTITIONS num : Optional. This parameter specifies the number of physical tables in each
database. The default value is 1. If no table sharding is required, you do not need to specify this
parameter.

For more information about sharding functions, see Overview.

GSI definit ion clausesGSI definit ion clauses
 [UNIQUE] GLOBAL : defines a GSI. UNIQUE GLOBAL indicates a global unique index.

 index_name : the name of the index. It is also the name of the index table.

 index_type : the type of the local index for a shard key in the index table. For more information
about the supported range, see MySQL documentation.

 index_sharding_col_name,... : the index columns. This clause contains only all the shard keys of
the index table. For more information, see Global secondary indexes.

 global_secondary_index_option : the extended syntax for PolarDB-X 1.0PolarDB-X 1.0 GSIs.

 COVERING (col_name,...) : the covering columns. This clause contains all the columns of the
index table except the index column. By default , this clause contains the primary key and the shard
key of the primary table. For more information, see Global secondary indexes.

 drds_partition_options : the sharding clauses in the index table. For more information, see
Clauses and parameters for sharding.

 index_option : the attributes of the local index on the shard key of the index table. For more
information, see MySQL documentation.

Shadow table clause for full-link stress testingShadow table clause for full-link stress testing
 SHADOW : creates a shadow table for full-link stress test ing. The table name must be prefixed with
 test .The table name that follows the prefix must be consistent with the name of the associated

formal table. In addit ion, the formal table must be created before the shadow table is created.

Single-database single tableSingle-database single table
Creates a single-database single table. No sharding is required.

CREATE TABLE single_tbl(
 id bigint not null auto_increment,
 name varchar(30),
 primary key(id)
);

View the node topology of the logical table. The node topology shows that a single-database single
logical table is created in database 0.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 46

https://www.alibabacloud.com/help/doc-detail/71263.htm#multiTask1985
https://dev.mysql.com/doc/refman/5.7/en/create-table.html#create-table-indexes-keys
https://www.alibabacloud.com/help/doc-detail/182179.htm
https://www.alibabacloud.com/help/doc-detail/182179.htm
https://dev.mysql.com/doc/refman/5.7/en/create-table.html#create-table-indexes-keys

mysql> show topology from single_tbl;
+------+--+------------+
| ID | GROUP_NAME | TABLE_NAME |
+------+--+------------+
| 0 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS | single_tbl |
+------+--+------------+
1 row in set (0.01 sec)

Database sharding instead of table shardingDatabase sharding instead of table sharding
Assume that eight database shards are created. Create a table for which only database sharding
instead of table sharding is implemented. For the database sharding method, hashing is implemented
by using the ID column.

CREATE TABLE multi_db_single_tbl(
 id bigint not null auto_increment,
 name varchar(30),
 primary key(id)
) dbpartition by hash(id);

View the node topology of the logical table. The node topology shows that one table shard is created
in each database shard. This indicates that only database sharding is implemented.

mysql> show topology from multi_db_single_tbl;
+------+--+----------------
-----+
| ID | GROUP_NAME | TABLE_NAME
|
+------+--+----------------
-----+
| 0 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS | multi_db_single
_tbl |
| 1 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS | multi_db_single
_tbl |
| 2 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0002_RDS | multi_db_single
_tbl |
| 3 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0003_RDS | multi_db_single
_tbl |
| 4 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0004_RDS | multi_db_single
_tbl |
| 5 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0005_RDS | multi_db_single
_tbl |
| 6 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0006_RDS | multi_db_single
_tbl |
| 7 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS | multi_db_single
_tbl |
+------+--+----------------
-----+
8 rows in set (0.01 sec)

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

47 > Document Version: 20220601

ShardingSharding
You can implement sharding by using the following sharding methods:

Use the hash function for sharding

Use the hash function that has double fields for sharding

Use dates for sharding

Not e Not e In the following examples, assume that eight database shards have been created.

Use the hash function for shardingUse the hash function for sharding
Create a table for which both database sharding and table sharding are implemented. Each database
shard contains three physical tables. For the database sharding method, hashing is implemented by
using the ID column. For the table sharding method, hashing is implemented by using the bid column.
You can first perform a hash operation by using the values of the ID column to distribute the table data
to mult iple database shards. Then, the data in each database shard is distributed to three physical
tables by using the hash operation result of the bid column values.

CREATE TABLE multi_db_multi_tbl(
 id bigint not null auto_increment,
 bid int,
 name varchar(30),
 primary key(id)
) dbpartition by hash(id) tbpartition by hash(bid) tbpartitions 3;

View the node topology of the logical table. The node topology shows that three table shards are
created in each database shard.

mysql> show topology from multi_db_multi_tbl;
+------+--+----------------
-------+
| ID | GROUP_NAME | TABLE_NAME
|
+------+--+----------------
-------+
| 0 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS | multi_db_multi_
tbl_00 |
| 1 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS | multi_db_multi_
tbl_01 |
| 2 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS | multi_db_multi_
tbl_02 |
| 3 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS | multi_db_multi_
tbl_03 |
| 4 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS | multi_db_multi_
tbl_04 |
| 5 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS | multi_db_multi_
tbl_05 |
| 6 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0002_RDS | multi_db_multi_
tbl_06 |
| 7 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0002_RDS | multi_db_multi_
tbl_07 |
| 8 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0002_RDS | multi_db_multi_

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 48

| 8 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0002_RDS | multi_db_multi_
tbl_08 |
| 9 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0003_RDS | multi_db_multi_
tbl_09 |
| 10 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0003_RDS | multi_db_multi_
tbl_10 |
| 11 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0003_RDS | multi_db_multi_
tbl_11 |
| 12 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0004_RDS | multi_db_multi_
tbl_12 |
| 13 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0004_RDS | multi_db_multi_
tbl_13 |
| 14 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0004_RDS | multi_db_multi_
tbl_14 |
| 15 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0005_RDS | multi_db_multi_
tbl_15 |
| 16 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0005_RDS | multi_db_multi_
tbl_16 |
| 17 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0005_RDS | multi_db_multi_
tbl_17 |
| 18 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0006_RDS | multi_db_multi_
tbl_18 |
| 19 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0006_RDS | multi_db_multi_
tbl_19 |
| 20 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0006_RDS | multi_db_multi_
tbl_20 |
| 21 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS | multi_db_multi_
tbl_21 |
| 22 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS | multi_db_multi_
tbl_22 |
| 23 | SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS | multi_db_multi_
tbl_23 |
+------+--+----------------
-------+
24 rows in set (0.01 sec)

View the sharding rule of the logical table. The rule shows that hashing is used for sharding. The shard
key for database sharding is ID and the shard key for table sharding is bid.

mysql> show rule from multi_db_multi_tbl;
+------+--------------------+-----------+------------------+---------------------+---------
-----------+------------------+---------------------+--------------------+
| ID | TABLE_NAME | BROADCAST | DB_PARTITION_KEY | DB_PARTITION_POLICY | DB_PARTI
TION_COUNT | TB_PARTITION_KEY | TB_PARTITION_POLICY | TB_PARTITION_COUNT |
+------+--------------------+-----------+------------------+---------------------+---------
-----------+------------------+---------------------+--------------------+
| 0 | multi_db_multi_tbl | 0 | id | hash | 8
| bid | hash | 3 |
+------+--------------------+-----------+------------------+---------------------+---------
-----------+------------------+---------------------+--------------------+
1 row in set (0.01 sec)

Use the hash function that has double fields for shardingUse the hash function that has double fields for sharding

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

49 > Document Version: 20220601

The type of the shard key must be the character type or the numeric type.

Routing method: Calculate a hash value by using the last N digits of a shard key so that the hashing
method can be used to complete route computing. The letter N is the third parameter in the
function. For example, when the RANGE_HASH(COL1, COL2, N) funct ion is used for calculat ion, COL1
is preferentially selected and then truncated to obtain the last N characters for calculat ion. If COL1
does not exist , COL2 is selected for calculat ion.

Scenarios: Two shard keys are required and only the value of one shard key is used for queries.
Assume that eight physical databases have been allocated to PolarDB-X 1.0 of a user and the
following scenarios are required for the service:

For a specified service, database sharding needs to be implemented for the order table by the
buyer ID and the order ID.

The condit ion used during a query is only the buyer ID or the order ID.

In this case, you can execute the following DDL statement to create an order table:

create table test_order_tb (
 id bigint not null auto_increment,
 seller_id varchar(30) DEFAULT NULL,
 order_id varchar(30) DEFAULT NULL,
 buyer_id varchar(30) DEFAULT NULL,
 create_time datetime DEFAULT NULL,
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by RANGE_HASH(buyer_id, order_id, 10) tbpa
rtition by RANGE_HASH(buyer_id, order_id, 10) tbpartitions 3;

Not eNot e

The two shard keys cannot be modified.

Data fails to be inserted if the two shard keys point to different database shards or table
shards.

Use dates for shardingUse dates for sharding
You can use a hash function as the sharding algorithm. You can also use the DATE function MM ,
 DD , WEEK , or MMDD as the sharding algorithm for table sharding. The following examples show

the detailed procedure:

Create a table for which both database sharding and table sharding are implemented. For the
database sharding method, hashing is implemented by using the userId column. For the table
sharding method, the table is sharded by using the actionDate column and using seven days as one
week. The WEEK(actionDate) funct ion calculates DAY_OF_WEEK .

For example, if a value in the actionDate column is 2017-02-27 that falls on Monday, the value that
the WEEK(actionDate) funct ion returns is 2. In this case, the record is stored in table shard 2 (2%7 =
2) . This table shard is located in a database shard and is named user_log_2 . For another example,
if a value in the actionDate column is 2017-02-26 that falls on Sunday, the value that the
 WEEK(actionDate) funct ion returns is 1. In this case, the record is stored in table shard 1 (1%7 =
1) . This table shard is located in a database shard and is named user_log_1 .

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 50

CREATE TABLE user_log(
 userId int,
 name varchar(30),
 operation varchar(30),
 actionDate DATE
) dbpartition by hash(userId) tbpartition by WEEK(actionDate) tbpartitions 7;

View the node topology of the logical table. The node topology shows that seven table shards (one
week has seven days) are created in each database shard.

mysql> show topology from user_log;
+------+--+------------+
| ID | GROUP_NAME | TABLE_NAME |
+------+--+------------+
0	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log_0
1	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log_1
2	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log_2
3	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log_3
4	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log_4
5	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log_5
6	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log_6
7	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log_0
8	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log_1
9	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log_2
10	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log_3
11	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log_4
12	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log_5
13	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log_6
...		
49	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log_0
50	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log_1
51	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log_2
52	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log_3
53	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log_4
54	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log_5
55	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log_6
+------+--+------------+
56 rows in set (0.01 sec)

Not e Not e An ellipsis (...) is used to omit some data because the returned result is long.

View the sharding rule of the logical table. The rule shows that the database sharding method is
hashing and the shard key for database sharding is userId . For the table sharding method, the table
is sharded by using the t ime function WEEK and the shard key for table sharding is actionDate .

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

51 > Document Version: 20220601

mysql> show rule from user_log;
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
| ID | TABLE_NAME | BROADCAST | DB_PARTITION_KEY | DB_PARTITION_POLICY | DB_PARTITION_COU
NT | TB_PARTITION_KEY | TB_PARTITION_POLICY | TB_PARTITION_COUNT |
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
| 0 | user_log | 0 | userId | hash | 8
| actionDate | week | 7 |
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
1 row in set (0.00 sec)

View the physical database shard and its physical table to which the SQL statement is routed when the
parameters of the database shard key and the table shard key are specified.

Create a table for which both database sharding and table sharding are implemented. For the
database sharding method, hashing is implemented by using the userId column. For the table
sharding method, the table is sharded by using the actionDate column and using 12 months as one
year. The MM(actionDate) funct ion calculates MONTH_OF_YEAR .

For example, if a value in the actionDate column is 2017-02-27, the value that the
 MM(actionDate) funct ion returns is 02. In this case, the record is stored in table shard 02 (02%12 =
02) . This table shard is located in a database shard and is named user_log_02 . For another
example, if the value in the actionDate column is 2016-12-27, the value that the MM(actionDate)
function returns is 12. In this case, the record is stored in table shard 00 (12%12 = 00) . This table
shard is located in a database shard and is named user_log_00 .

CREATE TABLE user_log2(
 userId int,
 name varchar(30),
 operation varchar(30),
 actionDate DATE
) dbpartition by hash(userId) tbpartition by MM(actionDate) tbpartitions 12;

View the node topology of the logical table. The node topology shows that 12 table shards (one year
has 12 months) are created in each database shard.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 52

mysql> show topology from user_log2;
+------+--+--------------+
| ID | GROUP_NAME | TABLE_NAME |
+------+--+--------------+
0	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log2_00
1	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log2_01
2	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log2_02
3	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log2_03
4	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log2_04
5	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log2_05
6	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log2_06
7	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log2_07
8	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log2_08
9	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log2_09
10	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log2_10
11	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log2_11
12	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log2_00
13	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log2_01
14	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log2_02
15	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log2_03
16	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log2_04
17	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log2_05
18	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log2_06
19	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log2_07
20	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log2_08
21	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log2_09
22	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log2_10
23	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0001_RDS	user_log2_11
...		
84	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log2_00
85	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log2_01
86	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log2_02
87	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log2_03
88	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log2_04
89	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log2_05
90	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log2_06
91	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log2_07
92	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log2_08
93	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log2_09
94	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log2_10
95	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log2_11
+------+--+--------------+
96 rows in set (0.02 sec)

Not e Not e An ellipsis (...) is used to omit some data because the returned result is long.

View the sharding rule of the logical table. The rule shows that the database sharding method is
hashing and the shard key for database sharding is userId . For the table sharding method, the table
is sharded by using the t ime function MM and the shard key for table sharding is actionDate .

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

53 > Document Version: 20220601

mysql> show rule from user_log2;
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
| ID | TABLE_NAME | BROADCAST | DB_PARTITION_KEY | DB_PARTITION_POLICY | DB_PARTITION_COU
NT | TB_PARTITION_KEY | TB_PARTITION_POLICY | TB_PARTITION_COUNT |
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
| 0 | user_log2 | 0 | userId | hash | 8
| actionDate | mm | 12 |
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
1 row in set (0.00 sec)

Create a table for which both database sharding and table sharding are implemented. For the
database sharding method, hashing is implemented by using the userId column. For the table
sharding method, the table is sharded by using 31 days as a month. The DD(actionDate) funct ion
calculates DAY_OF_MONTH .

For example, if a value in the actionDate column is 2017-02-27, the value that the
 DD(actionDate) funct ion returns is 27. In this case, the record is stored in table shard 27 (27%31 =
27) . This table shard is located in a database shard and is named user_log_27 .

CREATE TABLE user_log3(
 userId int,
 name varchar(30),
 operation varchar(30),
 actionDate DATE
) dbpartition by hash(userId) tbpartition by DD(actionDate) tbpartitions 31;

View the node topology of the logical table. The node topology shows that 31 table shards (each
month has 31 days) are created in each database shard.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 54

mysql> show topology from user_log3;
+------+--+--------------+
| ID | GROUP_NAME | TABLE_NAME |
+------+--+--------------+
0	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_00
1	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_01
2	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_02
3	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_03
4	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_04
5	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_05
6	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_06
7	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_07
8	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_08
9	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_09
10	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_10
11	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_11
12	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_12
13	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_13
14	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_14
15	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_15
16	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_16
17	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_17
18	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_18
19	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_19
20	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_20
21	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_21
22	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_22
23	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_23
24	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_24
25	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_25
26	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_26
27	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_27
28	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_28
29	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_29
30	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log3_30
...		
237	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log3_20
238	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log3_21
239	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log3_22
240	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log3_23
241	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log3_24
242	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log3_25
243	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log3_26
244	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log3_27
245	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log3_28
246	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log3_29
247	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log3_30
+------+--+--------------+
248 rows in set (0.01 sec)

Not e Not e An ellipsis (...) is used to omit some data because the returned result is long.

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

55 > Document Version: 20220601

View the sharding rule of the logical table. The rule shows that the database sharding method is
hashing and the shard key for database sharding is userId . For the table sharding method, the table
is sharded by using the t ime function DD and the shard key for table sharding is actionDate .

mysql> show rule from user_log3;
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
| ID | TABLE_NAME | BROADCAST | DB_PARTITION_KEY | DB_PARTITION_POLICY | DB_PARTITION_COU
NT | TB_PARTITION_KEY | TB_PARTITION_POLICY | TB_PARTITION_COUNT |
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
| 0 | user_log3 | 0 | userId | hash | 8
| actionDate | dd | 31 |
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
1 row in set (0.01 sec)

Create a table for which both database sharding and table sharding are implemented. For the
database sharding method, hashing is implemented by using the userId column. For the table
sharding method, the table is sharded by using 365 days as one year and the table data is routed to
365 physical tables. The MMDD(actionDate) tbpartitions 365 funct ion calculates DAY_OF_YEAR %
365 .

For example, if a value in the actionDate column is 2017-02-27, the value that the
 MMDD(actionDate) funct ion returns is 58. In this case, the record is stored in table shard 58. This table

shard is located in a database shard and is named user_log_58 .

CREATE TABLE user_log4(
 userId int,
 name varchar(30),
 operation varchar(30),
 actionDate DATE
) dbpartition by hash(userId) tbpartition by MMDD(actionDate) tbpartitions 365;

View the node topology of the logical table. The node topology shows that 365 table shards (each
year has 365 days) are created in each database shard.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 56

mysql> show topology from user_log4;
+------+--+---------------+
| ID | GROUP_NAME | TABLE_NAME |
+------+--+---------------+
...
2896	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_341
2897	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_342
2898	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_343
2899	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_344
2900	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_345
2901	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_346
2902	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_347
2903	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_348
2904	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_349
2905	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_350
2906	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_351
2907	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_352
2908	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_353
2909	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_354
2910	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_355
2911	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_356
2912	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_357
2913	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_358
2914	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_359
2915	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_360
2916	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_361
2917	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_362
2918	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_363
2919	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log4_364
+------+--+---------------+
2920 rows in set (0.07 sec)

Not e Not e An ellipsis (...) is used to omit some data because the returned result is long.

View the sharding rule of the logical table. The rule shows that the database sharding method is
hashing and the shard key for database sharding is userId . For the table sharding method, the table
is sharded by using the t ime function MMDD and the shard key for table sharding is actionDate .

mysql> show rule from user_log4;
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
| ID | TABLE_NAME | BROADCAST | DB_PARTITION_KEY | DB_PARTITION_POLICY | DB_PARTITION_COU
NT | TB_PARTITION_KEY | TB_PARTITION_POLICY | TB_PARTITION_COUNT |
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
| 0 | user_log4 | 0 | userId | hash | 8
| actionDate | mmdd | 365 |
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
1 row in set (0.02 sec)

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

57 > Document Version: 20220601

Create a table for which both database sharding and table sharding are implemented. For the
database sharding method, hashing is implemented by using the userId column. For the table
sharding method, the table is sharded by using 365 days as one year and the table data is routed to 10
physical tables. The MMDD(actionDate) tbpartitions 10 funct ion calculates DAY_OF_YEAR % 10 .

CREATE TABLE user_log5(
 userId int,
 name varchar(30),
 operation varchar(30),
 actionDate DATE
) dbpartition by hash(userId) tbpartition by MMDD(actionDate) tbpartitions 10;

View the node topology of the logical table. The node topology shows that 10 table shards are
created in each database shard. The logical table is sharded by using 365 days as one year and the
table data is routed to 10 physical tables.

mysql> show topology from user_log5;
+------+--+--------------+
| ID | GROUP_NAME | TABLE_NAME |
+------+--+--------------+
0	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log5_00
1	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log5_01
2	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log5_02
3	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log5_03
4	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log5_04
5	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log5_05
6	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log5_06
7	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log5_07
8	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log5_08
9	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0000_RDS	user_log5_09
...		
70	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log5_00
71	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log5_01
72	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log5_02
73	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log5_03
74	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log5_04
75	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log5_05
76	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log5_06
77	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log5_07
78	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log5_08
79	SANGUAN_TEST_123_1488766060743ACTJSANGUAN_TEST_123_WVVP_0007_RDS	user_log5_09
+------+--+--------------+
80 rows in set (0.02 sec)

Not e Not e An ellipsis (...) is used to omit some data because the returned result is long.

View the sharding rule of the logical table. The rule shows that the database sharding method is
hashing and the shard key for database sharding is userId . For the table sharding method, the table
is sharded by using the t ime function MMDD and the table data is routed to 10 physical tables. In
addit ion, the shard key for table sharding is actionDate .

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 58

mysql> show rule from user_log5;
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
| ID | TABLE_NAME | BROADCAST | DB_PARTITION_KEY | DB_PARTITION_POLICY | DB_PARTITION_COU
NT | TB_PARTITION_KEY | TB_PARTITION_POLICY | TB_PARTITION_COUNT |
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
| 0 | user_log5 | 0 | userId | hash | 8
| actionDate | mmdd | 10 |
+------+------------+-----------+------------------+---------------------+-----------------
---+------------------+---------------------+--------------------+
1 row in set (0.01 sec)

Use the primary key as the shard keyUse the primary key as the shard key
When you do not specify a shard key for the sharding algorithm, the system uses the primary key as the
shard field by default . The following examples illustrate how to use the primary key as the database
shard key and the table shard key.

Use the primary key as the database shard key

CREATE TABLE prmkey_tbl(
 id bigint not null auto_increment,
 name varchar(30),
 primary key(id)
) dbpartition by hash();

Use the primary key as the shard key

CREATE TABLE prmkey_multi_tbl(
 id bigint not null auto_increment,
 name varchar(30),
 primary key(id)
) dbpartition by hash() tbpartition by hash() tbpartitions 3;

Other table creation attributes of MySQLOther table creation attributes of MySQL
When you implement sharding, you can also specify other table creation attributes of MySQL, as shown
in the following example:

CREATE TABLE multi_db_multi_tbl(
 id bigint not null auto_increment,
 name varchar(30),
 primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(id) tbpartition by hash(id) tbpart
itions 3;

GSIGSI
This sect ion describes how to define a GSI when you create a table.

Define a GSI

Define a globally unique index

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

59 > Document Version: 20220601

Not e Not e In the following examples, assume that eight database shards have been created.

Define a GSIDefine a GSI
ExamplesExamples

CREATE TABLE t_order (
 `id` bigint(11) NOT NULL AUTO_INCREMENT,
 `order_id` varchar(20) DEFAULT NULL,
 `buyer_id` varchar(20) DEFAULT NULL,
 `seller_id` varchar(20) DEFAULT NULL,
 `order_snapshot` longtext DEFAULT NULL,
 `order_detail` longtext DEFAULT NULL,
 PRIMARY KEY (`id`),
 GLOBAL INDEX `g_i_seller`(`seller_id`) dbpartition by hash(`seller_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`order_id`);

where:

Primary table: t_order is the primary table for which database sharding instead of table sharding
is implemented. For the database sharding method, hashing is implemented by using the order_id
column.

Index table: g_i_seller is the index table for which database sharding instead of table sharding
is implemented. For the database sharding method, hashing is implemented by using the seller_id
 column. No covering column is specified.

GSI definit ion clause: GLOBAL INDEX `g_i_seller`(`seller_id`) dbpartition by hash(`seller_id`)
 .

Execute SHOW INDEX to view index information, such as the local index on the shard key order_id
and GSIs on seller_id , id , and order_id . seller_id is the shard key of the index table,
and id and order_id are the default covering columns (the primary key and the shard key of the
primary table).

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 60

mysql> show index from t_order;
+---------+------------+-------------------------+--------------+-------------+-----------+
-------------+----------+--------+------+------------+----------+---------------+
| TABLE | NON_UNIQUE | KEY_NAME | SEQ_IN_INDEX | COLUMN_NAME | COLLATION |
CARDINALITY | SUB_PART | PACKED | NULL | INDEX_TYPE | COMMENT | INDEX_COMMENT |
+---------+------------+-------------------------+--------------+-------------+-----------+
-------------+----------+--------+------+------------+----------+---------------+
| t_order | 0 | PRIMARY | 1 | id | A |
0 | NULL | NULL | | BTREE | | |
| t_order | 1 | auto_shard_key_order_id | 1 | order_id | A |
0 | NULL | NULL | YES | BTREE | | |
| t_order | 1 | g_i_seller | 1 | seller_id | NULL |
0 | NULL | NULL | YES | GLOBAL | INDEX | |
| t_order | 1 | g_i_seller | 2 | id | NULL |
0 | NULL | NULL | | GLOBAL | COVERING | |
| t_order | 1 | g_i_seller | 3 | order_id | NULL |
0 | NULL | NULL | YES | GLOBAL | COVERING | |
+---------+------------+-------------------------+--------------+-------------+-----------+
-------------+----------+--------+------+------------+----------+---------------+

You can separately view the GSI information by executing SHOW GLOBAL INDEX . For more information,
see SHOW GLOBAL INDEX.

 mysql> show global index from t_order;
+--------+---------+------------+------------+-------------+----------------+------------+-
-----------------+---------------------+--------------------+------------------+-----------
----------+--------------------+--------+
| SCHEMA | TABLE | NON_UNIQUE | KEY_NAME | INDEX_NAMES | COVERING_NAMES | INDEX_TYPE |
DB_PARTITION_KEY | DB_PARTITION_POLICY | DB_PARTITION_COUNT | TB_PARTITION_KEY | TB_PARTITI
ON_POLICY | TB_PARTITION_COUNT | STATUS |
+--------+---------+------------+------------+-------------+----------------+------------+-
-----------------+---------------------+--------------------+------------------+-----------
----------+--------------------+--------+
| d7 | t_order | 1 | g_i_seller | seller_id | id, order_id | NULL |
seller_id | HASH | 8 | | NULL
| NULL | PUBLIC |
+--------+---------+------------+------------+-------------+----------------+------------+-
-----------------+---------------------+--------------------+------------------+-----------
----------+--------------------+--------+

View the schema of the index table. The index table contains the primary key of the primary table,
shard key, and default covering columns. The AUTO_INCREMENT attribute is removed from the primary
key column and the local index is removed from the primary table.

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

61 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/182338.htm

mysql> show create table g_i_seller;
+------------+---+
| Table | Create Table |
+------------+---+
| g_i_seller | CREATE TABLE `g_i_seller` (
 `id` bigint(11) NOT NULL,
 `order_id` varchar(20) DEFAULT NULL,
 `seller_id` varchar(20) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `auto_shard_key_seller_id` (`seller_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`seller_id`) |
+------------+---+

Define a globally unique indexDefine a globally unique index

CREATE TABLE t_order (
 `id` bigint(11) NOT NULL AUTO_INCREMENT,
 `order_id` varchar(20) DEFAULT NULL,
 `buyer_id` varchar(20) DEFAULT NULL,
 `seller_id` varchar(20) DEFAULT NULL,
 `order_snapshot` longtext DEFAULT NULL,
 `order_detail` longtext DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE GLOBAL INDEX `g_i_buyer`(`buyer_id`) COVERING(`seller_id`, `order_snapshot`)
 dbpartition by hash(`buyer_id`) tbpartition by hash(`buyer_id`) tbpartitions 3
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`order_id`);

where:

Primary table: t_order is the primary table for which database sharding instead of table sharding
is implemented. For the database sharding method, hashing is implemented by using the order_id
column.

Index table: g_i_seller is the index table for which both database sharding and table sharding
are implemented. For the database sharding and table sharding methods, hashing is implemented by
using the buyer_id column. The covering columns are seller_id and order_snapshot .

Index definit ion clause: UNIQUE GLOBAL INDEX `g_i_buyer`(`buyer_id`) COVERING(`seller_id`, `or
der_snapshot`) dbpartition by hash(`buyer_id`) tbpartition by hash(`buyer_id`) tbpartitions
3 .

Execute SHOW INDEX to view index information, such as the local index on the shard key order_id
and GSIs on buyer_id , id , order_id , seller_id , and order_snapshot . buyer_id is the
shard key of the index table. id and order_id are the default covering columns (the primary key
and the shard key of the primary table). seller_id and order_snapshot are the explicit ly
specified covering columns.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 62

mysql> show index from t_order;
+--------------+------------+-------------------------+--------------+----------------+----
-------+-------------+----------+--------+------+------------+----------+---------------+
| TABLE | NON_UNIQUE | KEY_NAME | SEQ_IN_INDEX | COLUMN_NAME | COL
LATION | CARDINALITY | SUB_PART | PACKED | NULL | INDEX_TYPE | COMMENT | INDEX_COMMENT |
+--------------+------------+-------------------------+--------------+----------------+----
-------+-------------+----------+--------+------+------------+----------+---------------+
| t_order_dthb | 0 | PRIMARY | 1 | id | A
| 0 | NULL | NULL | | BTREE | | |
| t_order_dthb | 1 | auto_shard_key_order_id | 1 | order_id | A
| 0 | NULL | NULL | YES | BTREE | | |
| t_order | 0 | g_i_buyer | 1 | buyer_id | NUL
L | 0 | NULL | NULL | YES | GLOBAL | INDEX | |
| t_order | 1 | g_i_buyer | 2 | id | NUL
L | 0 | NULL | NULL | | GLOBAL | COVERING | |
| t_order | 1 | g_i_buyer | 3 | order_id | NUL
L | 0 | NULL | NULL | YES | GLOBAL | COVERING | |
| t_order | 1 | g_i_buyer | 4 | seller_id | NUL
L | 0 | NULL | NULL | YES | GLOBAL | COVERING | |
| t_order | 1 | g_i_buyer | 5 | order_snapshot | NUL
L | 0 | NULL | NULL | YES | GLOBAL | COVERING | |
+--------------+------------+-------------------------+--------------+----------------+----
-------+-------------+----------+--------+------+------------+----------+---------------+

You can separately view the GSI information by executing SHOW GLOBAL INDEX . For more information,
see SHOW GLOBAL INDEX.

mysql> show global index from t_order;
+--------+---------+------------+-----------+-------------+--------------------------------
---------+------------+------------------+---------------------+--------------------+------
------------+---------------------+--------------------+--------+
| SCHEMA | TABLE | NON_UNIQUE | KEY_NAME | INDEX_NAMES | COVERING_NAMES
| INDEX_TYPE | DB_PARTITION_KEY | DB_PARTITION_POLICY | DB_PARTITION_COUNT | TB_PARTITION_K
EY | TB_PARTITION_POLICY | TB_PARTITION_COUNT | STATUS |
+--------+---------+------------+-----------+-------------+--------------------------------
---------+------------+------------------+---------------------+--------------------+------
------------+---------------------+--------------------+--------+
| d7 | t_order | 0 | g_i_buyer | buyer_id | id, order_id, seller_id, order_
snapshot | NULL | buyer_id | HASH | 8 | buyer
_id | HASH | 3 | PUBLIC |
+--------+---------+------------+-----------+-------------+--------------------------------
---------+------------+------------------+---------------------+--------------------+------
------------+---------------------+--------------------+--------+

View the schema of the index table. The index table contains the primary key of the primary table,
shard key, default covering columns, and the covering columns that are specified in the GSI definit ion.
The AUTO_INCREMENT attribute is removed from the primary key column. The local index is removed
from the primary table. By default , a data table is created for global unique indexes to support global
uniqueness.

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

63 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/182339.htm

mysql> show create table g_i_buyer;
+-----------+--
--------------------------+
| Table | Create Table
|
+-----------+--
--------------------------+
| g_i_buyer | CREATE TABLE `g_i_buyer` (
 `id` bigint(11) NOT NULL,
 `order_id` varchar(20) DEFAULT NULL,
 `buyer_id` varchar(20) DEFAULT NULL,
 `seller_id` varchar(20) DEFAULT NULL,
 `order_snapshot` longtext,
 PRIMARY KEY (`id`),
 UNIQUE KEY `auto_shard_key_buyer_id` (`buyer_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`buyer_id`) tbpartition by hash(`b
uyer_id`) tbpartitions 3 |
+-----------+--
--------------------------+

This topic describes how to use the DROP TABLE statement to delete a specified table.

SyntaxSyntax

DROP [TEMPORARY] TABLE [IF EXISTS]
 tbl_name [, tbl_name] ...
 [RESTRICT | CASCADE]

Not e Not e Data tables in PolarDB-X 1.0 can be deleted by using the same syntax that is used to
delete tables in MySQL databases. The system automatically processes or deletes the related
physical tables. For more information, see DROP TABLE statement.

NoteNote
If you execute the DROP TABLE statement to delete a table that contains a global secondary index,
the index table and the primary table are both deleted.

To delete only the index table, execute the ALTER TABLE DROP INDEX statement instead of the DROP
TABLE statement. For more information, see ALTER TABLE.

ExamplesExamples
The following example shows how to delete the table named user_log :

DROP TABLE user_log;

4.2. DROP TABLE4.2. DROP TABLE

4.3. ALTER TABLE4.3. ALTER TABLE

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 64

https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://www.alibabacloud.com/help/doc-detail/71309.htm#multiTask8581

You can execute the ALTER TABLE statement to modify the schema of a table. For example, you can
add a column, create an index, or change a data type.

NoteNote
You cannot execute the ALTER TABLE statement to change a shard key.

If you need to execute the ALTER TABLE statement on a table that contains a global secondary
index (GSI), use MySQL 5.7 or later and PolarDB-X 1.0 5.4.1 or later.

Modify a standard tableModify a standard table

Not e Not e PolarDB-X 1.0 If you execute the ALTER TABLE statement to modify the schema of a
standard table, the syntax of this statement in DRDS is the same as that in open source MySQL. For
more information, see ALTER TABLE statement.

Synt axSynt ax

ALTER [ONLINE|OFFLINE] [IGNORE] TABLE tbl_name
 [alter_specification [, alter_specification] ...]
 [partition_options]

ExamplesExamples

Add a column

Add the idcard column to the user_log table. You can use the following sample code:

ALTER TABLE user_log ADD COLUMN idcard varchar(30);

Create a local index

Create an index named idcard_idx on the idcard column in the user_log table. You can use the
following sample code:

ALTER TABLE user_log ADD INDEX idcard_idx (idcard);

Rename a local index

Rename the idcard_idx index in the user_log table as idcard_idx_new. You can use the following
sample code:

ALTER TABLE user_log RENAME INDEX `idcard_idx` TO `idcard_idx_new`;

Delete a local index

Delete the idcard_idx index from the user_log table. You can use the following sample code:

ALTER TABLE user_log DROP INDEX idcard_idx;

Modify a column

Change the length of the idcard column in the user_log table from 30 characters to 40 characters.
The values for the idcard column are of the VARCHAR type. You can use the following sample code:

ALTER TABLE user_log MODIFY COLUMN idcard varchar(40);

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

65 > Document Version: 20220601

http://dev.mysql.com/doc/refman/5.7/en/alter-table.html

Modify a table that contains a GSIModify a table that contains a GSI
Modif y a columnModif y a column

When you execute the ALTER TABLE statement to modify a column in a table that contains a GSI, the
syntax of this statement is the same as that you use to modify a column in a standard table. We
recommend that you are familiar with the limits. For more information about the limits, see Notes for
executing the ALTER TABLE statement.

Modif y an indexModif y an index

Syntax

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 66

https://www.alibabacloud.com/help/doc-detail/182193.htm#concept-1946568/section-5yo-mrf-g9d

ALTER TABLE tbl_name
 alter_specification # If you execute the ALTER TABLE statement to modify a GSI, use the
alter_specification option once.
alter_specification:
 | ADD GLOBAL {INDEX|KEY} index_name # Explicitly specify the name of a GSI.
 [index_type] (index_sharding_col_name,...)
 global_secondary_index_option
 [index_option] ...
 | ADD [CONSTRAINT [symbol]] UNIQUE GLOBAL
 [INDEX|KEY] index_name # Explicitly specify the name of a GSI.
 [index_type] (index_sharding_col_name,...)
 global_secondary_index_option
 [index_option] ...
 | DROP {INDEX|KEY} index_name
 | RENAME {INDEX|KEY} old_index_name TO new_index_name
global_secondary_index_option:
 [COVERING (col_name,...)] # Covering Index
 drds_partition_options # Specify one or more columns that are contained in index_shardi
ng_col_name.
Specify a sharding method for an index table.
drds_partition_options:
 DBPARTITION BY db_sharding_algorithm
 [TBPARTITION BY {table_sharding_algorithm} [TBPARTITIONS num]]
db_sharding_algorithm:
 HASH([col_name])
 | {YYYYMM|YYYYWEEK|YYYYDD|YYYYMM_OPT|YYYYWEEK_OPT|YYYYDD_OPT}(col_name)
 | UNI_HASH(col_name)
 | RIGHT_SHIFT(col_name, n)
 | RANGE_HASH(col_name, col_name, n)
table_sharding_algorithm:
 HASH(col_name)
 | {MM|DD|WEEK|MMDD|YYYYMM|YYYYWEEK|YYYYDD|YYYYMM_OPT|YYYYWEEK_OPT|YYYYDD_OPT}(col_name)
 | UNI_HASH(col_name)
 | RIGHT_SHIFT(col_name, n)
 | RANGE_HASH(col_name, col_name, n)
The following sample code uses the DDL syntax that is supported by the MySQL engine:
index_sharding_col_name:
 col_name [(length)] [ASC | DESC]
index_option:
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'
index_type:
 USING {BTREE | HASH}

After you create a table, you can use ALTER TABLE ADD GLOBAL INDEX to create a GSI. Compared with
the syntax for MySQL, the syntax for DRDS introduces the GLOBAL keyword to specify that you create a
GSI.

You can also use ALTER TABLE { DROP | RENAME } INDEX to modify a GSI. If you create a GSI after a
table is created, we recommend that you are familiar with the limits. For more information about the
limits, see Notes for using GSIs.

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

67 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/182193.htm#concept-1946568

For more information about the clauses that are used to define GSIs, see CREATE TABLE.

Examples

The following examples show how to create a unique GSI after a table is created.

Create a GSI.

Create a table.
CREATE TABLE t_order (
 `id` bigint(11) NOT NULL AUTO_INCREMENT,
 `order_id` varchar(20) DEFAULT NULL,
 `buyer_id` varchar(20) DEFAULT NULL,
 `seller_id` varchar(20) DEFAULT NULL,
 `order_snapshot` longtext DEFAULT NULL,
 `order_detail` longtext DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `l_i_order` (`order_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`order_id`);
Create a GSI.
ALTER TABLE t_order ADD UNIQUE GLOBAL INDEX `g_i_buyer` (`buyer_id`) COVERING (`order_sna
pshot`) dbpartition by hash(`buyer_id`);

Primary table: The data on the primary table t_order is part it ioned into database shards but not
further part it ioned into table shards. The database uses hash sharding based on the order_id
column.

Index table: The data on the index table g_i_buyer is part it ioned into database shards but not
further part it ioned into table shards. The database uses hash sharding based on the buyer_id
column. order_snapshot is the covering column that you specify.

Clause used to define the GSI: GLOBAL INDEX `g_i_seller` ON t_order (`seller_id`) dbpartiti
on by hash(`seller_id`) .

Execute the SHOW INDEX statement to query index information. For example, you can query local
indexes on the shard key order_id and the GSIs on the columns buyer_id, id, order_id, and
order_snapshot. For the index table, the buyer_id column is the shard key, the id column is the primary
key, and the order_id column is the shard key. The id and order_id columns are the default covering
columns. order_snapshot is the covering column that you explicit ly specify.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 68

https://www.alibabacloud.com/help/doc-detail/71300.htm#concept-1825026

mysql> show index from t_order;
+---------+------------+-----------+--------------+----------------+-----------+---------
----+----------+--------+------+------------+----------+---------------+
| TABLE | NON_UNIQUE | KEY_NAME | SEQ_IN_INDEX | COLUMN_NAME | COLLATION | CARDINAL
ITY | SUB_PART | PACKED | NULL | INDEX_TYPE | COMMENT | INDEX_COMMENT |
+---------+------------+-----------+--------------+----------------+-----------+---------
----+----------+--------+------+------------+----------+---------------+
| t_order | 0 | PRIMARY | 1 | id | A |
0 | NULL | NULL | | BTREE | | |
| t_order | 1 | l_i_order | 1 | order_id | A |
0 | NULL | NULL | YES | BTREE | | |
| t_order | 0 | g_i_buyer | 1 | buyer_id | NULL |
0 | NULL | NULL | YES | GLOBAL | INDEX | |
| t_order | 1 | g_i_buyer | 2 | id | NULL |
0 | NULL | NULL | | GLOBAL | COVERING | |
| t_order | 1 | g_i_buyer | 3 | order_id | NULL |
0 | NULL | NULL | YES | GLOBAL | COVERING | |
| t_order | 1 | g_i_buyer | 4 | order_snapshot | NULL |
0 | NULL | NULL | YES | GLOBAL | COVERING | |
+---------+------------+-----------+--------------+----------------+-----------+---------
----+----------+--------+------+------------+----------+---------------+

Execute the SHOW GLOBAL INDEX statement to query GSI information. For more information, see
SHOW GLOBAL INDEX.

mysql> show global index from t_order;
+---------------------+---------+------------+-----------+-------------+-----------------
-------------+------------+------------------+---------------------+--------------------+
------------------+---------------------+--------------------+--------+
| SCHEMA | TABLE | NON_UNIQUE | KEY_NAME | INDEX_NAMES | COVERING_NAMES
| INDEX_TYPE | DB_PARTITION_KEY | DB_PARTITION_POLICY | DB_PARTITION_COUNT | TB_PARTITION
_KEY | TB_PARTITION_POLICY | TB_PARTITION_COUNT | STATUS |
+---------------------+---------+------------+-----------+-------------+-----------------
-------------+------------+------------------+---------------------+--------------------+
------------------+---------------------+--------------------+--------+
| ZZY3_DRDS_LOCAL_APP | t_order | 0 | g_i_buyer | buyer_id | id, order_id, or
der_snapshot | NULL | buyer_id | HASH | 4 |
| NULL | NULL | PUBLIC |
+---------------------+---------+------------+-----------+-------------+-----------------
-------------+------------+------------------+---------------------+--------------------+
------------------+---------------------+--------------------+--------+

View the schema of the index table. The index table contains the primary key of the primary table,
the database shard key and table shard key, the default covering columns, and the custom covering
columns. The AUTO_INCREMENT attribute is removed from the primary key. The local index is removed
from the primary table. By default , GSIs are created on all the shard keys of the index table and each
GSI is globally unique.

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

69 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/182338.htm#concept-1946549

mysql> show create table g_i_buyer;
+-----------+--

--+
| Table | Create Table
|
+-----------+--

--+
| g_i_buyer | CREATE TABLE `g_i_buyer` (
 `id` bigint(11) NOT NULL,
 `order_id` varchar(20) DEFAULT NULL,
 `buyer_id` varchar(20) DEFAULT NULL,
 `order_snapshot` longtext,
 PRIMARY KEY (`id`),
 UNIQUE KEY `auto_shard_key_buyer_id` (`buyer_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`buyer_id`) |
+-----------+--

--+

Delete a GSI.

Delete a GSI named g_i_seller. In this case, the index table named g_i_seller is also deleted.

ALTER TABLE `t_order` DROP INDEX `g_i_seller`;

Rename a GSI.

By default , you cannot rename a GSI.

You can execute the TRUNCATE TABLE statement to clear data from a table.

SyntaxSyntax

TRUNCATE [TABLE] tbl_name

For more information about the syntax, see TRUNCATE TABLE statement.

NoteNote
Before you execute the TRUNCATE TABLE statement, ensure that you have the DROP permission.

This topic describes how to use the RENAME INDEX statement to rename a table.

SyntaxSyntax

4.4. TRUNCATE TABLE4.4. TRUNCATE TABLE

4.5. RENAME TABLE4.5. RENAME TABLE

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 70

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

RENAME TABLE
 tbl_name TO new_tbl_name

NoteNote
PolarDB-X 1.0 does not allow you to execute the RENAME TABLE statement to rename mult iple
tables at a t ime.

The system does not allow you to rename a table that contains a global secondary index for stability
and performance considerations.

You cannot use only the RENAME INDEX statement to rename an index table. If you need to rename
an index table, we recommend that you use the RENAME INDEX statement. For more information, see
ALTER TABLE.

This topic describes how to use the CREATE INDEX statement to create a local secondary index (LSI) or a
global secondary index (GSI).

NoteNote
To execute the ALTER statement on a table that contains a GSI, ensure that the MySQL version is 5.7 or
later and the PolarDB-X 1.0 version is V5.4.1 or later.

LSILSI
For more information, see CREATE INDEX statement.

GSIGSI
Synt axSynt ax

4.6. CREATE INDEX4.6. CREATE INDEX

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

71 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/71309.htm#multiTask8581
https://dev.mysql.com/doc/refman/8.0/en/create-index.html?spm=a2c4g.11186623.2.5.c4f27cd2WfPxT7

CREATE [UNIQUE]
 GLOBAL INDEX index_name [index_type]
 ON tbl_name (index_sharding_col_name,...)
 global_secondary_index_option
 [index_option]
 [algorithm_option | lock_option] ...
GSI-specific syntax. For more information, see CREATE TABLE statement in MySQL.
global_secondary_index_option:
 [COVERING (col_name,...)]
 drds_partition_options
Clauses for sharding. For more information, see CREATE TABLE statement in MySQL.
drds_partition_options:
 DBPARTITION BY db_sharding_algorithm
 [TBPARTITION BY {table_sharding_algorithm} [TBPARTITIONS num]]
db_sharding_algorithm:
 HASH([col_name])
 | {YYYYMM|YYYYWEEK|YYYYDD|YYYYMM_OPT|YYYYWEEK_OPT|YYYYDD_OPT}(col_name)
 | UNI_HASH(col_name)
 | RIGHT_SHIFT(col_name, n)
 | RANGE_HASH(col_name, col_name, n)
table_sharding_algorithm:
 HASH(col_name)
 | {MM|DD|WEEK|MMDD|YYYYMM|YYYYWEEK|YYYYDD|YYYYMM_OPT|YYYYWEEK_OPT|YYYYDD_OPT}(col_name)
 | UNI_HASH(col_name)
 | RIGHT_SHIFT(col_name, n)
 | RANGE_HASH(col_name, col_name, n)
 # The following sample code uses the DDL syntax that is supported by the MySQL engine:
index_sharding_col_name:
 col_name [(length)] [ASC | DESC] # The length parameter is used only to create LSIs on
the shard keys of an index table.
index_option:
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'
index_type:
 USING {BTREE | HASH}
algorithm_option:
 ALGORITHM [=] {DEFAULT|INPLACE|COPY}
lock_option:
 LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}

The CREATE GLOBAL INDEX statement is used to create a GSI for a table after the table is created.
This statement introduces the GLOBAL keyword to the CREATE INDEX statement in MySQL. This keyword
specifies that the type of the index to be created is GSI. Limits are imposed on creating a GSI for a table
after the table is created. For more information about the limits on GSIs, see Notes for using GSIs.

For more information about the clauses that are used to define GSIs, see CREATE TABLE.

ExamplesExamples

The following example shows how to create a common GSI for a table after the table is created.

Create a GSI.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 72

https://www.alibabacloud.com/help/doc-detail/182193.htm#concept-1946568
https://www.alibabacloud.com/help/doc-detail/71300.htm#concept-1825026

Create a table.
CREATE TABLE t_order (
 `id` bigint(11) NOT NULL AUTO_INCREMENT,
 `order_id` varchar(20) DEFAULT NULL,
 `buyer_id` varchar(20) DEFAULT NULL,
 `seller_id` varchar(20) DEFAULT NULL,
 `order_snapshot` longtext DEFAULT NULL,
 `order_detail` longtext DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `l_i_order` (`order_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`order_id`);
Create a GSI.
ALTER TABLE t_order ADD UNIQUE GLOBAL INDEX `g_i_buyer` (`buyer_id`) COVERING (`order_sna
pshot`) dbpartition by hash(`buyer_id`);

Primary table: The data on the primary table t_order is part it ioned into database shards but not
further part it ioned into table shards. The database uses hash sharding based on the order_id
column.

Index table: The data on the index table g_i_buyer is part it ioned into database shards but not
further part it ioned into table shards. The database uses hash sharding based on the buyer_id
column. The order_snapshot column is specified as the covering column.

Clause used to define the GSI: GLOBAL INDEX `g_i_seller` ON t_order (`seller_id`) dbpartiti
on by hash(`seller_id`) .

The following sample code shows how to execute the SHOW INDEX statement to view the
information about indexes that includes the LSI on the order_id shard key and GSIs on buyer_id, id,
order_id, and order_snapshot. buyer_id is the shard key of the index table. id and order_id are the
default covering columns. id is the primary key and order_id is the shard key of the primary table.
order_snapshot is the covering column that is explicit ly specified.

mysql> show index from t_order;
+---------+------------+-----------+--------------+----------------+-----------+---------
----+----------+--------+------+------------+----------+---------------+
| TABLE | NON_UNIQUE | KEY_NAME | SEQ_IN_INDEX | COLUMN_NAME | COLLATION | CARDINAL
ITY | SUB_PART | PACKED | NULL | INDEX_TYPE | COMMENT | INDEX_COMMENT |
+---------+------------+-----------+--------------+----------------+-----------+---------
----+----------+--------+------+------------+----------+---------------+
| t_order | 0 | PRIMARY | 1 | id | A |
0 | NULL | NULL | | BTREE | | |
| t_order | 1 | l_i_order | 1 | order_id | A |
0 | NULL | NULL | YES | BTREE | | |
| t_order | 0 | g_i_buyer | 1 | buyer_id | NULL |
0 | NULL | NULL | YES | GLOBAL | INDEX | |
| t_order | 1 | g_i_buyer | 2 | id | NULL |
0 | NULL | NULL | | GLOBAL | COVERING | |
| t_order | 1 | g_i_buyer | 3 | order_id | NULL |
0 | NULL | NULL | YES | GLOBAL | COVERING | |
| t_order | 1 | g_i_buyer | 4 | order_snapshot | NULL |
0 | NULL | NULL | YES | GLOBAL | COVERING | |
+---------+------------+-----------+--------------+----------------+-----------+---------
----+----------+--------+------+------------+----------+---------------+

You can execute the SHOW GLOBAL INDEX statement to view only the GSI information. For more

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

73 > Document Version: 20220601

information, see SHOW GLOBAL INDEX.

mysql> show global index from t_order;
+---------------------+---------+------------+-----------+-------------+-----------------
-------------+------------+------------------+---------------------+--------------------+
------------------+---------------------+--------------------+--------+
| SCHEMA | TABLE | NON_UNIQUE | KEY_NAME | INDEX_NAMES | COVERING_NAMES
| INDEX_TYPE | DB_PARTITION_KEY | DB_PARTITION_POLICY | DB_PARTITION_COUNT | TB_PARTITION
_KEY | TB_PARTITION_POLICY | TB_PARTITION_COUNT | STATUS |
+---------------------+---------+------------+-----------+-------------+-----------------
-------------+------------+------------------+---------------------+--------------------+
------------------+---------------------+--------------------+--------+
| ZZY3_DRDS_LOCAL_APP | t_order | 0 | g_i_buyer | buyer_id | id, order_id, or
der_snapshot | NULL | buyer_id | HASH | 4 |
| NULL | NULL | PUBLIC |
+---------------------+---------+------------+-----------+-------------+-----------------
-------------+------------+------------------+---------------------+--------------------+
------------------+---------------------+--------------------+--------+

The following sample code can be used to view the schema of the index table. The index table
contains the primary key of the primary table, the database shard key and table shard key, the
default covering columns, and the custom covering columns. The AUTO_INCREMENT attribute is
removed from the primary key column. The LSI is removed from the primary table. By default , a local
unique index is created on the index table that contains all the index columns of the GSI to achieve
the global unique constraint of the primary table.

mysql> show create table g_i_buyer;
+-----------+--

--+
| Table | Create Table
|
+-----------+--

--+
| g_i_buyer | CREATE TABLE `g_i_buyer` (
 `id` bigint(11) NOT NULL,
 `order_id` varchar(20) DEFAULT NULL,
 `buyer_id` varchar(20) DEFAULT NULL,
 `order_snapshot` longtext,
 PRIMARY KEY (`id`),
 UNIQUE KEY `auto_shard_key_buyer_id` (`buyer_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`buyer_id`) |
+-----------+--

--+

4.7. DROP INDEX4.7. DROP INDEX

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 74

https://www.alibabacloud.com/help/doc-detail/182338.htm#concept-1946549

This topic describes how to use the DROP INDEX statement to delete a local secondary index (LSI) and a
global secondary index (GSI).

LSILSI
LSIs in Distributed Relat ional Database Service (DRDS) can be deleted by using the same method that is
used to delete LSIs in MySQL databases. For more information, see DROP INDEX.

GSIGSI
Syntax

The index_name parameter is the name of the GSI that you want to delete.
DROP INDEX index_name ON tbl_name

This topic describes how to use the CREATE VIEW statement to create a view for a PolarDB-X
1.0PolarDB-X instance.

PrerequisitesPrerequisites
The version of the PolarDB-X 1.0 instance must be 5.4.5 or later.

SyntaxSyntax

CREATE
 [OR REPLACE]
 VIEW view_name [(column_list)]
 AS select_statement

ExamplesExamples

Create a table.
CREATE TABLE t_order (
 `id` bigint(11) NOT NULL AUTO_INCREMENT,
 `order_id` varchar(20) DEFAULT NULL,
 `buyer_id` varchar(20) DEFAULT NULL,
 `seller_id` varchar(20) DEFAULT NULL,
 `order_snapshot` longtext DEFAULT NULL,
 `order_detail` longtext DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `l_i_order` (`order_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`order_id`);
Create a view.
create view t_detail as select order_id,order_detail from t_order;
Query a view.
select * from t_detail;

4.8. CREATE VIEW4.8. CREATE VIEW

4.9. DROP VIEW4.9. DROP VIEW

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

75 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/drop-index.html

This topic describes how to use the DROP VIEW statement to delete a view of a PolarDB-X 1.0 instance.

PrerequisitesPrerequisites
The version of the PolarDB-X 1.0 instance must be 5.4.5 or later.

SyntaxSyntax

DROP VIEW [IF EXISTS] view_name

ExamplesExamples

Create a view: create view v as select 1;
Delete a view: drop view v;

This topic provides answers to commonly asked questions about the execution errors of data definit ion
language (DDL) statements in PolarDB-X 1.0.

What can I do if an execution error occurs when I create a table?What can I do if an execution error occurs when I create a table?
A DDL statement is processed in distributed mode. An error may cause schema inconsistency among
shards. Therefore, you must manually clean up the error. You can perform the following steps:

1. PolarDB-X 1.0 provides basic error descript ion information, such as syntax errors. If the error
message is too long, the system prompts you to run the SHOW WARNINGS command to view the
execution failure cause for each database shard.

2. Run the SHOW TOPOLOGY command to view the topology of physical tables.

 SHOW TOPOLOGY FROM multi_db_multi_tbl;
 +------+-----------------+-----------------------+
 | ID | GROUP_NAME | TABLE_NAME |
 +------+-----------------+-----------------------+
0	corona_qatest_0	multi_db_multi_tbl_00
1	corona_qatest_0	multi_db_multi_tbl_01
2	corona_qatest_0	multi_db_multi_tbl_02
3	corona_qatest_1	multi_db_multi_tbl_03
4	corona_qatest_1	multi_db_multi_tbl_04
5	corona_qatest_1	multi_db_multi_tbl_05
6	corona_qatest_2	multi_db_multi_tbl_06
7	corona_qatest_2	multi_db_multi_tbl_07
8	corona_qatest_2	multi_db_multi_tbl_08
9	corona_qatest_3	multi_db_multi_tbl_09
10	corona_qatest_3	multi_db_multi_tbl_10
11	corona_qatest_3	multi_db_multi_tbl_11
 +------+-----------------+-----------------------+
 12 rows in set (0.21 sec)

3. Run the CHECK TABLE tablename command to check whether the logical table has been created.

4.10. DDL FAQ4.10. DDL FAQ

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DDL

> Document Version: 20220601 76

For example, the following example shows the scenario where a physical table shard of multi_db
_multi_tbl failed to be created.

 mysql> check table multi_db_multi_tbl;
 +---+-------+----------+-------------
--+
 | TABLE | OP | MSG_TYPE | MSG_TEXT
|
 +---+-------+----------+-------------
--+
 | andor_mysql_qatest. multi_db_multi_tbl | check | Error | Table 'corona_qatest_
0. multi_db_multi_tbl_02' doesn't exist |
 +---+-------+----------+-------------
--+
 1 row in set (0.16 sec)

4. Create or delete the table in idempotent mode to create or delete the remaining physical tables.

CREATE TABLE IF NOT EXISTS table1
(id int, name varchar(30), primary key(id))
dbpartition by hash(id);
DROP TABLE IF EXISTS table1;

What can I do if I failed to create an index or add a column?What can I do if I failed to create an index or add a column?
The method for handling the failure when you create an index or add a column is similar to the
preceding steps for the table creation failure. For more information, see Troubleshoot DDL exceptions.

SQL Reference··DDL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

77 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/52157.htm

This topic describes how to execute the SELECT statement to query data from one or more tables.

SyntaxSyntax

SELECT
 [ALL | DISTINCT]
 select_expr [, select_expr ...]
 [FROM table_references
 [WHERE where_condition]
 [GROUP BY {col_name | expr | position}
 [HAVING where_condition]
 [ORDER BY {col_name | expr | position}
 [ASC | DESC], ...]
 [LIMIT {[offset,] row_count | row_count OFFSET offset}]
 [FOR UPDATE]

Descript ions of the clauses in the SELECT statement:

select_expr specifies the column to be queried. One SELECT statement must contain at least one
select_expr expression.

table_references specifies the tables from which data is retrieved.

The WHERE clause specifies query criteria. If this clause is specified as where_condit ion, the system
returns the rows that meet the requirement in where_condit ion. If this clause is not specified, all rows
are returned.

The GROUP BY clause supports the references to column names, expressions, and posit ions in output
columns.

The HAVING clause is similar to the WHERE clause. The difference is that the HAVING clause allows you
to use aggregate functions.

The ORDER BY clause specifies the order in which data is sorted. This clause supports the references
to column names, expressions, and posit ions in output columns. You can also specify the sort
direct ion, such as ASC (ascending order) and DESC (descending order).

The OFFSET clause specifies the offset of an output result set. The LIMIT clause specifies the size of
an output result set. The LIMIT clause allows you to specify one or two numeric parameters. The
parameters must be integer constants. If you specify two parameters, the first parameter specifies
the offset of the first row to be returned and the second parameter specifies the maximum number
of rows to be returned. The init ial offset of the first row is 0 instead of 1. To be compatible with
PostgreSQL, MySQL also supports LIMIT and OFFSET.

The FOR UPDATE clause applies an exclusive lock on each row of the query results. This prevents
other transactions from concurrently updating the rows. This also prevents other transactions from
concurrently reading the rows for which some transaction isolat ion levels are specified.

NoteNote
The expressions that are used in a WHERE clause cannot be used in a HAVING clause. For example, the
following SQL statement 1 must be rewritten as SQL statement 2.

5.DML5.DML
5.1. SELECT5.1. SELECT

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DML

> Document Version: 20220601 78

SQL statement 1:

SELECT col_name FROM tbl_name HAVING col_name > 0;

SQL statement 2:

SELECT col_name FROM tbl_name WHERE col_name > 0;

You can use aggregate functions in the HAVING clause but not in the WHERE clause.

SELECT user, MAX(salary) FROM users
 GROUP BY user HAVING MAX(salary) > 10;

If the LIMIT clause contains two parameters, the first parameter indicates the offset of the first row
that is returned, and the second parameter indicates the number of rows that are returned. If the
LIMIT clause contains only one parameter, this parameter indicates the number of rows that are
returned, and the default offset is 0.

The GROUP BY clause does not support ASC or DESC.

If both GROUP BY and ORDER BY are used, the expressions that follow ORDER BY must be included in a
SELECT clause or a GROUP BY clause. For example, the following SQL statement is not supported:

SELECT user FROM users GROUP BY age ORDER BY salary;

Aggregate functions and expressions that contain aggregate functions cannot be used in the ORDER
BY clause. If you want to use such an expression, define the expression as a select_expr, assign an
alias to the expression, and then reference the alias in the ORDER BY clause.

Empty strings cannot be used as aliases.

JO INJOIN
PolarDB-X 1.0 supports the following JOIN syntax in table_references of the SELECT statement:

SQL Reference··DML Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

79 > Document Version: 20220601

table_references:
 escaped_table_reference [, escaped_table_reference] ...
escaped_table_reference:
 table_reference
 | { OJ table_reference }
table_reference:
 table_factor
 | join_table
table_factor:
 [schema_name.]tbl_name [[AS] alias] [index_hint_list]
 | table_subquery [AS] alias
 | (table_references)
join_table:
 table_reference [INNER | CROSS] JOIN table_factor [join_condition]
 | table_reference {LEFT|RIGHT} [OUTER] JOIN table_reference join_condition
join_condition:
 ON conditional_expr
 | USING (column_list)
index_hint_list:
 index_hint [, index_hint] ...
index_hint:
 USE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
 | IGNORE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
 | FORCE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
index_list:
 index_name [, index_name] ...

To use the JOIN statements, consider the following factors:

JOIN, CROSS JOIN, and INNER JOIN are syntact ic equivalents. This is also the case in MySQL.

An INNER JOIN statement without an ON clause is equivalent to using a comma (,). Both of them
indicate a CROSS JOIN. For example, the following SQL statements are equivalent:

SELECT * FROM t1 INNER JOIN t2 WHERE t1.id > 10
SELECT * FROM t1, t2 WHERE t1.id > 10

 USING(column_list) is used to specify the column names that exist in both tables from which you
want to combine data. PolarDB-X 1.0 constructs an equivalent condit ion based on these columns. For
example, the following SQL fragments are equivalent:

a LEFT JOIN b USING(c1, c2)
a LEFT JOIN b ON a.c1 = b.c1 AND a.c2 = b.c2

The JOIN operator has higher precedence than the comma operator (,). The JOIN expression t1, t2 JOIN
t3 is interpreted as (t1, (t2 JOIN t3)), not as ((t1, t2) JOIN t3).

LEFT JOIN and RIGHT JOIN must contain the ON condit ion.

index_hint specifies the index to be used by MySQL. PolarDB-X 1.0 pushes the hint to the underlying
MySQL database.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DML

> Document Version: 20220601 80

STRAIGHT_JOIN and NATURAL JOIN are not supported.

UNIONUNION
PolarDB-X 1.0 supports the following UNION syntax:

SELECT ...
UNION [ALL | DISTINCT] SELECT ...
[UNION [ALL | DISTINCT] SELECT ...]

Not e Not e In each SELECT clause of UNION, PolarDB-X 1.0 does not support mult iple columns with
the same name. The following SQL statement is not supported because the column names in the
SELECT clause are duplicates.
SELECT id, id, name FROM t1 UNION SELECT pk, pk, name FROM t2;

ReferencesReferences
SELECT syntax in MySQL

JOIN syntax in MySQL

UNION syntax in MySQL

This topic describes the types of subqueries supported by PolarDB-X 1.0 and the limits and addit ional
considerations when you use subqueries in PolarDB-X 1.0.

LimitsLimits
Compared with the native MySQL, PolarDB-X 1.0 has the following limits when you use subqueries:

Subqueries cannot be used in HAVING clauses. Example:

SELECT name, AVG(quantity)
FROM tb1
GROUP BY name
HAVING AVG(quantity) > 2* (
 SELECT AVG(quantity)
 FROM tb2
);

Subqueries cannot be used in JOIN ON clauses. Example:

SELECT * FROM tb1 p JOIN tb2 s on (p.id=s.id and p.quantity>All(select quantity from tb3)
)

ROW subqueries and scalar subqueries cannot be placed before and after equal signs (=)
simultaneously. Example:

select * from tb1 where row(id, name) = (select id, name from tb2)

Subqueries cannot be used in UPDATE SET clauses. Example:

5.2. Subquery5.2. Subquery

SQL Reference··DML Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

81 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/join.html
https://dev.mysql.com/doc/refman/5.7/en/union.html

UPDATE t1 SET c1 = (SELECT c2 FROM t2 WHERE t1.c1 = t2.c1) LIMIT 10

Additional considerationsAdditional considerations
In PolarDB-X 1.0, some subqueries can be executed by using only the APPLY operator and result in
inefficient queries. Avoid the following inefficient SQL statements:

SQL statements whose WHERE clauses contain both OR operators and subqueries. The execution
efficiency is reduced based on the data in the foreign tables. Examples:

Efficient: select * from tb1 where id in (select id from tb2)
Efficient: select * from tb1 where id in (select id from tb2) and id>3
Inefficient: select * from tb1 where id in (select id from tb2) or id>3

Correlated subqueries whose correlated items are used in functions or used along with non-equal
signs. Examples:

Efficient: select * from tb1 a where id in
 (select id from tb2 b where a.name=b.name)
Inefficient: select * from tb1 a where id in
 (select id from tb2 b where UPPER(a.name)=b.name)
Inefficient: select * from tb1 a where id in
 (select id from tb2 b where a.decimal_test=abs(b.decimal_test))
Inefficient: select * from tb1 a where id in
 (select id from tb2 b where a.name! =b.name)
Inefficient: select * from tb1 a where id in
 (select id from tb2 b where a.name>=b.name)

Correlated subqueries whose correlated items are connected with other condit ions by using OR
operators. Examples:

Efficient: select * from tb1 a where id in
 (select id from tb2 b where a.name=b.name
 and b.date_test<'2015-12-02')
Inefficient: select * from tb1 a where id in
 (select id from tb2 b where a.name=b.name
 or b.date_test<'2015-12-02')
Inefficient: select * from tb1 a where id in
 (select id from tb2 b where a.name=b.name
 or b.date_test=a.date_test)

Scalar subqueries that have correlated items. Examples:

Efficient: select * from tb1 a where id >
 (select id from tb2 b where b.date_test<'2015-12-02')
Inefficient: select * from tb1 a where id >
 (select id from tb2 b where a.name=b.name
 and b.date_test<'2015-12-02')

Subqueries whose correlated items span the correlat ion levels. Examples:

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DML

> Document Version: 20220601 82

An SQL statement has mult iple correlat ion levels. The correlated items in each subquery are
correlated only with the upper level. Such statements are efficient.

Efficient: select * from tb1 a where id in(select id from tb2 b
 where a.name=b.name and
 exists (select name from tb3 c where b.address=c.address))

An SQL statement has mult iple correlat ion levels. The correlated items of subqueries in table c
are correlated with columns in table a . Such statements are inefficient.

Inefficient: select * from tb1 a where id in(select id from tb2 b
 where a.name=b.name and
 exists (select name from tb3 c where a.address=c.address))

Not e Not e In the preceding example, both table a and table b , table b and table
c belong to the same correlat ion level. The correlat ion between table a and table c
spans the correlat ion levels.

Subqueries that contain GROUP BY clauses. Make sure that the correlated items are correlated to the
grouping columns. Examples:

An SQL subquery contains aggregate functions and correlated items. The b.pk correlated item
is correlated to the pk grouping column. Such SQL statements are efficient.

Efficient: select * from tb1 a where exists
 (select pk from tb2 b
 where a.pk=b.pk and b.date_test='2003-04-05'
 group by pk);

An SQL subquery contains aggregate functions and correlated items. The b.date_test
correlated item is not correlated to the pk grouping column. Such SQL statements are
inefficient.

Inefficient: select * from tb1 a where exists
 (select pk from tb2 b
 where a.date_test=b.date_test and b.date_test='2003-04-05'
 group by pk);

Supported subqueriesSupported subqueries
PolarDB-X 1.0 supports the following types of subqueries:

Comparisons using subqueries

Comparisons using subqueries indicate subqueries that use comparison operators. These subqueries
are commonly used.

Syntax:

non_subquery_operand comparison_operator (subquery)
comparison_operator: = > < >= <= <> ! = <=> like

SQL Reference··DML Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

83 > Document Version: 20220601

Example:

select * from tb1 WHERE 'a' = (SELECT column1 FROM t1)

Not e Not e Subqueries can be placed only to the right of comparison operators.

Subqueries with ANY, ALL, IN/NOT IN, and EXISTS/NOT EXISTS

Syntax:

operand comparison_operator ANY (subquery)
operand comparison_operator ALL (subquery)
operand IN (subquery)
operand NOT IN (subquery)
operand EXISTS (subquery)
operand NOT EXISTS (subquery)
comparison_operator:= > < >= <= <> ! =

Examples

ANY: If any row returned by the subquery meets the expression before ANY, TRUE is returned.
Otherwise, FALSE is returned.

ALL: If all rows returned by the subquery meet the expression before ALL, TRUE is returned.
Otherwise, FALSE is returned.

IN: If IN is used before the subquery, IN is equivalent to =ANY . Example:

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);

NOT IN: If NOT IN is used before the subquery, NOT IN is equivalent to <>ALL . Example:

SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);

EXISTS: If the subquery returns any rows, TRUE is returned. Otherwise, FALSE is returned.
Example:

SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

Not e Not e If a subquery contains any rows, the WHERE condit ion returns TRUE even if the
subquery contains only NULL rows.

NOT EXISTS: If the subquery returns any rows, FALSE is returned. Otherwise, TRUE is returned.

ROW subqueries

ROW subqueries support the following comparison operators:

comparison_operator: = > < >= <= <> ! = <=>

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DML

> Document Version: 20220601 84

Examples:

SELECT * FROM t1
 WHERE (col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);
SELECT * FROM t1
 WHERE ROW(col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);

The preceding two SQL statements are equivalent. Data rows in table t1 are returned only when
the following condit ions are met:

The subquery (SELECT col3, col4 FROM t2 WHERE id=10) returns only one row. An error is
reported if mult iple rows are returned.

 col3 and col4 returned by the subquery are equal to col1 and col2 in the primary
table.

Correlated subqueries

Correlated subqueries are subqueries that contain references to foreign tables in outer queries.
Example:

SELECT * FROM t1
 WHERE column1 = ANY (SELECT column1 FROM t2
 WHERE t2.column2 = t1.column2);

In the example, the subquery does not contain table t1 and its column column2. In this case, the
subquery finds the table in the outer query.

Derived tables (subqueries in a FROM clause)

Derived tables are subqueries in a FROM clause.

Syntax:

SELECT ... FROM (subquery) [AS] tbl_name ...

SQL Reference··DML Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

85 > Document Version: 20220601

Examples

a. Prepare data:

Execute the following statements to create table t1:

CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);
INSERT INTO t1 VALUES (1,'1',1.0);
INSERT INTO t1 VALUES (2,'2',2.0);

Execute the following statement. The query result is 2, '2', 4.0 .

SELECT sb1,sb2,sb3
 FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb
 WHERE sb1 > 1;

b. Query data: Query the average value of grouped data that is processed by the SUM function.

If you execute the following SQL statement, an error is reported and no result is returned.

SELECT AVG(SUM(s1)) FROM t1 GROUP BY s1;

You can execute the following statement that contains a derived table. The query result is 1
.5000 .

SELECT AVG(sum_s1)
 FROM (SELECT SUM(s1) AS sum_s1
 FROM t1 GROUP BY s1) AS t1;

Not eNot e

A derived table must have an alias, such as t1 in the previous statement.

A derived table can return a scalar, a column, a row, or a table.

Derived tables cannot be correlated subqueries. Derived tables cannot contain
references to foreign tables in outer queries.

You can execute the INSERT statements to insert data into tables.

SyntaxSyntax
the primary key.

5.3. INSERT5.3. INSERT

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DML

> Document Version: 20220601 86

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
[INTO] [schema_name.]tbl_name
[(col_name [, col_name] ...)]
{VALUES | VALUE} (value_list) [, (value_list)]
[ON DUPLICATE KEY UPDATE assignment_list]
INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
[INTO] [schema_name.]tbl_name
SET assignment_list
[ON DUPLICATE KEY UPDATE assignment_list]
INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
[INTO] [schema_name.]tbl_name
[(col_name [, col_name] ...)]
SELECT ...
[ON DUPLICATE KEY UPDATE assignment_list]
value_list:
value [, value] ...
value:
{expr | DEFAULT}
assignment_list:
assignment [, assignment] ...
assignment:
col_name = value

Limits on syntaxLimits on syntax
The following INSERT statements are not supported:

INSERT IGNORE ON DUPLICATE KEY UPDATE.

INSERT IGNORE INTO tb (id) VALUES(7) ON DUPLICATE KEY UPDATE id = id + 1;

INSERT statements that contain PARTITION functions.

INSERT INTO tb PARTITION (p0) (id) VALUES(7);

INSERT statements where the NEXTVAL functions are nested.

INSERT INTO tb(id) VALUES(SEQ1.NEXTVAL + 1);

INSERT statements that contain column names.

INSERT INTO tb(id1, id2) VALUES(1, id1 + 1);

Limits on distributed transactionsLimits on distributed transactions

Not e Not e If a transaction is processed in the same database shard even when you use table
shards, this transaction is considered as a single-database transaction. For example, a transaction
contains the shard key and the INSERT or UPDATE statement in the transaction is executed in the
same database shard. In this case, this transaction is a single-database transaction.

If the distributed transaction feature is enabled, the INSERT statements that meet the following
condit ions are not supported:

No primary key is specified for the table to which data is to be inserted. The following statements are

SQL Reference··DML Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

87 > Document Version: 20220601

used as examples:

CREATE TABLE tb(id INT, name VARCHAR(10));
INSERT INTO tb VALUES(1, 'a');

The table to which data is to be inserted is not sharded. The primary key values are auto-
incremented, but no Distributed Relat ional Database Service (DRDS) sequence is used for the primary
key. For more information about DRDS sequences. The following statements are used as examples:

CREATE TABLE tb(id INT PRIMARY KEY AUTO_INCREMENT, name VARCHAR(10));
INSERT INTO tb(name) VALUES('a'); # The statements are not supported.

You can specify a DRDS sequence for the primary key to enable the preceding statements to be
supported. For more information about DRDS sequences. The following statements are used as
examples:

CREATE TABLE tb(id INT PRIMARY KEY AUTO_INCREMENT BY GROUP, name VARCHAR(10));
INSERT INTO tb(name) VALUES('a'); # The statements are supported.

ReferencesReferences
INSERT Statement for the native MySQL.

You can use the REPLACE syntax to insert rows to tables or replace rows in tables.

SyntaxSyntax

REPLACE [LOW_PRIORITY | DELAYED]
[INTO] [schema_name.]tbl_name
[(col_name [, col_name] ...)]
{VALUES | VALUE} (value_list) [, (value_list)]
REPLACE [LOW_PRIORITY | DELAYED]
[INTO] [schema_name.]tbl_name
SET assignment_list
REPLACE [LOW_PRIORITY | DELAYED]
[INTO] [schema_name.]tbl_name
[(col_name [, col_name] ...)]
SELECT ...
value_list:
value [, value] ...
value:
{expr | DEFAULT}
assignment_list:
assignment [, assignment] ...
assignment:
col_name = value

Limits on syntaxLimits on syntax
The following syntax is not supported:

Syntax that contains PARTITION. The following example shows the syntax:

5.4. REPLACE5.4. REPLACE

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DML

> Document Version: 20220601 88

https://dev.mysql.com/doc/refman/5.7/en/insert.html

REPLACE INTO tb PARTITION (p0) (id) VALUES(7);

Syntax where NEXTVAL is nested. The following example shows the syntax:

REPLACE INTO tb(id) VALUES(SEQ1.NEXTVAL + 1);

Syntax that contains column names. The following example shows the syntax:

REPLACE INTO tb(id1, id2) VALUES(1, id1 + 1);

Limits on distributed transactionsLimits on distributed transactions

Not e Not e If you use table shards, but a transaction is processed in the same database (for
example, INSERT or UPDATE contains the shard key), this transaction is considered as a single-
database transaction.

When the distributed transaction feature is enabled, the following REPLACE command is not supported:

No primary key is specified for the table, as shown in the following example:

CREATE TABLE tb(id INT, name VARCHAR(10));
REPLACE INTO tb VALUES(1, 'a');

The table is not sharded. The primary key is auto-incremented, but no sequence is used for the
primary key. For more information about sequences. The following example shows the corresponding
statements:

CREATE TABLE tb(id INT PRIMARY KEY AUTO_INCREMENT, name VARCHAR(10));
REPLACE INTO tb(name) VALUES('a');

You can specify a sequence for the primary key to prevent the limit . For more information about
sequences. The following example shows the corresponding statements:

CREATE TABLE tb(id INT PRIMARY KEY AUTO_INCREMENT BY GROUP, name VARCHAR(10));
REPLACE INTO tb(name) VALUES('a');

ReferencesReferences
REPLACE syntax for MySQL

You can use the UPDATE syntax to modify the rows that meet the condit ions in tables.

SyntaxSyntax
Single logical table.

5.5. UPDATE5.5. UPDATE

SQL Reference··DML Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

89 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/replace.html

UPDATE [LOW_PRIORITY] [IGNORE] [schema_name.]tbl_name
 SET assignment_list
 [WHERE where_condition]
value:
 {expr | DEFAULT}
assignment:
 col_name = value
assignment_list:
 assignment [, assignment] ...

Mult iple logical tables.

UPDATE [LOW_PRIORITY] [IGNORE] table_references
 SET assignment_list
 [WHERE where_condition]

Not eNot e

The UPDATE statements support the following modifiers:

If you specify LOW_PRIORITY, the UPDATE operation is performed after all the read
operations on the table are completed.

If you specify IGNORE, the errors are ignored during the update process. This indicates
that the update is not interrupted by the errors.

Each modifier in the UPDATE statements is pushed down to the storage layer MySQL and
remains unchanged. This process does not affect the modifier operations of PolarDB-X 1.0.

Limits on syntaxLimits on syntax
Compared with the UPDATE syntax of native MySQL, the UPDATE syntax of PolarDB-X 1.0 has the
following limits:

Correlated and uncorrelated subqueries are not supported in the SET clauses. This limit is illustrated in
the following example:

UPDATE t1 SET name = (SELECT name FROM t2 WHERE t2.id = t1.id) WHERE id > 10;

By default , an UPDATE statement is forbidden if the statement needs to update more than 10,000
rows and the statement cannot be pushed down. In this case, you must use hints so that the UPDATE
statement can be supported, as shown in the following example:

UPDATE t1 SET t1.name = "abc" ORDER BY name LIMIT 10001;
UPDATE t1, t2 SET t1.name = t2.name WHERE t1.id = t2.name LIMIT 10001;

Not e Not e The shard key of t1 and t2 is ID.

ReferencesReferences
UPDATE syntax for MySQL.

5.6. DELETE5.6. DELETE

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DML

> Document Version: 20220601 90

https://dev.mysql.com/doc/refman/5.7/en/update.html

You can execute the DELETE statements to delete the rows that meet the condit ions from tables.

SyntaxSyntax
The following DELETE statements delete the rows that meet the condit ions specified by
 where_condition from the tables specified by tbl_name , and return the number of deleted rows.

If you do not specify the WHERE condit ions, all the data in the specified tables is deleted.

Single logical table.

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM [schema_name.]tbl_name
 [WHERE where_condition]

Mult iple logical tables.

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 tbl_name[.*] [, tbl_name[. *]] ...
 FROM table_references
 [WHERE where_condition]
DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 FROM [schema_name.]tbl_name[.*] [, [schema_name.]tbl_name[. *]] ...
 USING table_references
 [WHERE where_condition]

Not eNot e

The DELETE statements support the following modifiers:

If you specify LOW_PRIORITY, the DELETE operation is performed after all the read
operations from the table are completed.

If you specify IGNORE, the errors are ignored during the delet ion process.

QUICK is related to the storage engines of MySQL. For more information, see MySQL
documentation.

Each modifier in the DELETE statements is pushed down to the storage layer MySQL and
remains unchanged. This process does not affect the modifier operations of PolarDB-X 1.0.

Limits on syntaxLimits on syntax
Compared with the DELETE syntax of the native MySQL, the DELETE syntax of PolarDB-X 1.0 has the
following limits:

By default , a DELETE statement is forbidden if the statement needs to delete more than 10,000 rows
and the statement cannot be pushed down. In this case, you must use hints so that DELETE statement
can be supported, as shown in the following example:

DELETE FROM t1 ORDER BY name LIMIT 10001;
DELETE t1, t2 FROM t1 INNER JOIN t2 INNER JOIN t3 WHERE t1.id=t2.id AND t2.id=t3.name LIMIT
10001;
DELETE FROM t1, t2 USING t1 INNER JOIN t2 INNER JOIN t3 WHERE t1.id=t2.id AND t2.id=t3.name
LIMIT 10001;

Not e Not e The shard key of t1, t2, and t3 is ID.

SQL Reference··DML Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

91 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/delete.html

This topic describes the limits that global secondary indexes (GSIs) in PolarDB-X 1.0 have on data
manipulation language (DML).

PrerequisitesPrerequisites
The versions of the custom ApsaraDB RDS for MySQL instances are 5.7 or later, and the versions of the
PolarDB-X 1.0 instances are 5.4.1 or later.

ExamplesExamples
The following table is used to describe the limits that GSIs have on DML.

CREATE TABLE t_order(
 `id` bigint(11) NOT NULL AUTO_INCREMENT,
 `order_id` varchar(20) DEFAULT NULL,
 `buyer_id` varchar(20) DEFAULT NULL,
 `seller_id` varchar(20) DEFAULT NULL,
 `order_snapshot` longtext DEFAULT NULL,
 `order_detail` longtext DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `l_i_order` (`order_id`),
 GLOBAL INDEX `g_i_seller` (`seller_id`) dbpartition by hash(`seller_id`) tbpartition by h
ash(`seller_id`),
 GLOBAL UNIQUE INDEX `g_i_buyer` (`buyer_id`) COVERING (order_snapshot) dbpartition by has
h(`buyer_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`order_id`);

After a GSI fails to be written to a table, other DML statements cannot be executed on the table and
transactions cannot be committed on the table.

SET DRDS_TRANSACTION_POLICY='XA';
INSERT INTO t_order(order_id, buyer_id, seller_id) VALUES('order_1', 'buyer_1', 'seller_1')
;
A GSI failed to be written to the table.
INSERT IGNORE INTO t_order(order_id, buyer_id, seller_id) VALUES('order_2', 'buyer_1', 'sel
ler_1');
Other DML statements cannot be executed on the table.
INSERT IGNORE INTO t_order(order_id, buyer_id, seller_id) VALUES('order_2', 'buyer_2', 'sel
ler_2');
Transactions cannot be committed on the table.
COMMIT;

5.7. Limits of global secondary indexes on5.7. Limits of global secondary indexes on
DMLDML

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DML

> Document Version: 20220601 92

This topic describes how to view all auxiliary SQL commands in Distributed Relat ional Database Service
(DRDS) by executing the SHOW HELP statement.

ContextContext

6.SHOW6.SHOW
6.1. SHOW HELP6.1. SHOW HELP

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

93 > Document Version: 20220601

mysql> show help;
+---+--
---------+---+
| STATEMENT | DESCRIPTION
| EXAMPLE |
+---+--
---------+---+
| show rule | Report all table rule
| |
| show rule from TABLE | Report table rule
| show rule from user |
| show full rule from TABLE | Report table full rule
| show full rule from user |
| show topology from TABLE | Report table physical topology
| show topology from user |
| show partitions from TABLE | Report table dbPartition or tbPartition columns
| show partitions from user |
| show broadcasts | Report all broadcast tables
| |
| show datasources | Report all partition db threadPool info
| |
| show node | Report master/slave read status
| |
| show slow | Report top 100 slow sql
| |
| show physical_slow | Report top 100 physical slow sql
| |
| clear slow | Clear slow data
| |
| trace SQL | Start trace sql, use show trace to print profil
ing data | trace select count(*) from user; show trace |
| show trace | Report sql execute profiling info
| |
| explain SQL | Report sql plan info
| explain select count(*) from user |
| explain detail SQL | Report sql detail plan info
| explain detail select count(*) from user |
| explain execute SQL | Report sql on physical db plan info
| explain execute select count(*) from user |
| show sequences | Report all sequences status
| |
| create sequence NAME [start with COUNT] | Create sequence
| create sequence test start with 0 |
| alter sequence NAME [start with COUNT] | Alter sequence
| alter sequence test start with 100000 |
| drop sequence NAME | Drop sequence
| drop sequence test |
+---+--
---------+---+
20 rows in set (0.00 sec)

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 94

This topic describes rule and topology query statements.

SHOW RULE [FROM tablename]

SHOW FULL RULE [FROM tablename]

SHOW TOPOLOGY FROM tablename

SHOW PARTITIONS FROM tablename

SHOW BROADCASTS

SHOW DATASOURCES

SHOW NODE

SHOW RULE [FROM tablename]SHOW RULE [FROM tablename]
Descript ion:

 SHOW RULE : queries the sharding details of each logical table in a database.

 SHOW RULE FROM tablename : queries the sharding details of a specified logical table in a database.

mysql> show rule;
+------+--------------+-----------+------------------+---------------------+---------------
-----+------------------+---------------------+--------------------+
| ID | TABLE_NAME | BROADCAST | DB_PARTITION_KEY | DB_PARTITION_POLICY | DB_PARTITION_C
OUNT | TB_PARTITION_KEY | TB_PARTITION_POLICY | TB_PARTITION_COUNT |
+------+--------------+-----------+------------------+---------------------+---------------
-----+------------------+---------------------+--------------------+
| 0 | dept_manager | 0 | | NULL | 1
| | NULL | 1 |
| 1 | emp | 0 | emp_no | hash | 8
| id | hash | 2 |
| 2 | example | 0 | shard_key | hash | 8
| | NULL | 1 |
+------+--------------+-----------+------------------+---------------------+---------------
-----+------------------+---------------------+--------------------+
3 rows in set (0.01 sec)

Important columns:

BROADCASTBROADCAST : indicates whether the table is a broadcast table. A value of 0 indicates that the table
is not a broadcast table. A value of 1 indicates that the table is a broadcast table.

DB_PART IT ION_KEYDB_PART IT ION_KEY: indicates the database shard key. If no database shards exist , the parameter
value is empty.

DB_PART IT ION_POLICYDB_PART IT ION_POLICY: indicates the database sharding policy. The parameter values can be hash
values and date values in the formats such as YYYYMM, YYYYDD, and YYYYWEEK.

DB_PART IT ION_COUNTDB_PART IT ION_COUNT : indicates the number of database shards.

T B_PART IT ION_KEYT B_PART IT ION_KEY: indicates the table shard key. If no table shards exist , the parameter value is
empty.

T B_PART IT ION_POLICYT B_PART IT ION_POLICY: indicates the table sharding policy. The parameter values can be hash

6.2. Rule and topology query statements6.2. Rule and topology query statements

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

95 > Document Version: 20220601

values or date values in the formats such as MM, DD, MMDD, and WEEK.

T B_PART IT ION_COUNTT B_PART IT ION_COUNT : indicates the number of table shards.

SHOW FULL RULE [FROM tablename]SHOW FULL RULE [FROM tablename]
You can execute this SQL statement to view the sharding rules of the logical tables in a database. This
statement queries more detailed information than the SHOW RULE statement.

mysql> show full rule;
+------+--------------+-----------+------------+-----------------------+-------------------
---------------------------------+---+---
--------------+------------------------------------+----------------+----------------------
----------------------------+
| ID | TABLE_NAME | BROADCAST | JOIN_GROUP | ALLOW_FULL_TABLE_SCAN | DB_NAME_PATTERN
| DB_RULES_STR | TB_NAME_PATTERN | TB_RULES_STR
| PARTITION_KEYS | DEFAULT_DB_INDEX |
+------+--------------+-----------+------------+-----------------------+-------------------
---------------------------------+---+---
--------------+------------------------------------+----------------+----------------------
----------------------------+
| 0 | dept_manager | 0 | NULL | 0 | SEQ_TEST_148776778
0814RGKKSEQ_TEST_WNJG_0000_RDS | NULL | de
pt_manager | NULL | NULL | SEQ_TEST_148776778081
4RGKKSEQ_TEST_WNJG_0000_RDS |
| 1 | emp | 0 | NULL | 1 | SEQ_TEST_148776778
0814RGKKSEQ_TEST_WNJG_{0000}_RDS | ((#emp_no,1,8#).longValue().abs() % 8) | em
p_{0} | ((#id,1,2#).longValue().abs() % 2) | emp_no id | SEQ_TEST_148776778081
4RGKKSEQ_TEST_WNJG_0000_RDS |
| 2 | example | 0 | NULL | 1 | SEQ_TEST_148776778
0814RGKKSEQ_TEST_WNJG_{0000}_RDS | ((#shard_key,1,8#).longValue().abs() % 8).intdiv(1) | ex
ample | NULL | shard_key | SEQ_TEST_148776778081
4RGKKSEQ_TEST_WNJG_0000_RDS |
+------+--------------+-----------+------------+-----------------------+-------------------
---------------------------------+---+---
--------------+------------------------------------+----------------+----------------------
----------------------------+
3 rows in set (0.01 sec)

Important columns:

BROADCASTBROADCAST : indicates whether the table is a broadcast table. A value of 0 indicates that the table
is not a broadcast table. A value of 1 indicates that the table is a broadcast table.

JOIN_GROUPJOIN_GROUP: indicates a reserved field.

ALLOW_FULL_T ABLE_SCANALLOW_FULL_T ABLE_SCAN: indicates whether data querying is allowed if no table shard keys are
specified for sharding. If this parameter is set to true, each physical table is scanned to locate the
data that meets the condit ion. This is a full table scan.

DB_NAME_PAT T ERNDB_NAME_PAT T ERN: The digit 0 inside a pair of braces {} in the parameter value is a placeholder.
When the SQL statement is executed, the placeholders are replaced by the value of DB_RULES_STR.
The number of digits in the parameter value remains unchanged. For example, if the value of
DB_NAME_PATTERN is SEQ_{0000}_RDS and the value of DB_RULES_STR is [1,2,3,4], the following
DB_NAME values are generated: SEQ_0001_RDS, SEQ_0002_RDS, SEQ_0003_RDS, and SEQ_0004_RDS.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 96

DB_RULES_ST RDB_RULES_ST R: indicates the database sharding rule.

T B_NAME_PAT T ERNT B_NAME_PAT T ERN: The digit 0 inside a pair of braces {} in the parameter value is a placeholder.
When the SQL statement is executed, the placeholders are replaced by the value of TB_RULES_STR.
The number of digits in the parameter value remains unchanged. For example, if the value of
TB_NAME_PATTERN is table_{00} and the value of TB_RULES_STR is [1,2,3,4,5,6,7,8], the following
tables are generated: table_01, table_02, table_03, table_04, table_05, table_06, table_07, and
table_08.

T B_RULES_ST RT B_RULES_ST R: indicates the table sharding rule.

PART IT ION_KEYSPART IT ION_KEYS: indicates a set of the database and table shard keys. If both database sharding
and table sharding are performed, the database shard key is placed before the table shard key.

DEFAULT _DB_INDEXDEFAULT _DB_INDEX: indicates the database shard in which a single-database non-part it ioned
table is stored.

SHOW TOPOLOGY FROM tablenameSHOW TOPOLOGY FROM tablename
You can execute this SQL statement to view the topology of a specified logical table. The information
contains the database shards to which data in the logical table is part it ioned and the table shards in
each database shard.

mysql> show topology from emp;
+------+--+------------+
| ID | GROUP_NAME | TABLE_NAME |
+------+--+------------+
0	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0000_RDS	emp_0
1	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0000_RDS	emp_1
2	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0001_RDS	emp_0
3	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0001_RDS	emp_1
4	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0002_RDS	emp_0
5	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0002_RDS	emp_1
6	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0003_RDS	emp_0
7	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0003_RDS	emp_1
8	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0004_RDS	emp_0
9	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0004_RDS	emp_1
10	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0005_RDS	emp_0
11	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0005_RDS	emp_1
12	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0006_RDS	emp_0
13	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0006_RDS	emp_1
14	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0007_RDS	emp_0
15	SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0007_RDS	emp_1
+------+--+------------+
16 rows in set (0.01 sec)

SHOW PARTITIONS FROM tablenameSHOW PARTITIONS FROM tablename
You can execute this SQL statement to view a set of database and table shard keys, which are
separated by commas (,). If two values are returned, both database sharding and table sharding are
performed. The first value is the database shard key and the second value is the table shard key. If only
one value is returned, only database sharding is performed. This value is the database shard key.

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

97 > Document Version: 20220601

mysql> show partitions from emp;
+-----------+
| KEYS |
+-----------+
| emp_no,id |
+-----------+
1 row in set (0.00 sec)

SHOW BROADCASTSSHOW BROADCASTS
You can execute this SQL statement to view the broadcast tables.

mysql> show broadcasts;
+------+------------+
| ID | TABLE_NAME |
+------+------------+
| 0 | brd2 |
| 1 | brd_tbl |
+------+------------+
2 rows in set (0.01 sec)

SHOW DATASOURCESSHOW DATASOURCES
You can execute this SQL statement to view the information about the underlying storage. The
information includes the database name, database group name, connection URL, username, storage
type, read and write weights, and connection pool information.

mysql> show datasources;
+------+----------------------------+--+-----
---+---
-------------------------------------+-----------+-------+------+------+------+------------
--+----------+--------------+---------------+--
+-------------+--------------+
| ID | SCHEMA | NAME | GROU
P | URL
| USER | TYPE | INIT | MIN | MAX | IDLE_TIMEOUT | MAX_WAIT | ACTIVE_COUNT | POOLING
_COUNT | ATOM | READ_WEIGHT | WRITE_WEIGHT |
+------+----------------------------+--+-----
---+---
-------------------------------------+-----------+-------+------+------+------+------------
--+----------+--------------+---------------+--
+-------------+--------------+
| 0 | seq_test_1487767780814rgkk | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0000_iiab_1 | SEQ_
TEST_1487767780814RGKKSEQ_TEST_WNJG_0000_RDS | jdbc:mysql://rds1ur80kcv8g3t6p3ol.mysql.rds.
aliyuncs.com:3306/seq_test_wnjg_0000 | jnkinsea0 | mysql | 0 | 24 | 72 | 15
| 5000 | 0 | 1 | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0000_iiab |
10 | 10 |
| 1 | seq_test_1487767780814rgkk | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0001_iiab_2 | SEQ_
TEST_1487767780814RGKKSEQ_TEST_WNJG_0001_RDS | jdbc:mysql://rds1ur80kcv8g3t6p3ol.mysql.rds.
aliyuncs.com:3306/seq_test_wnjg_0001 | jnkinsea0 | mysql | 0 | 24 | 72 | 15
| 5000 | 0 | 1 | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0001_iiab |

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 98

10 | 10 |
| 2 | seq_test_1487767780814rgkk | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0002_iiab_3 | SEQ_
TEST_1487767780814RGKKSEQ_TEST_WNJG_0002_RDS | jdbc:mysql://rds1ur80kcv8g3t6p3ol.mysql.rds.
aliyuncs.com:3306/seq_test_wnjg_0002 | jnkinsea0 | mysql | 0 | 24 | 72 | 15
| 5000 | 0 | 1 | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0002_iiab |
10 | 10 |
| 3 | seq_test_1487767780814rgkk | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0003_iiab_4 | SEQ_
TEST_1487767780814RGKKSEQ_TEST_WNJG_0003_RDS | jdbc:mysql://rds1ur80kcv8g3t6p3ol.mysql.rds.
aliyuncs.com:3306/seq_test_wnjg_0003 | jnkinsea0 | mysql | 0 | 24 | 72 | 15
| 5000 | 0 | 1 | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0003_iiab |
10 | 10 |
| 4 | seq_test_1487767780814rgkk | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0004_iiab_5 | SEQ_
TEST_1487767780814RGKKSEQ_TEST_WNJG_0004_RDS | jdbc:mysql://rds1ur80kcv8g3t6p3ol.mysql.rds.
aliyuncs.com:3306/seq_test_wnjg_0004 | jnkinsea0 | mysql | 0 | 24 | 72 | 15
| 5000 | 0 | 1 | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0004_iiab |
10 | 10 |
| 5 | seq_test_1487767780814rgkk | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0005_iiab_6 | SEQ_
TEST_1487767780814RGKKSEQ_TEST_WNJG_0005_RDS | jdbc:mysql://rds1ur80kcv8g3t6p3ol.mysql.rds.
aliyuncs.com:3306/seq_test_wnjg_0005 | jnkinsea0 | mysql | 0 | 24 | 72 | 15
| 5000 | 0 | 1 | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0005_iiab |
10 | 10 |
| 6 | seq_test_1487767780814rgkk | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0006_iiab_7 | SEQ_
TEST_1487767780814RGKKSEQ_TEST_WNJG_0006_RDS | jdbc:mysql://rds1ur80kcv8g3t6p3ol.mysql.rds.
aliyuncs.com:3306/seq_test_wnjg_0006 | jnkinsea0 | mysql | 0 | 24 | 72 | 15
| 5000 | 0 | 1 | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0006_iiab |
10 | 10 |
| 7 | seq_test_1487767780814rgkk | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0007_iiab_8 | SEQ_
TEST_1487767780814RGKKSEQ_TEST_WNJG_0007_RDS | jdbc:mysql://rds1ur80kcv8g3t6p3ol.mysql.rds.
aliyuncs.com:3306/seq_test_wnjg_0007 | jnkinsea0 | mysql | 0 | 24 | 72 | 15
| 5000 | 0 | 1 | rds1ur80kcv8g3t6p3ol_seq_test_wnjg_0007_iiab |
10 | 10 |
+------+----------------------------+--+-----
---+---
-------------------------------------+-----------+-------+------+------+------+------------
--+----------+--------------+---------------+--
+-------------+--------------+
8 rows in set (0.01 sec)

Important columns:

SCHEMASCHEMA: indicates the database name.

GROUPGROUP: indicates the database group name. After the databases are grouped, you can manage
mult iple databases that store the same data in a group. For example, after you replicate the data of
a database to an ApsaraDB RDS for MySQL instance, you can manage the primary database and the
secondary database in a group. Database grouping enables read/write split t ing and
primary/secondary switchovers.

URLURL: indicates the URL that is used to connect to an underlying ApsaraDB RDS for MySQL database.

T YPET YPE: indicates the underlying storage type. Only ApsaraDB RDS for MySQL is supported.

READ_WEIGHTREAD_WEIGHT : indicates the read weight. If you want to reduce the number of read requests to the
primary ApsaraDB RDS for MySQL instance, you can use the read/write split t ing feature to distribute
some read requests to the secondary ApsaraDB RDS for MySQL instances. This offloads the read

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

99 > Document Version: 20220601

requests from the primary ApsaraDB RDS for MySQL instance. PolarDB-X 1.0 automatically identifies
the read and write requests. Then, it sends the write requests to the primary ApsaraDB RDS for MySQL
instance and distributes the read requests to each ApsaraDB RDS for MySQL instance based on the
specified read weights.

WRIT E_WEIGHTWRIT E_WEIGHT : indicates the write weight.

SHOW NODESHOW NODE
You can execute this SQL statement to view the data of a physical database, such as the accumulative
number of read operations, the accumulative number of write operations, the accumulative read
weights, and the accumulative write weights.

mysql> show node;
+------+--+-------------------+------------
------+---------------------+--------------------+
| ID | NAME | MASTER_READ_COUNT | SLAVE_READ_
COUNT | MASTER_READ_PERCENT | SLAVE_READ_PERCENT |
+------+--+-------------------+------------
------+---------------------+--------------------+
| 0 | SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0000_RDS | 12 |
0 | 100% | 0% |
| 1 | SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0001_RDS | 0 |
0 | 0% | 0% |
| 2 | SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0002_RDS | 0 |
0 | 0% | 0% |
| 3 | SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0003_RDS | 0 |
0 | 0% | 0% |
| 4 | SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0004_RDS | 0 |
0 | 0% | 0% |
| 5 | SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0005_RDS | 0 |
0 | 0% | 0% |
| 6 | SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0006_RDS | 0 |
0 | 0% | 0% |
| 7 | SEQ_TEST_1487767780814RGKKSEQ_TEST_WNJG_0007_RDS | 0 |
0 | 0% | 0% |
+------+--+-------------------+------------
------+---------------------+--------------------+
8 rows in set (0.01 sec)

Important columns:

MAST ER_COUNTMAST ER_COUNT : indicates the accumulative number of read and write queries processed by the
primary ApsaraDB RDS for MySQL instance.

SLAVE_COUNTSLAVE_COUNT : indicates the accumulative number of read-only queries processed by the secondary
ApsaraDB RDS for MySQL instances.

MAST ER_PERCENTMAST ER_PERCENT : indicates the actual percentage of the accumulative read and write queries
processed by the primary ApsaraDB RDS for MySQL instance. This is not the specified percentage.

SLAVE_PERCENTSLAVE_PERCENT : indicates the actual percentage of the accumulative read and write queries
processed by the secondary ApsaraDB RDS for MySQL instances. This is not the specified percentage.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 100

Not eNot e

Read-only queries in transactions are sent to the primary ApsaraDB RDS for MySQL instance.

The MASTER_PERCENT and SLAVE_PERCENT columns indicate the accumulative historical
data. If the rat io between the read weight and the write weight changes, these parameter
values do not immediately reflect the latest rat io. The latest rat io appears after a long
period of t ime.

This topic describes how to execute the SHOW statements to identify slow SQL queries.

SHOW [FULL] SLOW [WHERE expr] [limit expr]

SHOW [FULL] PHYSICAL_SLOW [WHERE expr] [limit expr]

CLEAR SLOW

SHOW [FULL] SLOW [WHERE expr] [limit expr]SHOW [FULL] SLOW [WHERE expr] [limit expr]
SQL queries that take more than 1s are slow SQL queries.Logical slow SQL queries are sent from an
application to a PolarDB-X 1.0 instance.

 SHOW SLOW : queries the top 100 logical slow SQL queries since a PolarDB-X 1.0 instance is started or
the last CLEAR SLOW statement is executed.

Not e Not e The SHOW SLOW statement returns top 100 logical slow SQL queries. The returned
data is stored in PolarDB-X 1.0. If you restart the database instance or execute the CLEAR SLOW
 statement, the returned data is cleared.

 SHOW FULL SLOW : queries all the logical slow SQL queries that are persistently stored in PolarDB-X
1.0 since the database instance is started. The system can retain a limited number of slow queries.
The upper limit varies based on the instance type. PolarDB-X 1.0 dynamically deletes the oldest slow
SQL queries when the maximum number of slow queries is exceeded. If the specificat ions of the DRDS
instance include 4 cores and 4 GB memory, the system can retain a maximum of 10,000 slow SQL
queries. If the specificat ions of the DRDS instance include 8 cores and 8 GB memory, the system can
retain a maximum of 20,000 slow SQL queries. The slow SQL queries include logical slow SQL queries
and physical slow SQL queries. A similar rule applies to other instance specificat ions.

Sample code

mysql> show slow where execute_time > 1000 limit 1;
+-----------+---------------------+--------------+------------+-----------+
| HOST | START_TIME | EXECUTE_TIME | AFFECT_ROW | SQL |
+-----------+---------------------+--------------+------------+-----------+
| 127.0.0.1 | 2016-03-16 13:02:57 | 2785 | 7 | show rule |
+-----------+---------------------+--------------+------------+-----------+
1 row in set (0.02 sec)

Important columns:

HOSTHOST : the IP address of the server from which the SQL statement is sent.

6.3. Slow SQL queries6.3. Slow SQL queries

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

101 > Document Version: 20220601

ST ART _T IMEST ART _T IME: the t ime when the SQL statement starts to be executed.

EXECUT E_T IMEEXECUT E_T IME: the t ime that is spent executing the SQL statement.

AFFECT _ROWAFFECT _ROW: the number of affected rows for a DML statement or the number of returned records
for a data query language (DQL) statement.

SHOW [FULL] PHYSICAL_SLOW [WHERE expr] [limit expr]SHOW [FULL] PHYSICAL_SLOW [WHERE expr] [limit expr]
SQL queries that take more than 1s are slow SQL queries.Physical slow SQL queries are sent from a
PolarDB-X 1.0 instance to an ApsaraDB RDS for MySQL instance.

 SHOW PHYSICAL_SLOW : queries the top 100 physical slow SQL queries since a PolarDB-X 1.0 instance
is started or the last CLEAR SLOW statement is executed. Take note that the SHOW PHYSICAL_SLOW
statement returns the top 100 physical slow SQL queries.The returned data is stored in PolarDB-X 1.0.
If you restart the database instance or execute the CLEAR SLOW statement, the returned data is
cleared.

 SHOW FULL PHYSICAL_SLOW : queries all physical slow SQL queries that are persistently stored in
PolarDB-X 1.0 since the database instance is started. The system can retain a limited number of slow
queries. The upper limit varies based on the instance type. PolarDB-X 1.0 dynamically deletes the
oldest slow SQL queries when the maximum number of slow queries is exceeded. If the specificat ions
of the DRDS instance include 4 cores and 4 GB memory, the system can retain a maximum of 10,000
slow SQL queries. If the specificat ions of the DRDS instance include 8 cores and 8 GB memory, the
system can retain a maximum of 20,000 slow SQL queries. The slow SQL queries include logical slow
SQL queries and physical slow SQL queries. A similar rule applies to other instance specificat ions.

Sample code

mysql> show physical_slow;
+----------------+-----------------------------------+---------------------+--------------+
------------------+-------------------------+------------------------+------------+--------
---------+
| GROUP_NAME | DBKEY_NAME | START_TIME | EXECUTE_TIME |
SQL_EXECUTE_TIME | GETLOCK_CONNECTION_TIME | CREATE_CONNECTION_TIME | AFFECT_ROW | SQL
|
+----------------+-----------------------------------+---------------------+--------------+
------------------+-------------------------+------------------------+------------+--------
---------+
| TDDL5_00_GROUP | db218249098_sqa_zmf_tddl5_00_3309 | 2016-03-16 13:05:38 | 1057 |
1011 | 0 | 0 | 1 | select sleep(1) |
+----------------+-----------------------------------+---------------------+--------------+
------------------+-------------------------+------------------------+------------+--------
---------+
1 row in set (0.01 sec)

Important columns:

GROUP_NAMEGROUP_NAME: the name of the group to which the database that executes the SQL statement
belongs.

ST ART _T IMEST ART _T IME: the t ime when the SQL statement starts to be executed.

EXECUT E_T IMEEXECUT E_T IME: the t ime that is spent executing the SQL statement.

AFFECT _ROWAFFECT _ROW: the number of affected rows for a DML statement or the number of returned records
for a DQL statement.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 102

CLEAR SLOWCLEAR SLOW
You can execute the CLEAR SLOW statement to clear the top 100 logical slow SQL queries and the top
100 physical slow SQL queries since a PolarDB-X 1.0 instance is started or the last CLEAR SLOW
statement is executed.

Sample code

mysql> clear slow;
Query OK, 0 rows affected (0.00 sec)

Not e Not e You can execute the SHOW SLOW or SHOW PHYSICAL_SLOW statement to query the
top 100 slow SQL queries. If you do not execute the CLEAR SLOW statement for a long period of
t ime, the system may return some invalid slow SQL queries that are optimized. Therefore, we
recommend that you execute CLEAR SLOW after you optimize slow SQL queries. Then, you can
check whether the slow SQL queries are optimized after the system runs for a period of t ime.

This topic describes how to execute the SHOW statements to query real-t ime stat ist ics.

SHOW [FULL] STATS

SHOW DB STATUS

SHOW FULL DB STATUS [LIKE {tablename}]

SHOW TABLE STATUS [LIKE 'pattern' | WHERE expr]

SHOW [FULL] STATSSHOW [FULL] STATS
You can execute this SQL statement to query the overall stat ist ics. The stat ist ics are instantaneous
values. Take note of this point:The query result of the SHOW FULL STATS statement varies based on
the PolarDB-X 1.0 instance versions.

Example:

6.4. Statistics queries6.4. Statistics queries

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

103 > Document Version: 20220601

mysql> show stats;
+------+---------+----------+-------------------+------------------+-----------------------
-+--------------------+--------+------------+--------------+---------------+---------------
-+
| QPS | RDS_QPS | SLOW_QPS | PHYSICAL_SLOW_QPS | ERROR_PER_SECOND | MERGE_QUERY_PER_SECOND
| ACTIVE_CONNECTIONS | RT(MS) | RDS_RT(MS) | NET_IN(KB/S) | NET_OUT(KB/S) | THREAD_RUNNING
|
+------+---------+----------+-------------------+------------------+-----------------------
-+--------------------+--------+------------+--------------+---------------+---------------
-+
| 1.77 | 1.68 | 0.03 | 0.03 | 0.02 | 0.00
| 7 | 157.13 | 51.14 | 134.49 | 1.48 | 1
|
+------+---------+----------+-------------------+------------------+-----------------------
-+--------------------+--------+------------+--------------+---------------+---------------
-+
1 row in set (0.01 sec)
mysql> show full stats;
+------+---------+----------+-------------------+------------------+----------------------+
------------------------+--------------------+------------------------------+--------+-----
-------+--------------+---------------+----------------+----------------------+------------
-----+----------------------------+-----------------------+------------------------------+-
------------------------+--------------------------+---------------------+-------+---------
+-------------+------------+
| QPS | RDS_QPS | SLOW_QPS | PHYSICAL_SLOW_QPS | ERROR_PER_SECOND | VIOLATION_PER_SECOND |
MERGE_QUERY_PER_SECOND | ACTIVE_CONNECTIONS | CONNECTION_CREATE_PER_SECOND | RT(MS) | RDS_R
T(MS) | NET_IN(KB/S) | NET_OUT(KB/S) | THREAD_RUNNING | HINT_USED_PER_SECOND | HINT_USED_CO
UNT | AGGREGATE_QUERY_PER_SECOND | AGGREGATE_QUERY_COUNT | TEMP_TABLE_CREATE_PER_SECOND | T
EMP_TABLE_CREATE_COUNT | MULTI_DB_JOIN_PER_SECOND | MULTI_DB_JOIN_COUNT | CPU | FREEMEM |
FULLGCCOUNT | FULLGCTIME |
+------+---------+----------+-------------------+------------------+----------------------+
------------------------+--------------------+------------------------------+--------+-----
-------+--------------+---------------+----------------+----------------------+------------
-----+----------------------------+-----------------------+------------------------------+-
------------------------+--------------------------+---------------------+-------+---------
+-------------+------------+
| 1.63 | 1.68 | 0.03 | 0.03 | 0.02 | 0.00 |
0.00 | 6 | 0.01 | 157.13 | 51.14 | 134.
33 | 1.21 | 1 | 0.00 | 54 |
0.00 | 663 | 0.00 | 512 |
0.00 | 516 | 0.09% | 6.96% | 76446 | 21326906 |
+------+---------+----------+-------------------+------------------+----------------------+
------------------------+--------------------+------------------------------+--------+-----
-------+--------------+---------------+----------------+----------------------+------------
-----+----------------------------+-----------------------+------------------------------+-
------------------------+--------------------------+---------------------+-------+---------
+-------------+------------+
1 row in set (0.01 sec)

Important columns:

QPSQPS: the number of queries per second (QPS) sent from an applicationto a PolarDB-X 1.0 instance.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 104

The QPS is the logical QPS.

RDS_QPSRDS_QPS:the number of QPS sent from a PolarDB-X 1.0 instance to an ApsaraDB RDS for MySQL
instance.The QPS is the physical QPS.

ERROR_PER_SECONDERROR_PER_SECOND: the total number of errors that occur per second. These errors include SQL
syntax errors, primary key conflicts, system errors, and connectivity errors.

VIOLAT ION_PER_SECONDVIOLAT ION_PER_SECOND: the number of primary key conflicts or unique key conflicts per second.

MERGE_QUERY_PER_SECONDMERGE_QUERY_PER_SECOND: the number of queries on tables per second. Sharding is enabled for
the DRDS instance.

ACT IVE_CONNECT IONSACT IVE_CONNECT IONS: the number of act ive connections.

CONNECT ION_CREAT E_PER_SECCONDCONNECT ION_CREAT E_PER_SECCOND: the number of connections that are created per second.

RT (MS)RT (MS): the t ime between a sent SQL query and a response. The SQL query is sent from an
application toa PolarDB-X 1.0 instance. The response t ime (RT) is the logical RT.

RDS_RT (MS)RDS_RT (MS):the t ime to respond to an SQL query that is sent from a PolarDB-X 1.0 instance to an
ApsaraDB RDS for MySQL instance. The RT is the physical RT.

NET _IN(KB/S)NET _IN(KB/S):the amount of inbound traffic of a PolarDB-X 1.0 instance per second.

NET _OUT (KB/S)NET _OUT (KB/S):the amount of outbound traffic of a PolarDB-X 1.0 instance per second.

T HREAD_RUNNINGT HREAD_RUNNING: the number of threads that are running in a DRDS instance.

HINT _USED_PER_SECONDHINT _USED_PER_SECOND: the number of SQL queries that contain hints per second.

HINT _USED_COUNTHINT _USED_COUNT : the total number of SQL queries that contain hints since a DRDS instance is
started.

AGGREGAT E_QUERY_PER_SECCONDAGGREGAT E_QUERY_PER_SECCOND: the number of aggregate queries per second.

AGGREGAT E_QUERY_COUNTAGGREGAT E_QUERY_COUNT : the total number of aggregate queries. This column shows the
accumulative historical data.

T EMP_T ABLE_CREAT E_PER_SECCONDT EMP_T ABLE_CREAT E_PER_SECCOND: the number of temporary tables that are created per
second.

T EMP_T ABLE_CREAT E_COUNTT EMP_T ABLE_CREAT E_COUNT : the total number of temporary tables that are created since a
DRDS instance is started.

MULT I_DB_JOIN_PER_SECCONDMULT I_DB_JOIN_PER_SECCOND: the number of cross-database JOIN queries per second.

MULT I_DB_JOIN_COUNTMULT I_DB_JOIN_COUNT : the total number of cross-database JOIN queries since a DRDS instance is
started.

SHOW DB STATUSSHOW DB STATUS
You can execute this SQL statement to query the storage and performance information about a
physical database in real t ime. The storage information is obtained from an ApsaraDB RDS for MySQL
system table. Therefore, the returned storage may be different from the actual storage.

Example:

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

105 > Document Version: 20220601

mysql> show db status;
+------+---------------------------+--------------------+-------------------+------------+-
-------+----------------+
| ID | NAME | CONNECTION_STRING | PHYSICAL_DB | SIZE_IN_MB |
RATIO | THREAD_RUNNING |
+------+---------------------------+--------------------+-------------------+------------+-
-------+----------------+
| 1 | drds_db_1516187088365daui | 100.100.64.1:59077 | TOTAL | 13.109375 |
100% | 3 |
| 2 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0000 | 1.578125 |
12.04% | |
| 3 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0001 | 1.4375 |
10.97% | |
| 4 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0002 | 1.4375 |
10.97% | |
| 5 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0003 | 1.4375 |
10.97% | |
| 6 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0004 | 1.734375 |
13.23% | |
| 7 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0005 | 1.734375 |
13.23% | |
| 8 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0006 | 2.015625 |
15.38% | |
| 9 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0007 | 1.734375 |
13.23% | |
+------+---------------------------+--------------------+-------------------+------------+-
-------+----------------+

Important columns:

NAMENAME: the internal tag that represents aPolarDB-X 1.0 database.PolarDB-X 1.0 The value is different
from the name of the PolarDB-X 1.0 database.

CONNECT ION_ST RINGCONNECT ION_ST RING: the information about a connection from a DRDS instance to a database
shard.

PHYSICAL_DBPHYSICAL_DB: the name of a database shard. The TOTAL row showsthe total storage of all the
database shards of a PolarDB-X 1.0 database.

SIZE_IN_MBSIZE_IN_MB: the used storage in a database shard. Unit: MB.

RAT IORAT IO: the rat io of the data volume of a database shard to the total data volume of the PolarDB-X
1.0 database.

T HREAD_RUNNINGT HREAD_RUNNING: the number of threads that are running on a physical database instance. The
value of the THREAD_RUNNING parameter is the same as that of the Threads_running parameter
returned by the SHOW GLOBAL STATUS statement in MySQL. For more information, see MySQL official
documentation.

SHOW FULL DB STATUS [LIKE {tablename}]SHOW FULL DB STATUS [LIKE {tablename}]
You can execute this SQL statement to query the storage and performance information about a table
in a physical database in real t ime. The storage information is obtained from an ApsaraDB RDS for
MySQL system table. Therefore, the returned storage may be different from the actual storage.

Example:

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 106

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html

mysql> show full db status like hash_tb;
+------+---------------------------+--------------------+-------------------+--------------
--+------------+--------+----------------+
| ID | NAME | CONNECTION_STRING | PHYSICAL_DB | PHYSICAL_TABL
E | SIZE_IN_MB | RATIO | THREAD_RUNNING |
+------+---------------------------+--------------------+-------------------+--------------
--+------------+--------+----------------+
| 1 | drds_db_1516187088365daui | 100.100.64.1:59077 | TOTAL |
| 19.875 | 100% | 3 |
| 2 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0000 | TOTAL
| 3.03125 | 15.25% | |
| 3 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0000 | hash_tb_00
| 1.515625 | 7.63% | |
| 4 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0000 | hash_tb_01
| 1.515625 | 7.63% | |
| 5 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0001 | TOTAL
| 2.0 | 10.06% | |
| 6 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0001 | hash_tb_02
| 1.515625 | 7.63% | |
| 7 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0001 | hash_tb_03
| 0.484375 | 2.44% | |
| 8 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0002 | TOTAL
| 3.03125 | 15.25% | |
| 9 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0002 | hash_tb_04
| 1.515625 | 7.63% | |
| 10 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0002 | hash_tb_05
| 1.515625 | 7.63% | |
| 11 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0003 | TOTAL
| 1.953125 | 9.83% | |
| 12 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0003 | hash_tb_06
| 1.515625 | 7.63% | |
| 13 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0003 | hash_tb_07
| 0.4375 | 2.2% | |
| 14 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0004 | TOTAL
| 3.03125 | 15.25% | |
| 15 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0004 | hash_tb_08
| 1.515625 | 7.63% | |
| 16 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0004 | hash_tb_09
| 1.515625 | 7.63% | |
| 17 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0005 | TOTAL
| 1.921875 | 9.67% | |
| 18 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0005 | hash_tb_11
| 1.515625 | 7.63% | |
| 19 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0005 | hash_tb_10
| 0.40625 | 2.04% | |
| 20 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0006 | TOTAL
| 3.03125 | 15.25% | |
| 21 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0006 | hash_tb_12
| 1.515625 | 7.63% | |
| 22 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0006 | hash_tb_13
| 1.515625 | 7.63% | |
| 23 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0007 | TOTAL
| 1.875 | 9.43% | |
| 24 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0007 | hash_tb_14

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

107 > Document Version: 20220601

| 24 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0007 | hash_tb_14
| 1.515625 | 7.63% | |
| 25 | drds_db_1516187088365daui | 100.100.64.1:59077 | drds_db_xzip_0007 | hash_tb_15
| 0.359375 | 1.81% | |
+------+---------------------------+--------------------+-------------------+--------------
--+------------+--------+----------------+

Important columns:

NAMENAME: the internal tag that represents aPolarDB-X 1.0 database. PolarDB-X 1.0 The value is different
from the name of the PolarDB-X 1.0 database.

CONNECT ION_ST RINGCONNECT ION_ST RING: the information about a connection from a DRDS instance to a database
shard.

PHYSICAL_DBPHYSICAL_DB: the name of a database shard. If you use the LIKE keyword in a statement, the TOTAL
 row shows the storage of the database shard. If you do not use the LIKE keyword in a statement,
the TOTAL row shows the total storage of all the database shards.

PHYSICAL_T ABLEPHYSICAL_T ABLE: the name of a table shard in a database shard. If you use the LIKE keyword in a
statement, the TOTAL row shows the storage of the table shard. If you do not use the LIKE
keyword in a statement, the TOTAL row shows the total storage of all the table shards.

SIZE_IN_MBSIZE_IN_MB: the used storage in a table shard. Unit: MB.

RAT IORAT IO: the rat io of the data volume of a table shard to the total data volume of all the returned
table shards.

T HREAD_RUNNINGT HREAD_RUNNING: the number of threads that are running on a physical database. The value of
the THREAD_RUNNING parameter is the same as that of the Threads_running parameter returned by
the SHOW GLOBAL STATUS statement in MySQL. For more information, see MySQL official
documentation.

SHOW TABLE STATUS [LIKE 'pattern' | WHERE expr]SHOW TABLE STATUS [LIKE 'pattern' | WHERE expr]
You can execute this SQL statement to query information about a table. You can use this statement to
aggregate the data of all underlying physical table shards.

Example:

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 108

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html

mysql> show table status like 'multi_db_multi_tbl';
+--------------------+--------+---------+------------+------+----------------+-------------
+-----------------+--------------+-----------+----------------+-----------------------+----
---------+------------+-----------------+----------+----------------+---------+
| NAME | ENGINE | VERSION | ROW_FORMAT | ROWS | AVG_ROW_LENGTH | DATA_LENGTH
| MAX_DATA_LENGTH | INDEX_LENGTH | DATA_FREE | AUTO_INCREMENT | CREATE_TIME | UPD
ATE_TIME | CHECK_TIME | COLLATION | CHECKSUM | CREATE_OPTIONS | COMMENT |
+--------------------+--------+---------+------------+------+----------------+-------------
+-----------------+--------------+-----------+----------------+-----------------------+----
---------+------------+-----------------+----------+----------------+---------+
| multi_db_multi_tbl | InnoDB | 10 | Compact | 2 | 16384 | 16384
| 0 | 16384 | 0 | 100000 | 2017-03-27 17:43:57.0 | NUL
L | NULL | utf8_general_ci | NULL | | |
+--------------------+--------+---------+------------+------+----------------+-------------
+-----------------+--------------+-----------+----------------+-----------------------+----
---------+------------+-----------------+----------+----------------+---------+
1 row in set (0.03 sec)

Important columns:

NAMENAME: the name of a table.

ENGINEENGINE: the storage engine for a table.

VERSIONVERSION: the version of a table storage engine.

ROW_FORMATROW_FORMAT : the format of the rows in a table. Sample values: Dynamic, Fixed, and Compressed.
The Dynamic value specifies that the length of a row is variable, for example, a row of the VARCHAR
or BLOB type. The Fixed value specifies that the length of a row is constant, for example, a row of
the CHAR or INTEGER type.

ROWSROWS: the number of rows in a table.

AVG_ROW_LENGT HAVG_ROW_LENGT H: the average number of bytes in each row.

DAT A_LENGT HDAT A_LENGT H: the data volume of a full table. Unit: byte.

MAX_DAT A_LENGT HMAX_DAT A_LENGT H: the maximum volume of data that can be stored in a table.

INDEX_LENGT HINDEX_LENGT H: the used disk storage by indexes.

CREAT E_T IMECREAT E_T IME: the t ime when a table was created.

UPDAT E_T IMEUPDAT E_T IME: the t ime when a table was last updated.

COLLAT IONCOLLAT ION: the default character set and collat ion of a table.

CREAT E_OPT IONSCREAT E_OPT IONS: the other options specified when you created a table.

You can use the SCAN hint that is provided by PolarDB-X 1.0 in the SHOW TABLE STATUS statement.
This way, you can query the data volume of each physical table shard. For more information, see Hints.

mysql> /!TDDL:SCAN='multi_db_multi_tbl'*/show table status like 'multi_db_multi_tbl%';
+----------------------+--------+---------+------------+------+----------------+-----------
--+-----------------+--------------+-----------+----------------+---------------------+----
---------+------------+-----------------+----------+----------------+---------+------------
--+
| Name | Engine | Version | Row_format | Rows | Avg_row_length | Data_lengt
h | Max_data_length | Index_length | Data_free | Auto_increment | Create_time | Upd
ate_time | Check_time | Collation | Checksum | Create_options | Comment | Block_forma
t |

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

109 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/71270.htm#multiTask2614

+----------------------+--------+---------+------------+------+----------------+-----------
--+-----------------+--------------+-----------+----------------+---------------------+----
---------+------------+-----------------+----------+----------------+---------+------------
--+
| multi_db_multi_tbl_1 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_0 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_1 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_0 | InnoDB | 10 | Compact | 1 | 16384 | 1638
4 | 0 | 16384 | 0 | 2 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_1 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_0 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_1 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_0 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_1 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_0 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_1 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_0 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_1 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 110

L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_0 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_1 | InnoDB | 10 | Compact | 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
| multi_db_multi_tbl_0 | InnoDB | 10 | Compact | 1 | 16384 | 1638
4 | 0 | 16384 | 0 | 3 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8_general_ci | NULL | | | Original
|
+----------------------+--------+---------+------------+------+----------------+-----------
--+-----------------+--------------+-----------+----------------+---------------------+----
---------+------------+-----------------+----------+----------------+---------+------------
--+
16 rows in set (0.04 sec)

This topic describes how to use the SHOW PROCESSLIST and SHOW PHYSICAL_PROCESSLIST statements.

SHOW PROCESSLISTSHOW PROCESSLIST
You can execute the following statement to view the connections in PolarDB-X 1.0 and the SQL
statements being executed.

Syntax

SHOW PROCESSLIST

Example

mysql> SHOW PROCESSLIST\G
 ID: 1971050
 USER: admin
 HOST: 111.111.111.111:4303
 DB: drds_test
COMMAND: Query
 TIME: 0
 STATE:
 INFO: show processlist
1 row in set (0.01 sec)

Field Description

ID The ID of the connection. The value is a long-type number.

USER The user name used to establish this connection.

6.5. SHOW PROCESSLIST6.5. SHOW PROCESSLIST

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

111 > Document Version: 20220601

HOST
The IP address and port number of the host that establishes the
connection.

DB The name of the database accessed by this connection.

COMMAND

This field can be set to the either of the following values:

Query: The current connection is executing an SQL statement.

Sleep: The current connection is idle.

T IME

It is the duration when the connection is in the current state.

When the value of COMMAND is Query, this field indicates how long
the SQL statement has been executed on the connection.

When the value of COMMAND is Sleep, this field indicates how long
the connection has been idle.

STATE This field is meaningless and is constantly empty.

INFO

When the value of COMMAND is Query, this field indicates the
content of the SQL statement that is being executed on the
connection.

Not e Not e If the FULL parameter is not specified, SHOW
PROCESSLIST returns the first 30 characters of each SQL
statement that is being executed. If the FULL parameter is
specified, SHOW PROCESSLIST returns the first 1,000 characters
of each SQL statement that is being executed.

If the value of the COMMAND is Sleep, this field is meaningless and
is empty.

Field Description

SHOW PHYSICAL_PROCESSLISTSHOW PHYSICAL_PROCESSLIST
You can execute the following statement to view information about all physical SQL statements that
are being executed.

Syntax

SHOW PHYSICAL_PROCESSLIST

Not e Not e When an SQL statement in the returned results of the SHOW PHYSICAL_PROCESSLIST
statement is excessively long, the SQL statement is truncated. In this case, you can execute the
SHOW FULL PHYSICAL_PROCESSLIST statement to query the complete SQL statement.

Example

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 112

mysql> SHOW PHYSICAL_PROCESSLIST\G
*************************** 1. row ***************************
 ID: 0-0-521414
 USER: tddl5
 DB: tddl5_00
 COMMAND: Query
 TIME: 0
 STATE: init
 INFO: show processlist
*************************** 2. row ***************************
 ID: 0-0-521570
 USER: tddl5
 DB: tddl5_00
 COMMAND: Query
 TIME: 0
 STATE: User sleep
 INFO: /*DRDS /88.88.88.88/b67a0e4d8800000/ */ select sleep(1000)
2 rows in set (0.01 sec)

Not eNot e

The meaning of each column in the returned results is equivalent to that of the SHOW PRO
CESSLIST statement in MySQL. For more information, see SHOW PROCESSLIST Syntax.

Different from ApsaraDB RDS for MySQL, the PolarDB-X 1.0 instance returns a string
instead of a number in the ID column of a physical connection.

PolarDB-X 1.0 supports global secondary indexes (GSIs). This topic describes how to use the SHOW
GLOBAL INDEX statement to view the GSIs that have been created or are being created.

SyntaxSyntax

SHOW GLOBAL {INDEX | INDEXES} [FROM [schema_name.]tbl_name]

 schema_name and tbl_name are optional and are used to filter table names or view table
information in other databases.

show global index; # Queries the GSIs of all tables in the current database.
show global index from xxx_tb; # Queries the GSI of xxx_tb in the current database.
show global index from xxx_db.xxx_tb; # Queries the GSI of xxx_tb in xxx_db. This is a cros
s-database query.

ExamplesExamples

mysql> show global index;
+---------------------+----------------------+------------+-------------------------------+
----------------------------+--

6.6. SHOW GLOBAL INDEX6.6. SHOW GLOBAL INDEX

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

113 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.5/en/show-processlist.html

--------------------+------------+------------------+---------------------+----------------
----+------------------+---------------------+--------------------+----------+
| SCHEMA | TABLE | NON_UNIQUE | KEY_NAME |
INDEX_NAMES | COVERING_NAMES
| INDEX_TYPE | DB_PARTITION_KEY | DB_PARTITION_POLICY | DB_PARTITION_COUNT | TB_PARTITION_K
EY | TB_PARTITION_POLICY | TB_PARTITION_COUNT | STATUS |
+---------------------+----------------------+------------+-------------------------------+
----------------------------+--

--------------------+------------+------------------+---------------------+----------------
----+------------------+---------------------+--------------------+----------+
| XXXX_DRDS_LOCAL_APP | full_gsi_ddl_renamed | 1 | g_i_c_ddl_c_blob_long_renamed |
c_blob_long | id, c_bit_1, c_bit_8, c_bit_16, c_bit_32, c_bit_64, c_tinyint_
1, c_tinyint_1_un, c_tinyint_4, c_tinyint_4_un, c_tinyint_8, c_tinyint_8_un, c_smallint_16,
c_smallint_16_un, c_mediumint_1, c_mediumint_24, c_mediumint_24_un, c_int_1, c_int_32, c_in
t_32_un, c_bigint_1, c_bigint_64, c_bigint_64_un, c_decimal, c_decimal_pr, c_float, c_float
_pr, c_float_un, c_double, c_double_pr, c_double_un, c_date, c_datetime, c_datetime_3, c_da
tetime_6, c_timestamp_1, c_timestamp_3, c_time, c_time_1, c_time_3, c_time_6, c_year, c_yea
r_4, c_char, c_varchar, c_binary, c_varbinary, c_blob_tiny, c_blob_medium, c_text_tiny, c_t
ext, c_text_medium, c_text_long, c_enum, c_set, c_json, c_point, c_linestring, c_polygon, c
_multipoint, c_multilinestring, c_multipolygon, c_geometrycollection, c_geometory
| NULL | c_blob_long | HASH | 4 | c_blob_long
| HASH | 3 | PUBLIC |
| XXXX_DRDS_LOCAL_APP | full_gsi_ddl_renamed | 1 | g_i_c_ddl_c_mediumint_1 |
c_mediumint_1 | id, c_bit_1, c_bit_8, c_bit_16, c_bit_32, c_bit_64, c_tinyint_
1, c_tinyint_1_un, c_tinyint_4, c_tinyint_4_un, c_tinyint_8, c_tinyint_8_un, c_smallint_16,
c_smallint_16_un, c_mediumint_24, c_mediumint_24_un, c_int_1, c_int_32, c_int_32_un, c_bigi
nt_1, c_bigint_64, c_bigint_64_un, c_decimal, c_decimal_pr, c_float, c_float_pr, c_float_un
, c_double, c_double_pr, c_double_un, c_date, c_datetime, c_datetime_3, c_datetime_6, c_tim
estamp_1, c_timestamp_3, c_time, c_time_1, c_time_3, c_time_6, c_year, c_year_4, c_char, c_
varchar, c_binary, c_varbinary, c_blob_tiny, c_blob_medium, c_blob_long, c_text_tiny, c_tex
t, c_text_medium, c_text_long, c_enum, c_set, c_json, c_point, c_linestring, c_polygon, c_m
ultipoint, c_multilinestring, c_multipolygon, c_geometrycollection, c_geometory, c_smallint
_1, c_timestamp_6 | NULL | c_mediumint_1 | HASH | 4
| c_mediumint_1 | HASH | 3 | PUBLIC |
| XXXX_DRDS_LOCAL_APP | full_gsi_ddl_renamed | 1 | g_i_c_ddl_c_smallint_16_un |
c_smallint_16_un, c_time_1 | id, c_bit_1, c_bit_8, c_bit_16, c_bit_32, c_bit_64, c_tinyint_
1, c_tinyint_1_un, c_tinyint_4, c_tinyint_4_un, c_tinyint_8, c_tinyint_8_un, c_smallint_16,
c_mediumint_1, c_mediumint_24, c_mediumint_24_un, c_int_1, c_int_32, c_int_32_un, c_bigint_
1, c_bigint_64, c_bigint_64_un, c_decimal, c_decimal_pr, c_float, c_float_pr, c_float_un, c
_double, c_double_pr, c_double_un, c_date, c_datetime, c_datetime_3, c_datetime_6, c_timest
amp_1, c_timestamp_3, c_time, c_time_3, c_time_6, c_year, c_year_4, c_char, c_varchar, c_bi

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 114

amp_1, c_timestamp_3, c_time, c_time_3, c_time_6, c_year, c_year_4, c_char, c_varchar, c_bi
nary, c_varbinary, c_blob_tiny, c_blob_medium, c_blob_long, c_text_tiny, c_text, c_text_med
ium, c_text_long, c_enum, c_set, c_json, c_point, c_linestring, c_polygon, c_multipoint, c_
multilinestring, c_multipolygon, c_geometrycollection, c_geometory
| NULL | c_smallint_16_un | HASH | 4 | c_smallint_16_
un | HASH | 3 | PUBLIC |
| XXXX_DRDS_LOCAL_APP | t_order | 0 | g_i_seller |
seller_id | id, order_id
| HASH | seller_id | HASH | 4 | seller_id
| HASH | 2 | CREATING |
+---------------------+----------------------+------------+-------------------------------+
----------------------------+--

--------------------+------------+------------------+---------------------+----------------
----+------------------+---------------------+--------------------+----------+
4 rows in set (0.01 sec)

List of column names

Column name Description

SCHEMA The name of the database.

TABLE The name of the table.

NON_UNIQUE

Indicates whether the index is a unique GSI. Valid values:

1: a common GSI

0: a unique GSI

KEY_NAME The name of the index.

INDEX_NAMES The index column.

COVERING_NAMES The covering column.

INDEX_TYPE

The index type. Valid values:

NULL: not specified

BTREE

HASH

DB_PARTIT ION_KEY The database shard key.

DB_PARTIT ION_POLICY The database sharding function.

DB_PARTIT ION_COUNT The number of database shards.

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

115 > Document Version: 20220601

TB_PARTIT ION_KEY The table shard key.

TB_PARTIT ION_POLICY The table sharding function.

TB_PARTIT ION_COUNT The number of table shards.

STATUS

The current status of the index. Valid values:

CREATING

DELETE_ONLY

WRITE_ONLY

WRITE_REORG

PUBLIC

ABSENT

Column name Description

This topic describes how to use the SHOW INDEX statement to view local secondary indexes (LSIs) and
global secondary indexes (GSIs) of PolarDB-X 1.0 tables.

SyntaxSyntax

SHOW {INDEX | INDEXES | KEYS}
 {FROM | IN} tbl_name
 [{FROM | IN} db_name]
 [WHERE expr]

ExamplesExamples

6.7. SHOW INDEX6.7. SHOW INDEX

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 116

mysql> show index from t_order;
+--------------+------------+-----------+--------------+----------------+-----------+------
-------+----------+--------+------+------------+----------+---------------+
| TABLE | NON_UNIQUE | KEY_NAME | SEQ_IN_INDEX | COLUMN_NAME | COLLATION | CARDINALIT
Y | SUB_PART | PACKED | NULL | INDEX_TYPE | COMMENT | INDEX_COMMENT |
+--------------+------------+-----------+--------------+----------------+-----------+------
-------+----------+--------+------+------------+----------+---------------+
| t_order | 0 | PRIMARY | 1 | id | A |
0 | NULL | NULL | | BTREE | | |
| t_order | 1 | l_i_order | 1 | order_id | A |
0 | NULL | NULL | YES | BTREE | | |
| t_order | 0 | g_i_buyer | 1 | buyer_id | NULL |
0 | NULL | NULL | YES | GLOBAL | INDEX | |
| t_order | 1 | g_i_buyer | 2 | id | NULL |
0 | NULL | NULL | | GLOBAL | COVERING | |
| t_order | 1 | g_i_buyer | 3 | order_id | NULL |
0 | NULL | NULL | YES | GLOBAL | COVERING | |
| t_order | 1 | g_i_buyer | 4 | order_snapshot | NULL |
0 | NULL | NULL | YES | GLOBAL | COVERING | |
+--------------+------------+-----------+--------------+----------------+-----------+------
-------+----------+--------+------+------------+----------+---------------+
6 rows in set (0.01 sec)

List of column names

Column name Description

TABLE The name of the table.

NON_UNIQUE

Indicates whether the index is a unique GSI. Valid values:

1: a common GSI

0: a unique GSI

KEY_NAME The name of the index.

SEQ_IN_INDEX
The sequence number of the index column in the index. The value
starts from 1.

COLUMN_NAME The name of the index column.

COLLATION

The sorting order. Valid values:

A: ascending order

D: descending order

NULL: not sorted

CARDINALITY The number of estimated unique values.

SUB_PART
The prefix of the index. NULL indicates that the prefix of the index is
the entire column.

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

117 > Document Version: 20220601

PACKED
The information about field compression. NULL indicates no
compression.

NULL Indicates whether the column can be empty.

INDEX_TYPE

The index type. Valid values:

NULL: not specified

BTREE

HASH

COMMENT

The index information. Valid values:

NULL: local index

INDEX: the index column of the GSI

COVERING: the covering column of the GSI

INDEX_COMMENT Other information of the index.

Column name Description

This topic describes how to use the SHOW METADATA LOCK statement in PolarDB-X 1.0 to query a
transaction that holds a metadata lock.

OverviewOverview
When PolarDB-X 1.0 creates a global secondary index (GSI), it uses a built-in metadata lock to ensure
transaction and data consistency. It usually takes a long t ime to create a GSI for an exist ing table. If a
transaction that holds a metadata lock is running when a GSI is being created, you cannot make
changes to the schema before the transaction is completed. In this case, you can use the SHOW
METADATA LOCK statement to query the transaction that holds a metadata lock and the
corresponding SQL statement that is being executed. This allows you to troubleshoot the long-running
transaction that is blocking schema changes.

Not e Not e PolarDB-X 1.0 provides the online schema change feature. During the creation of a GSI,
the metadata version are switched four t imes. Two of these switches obtain the write lock of the
metadata lock and are immediately unlocked after the metadata is loaded. The write lock is not
held for the rest of the t ime.

SyntaxSyntax

SHOW METADATA {LOCK | LOCKS} [schema_name[.table_name]]

 schema_name and tbl_name are optional and are used to filter the displayed database names or
table names.

6.8. SHOW METADATA LOCK6.8. SHOW METADATA LOCK

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 118

show metadata lock; ## Displays all the connections that hold a metadata lock on the node.
show metadata lock xxx_db; # Displays all the connections that hold a metadata lock in xxx_
db on the node.
show metadata lock xxx_db.tb_name; # Displays all the connections that hold a metadata lock
in tb_name of xxx_db on the node.

ExamplesExamples

mysql> show metadata lock;
+---------+--------+-----------------+---------------------+--------------+----------------
--+-----------------+----------+-------------------------------------+---------------------
--------------------------+
| CONN_ID | TRX_ID | TRACE_ID | SCHEMA | TABLE | TYPE
| DURATION | VALIDATE | FRONTEND | SQL
|
+---------+--------+-----------------+---------------------+--------------+----------------
--+-----------------+----------+-------------------------------------+---------------------
--------------------------+
| 4 | 0 | f88cf71cbc00001 | XXXX_DRDS_LOCAL_APP | full_gsi_ddl | MDL_SHARED_WRIT
E | MDL_TRANSACTION | 1 | XXXX_DRDS_LOCAL_APP@127.0.0.1:54788 | insert into `full_gs
i_ddl` (id) VALUE (null); |
| 5 | 0 | f88cf71cbc00000 | XXXX_DRDS_LOCAL_APP | full_gsi_ddl | MDL_SHARED_WRIT
E | MDL_TRANSACTION | 1 | XXXX_DRDS_LOCAL_APP@127.0.0.1:54789 | insert into `full_gs
i_ddl` (id) VALUE (null); |
+---------+--------+-----------------+---------------------+--------------+----------------
--+-----------------+----------+-------------------------------------+---------------------
--------------------------+
2 rows in set (0.00 sec)

Not e Not e This statement is only used to display connections that already hold a metadata lock.
It cannot be used to display connections that wait for a metadata lock.

List of column names

Column name Description

CONN_ID The ID of the connection that holds the metadata lock.

TRX_ID The ID of the transaction that holds the metadata lock.

TRACE_ID The trace ID of the SQL statement that holds the metadata lock.

SCHEMA The name of the database.

TABLE The name of the table.

TYPE The type of the metadata lock that is held.

DURATION The period for which the metadata lock is held.

VALIDATE Indicates whether the metadata lock is released.

SQL Reference··SHOW Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

119 > Document Version: 20220601

FRONTEND The frontend connection information.

SQL The SQL statement that holds the metadata lock.

Column name Description

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··SHOW

> Document Version: 20220601 120

The method to manage accounts and permissions in Distributed Relat ional Database Service (PolarDB-X
1.0) is the same as that in MySQL. DRDS supports statements such as GRANT , REVOKE , SHOW
GRANTS , CREATE USER , DROP USER , and SET PASSWORD .

AccountsAccounts
Account descript ionAccount descript ion

An account name consists of a username and a hostname. The format is username@'host' . If two
accounts have the same username but different hostnames, the accounts are each considered to be
different accounts. For example, lily@30.9.73.96 and lily@30.9.73.100 are two different
accounts. The passwords and permissions of the two accounts may be different.

Aftera database is created in the PolarDB-X 1.0 console, the system automatically creates two system
accounts for the database: an administrator account and a read-only account. These accounts are
built-in accounts. You cannot delete them or modify their permissions.

The administrator account name is the same as the database name. For example, if the database
name is easydb , the administrator account name is also easydb .

The read-only account name is the database name suffixed with _RO . For example, if the
database name is easydb , the read-only account name is easydb_RO .

For example, two databases are created: dreamdb and andordb . The dreamdb database has an
administrator account named dreamdb and a read-only account named dreamdb_RO . The
 andordb database has an administrator account named andordb and a read-only account named
 andordb_RO .

Not e Not e Accounts created by executing CREATE USER statements in PolarDB-X 1.0 exist only in
PolarDB-X 1.0. These accounts cannot be used in ApsaraDB RDS, so they are not synchronized to
ApsaraDB RDS.

Account permissionsAccount permissions

An administrator account has full permissions.

Only administrator accounts can be used to create other accounts and grant permissions to the
created accounts.

An administrator account is bound to a database and does not have permissions on other databases.
The administrator account can only be used to access the database that is bound to the account.
You cannot use the administrator account to grant permissions on other databases to other
accounts. For example, the easydb administrator account can be used to connect only to the easydb
database and can grant permissions only on the easydb database or tables in the easydb database
to other accounts.

A read-only account has only the SELECT permission.

Naming convent ionsNaming convent ions

An account name is case-sensit ive.

An account name must be 4 to 20 characters in length.

7.DAL7.DAL
7.1. Manage accounts and permissions7.1. Manage accounts and permissions

SQL Reference··DAL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

121 > Document Version: 20220601

An account name must start with a letter.

An account name can contain letters and digits.

Password complexit y requirement sPassword complexit y requirement s

A password must be 6 to 20 characters in length.

A password can contain letters, digits, and the following special characters: @#$%^&+=

Host name mat ching rulesHost name mat ching rules

A hostname must be a value that represents one or more IP addresses. It can contain underscores (_
) and wildcards (%). An underscore (_) represents a character and a wildcard (%) represents
zero or more characters. Hostnames that contain wildcards must be enclosed in single quotation
marks ('),such as lily@'30.9.%.%' and david@'%'.

If two accounts in DRDS match the logon user in a host, the account whose hostname contains the
longer prefix is the logon account. The name prefix of a host is the IP segment that precedes the
wildcards in the IP address of the host. For example, if the david@'30.9.12_.xxx' account and the
 david@'30.9.1%.234' account exist in DRDS and the david username is used to log on to the 30.
9.127.xxx host, the logon account is david@'30.9.12_.xxx' .

After Virtual Private Cloud (VPC) is act ivated, the IP addresses of hosts change.

Not ice Not ice To prevent invalid account and permission configurations, we recommend that you
set the hostname to '%' to match all IP addresses.

PermissionsPermissions
Support f or permissions of dif f erent levelsSupport f or permissions of dif f erent levels

Database-level permissions are supported.

Table-level permissions are supported.

Global permissions are not supported.

Column-level permissions are not supported.

Subprogram-level permissions are not supported.

Permission descript ionPermission descript ion

Eight basic table permissions are supported: CREATE, DROP, ALTER, INDEX, INSERT, DELETE, UPDATE, and
SELECT.

To execute TRUNCATE statements on a table, you must have the DROP permission on the table.

To execute REPLACE statements on a table, you must have the INSERT and DELETE permissions on the
table.

To execute CREATE INDEX and DROP INDEX statements, you must have the INDEX permission on the
table.

To execute CREATE SEQUENCE statements, you must have the database-level CREATE permission.

To execute DROP SEQUENCE statements, you must have the database-level DROP permission.

To execute ALTER SEQUENCE statements, you must have the database-level ALTER permission.

To execute INSERT ON DUPLICATE UPDATE statements on a table, you must have the INSERT and
UPDATE permissions on the table.

Permission rulesPermission rules

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DAL

> Document Version: 20220601 122

Permissions are bound to an account (username@'host ') instead of a username (username).

When you grant permissions on a table to an account, the system checks whether the table exists. If
the table does not exist , an error is reported.

The following database account permissions are listed by level in descending order: global
permissions, database-level permissions, table-level permissions, and column-level permissions. Global
permissions are not supported.

A granted higher-level permission overwrites lower-level permissions. If you remove the higher-level
permission, the lower-level permissions are also removed.

The USAGE permission is not supported.

Grant permissions on mult iple dat abases t o an accountGrant permissions on mult iple dat abases t o an account

For PolarDB-X 1.0 V5.3.6 or later, the following methods can be used to grant a single account
permissions on mult iple databases:

In the Alibaba Cloud PolarDB-X 1.0 console, go to the account management page, create an
account, and then grant the required permissions to the account. We recommend that you use this
method.

Execute the CREATE USER statement to create an account, and then execute the GRANT statement
to grant the required permissions to the account.

Not e Not e If you want to execute SQL statements, pay attention to the following limits:

i. Only administrator accounts can be used to create users and grant them permissions.

ii. An administrator account can only grant permissions on its bound database to other
accounts. For example, you create an account named new_user@'%' by using the
administrator account of Database A and want to grant the permissions on Database A and
Database B to new_user. To meet this demand, you must use the administrator account of
Database A to grant the permissions on Database A to new_user and use the administrator
account of Database B to grant the permissions on Database B to new_user.

Use an account grant ed permissions on mult iple dat abasesUse an account grant ed permissions on mult iple dat abases

DRDS V5.3.6 or later allows you to grant a single account the permissions on mult iple databases. For
example, if an account named new_user@’%’ has the SELECT and INSERT permissions on Database A
and Database B, pay attention to the following limits when you use this account:

If you log on to Database A by using the account and you want to query data in Database B, execute
the use B; SELECT * FROM table_in_B; statement instead of the SELECT * FROM B.table_in_B;
 statement. This is because cross-database queries are not supported.

If you log on to Database A by using the account and you want to write data to Database B, execute
the use B; INSERT INTO table_in_B VALUES('value'); statement, instead of the INSERT INTO B
.table_in_B VALUES('value'); statement. This is because cross-database data insert ion is not
supported.

The same limits also apply to other SQL statements.

Related statementsRelated statements
CREAT E USER used t o creat e an accountCREAT E USER used t o creat e an account

Syntax

SQL Reference··DAL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

123 > Document Version: 20220601

CREATE USER user_specification [, user_specification] ...
user_specification: user [auth_option]
auth_option: IDENTIFIED BY 'auth#string'

Examples

Create an account named lily@30.9.73.96. The password of the account is 123456. lily is the
username. The account can be used to log on to your database only from the host whose IP
address is 30.9.73.96.

CREATE USER lily@30.9.73.96 IDENTIFIED BY '123456';

Create an account named david@'%'. This account has no password. david is the username. The
account can be used to log on to your database from all hosts.

CREATE USER david@'%';

DROP USER used t o delet e an accountDROP USER used t o delet e an account

Syntax

DROP USER user [, user] ...

Examples

Delete the lily@30.9.73.96 account.

DROP USER lily@30.9.73.96;

SET PASSWORD used t o change t he password of an accountSET PASSWORD used t o change t he password of an account

Syntax

SET PASSWORD FOR user = password_option
password_option: {
 PASSWORD('auth_string')
}

Examples

Change the password of the lily@30.9.73.96 account to 123456.

SET PASSWORD FOR lily@30.9.73.96 = PASSWORD('123456')

GRANT used t o grant permissions t o an accountGRANT used t o grant permissions t o an account

Syntax

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DAL

> Document Version: 20220601 124

GRANT
 priv_type[, priv_type] ...
 ON priv_level
 TO user_specification [, user_specification] ...
 [WITH GRANT OPTION]
priv_level: {
 | db_name.*
 | db_name.tbl_name
 | tbl_name
}
user_specification:
 user [auth_option]
auth_option: {
 IDENTIFIED BY 'auth#string'
}

Not e Not e If the account specified in the GRANT statement does not exist and no IDENTIFIED BY
clause is used, an error message is returned. The error message indicates that the account does
not exist . If the account specified in the GRANT statement does not exist but the IDENTIFIED BY
clause is used, the specified account is created, and the permissions are granted.

Examples

Create an account named david@'%' for the easydb database. david is the username. The account
can be used to log on to the easydb database from all hosts and has full permissions on the
easydb database.

#Method 1: Execute a statement to create an account, and then execute another statement
to grant permissions to the account.
CREATE USER david@'%' IDENTIFIED BY 'your#password';
GRANT ALL PRIVILEGES ON easydb.* to david@'%';
#Method 2: Execute only one statement to create an account and grant permissions to the
account.
GRANT ALL PRIVILEGES ON easydb.* to david@'%' IDENTIFIED BY 'your#password';

Create an account named hanson@'%' for the easydb database. hanson is the username. The
account can be used to log on to the easydb database from all hosts and has full permissions on
the easydb.employees table.

GRANT ALL PRIVILEGES ON easydb.employees to hanson@'%'
IDENTIFIED BY 'your#password';

Create an account named hanson@192.168.3.10 for the easydb database. hanson is the username.
The account can be used to log on to the easydb database from only 192.168.3.10 and has the
INSERT and SELECT permissions on the easydb.emp table.

GRANT INSERT,SELECT ON easydb.emp to hanson@'192.168.3.10'
IDENTIFIED BY 'your#password';

Create a read-only account named actro@'%' for the easydb database. actro is the username. The
account can be used to log on to the easydb database from all hosts.

GRANT SELECT ON easydb.* to actro@'%' IDENTIFIED BY 'your#password';

SQL Reference··DAL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

125 > Document Version: 20220601

REVOKE used t o revoke permissionsREVOKE used t o revoke permissions

Syntax

Delete the permissions at a specific level from an account. The permission level is specified by
priv_level.

REVOKE
priv_type
[, priv_type] ...
ON priv_level

Delete the permissions at the database level and the table level from an account.

REVOKE ALL PRIVILEGES, GRANT OPTION
FROM user [, user] ...

Examples

Delete the CREATE, DROP, and INDEX permissions on the easydb.emp table from the hanson@'%'
account.

REVOKE CREATE,DROP,INDEX ON easydb.emp FROM hanson@'%';

Delete all permissions from the lily@30.9.73.96 account.

REVOKE ALL PRIVILEGES,GRANT OPTION FROM lily@30.9.73.96;

Not e Not e GRANT OPTION must be added to the preceding statement to ensure the
compatibility with MySQL.

SHOW GRANT S used t o query grant ed permissionsSHOW GRANT S used t o query grant ed permissions

Syntax

SHOW GRANTS[FOR user@host];

Examples

SHOW GRANTS FOR user1@host;

Not e Not e In DRDS V5.3.6 and later, the SHOW GRANTS statement can be executed to query the
permissions of only the current account. You can log on tothe PolarDB-X 1.0 console to view the
information about all accounts and permissions.

This topic describes how to use the CHECK TABLE statement.

CHECK TABLE checks a table or tables for errors, especially the tables that failed to be created by
executing DDL statements.

For a sharded table, CHECK TABLE checks whether the underlying physical table shards are complete
and whether the columns and indexes of each underlying physical table shard are consistent.

For a single-database non-sharded table, CHECK TABLE checks whether the table exists.

7.2. CHECK TABLE7.2. CHECK TABLE

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DAL

> Document Version: 20220601 126

SyntaxSyntax

CHECK TABLE tbl_name

ExamplesExamples

mysql> check table tddl_mgr_log;
+------------------------+-------+----------+----------+
| TABLE | OP | MSG_TYPE | MSG_TEXT |
+------------------------+-------+----------+----------+
| TDDL5_APP.tddl_mgr_log | check | status | OK |
+------------------------+-------+----------+----------+
1 row in set (0.56 sec)
mysql> check table tddl_mg;
+-------------------+-------+----------+--+
| TABLE | OP | MSG_TYPE | MSG_TEXT |
+-------------------+-------+----------+--+
| TDDL5_APP.tddl_mg | check | Error | Table 'tddl5_00.tddl_mg' doesn't exist |
+-------------------+-------+----------+--+
1 row in set (0.02 sec)

You can execute the CHECK GLOBAL INDEX statement to check whether data is consistent between
primary tables and index tables, and modify inconsistent data.

SyntaxSyntax

CHECK GLOBAL INDEX gsi_name [ON tbl_name] [extra_cmd]

Parameter Description

 gsi_name The name of the global secondary index (GSI) that needs to be verified.

 tbl_name
Optional. The primary table where the GSI resides. If you enter the
specific name of a primary table, the system checks whether the index
relationship between the GSI table and the primary table is valid.

 extra_cmd

The reserved extra instruction. Valid values:

-: indicates that only the GSI is checked if no keywords are specified.

SHOW: displays the result of the latest verification or correction for
the specified GSI table.

CORRECTION_BASED_ON_PRIMARY: corrects data in the GSI table
based on the primary table.

7.3. CHECK GLOBAL INDEX7.3. CHECK GLOBAL INDEX

SQL Reference··DAL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

127 > Document Version: 20220601

Not eNot e

Some system resources are occupied when data in the GSI table is verified or corrected. This
occurs especially when data in the primary table or the index table is locked and corrected in
batches during the correct ion operation. We recommend that you perform these operations
during off-peak hours. For more information about how to use GSIs, see Use global
secondary indexes.

It may take a long t ime to verify the GSIs of large tables. You can use HINT to specify
PURE_ASYNC_DDL_MODE to execute data definit ion language (DDL) statements in pure
asynchronous mode. For more information, see Control parameters for DDL execution engine.

ExamplesExamples
You can execute the following statement for verificat ion:

mysql> CHECK GLOBAL INDEX `g_i_check`;

If no errors are reported during the verificat ion, the following results are returned:

+-------------+------------+--------+-------------+-----------------------------+
| GSI_TABLE | ERROR_TYPE | STATUS | PRIMARY_KEY | DETAILS |
+-------------+------------+--------+-------------+-----------------------------+
| `g_i_check` | SUMMARY | -- | -- | OK (7025/7025 rows checked) |
+-------------+------------+--------+-------------+-----------------------------+
1 row in set (1.40 sec)

If errors are reported during the verificat ion, the following results are returned:

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DAL

> Document Version: 20220601 128

https://www.alibabacloud.com/help/doc-detail/182180.htm#task-1946506
https://www.alibabacloud.com/help/doc-detail/139533.htm#multiTask1729

+-------------+------------+--------+-------------+------------------------------------

+
| GSI_TABLE | ERROR_TYPE | STATUS | PRIMARY_KEY | DETAILS
|
+-------------+------------+--------+-------------+------------------------------------

+
| `g_i_check` | ORPHAN | FOUND | (100722) | {"GSI":{"id":100722,"c_timestamp_6"
:"2000-01-01 00:00:00.000000","c_timestamp_3":"2000-01-01 00:00:00.000","c_timestamp_1"
:"2000-01-01 00:00:00.0","c_binary":"OTkAAAAAAAAAAA==","c_int_32":271}}
|
| `g_i_check` | CONFLICT | FOUND | (108710) | {"Primary":{"id":108710,"c_timestam
p_6":"2000-01-01 00:00:00.000000","c_timestamp_3":"2000-01-01 00:00:00.000","c_timestam
p_1":"2000-01-01 00:00:00.0","c_year":"2000","c_int_32":255},"GSI":{"c_int_32_un":12345
6,"id":108710,"c_timestamp_6":"2000-01-01 00:00:00.000000","c_timestamp_3":"2000-01-01
00:00:00.000","c_timestamp_1":"2000-01-01 00:00:00.0","c_year":"2000","c_int_32":255}}
|
| `g_i_check` | MISSING | FOUND | (100090) | {"Primary":{"id":100090,"c_timestam
p_6":"2000-01-01 00:00:00.000000","c_timestamp_3":"2000-01-01 00:00:00.000","c_timestam
p_1":"2000-01-01 00:00:00.0","c_blob_tiny":"YeS4reWbvWE=","c_int_32":280}}
|
| `g_i_check` | SUMMARY | -- | -- | 3 error found (7025/7025 rows check
ed)
|
+-------------+------------+--------+-------------+------------------------------------

+
4 rows in set (1.92 sec)

Not e Not e If data has mult iple types of errors, mult iple values of ERROR_TYPE are returned for
the same row of data.

You can execute the following statement for correct ion:

mysql> CHECK GLOBAL INDEX g_i_check CORRECTION_BASED_ON_PRIMARY;

The following results are returned:

SQL Reference··DAL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

129 > Document Version: 20220601

+-------------+------------+--------+-------------+--------------------------------------
----------------------------------+
| GSI_TABLE | ERROR_TYPE | STATUS | PRIMARY_KEY | DETAILS
|
+-------------+------------+--------+-------------+--------------------------------------
----------------------------------+
| `g_i_check` | SUMMARY | -- | -- | Done. Use SQL: { CHECK GLOBAL INDEX `
g_i_check` SHOW; } to get result. |
+-------------+------------+--------+-------------+--------------------------------------
----------------------------------+
1 row in set (1.40 sec)

You can execute the following statement to view the report of the latest verificat ion or correct ion:

mysql> CHECK GLOBAL INDEX `g_i_check` SHOW;

The following results are returned:

+-------------+------------+----------+-------------+------------------------------------

---+
| GSI_TABLE | ERROR_TYPE | STATUS | PRIMARY_KEY | DETAILS
|
+-------------+------------+----------+-------------+------------------------------------

---+
| `g_i_check` | MISSING | REPAIRED | (100090) | {"Primary":{"id":100090,"c_timestam
p_6":"2000-01-01 00:00:00.000000","c_timestamp_3":"2000-01-01 00:00:00.000","c_timestamp_
1":"2000-01-01 00:00:00.0","c_blob_tiny":"YeS4reWbvWE=","c_int_32":280}}
|
| `g_i_check` | CONFLICT | REPAIRED | (108710) | {"Primary":{"id":108710,"c_timestam
p_6":"2000-01-01 00:00:00.000000","c_timestamp_3":"2000-01-01 00:00:00.000","c_timestamp_
1":"2000-01-01 00:00:00.0","c_year":"2000","c_int_32":255},"GSI":{"c_int_32_un":123456,"i
d":108710,"c_timestamp_6":"2000-01-01 00:00:00.000000","c_timestamp_3":"2000-01-01 00:00:
00.000","c_timestamp_1":"2000-01-01 00:00:00.0","c_year":"2000","c_int_32":255}} |
| `g_i_check` | ORPHAN | REPAIRED | (100722) | {"GSI":{"id":100722,"c_timestamp_6"
:"2000-01-01 00:00:00.000000","c_timestamp_3":"2000-01-01 00:00:00.000","c_timestamp_1":"
2000-01-01 00:00:00.0","c_binary":"OTkAAAAAAAAAAA==","c_int_32":271}}
|
| `g_i_check` | SUMMARY | -- | -- | 3 error found (7025/7026 rows check
ed.) Finish time: 2020-01-13 14:41:51.0
|
+-------------+------------+----------+-------------+------------------------------------

---+
4 rows in set (0.02 sec)

Descript ions of column names

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DAL

> Document Version: 20220601 130

Column name Description

GSI_TABLE The name of the GSI.

ERROR_TYPE

The error type. Valid values:

MISSING: missing index

ORPHAN: orphan index

CONFLICT: inconsistent index data

ERROR_SHARD: posit ion error of data shards

SUMMARY: result summary

STATUS

The status. Valid values:

FOUND: An error is found.

REPAIRED: The error has been repaired.

PRIMARY_KEY The primary key.

DETAILS The details of the error.

This topic describes how to end the execution of an SQL statement in a PolarDB-X 1.0PolarDB-X
database by executing the KILL statement.

PrerequisitesPrerequisites
You must connect to the PolarDB-X 1.0PolarDB-X database before you can end the execution of an
SQL statement in the PolarDB-X 1.0PolarDB-X database by executing the KILL statement. For more
information about how to connect to a PolarDB-X 1.0PolarDB-X database, see Connect to database.

SyntaxSyntax
The syntax of the KILL command supports the following usages.

You can execute the following statement to end the execution of logical and physical SQL
statements on a connection and end the connection.

KILL PROCESS_ID

Not eNot e

You can execute the SHOW [FULL] PROCESSLIST statement to query PROCESS_ID .

PolarDB-X 1.0PolarDB-X databases do not support KILL QUERY statements.

You can execute the following statement to end the execution of a specific physical SQL statement.

KILL 'PHYSICAL_PROCESS_ID'

Example

7.4. KILL7.4. KILL

SQL Reference··DAL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

131 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/50085.htm#multiTask2397

mysql> KILL '0-0-521570';
Query OK, 0 rows affected (0.01 sec)

Not eNot e

You can execute the SHOW PHYSICAL_PROCESS_ID statement to query PHYSICAL_PROCES
S_ID .

Values in the PHYSICAL_PROCESS_ID column are strings rather than numbers. Therefore,
you must enclose the PHYSICAL_PROCESS_ID value in this statement with single
quotation marks (').

You can execute the following statement to end the execution of all the physical SQL statements in
a PolarDB-X 1.0PolarDB-X database.

KILL 'ALL'

The USE statement tells PolarDB-X 1.0 to use the named database as the default database for
subsequent operations. This topic describes how to execute the USE statement.

ContextContext
PolarDB-X 1.0 allows you to connect to different databases that are deployed in a PolarDB-X 1.0
instance. This feature is similar to the feature that enables data queries across standalone databases
that run on the MySQL engine. When you log on to a PolarDB-X 1.0 instance, use DB_NAME to configure
the default database for subsequent operations. You can execute the USE statement to switch
between databases. This helps you manage mult iple databases at a t ime.

NoteNote
Before you switch between databases, ensure that you have the permissions on the databases. You
can grant the permissions in the console. For more information, see Account and permission system.

After you switch to another database, the hints and sequences in original SQL statements take
effect on the new database. This rule applies if you do not specify a database in the hints or
sequences.

SyntaxSyntax

USE db_name

ExampleExample
You can execute the following statement to switch to a database named NEW_DB :

USE NEW_DB

7.5. USE7.5. USE

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··DAL

> Document Version: 20220601 132

https://www.alibabacloud.com/help/zh/doc-detail/71356.htm

This topic introduces the concepts related to sequences. This topic also describes the supported types
of sequences.

A sequence provided by Distributed Relat ional Database Service (PolarDB-X 1.0) generates globally
unique numeric values. DRDS sequence values are of the MySQL BIGINT data type that stores signed 64-
bit integers. The term DRDS sequence is referred to as sequence in the following descript ion. Sequences
are often used to generate globally unique and sequentially incremental numeric values, such as values
of primary key columns and values of unique index columns.

TermsTerms
After you understand the following terms, you can select a sequence type that is suitable for your
business:

Consecutive: If the current value in a consecutive sequence is n, the next value must be n + 1. If the
next value is not n + 1, the sequence is a nonconsecutive sequence.

Monotonically increasing: If the current value in a monotonic increasing sequence is n, the next value
must be a number greater than n.

Single point: A single point of failure (SPOF) risk exists.

Monotonically increasing at the macro level and non-monotonically increasing at the micro level: For
example, the values of a sequence can be 1, 3, 2, 4, 5, 7, 6, 8, ... Such a sequence is
monotonically increasing at the macro level and non-monotonically increasing at the micro level.

Unit izat ion capability: The unit izat ion capability can help you generate numeric sequences that are
unique among mult iple instances or mult iple databases.

UsageUsage
PolarDB-X 1.0 sequences are divided into the following two types:

Explicit sequence: Use the DDL syntax to create and maintain an explicit sequence. An explicit
sequence can be independently used. For example, you can directly modify and query an explicit
sequence. You can use select seq.nextval to obtain the values in an explicit sequence. seq
specifies the name of the sequence.

Implicit sequence: If you specify the AUTO_INCREMENT attribute for a primary key column, an implicit
sequence can be used to automatically generate primary key values. PolarDB-X 1.0 automatically
maintains the sequence.

Supported types and features of sequencesSupported types and features of sequences
PolarDB-X 1.0 supports the following four types of sequences.

8.Sequence8.Sequence
8.1. Overview8.1. Overview

SQL Reference··Sequence Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

133 > Document Version: 20220601

Type
(abbrevi
ation)

Globally
unique

Consecu
tive

Monoto
nically
increasin
g

Monoto
nically
increasin
g in the
same
session

Non-
single
point

Data
type

Readabil
ity

Unitizati
on
capabilit
y

GroupGroup
sequensequen
cece
(GROUP(GROUP
))

Yes No No Yes Yes

All
integer
data
types

High No

UnitUnit
groupgroup
sequensequen
cece
(GROUP(GROUP
))

Yes No No Yes Yes

All
integer
data
types

High Yes

T ime-T ime-
basedbased
sequensequen
cece
(T IME)(T IME)

Yes No

Monoto
nically
increasin
g at the
macro
level
and
non-
monoto
nically
increasin
g at the
micro
level

Yes Yes
BIGINT
only

Low No

SimpleSimple
sequensequen
cece
(SIMPLE(SIMPLE
))

Yes Yes Yes Yes No

All
integer
data
types

High No

Group sequence (GROUP, def ault sequence t ype)Group sequence (GROUP, def ault sequence t ype)

A group sequence is a globally unique sequence that provides natural numeric values. Values in a group
sequence do not need to be consecutive or monotonically increasing. If you do not specify a sequence
type, PolarDB-X 1.0 uses the group sequence type by default .

Implementation mechanism: DRDS uses mult iple nodes to generate sequence values. The mult i-node
model ensures high availability. The system retrieves a segment of values from a database at a t ime. In
scenarios such as network disconnections, not all the values in a segment are used. Therefore, the
sequence values are nonconsecutive.

Advantages: Group sequences are globally unique and prevent SPOFs. Group sequences deliver
excellent performance.

Disadvantages: Group sequences may contain nonconsecutive values and may not start from the

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Sequence

> Document Version: 20220601 134

specified start value. The values of group sequences cannot be cyclical.

Unit group sequence (GROUP)Unit group sequence (GROUP)

Unit group sequences extend the capabilit ies of group sequences. A unit group sequence has
unit izat ion capabilit ies and can provide values that are unique among mult iple instances or mult iple
databases. Values in unit group sequences may not be consecutive or monotonically increasing. If only
one unit is configured for a unit group sequence, the unit group sequence is equivalent to a common
group sequence.

Advantages: Unit group sequences have all the advantages of group sequences and have unit izat ion
capabilit ies.

Disadvantages: Unit group sequences may contain nonconsecutive values and may not start from the
specified start value. The values of unit group sequences cannot be cyclical.

The way how unit group sequences work is the same as the way how group sequences work. You can
use the extension parameters to customize unit indexes and the number of units.

The number of units determines the global unique sequence space assigned to the unit group
sequence.

A unit index identifies a unit . Each unit occupies a subset of the global unique sequence space.

If you specify mult iple unit indexes, mult iple units are specified. The sequence subsets for different
units do not overlap. This means that DRDS does not generate the same sequence value for different
units.

You must specify the same number of units and different unit indexes for all the unit group
sequences that belong to the same sequence space.

Not eNot e

The following versions of DRDS provide unit group sequences:

V5.2: V5.2.7-1606682 and later. DRDS V5.2.7-1606682 was released on April 27, 2018.

V5.3: V5.3.3-1670435 and later. DRDS V5.3.3-1670435 was released on August 15, 2018.

T ime-based sequence (T IME)T ime-based sequence (T IME)

A t ime-based sequence value consists of a t imestamp, node ID, and serial number. Such a sequence is
globally unique and auto-incremental at the macro level. When the values of a t ime-based sequence
are updated, the system does not retrieve values from a database. The sequence values are also not
stored as persistent data in the related database. Only the sequence names and types are stored in the
database. Time-based sequences deliver excellent performance. For example, the values of a t ime-
based sequence can be 776668092129345536, 776668098018148352, 776668111578333184,
776668114812141568…

Advantages: Time-based sequences are globally unique and deliver excellent performance.

Disadvantages: The values of t ime-based sequences are nonconsecutive. The START WITH,
INCREMENT BY, MAXVALUE, and CYCLE or NOCYCLE parameters are invalid for t ime-based sequences.

SQL Reference··Sequence Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

135 > Document Version: 20220601

Not eNot e

If a t ime-based sequence is used for an auto-increment column of a table, the auto-
increment column must be of the BIGINT type.

The following versions of DRDS provide t ime-based sequences:

V5.2: V5.2.8-15432885 and later. DRDS V5.2.8-15432885 was released on December
27, 2018.

V5.3: V5.3.6-15439241 and later. DRDS V5.3.6-15439241 was released on December
29, 2018.

Simple sequence (SIMPLE)Simple sequence (SIMPLE)

Only simple sequences support the INCREMENT BY, MAXVALUE, and CYCLE or NOCYCLE parameters.

Advantages: Simple sequence values are globally unique, consecutive, and monotonically increasing.
Simple sequences provide mult iple features. For example, a simple sequence can have a maximum
value and the values of a simple sequence can be cyclical.

Disadvantages: Simple sequences are prone to SPOFs, low performance, and bott lenecks. Use simple
sequences with caution.

Each t ime a simple sequence generates a value, the system stores the value as persistent data in the
related database.

ScenariosScenarios
The four types of sequences are globally unique and can be used for primary key columns and unique
index columns.

In most scenarios, we recommend that you use group sequences.

If you need sequence values that are globally unique among mult iple instances or mult iple
databases, you can use unit group sequences.

In some cases, your business may require the sequence values to be auto-incremental only at the
macro level in the overall trend. The values are not necessarily auto-incremental at the micro level.
You may also not want the sequence values to be allocated by using the allocation mechanism of a
database. In such scenarios, you can use t ime-based sequences.

Use only simple sequences for services that have high requirements for consecutive sequence values.
Make sure that you understand the low performance of simple sequences.

For example, you can create a sequence that starts from 100000 and has a step size of 1.

A simple sequencesimple sequence generates globally unique, consecutive, and monotonically increasing values,
such as 100000, 100001, 100002, 100003, 100004, ..., 200000, 200001, 200002, 200003...
Simple sequence values are persistently stored. Even after services are restarted upon an SPOF,
values are st ill consecutively generated from the breakpoint. However, simple sequences have poor
performance because each t ime a value is generated the system persistently stores the value.

A group sequencegroup sequence or a unit group sequenceunit group sequence may generate values such as 200001, 200002, 200
003, 200004, 100001, 100002, 100003...

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Sequence

> Document Version: 20220601 136

Not eNot e

The start value of a group sequence is not necessarily the same as the value specified by
START WITH. A group sequence always starts from a value that is greater than the specified
start value. In this example, the specified start value is 100000, but the actual start value of
the group sequence is 200001.

A group sequence provides globally unique values and may contain nonconsecutive values.
For example, if a node fails or only some of the values in a segment are used when the
connection is closed, the sequence contains nonconsecutive values. In this example, the
values are nonconsecutive. The values between 200004 and 100001 are missing.

You must specify the same number of units and different unit indexes for unit group
sequences that belong to the same globally unique sequence. This ensures that the
sequence values are unique among mult iple instances or mult iple databases.

This topic describes the limits on using sequences. This topic also describes how to troubleshoot
primary key conflicts.

Limits and additional considerationsLimits and additional considerations
When you use a sequence, take note of the following points:

You must specify the START WITH parameter when you convert a sequence from one type to
another.

You cannot convert a unit group sequence to another type or convert a sequence of another type to
a unit group sequence. In addit ion, you cannot change the parameter values of a unit group
sequence, except the value of the START WITH parameter.

Unit group sequences that belong to the same globally unique sequence space must have the same
number of units but have different unit indexes.

Whenthe INSERT statement is executed in a non-sharded Distributed Relat ional Database Service
(PolarDB-X 1.0) database or in a sharded database that has only non-sharded tables but no
broadcast tables, PolarDB-X 1.0 automatically optimizes and sends the statement. This way, you do
not need to use an optimizer to allocate sequence values. The INSERT INTO ... VALUES (seq.nextv
al, ...) statementis not supported. We recommend that you use the auto-increment column
feature provided by ApsaraDB RDS instead.

If a hint for a specific database shard is used in the INSERT statement such as INSERT INTO ... VALUES
... or INSERT INTO ...SELECT ..., and the dest ination table uses a sequence, PolarDB-X 1.0 bypasses the
optimizer and directly sends the statement for execution. This way, the sequence does not take
effect and the auto-increment column in the ApsaraDB RDS table is used to generate IDs in the
destination table.

Make sure that the auto-increment IDs in the same table are generated by using the same method: a
sequence or the auto-increment feature provided by ApsaraDB RDS. If the two methods are used in
the same table, duplicate IDs may be generated. Duplicate IDs are difficult to identify.

If you want to use a t ime-based sequence in an auto-increment column of a table, make sure that
the data type of the column is BIGINT.

Troubleshoot primary key conflictsTroubleshoot primary key conflicts

8.2. Limits8.2. Limits

SQL Reference··Sequence Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

137 > Document Version: 20220601

If a data record is directly writ ten to ApsaraDB RDS and the corresponding primary key value is nota
sequence value generated by PolarDB-X 1.0, the primary key value automatically generated by PolarDB-
X 1.0 may conflict with the primary key value that corresponds to the data record. To solve this issue,
perform the following steps:

1. Execute the SHOW SEQUENCES statement to view the exist ing sequences. Sequences prefixed
with AUTO_SEQ_ are implicit sequences. To create an implicit sequence, you must specify the
AUTO_INCREMENT parameter in the statement executed to create a table.

Execute the following statement in your CLI:

mysql> SHOW SEQUENCES;

The following query result is returned:

+---------------------+-------+--------------+------------+-----------+-------+-------+

| NAME | VALUE | INCREMENT_BY | START_WITH | MAX_VALUE | CYCLE | TYPE |

+---------------------+-------+--------------+------------+-----------+-------+-------+

| AUTO_SEQ_xkv_t_item | 0 | N/A | N/A | N/A | N/A | GROUP |

| AUTO_SEQ_xkv_shard | 0 | N/A | N/A | N/A | N/A | GROUP |

+---------------------+-------+--------------+------------+-----------+-------+-------+

2 rows in set (0.04 sec)

2. If the primary key of the xkv_t_item table is ID and duplicate primary key values exist in this table,
query the maximum primary key value of this table from PolarDB-X 1.0.

Execute the following statement in your CLI:

mysql> SELECT MAX(id) FROM xkv_t_item;

The following query result is returned:

+-----------+
| MAX(id) |
+-----------+
| 8231 |
+-----------+
1 row in set (0.01 sec)

3. Change the maximum sequence value in the table to a value greater than 8231, such as 9000. Then,
no error is returned for the subsequently generated auto-increment primary key values when you
execute the INSERT statement.

Execute the following statement in your CLI:

mysql> ALTER SEQUENCE AUTO_SEQ_xkv_t_item START WITH 9000;

Create a sequenceCreate a sequence

8.3. Explicit sequences8.3. Explicit sequences

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Sequence

> Document Version: 20220601 138

Create a sequenceCreate a sequence
Group SequenceGroup Sequence

Syntax

CREATE [GROUP] SEQUENCE <name>
[START WITH <numeric value>]

Parameters

Parameter Description

START WITH
The start value of the group sequence. If you do
not specify this parameter, the default value is
used. Default value: 100001.

Examples

Method 1

mysql> CREATE SEQUENCE seq1;

Method 2

mysql> CREATE GROUP SEQUENCE seq1;

Unit group sequenceUnit group sequence

Syntax

CREATE [GROUP] SEQUENCE <name>
[START WITH <numeric value>]
[UNIT COUNT <numeric value> INDEX <numeric value>]

Parameters

Parameter Description

START WITH

The start value of the unit group sequence. The
default start value depends on the unit index and
the number of units. If you do not specify the
INDEX parameter or the UNIT COUNT parameter,
the default start value is used. Default value:
100001.

UNIT COUNT
The number of units specified for the unit group
sequence. Default value: 1.

INDEX

The unit index of the unit group sequence. The
value range is from 0 to the value obtained by
subtracting 1 from the number of units. Default
value: 0.

SQL Reference··Sequence Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

139 > Document Version: 20220601

Not eNot e

If you do not specify a sequence type, the group sequencegroup sequence type is used by default .

Values of group sequencesgroup sequences and unit group sequencesunit group sequences may be nonconsecutive. The
START WITH parameter only provides reference for group sequencesgroup sequences and unit groupunit group
sequencessequences. A group sequence or a unit group sequence may not start from the value
specified by START WITH. The actual start value is always greater than the specified start
value.

A group sequencegroup sequence can be regarded as a special case of unit group sequencesunit group sequences. A
group sequence means that when you create a unit group sequenceunit group sequence, you set the UNIT
COUNT parameter to 1 and the INDEX parameter to 0.

Examples

Create a globally unique numeric sequence that has three units. In this example, create three unit
group sequences that have the same sequence name, the same number of units, and different unit
indexes for three different instances or databases. These three sequences form a globally unique
sequence.

i. Create a unit group sequence for Instance 1 or Database 1.

mysql> CREATE GROUP SEQUENCE seq2 UNIT COUNT 3 INDEX 0;

ii. Create a unit group sequence for Instance 2 or Database 2.

mysql> CREATE GROUP SEQUENCE seq2 UNIT COUNT 3 INDEX 1;

iii. Create a unit group sequence for Instance 3 or Database 3.

mysql> CREATE GROUP SEQUENCE seq2 UNIT COUNT 3 INDEX 2;

T ime-based SequenceT ime-based Sequence

Syntax

CREATE TIME SEQUENCE <name>

Not ice Not ice The column that is used to store the values of a t ime-based sequencet ime-based sequence must be
of the BIGINT data type.

Examples

Execute the following statement in your CLI:

7mysql> CREATE TIME SEQUENCE seq3;

Simple SequenceSimple Sequence

Syntax

CREATE SIMPLE SEQUENCE <name>
[START WITH <numeric value>]
[INCREMENT BY <numeric value>]
[MAXVALUE <numeric value>][CYCLE | NOCYCLE]

Parameters

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Sequence

> Document Version: 20220601 140

Parameter Description

START WITH
The start value of the simple sequence. If you do
not specify this parameter, the default value is
used. Default value: 1.

INCREMENT BY
The increment between two adjacent sequence
values. If you do not specify this parameter, the
default value is used. Default value: 1.

MAXVALUE

The maximum value allowed by the simple
sequence. If you do not specify this parameter, the
default value is used. The default maximum value
is of the signed BIGINT data type. For example, you
can set the maximum value to
9223372036854775807.

CYCLE or NOCYCLE

You can select only CYCLE or NOCYCLE. These
options are used to specify whether to repeat the
sequence that starts from the value specified by
START WITH after the sequence reaches the
specified maximum value. If you do not specify an
option, the default option is used. Default option:
NOCYCLE.

Examples

Create a simple sequence. The start value of the simple sequence is 1000, the step size is 2, and the
maximum value is 99999999999. After the maximum value is reached, the sequence does not
generate values from the start value.

Execute the following statement in your CLI:

mysql> CREATE SIMPLE SEQUENCE seq4 START WITH 1000 INCREMENT BY 2 MAXVALUE 99999999999 NO
CYCLE;

Modify a sequenceModify a sequence
Distributed Relat ional Database Service (PolarDB-X 1.0) allows you to modify a sequence in the
following ways:

For a simple sequence, you can change the values of START WITH, INCREMENT BY, MAXVALUE, and
CYCLE or NOCYCLE.

For a group sequence or a unit group sequence, you can change the value of START WITH.

You can convert a sequence from one type to another, but neither of the source type nor the
destination type can be a unit group sequence.

SQL Reference··Sequence Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

141 > Document Version: 20220601

Not eNot e

When you convert a sequence from one type to another, take note of the following points:

The values of group sequences are nonconsecutive. The values of unit group sequences are
also nonconsecutive. The value of the START WITH parameter serves only as a reference for
these two types of sequences. A group sequence or a unit group sequence may not start
from the value specified by START WITH but must start from a value that is greater than the
specified value.

You cannot convert a sequence from a unit group type to another or from another type to
a unit group sequence. In addit ion, you cannot change the parameter values of a unit group
sequence.

If you have specified a value for START WITH when you modify a simple sequence, the value
takes effect immediately. The next sequence value starts from the specified value. For
example, if you change the value of START WITH to 200 when the sequence value increases
to 100, the next sequence value starts from 200.

Before you change the value of START WITH, analyze the exist ing sequence values and the
rate of generating sequence values to prevent duplicate sequence values from being
generated. Exercise caution when you change the value of START WITH.

Group SequenceGroup Sequence

Syntax

ALTER SEQUENCE <name> [CHANGE TO SIMPLE | TIME]
START WITH <numeric value>
[INCREMENT BY <numeric value>]
[MAXVALUE <numeric value>]
[CYCLE | NOCYCLE]

Parameters

Parameter Description

START WITH

The start value of the sequence. This parameter
has no default value. If this parameter is not
specified, it is ignored. This parameter is required
when you convert the sequence from one type to
another.

INCREMENT BY

The increment between two adjacent simple
sequence values. This parameter takes effect only
when you convert a group sequence to a simple
sequence. If this parameter is not specified, the
default value is used. The default value is 1.

MAXVALUE

The maximum value of the simple sequence. This
parameter takes effect only when you convert a
group sequence to a simple sequence. If this
parameter is not specified, the default value is
used. The default value is the maximum value of
the signed BIGINT type: 9223372036854775807.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Sequence

> Document Version: 20220601 142

CYCLE or NOCYCLE

Specifies whether to continue generating sequence
values after the sequence value reaches the
maximum value of the sequence that starts from
the value specified by START WITH. You can specify
only one of the two options: CYCLE and NOCYCLE.
Specify the CYCLE option to continue generating
sequence values. Specify the NOCYCLE option to
stop generating sequence values. The CYCLE or
NOCYCLE option takes effect only when you
convert a group sequence to a simple sequence. If
no options are specified, the default option takes
effect. The default option is NOCYCLE.

Parameter Description

Not e Not e When you convert a sequence to a t ime-based sequence, the preceding parameters
are not supported.

Unit group sequencesUnit group sequences

Syntax

ALTER SEQUENCE <name>
START WITH <numeric value>

Parameters

Parameter Description

START WITH
The start value of the unit group sequence. This
parameter has no default value. If this parameter
is not specified, it is ignored.

Not e Not e You cannot convert a unit group sequenceunit group sequence to another type. In addit ion, you
cannot modify the parameters of a unit group sequence.

T ime-based SequenceT ime-based Sequence

Syntax

ALTER SEQUENCE <name>[CHANGE TO GROUP | SIMPLE]
START WITH <numeric value>
[INCREMENT BY <numeric value>]
[MAXVALUE <numeric value>]
[CYCLE | NOCYCLE]

Parameters

Parameter Description

SQL Reference··Sequence Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

143 > Document Version: 20220601

START WITH

The start value of the sequence. This parameter
has no default value. If this parameter is not
specified, it is ignored. This parameter is required
when you convert the sequence from one type to
another.

INCREMENT BY

The increment between two adjacent simple
sequence values. This parameter does not take
effect when you convert a simple sequence to a
group sequence. If this parameter is not specified,
the default value is used. The default value is 1.

MAXVALUE

The maximum value of the simple sequence. This
parameter does not take effect when you convert
a simple sequence to a group sequence. If this
parameter is not specified, the default value is
used. The default value is the maximum value of
the signed BIGINT type: 9223372036854775807.

CYCLE or NOCYCLE

Specifies whether to continue generating sequence
values after the sequence value reaches the
maximum value of the sequence that starts from
the value specified by START WITH. You can specify
only one of the two options: CYCLE and NOCYCLE.
Specify the CYCLE option to continue generating
sequence values. Specify the NOCYCLE option to
stop generating sequence values. The CYCLE or
NOCYCLE is ineffective when you convert a simple
sequence to a group sequence. If no options are
specified, the default option takes effect. The
default option is NOCYCLE.

Parameter Description

Simple SequenceSimple Sequence

Syntax

ALTER SEQUENCE <name> [CHANGE TO GROUP | TIME]
START WITH <numeric value>
[INCREMENT BY <numeric value>]
[MAXVALUE <numeric value>]
[CYCLE | NOCYCLE]

Parameters

Parameter Description

START WITH

The start value of the sequence. This parameter
has no default value. If this parameter is not
specified, it is ignored. This parameter is required
when you convert the sequence from one type to
another.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Sequence

> Document Version: 20220601 144

INCREMENT BY

The increment between two adjacent simple
sequence values. This parameter does not take
effect when you convert a simple sequence to a
group sequence. If this parameter is not specified,
the default value is used. The default value is 1.

MAXVALUE

The maximum value of the simple sequence. This
parameter does not take effect when you convert
a simple sequence to a group sequence. If this
parameter is not specified, the default value is
used. The default value is the maximum value of
the signed BIGINT type: 9223372036854775807.

CYCLE or NOCYCLE

Specifies whether to continue generating sequence
values after the sequence value reaches the
maximum value of the sequence that starts from
the value specified by START WITH. You can specify
only one of the two options: CYCLE and NOCYCLE.
Specify the CYCLE option to continue generating
sequence values. Specify the NOCYCLE option to
stop generating sequence values. The CYCLE or
NOCYCLE is ineffective when you convert a simple
sequence to a group sequence. If no options are
specified, the default option takes effect. The
default option is NOCYCLE.

Parameter Description

Not e Not e When you convert a sequence to a t ime-based sequence, the preceding parameters
are not supported.

Convert a sequence f rom one t ype t o anot herConvert a sequence f rom one t ype t o anot her

When you convert a sequence from one type to another, take note of the following points:

Use the CHANGE TO <sequence_type> clause in the ALTER SEQUENCE statement to convert a
sequence to another type.

If you include the CHANGE TO clause in ALTER SEQUENCE , you must specify the START WITH
parameter to prevent duplicate values from being generated. This way, if you forget to specify a
start value, duplicate values are not generated. The CHANGE TO clause is optional. If you omit this
clause, you do not need to specify the START WITH parameter.

You cannot convert a unit group sequence to another type or convert a sequence of another type to
a unit group sequence.

Examples

Modify a simple sequence named seq4: Set START WITH to 3000, INCREMENT BY to 5, and MAXVALUE
to 1000000, and change NOCYCLE to CYCLE. To modify the simple sequence, execute the following
statement:

mysql> ALTER SEQUENCE seq4 START WITH 3000 INCREMENT BY 5 MAXVALUE 1000000 CYCLE;

Convert a group sequence to a simple sequence.

SQL Reference··Sequence Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

145 > Document Version: 20220601

mysql> ALTER SEQUENCE seq1 CHANGE TO SIMPLE START WITH 1000000;

Query the type and value of a sequenceQuery the type and value of a sequence
Query a sequenceQuery a sequence

Syntax

SHOW SEQUENCES

Examples

Execute the following statement in your CLI:

mysql> SHOW SEQUENCES;

The following query result is returned:

+------+--------+------------+------------+------------+--------------+------------+-----
--------+-------+--------+
| NAME | VALUE | UNIT_COUNT | UNIT_INDEX | INNER_STEP | INCREMENT_BY | START_WITH | MAX_
VALUE | CYCLE | TYPE |
+------+--------+------------+------------+------------+--------------+------------+-----
--------+-------+--------+
| seq1 | 100000 | 1 | 0 | 100000 | N/A | N/A | N/A
| N/A | GROUP |
| seq2 | 400000 | 3 | 1 | 100000 | N/A | N/A | N/A
| N/A | GROUP |
| seq3 | N/A | N/A | N/A | N/A | N/A | N/A | N/A
| N/A | TIME |
| seq4 | 1006 | N/A | N/A | N/A | 2 | 1000 | 9999
9999999 | N | SIMPLE |
+------+--------+------------+------------+------------+--------------+------------+-----
--------+-------+--------+
4 rows in set (0.00 sec)

Not e Not e In the query result , the values in the TYPE column are the abbreviat ions of the
sequence types.

Query a sequenceQuery a sequence

Syntax

[<schema_name>.]<sequence name>.NEXTVAL

Examples

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Sequence

> Document Version: 20220601 146

Method 1

mysql> SELECT sample_seq.nextval FROM dual;

The following query result is returned:

+--------------------+
| SAMPLE_SEQ.NEXTVAL |
+--------------------+
| 101001 |
+--------------------+
1 row in set (0.04 sec)

Method 2

Execute the following statement in your CLI:

mysql> INSERT INTO some_users (name,address,gmt_create,gmt_modified,intro) VALUES ('sun
',sample_seq.nextval,now(),now(),'aa');

Not eNot e

When you use this statement, you include sample_seq.nextval in the SQL statement as a
value.

If the AUTO_INCREMENT parameter is specified when you create a table, you do not
need to specify an auto-increment column when you execute the INSERT statement.
PolarDB-X 1.0 automatically manage the value of the AUTO_INCREMENT parameter.

Use t he f ollowing synt ax t o query mult iple sequence values at a t ime:Use t he f ollowing synt ax t o query mult iple sequence values at a t ime:

Syntax

The following code provides the syntax:

SELECT [<schema_name>.]<sequence name>.NEXTVAL FROM DUAL WHERE COUNT = <numeric value>

Examples

Execute the following statement in your CLI:

mysql> SELECT sample_seq.nextval FROM dual WHERE count = 10;

The following query result is returned:

SQL Reference··Sequence Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

147 > Document Version: 20220601

+--------------------+
| SAMPLE_SEQ.NEXTVAL |
+--------------------+
| 101002 |
| 101003 |
| 101004 |
| 101005 |
| 101006 |
| 101007 |
| 101008 |
| 101009 |
| 101010 |
| 101011 |
+--------------------+
10 row in set (0.04 sec)

Delete a sequenceDelete a sequence
Syntax

Use the following the syntax to delete a sequence:

DROP SEQUENCE <name>

Examples

Execute the following statement in your CLI:

mysql> DROP SEQUENCE seq3;

Create a sequenceCreate a sequence
After you specify the AUTO_INCREMENT attribute for a primary key column in a table shard or a
broadcast table, a sequence can be used to automatically generate primary key values.Distributed
Relational Database Service (PolarDB-X 1.0) automatically maintains the sequence.

The standard CREATE TABLE syntax is extended, so that you can add the sequence type for an auto-
increment column. If you do not specify a type, the default type is used. The default type is GROUP. If a
sequence is automatically created by DRDS and associated with a table, the sequence name consists of
the AUTO_SEQ_ prefix and the table name.

Group sequence, t ime-based sequence, or simple sequenceGroup sequence, t ime-based sequence, or simple sequence

You can use the following syntax to create a table that uses a group sequencegroup sequence, t ime-basedt ime-based
sequencesequence, or simple sequencesimple sequence for an auto-increment column:

CREATE TABLE <name> (
 <column> ... AUTO_INCREMENT [BY GROUP | SIMPLE | TIME],
 <column definition>,
 ...
) ... AUTO_INCREMENT=<start value>

8.4. Implicit sequences8.4. Implicit sequences

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Sequence

> Document Version: 20220601 148

Not e Not e If you set the type to BY TIME that represents the t ime-based sequencet ime-based sequence type,
the data type of the specified column must be BIGINT.

Unit group sequenceUnit group sequence

You can use the following syntax to create a table that use an unit group sequenceunit group sequence:

CREATE TABLE <name> (
 <column> ... AUTO_INCREMENT [BY GROUP] [UNIT COUNT <numeric value> INDEX <numeric val
ue>],
 <column definition>,
 ...
) ... AUTO_INCREMENT=<start value>

ExamplesExamples

Example 1: Create a table that uses a group sequence by default to generate values for an auto-
increment column.

mysql> CREATE TABLE tab1 (
col1 BIGINT NOT NULL AUTO_INCREMENT,
col2 VARCHAR(16),
PRIMARY KEY(col1)
) DBPARTITION BY HASH(col1);

Example 2: Create three tables. Each table uses an unit group sequence to generate values for an
auto-increment column. These three tables are created in three instances or databases. The unit
group sequences for the three tables have the same name, the same number of units, and different
unit indexes.

i. Create a table in Instance 1 or Database 1.

Execute the following statement in your CLI to create a table that uses a unit group sequence
and set the unit index of the sequence to 0:

mysql> CREATE TABLE tab2 (
col1 BIGINT NOT NULL AUTO_INCREMENT UNIT COUNT 3 INDEX 0,
col2 VARCHAR(16),
PRIMARY KEY(col1)
) DBPARTITION BY HASH(col1);

ii. Create a table in Instance 2 or Database 2.

Execute the following statement in your CLI to create a table that uses a unit group sequence
and set the unit index of the sequence to 1:

mysql> CREATE TABLE tab2 (
col1 BIGINT NOT NULL AUTO_INCREMENT UNIT COUNT 3 INDEX 1,
col2 VARCHAR(16),
PRIMARY KEY(col1)
) DBPARTITION BY HASH(col1);

iii. Create a table in Instance 3 or Database 3.

Execute the following statement in your CLI to create a table that uses a unit group sequence
and set the unit index of the sequence to 2:

SQL Reference··Sequence Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

149 > Document Version: 20220601

mysql> CREATE TABLE tab2 (
col1 BIGINT NOT NULL AUTO_INCREMENT UNIT COUNT 3 INDEX 2,
col2 VARCHAR(16),
PRIMARY KEY(col1)
) DBPARTITION BY HASH(col1);

Example 3: Create a table that uses a t ime-based sequence to generate values for an auto-
increment column.

Execute the following statement in your CLI to create a table that uses a t ime-based sequence:

mysql> CREATE TABLE tab3 (
col1 BIGINT NOT NULL AUTO_INCREMENT BY TIME,
col2 VARCHAR(16),
PRIMARY KEY(col1)
) DBPARTITION BY HASH(col1);

Example 4: Create a table that uses a simple sequence to generate values for an auto-increment
column.

Execute the following statement in your CLI to create a table that uses a simple sequence:

mysql> CREATE TABLE tab4 (
col1 BIGINT NOT NULL AUTO_INCREMENT BY SIMPLE,
col2 VARCHAR(16),
PRIMARY KEY(col1)
) DBPARTITION BY HASH(col1);

ALTER TABLEALTER TABLE
 ALTER TABLE cannot be used to change the type of a sequence. The following ALTER TABLE

syntax can be used to change the start value of a sequence:

ALTER TABLE <name> ... AUTO_INCREMENT=<start value>

Not eNot e

To change the sequence type of a table, execute the SHOW SEQUENCES statement to
check the sequence name and the sequence type, and then execute the ALTER SEQUENCE
statement to change the sequence type.

After a sequence is used, we recommend that you do not modify the start value specified
for the AUTO_INCREMENT parameter. If you need to modify the start value, analyze the
exist ing sequence values and the rate of generating sequence values to prevent duplicate
sequence values from being generated.

Query the information and sequence types of a tableQuery the information and sequence types of a table
SHOW CREAT E T ABLESHOW CREAT E T ABLE

The SHOW CREATE TABLE statement returns the type of the sequence that is used to generate values
for an auto-increment column in a table shard or a broadcast table.

Use the following syntax to query the information about a table:

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Sequence

> Document Version: 20220601 150

SHOW CREATE TABLE <name>

Not eNot e

 SHOW CREATE TABLE returns only the type of the sequence and does not return the
sequence details. To query the sequence details, execute the SHOW SEQUENCES statement.

For a table that uses an unit group sequence, SHOW CREATE TABLE returns a DDL
statement that does not contain the number of units and the unit index of the unit group
sequence. Therefore, you cannot execute this DDL statement to create a table and define
the table to use an unit group sequenceunit group sequence that has the same unit izat ion capability of the
returned sequence.

If you need to create a table and define the table to use an unit group sequence that has
the same unit izat ion capability of the sequence of another table, you must execute the SH
OW SEQUENCES statement to query the number of units and the unit index. Then, modify the
DDL statement that is returned by SHOW CREATE TABLE based on the CREATE TABLE
syntax.

ExamplesExamples

Example 1: When you were creating the tab1 table, you did not specify a sequence type for the auto-
increment column. A group sequencegroup sequence is used by default .

Execute the following statement in your CLI to query the information about the tab1 table:

mysql> SHOW CREATE TABLE tab1;

The following result is returned:

+-------+--

---------------------------+
| Table | Create Table
|
+-------+--

---------------------------+
| tab1 | CREATE TABLE `tab1` (
`col1` bigint(20) NOT NULL AUTO_INCREMENT BY GROUP,
`col2` varchar(16) DEFAULT NULL,
PRIMARY KEY (`col1`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`col1`) |
+-------+--

---------------------------+
1 row in set (0.02 sec)

SQL Reference··Sequence Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

151 > Document Version: 20220601

Example 2: When you were creating the tab2 table, you specified the number of units and the unit
index for an unit group sequenceunit group sequence that is used for an auto-increment column. However, SHOW
CREATE TABLE does not return the number of units or the unit index. The returned DDL statement
cannot be executed to create a table and define the table to use an unit group sequenceunit group sequence that have
the same unit izat ion capability as the sequence used by the tab2 table.

Execute the following statement in your CLI to query the information about the tab2 table:

mysql> SHOW CREATE TABLE tab2;

The following result is returned:

+-------+--

---------------------------+
| Table | Create Table
|
+-------+--

---------------------------+
| tab2 | CREATE TABLE `tab2` (
`col1` bigint(20) NOT NULL AUTO_INCREMENT BY GROUP,
`col2` varchar(16) DEFAULT NULL,
PRIMARY KEY (`col1`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`col1`) |
+-------+--

---------------------------+
1 row in set (0.01 sec)

Example 3: When you were creating the tab3 table, you specified a sequence of the BY TIME type
for an auto-increment column. This means that you specified a t ime-based sequencet ime-based sequence.

Execute the following statement in your CLI to query the information about the tab3 table:

mysql> SHOW CREATE TABLE tab3;

The following result is returned:

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Sequence

> Document Version: 20220601 152

+-------+--

----------------------------+
| Table | Create Table
|
+-------+--

----------------------------+
| tab3 | CREATE TABLE `tab3` (
`col1` bigint(20) NOT NULL AUTO_INCREMENT BY TIME,
`col2` varchar(16) DEFAULT NULL,
PRIMARY KEY (`col1`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`col1`) |
+-------+--

----------------------------+
1 row in set (0.01 sec)

Example 4: When you were creating the tab4 table, you specified a sequence of the BY SIMPLE type
for an auto-increment column. This means that you specified a simple sequencesimple sequence.

Execute the following statement in your CLI to query the information about the tab4 table:

mysql> SHOW CREATE TABLE tab4;

The following result is returned:

+-------+--

----------------------------+
| Table | Create Table
|
+-------+--

----------------------------+
| tab3 | CREATE TABLE `tab4` (
`col1` bigint(20) NOT NULL AUTO_INCREMENT BY TIME,
`col2` varchar(16) DEFAULT NULL,
PRIMARY KEY (`col1`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`col1`) |
+-------+--

----------------------------+
1 row in set (0.01 sec)

SHOW SEQUENCESSHOW SEQUENCES

You can execute the SHOW SEQUENCES statement to query the name and details of the sequences in
the tables of a database.

Execute the following statement in your CLI to query the names and details of sequences in the tables
of a database:

SQL Reference··Sequence Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

153 > Document Version: 20220601

mysql> SHOW SEQUENCES;

The following result is returned:

+---------------+--------+------------+------------+------------+--------------+-----------
-+---------------------+-------+--------+
| NAME | VALUE | UNIT_COUNT | UNIT_INDEX | INNER_STEP | INCREMENT_BY | START_WITH
| MAX_VALUE | CYCLE | TYPE |
+---------------+--------+------------+------------+------------+--------------+-----------
-+---------------------+-------+--------+
| seq1 | 100000 | 1 | 0 | 100000 | N/A | N/A
| N/A | N/A | GROUP |
| seq2 | 400000 | 3 | 1 | 100000 | N/A | N/A
| N/A | N/A | GROUP |
| seq3 | N/A | N/A | N/A | N/A | N/A | N/A
| N/A | N/A | TIME |
| seq4 | 1006 | N/A | N/A | N/A | 2 | 1000
| 99999999999 | N | SIMPLE |
| AUTO_SEQ_tab1 | 100000 | 1 | 0 | 100000 | N/A | N/A
| N/A | N/A | GROUP |
| AUTO_SEQ_tab2 | 400000 | 3 | 1 | 100000 | N/A | N/A
| N/A | N/A | GROUP |
| AUTO_SEQ_tab3 | N/A | N/A | N/A | N/A | N/A | N/A
| N/A | N/A | TIME |
| AUTO_SEQ_tab4 | 2 | N/A | N/A | N/A | 1 | 1
| 9223372036854775807 | N | SIMPLE |
+---------------+--------+------------+------------+------------+--------------+-----------
-+---------------------+-------+--------+
8 rows in set (0.01 sec)

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Sequence

> Document Version: 20220601 154

This topic describes the outline feature and how to use this feature.

BackgroundBackground
When you use a PolarDB-X 1.0 database, execution plans generated by SQL optimizers may not meet
your business requirements. For example, some JOIN or AGGREGATE functions that can be processed by
the underlying ApsaraDB RDS for MySQL instances are not pushed down. The outline feature provides a
method to specify an execution plan for the SQL statement. You can use hints to create an SQL
execution plan, and use the outline feature to ensure that your SQL statement is executed based on
the SQL execution plan.

The outline feature allows you to create and manage outlines in the system by executing the CREATE,
DROP, RESYNC, DISABLE, ENABLE, and SHOW statements. The following sect ions describe these
statements.

LimitsLimits
An SQL query that includes mult iple statements is not supported.

The question mark (?) cannot be usedas a bind variable in the GROUP BY and ORDER BY clauses.

In parameter-based match mode, origin_stmt cannot contain constants.

In parameter-based match mode, the number of bind variables in origin_stmt and the number of bind
variables in target_stmt must be the same.

In exact match mode, target_stmt cannot contain bind variables.

When you create an outline, origin_stmt cannot be the same as that of an exist ing outline in the
system.

When you create an outline, the syntax of target_stmt must be correct so that the desired execution
plan can be generated.

Create an outlineCreate an outline
The CREATE statement is used to create an outline. By default , an outline takes effect after it is
created.

CREATE outline name ON origin_stmt TO target_stmt

Parameter descript ion:

name indicates the name of the outline that you want to create.

origin_stmt specifies the SQL statement for which you want to create an outline. If the SQL
statement does not contain the question mark (?) variable,an exact match is performed.

If the SQL statement contains the question mark (?)variable, the SQL statement cannot contain
constants and a parameter-based match is performed after the SQL statement is formatted.

target_stmt is the statement that uses hints to generate a logical plan.

Example 1: Creat e an out line in exact mat ch modeExample 1: Creat e an out line in exact mat ch mode

9.Outline9.Outline
9.1. Usage notes9.1. Usage notes

SQL Reference··Out line Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

155 > Document Version: 20220601

mysql> create outline t1 on select 1 to select 2;
Query OK, 1 row affected (1.09 sec)
mysql> select 1;
+------+
| ? |
+------+
| 2 |
+------+

When the SQL statement is being executed, the select 1 clause is replaced by the select 2 clause.

Example 2: Creat e an out line in paramet er-based mat ch modeExample 2: Creat e an out line in paramet er-based mat ch mode

mysql> create outline t2 on select ? to select /*+TDDL:slave()*/ * from ms10 where c1=?;
Query OK, 1 row affected (0.16 sec)
mysql> explain select 1;
+--+
| LOGICAL PLAN |
+--+
| LogicalView(tables="01.ms10", sql="SELECT * FROM `ms10` WHERE (`c1` = ?)") |
| HitCache:false |
| UsingOutline: T2 |
+--+

Delete an outlineDelete an outline
The DROP statement is used to delete a specified outline.

DROP OUTLINE name #name specifies the name of the outline that you want to delete.

Synchronize an outline againSynchronize an outline again
A PolarDB-X 1.0 instance runs on mult iple servers. After you create an outline on a server, the outline is
synchronized to other servers. An error may occur when the outline is being synchronized. In this case,
you must synchronize the outline again.

RESYNC OUTLINE name #name specifies the name of the outline that you want to synchronize a
gain.

Disable a specified outlineDisable a specified outline
The DISABLE statement is used to disable a specified outline.

DISABLE OUTLINE name #name specifies the name of the outline that you want to disable.

Enable a specified outlineEnable a specified outline
The ENABLE statement is used to enable a specified outline.

ENABLE OUTLINE name #name specifies the name of the outline you want to enable.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Out line

> Document Version: 20220601 156

Query the outlines in the systemQuery the outlines in the system
The SHOW statement is used to query the outlines in the system.

SHOW OUTLINES

This topic describes the common error codes and the causes of the errors.

ERR_ORIGIN_STMT_UNEXPECTED_CONST: In parameter-based match mode, origin_stmt contains the
constants that are not parameters.

ERR_PARAM_COUNT_NOT_EQUAL: In parameter-based match mode, the number of bind variables in
origin_stmt differs from the number of bind variables in target_stmt.

ERR_TARGET_STMT_UNEXPECTED_PARAM: In exact match mode, target_stmt contains the bind
variables.

ERR_ORIGIN_STMT_CONFLICTED: origin_stmt used for creating an outline is the same as that of an
exist ing outline in the system.

ERR_TARGET_STMT_ERROR: target_stmt used for creating an outline fails to generate an execution
plan.

9.2. Error codes9.2. Error codes

SQL Reference··Out line Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

157 > Document Version: 20220601

This topic describes the prepared statement protocol and its support for prepared statements. This
topic also describes how to enable the prepared statement protocol in a Java client.

OverviewOverview
Distributed Relat ional Database Service (PolarDB-X 1.0) allows you to enable the client/server binary
protocol to execute server-side prepared statements. Prepared statements with placeholders for
parameter values have the following benefits:

Minimized overhead of statement parsing each t ime a statement is executed. In most cases,
database applications process large numbers of near-identical statements in which only a few
variable values are different. To execute these near-identical statements in an efficient manner, you
need only to change the variable values in a prepared statement.

Protect ion against SQL inject ion attacks.

DescriptionDescription
Basic information about the prepared statement protocol

The protocol supports the following commands:

COM_STMT_PREPARE

COM_STMT_EXECUTE

COM_STMT_CLOSE

COM_STMT_RESET

The protocol supports Java and other programming languages.

For information about the commands supported by prepared statements in MySQL, see Prepared
statements.

All SQL DML statements can be used as prepared statements, such as SELECT, UPDATE, DELETE, and
INSERT statements.

Non-DML SQL statements cannot be used as prepared statements, such as SHOW and SET
statements.

The following statements cannot be used as prepared statements in a MySQL CLI:

mysql> SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> PREPARE stmt2 FROM @s;
mysql> SET @a = 6;
mysql> SET @b = 8;
mysql> EXECUTE stmt2 USING @a, @b;

Enable the prepared statement protocol in a Java clientEnable the prepared statement protocol in a Java client
If you want to execute prepared statements in your Java client, forcibly add the
useServerPrepStmts=true field to the URL for connecting to MySQL. If you do not add this f ield, a

10.Prepare SQL10.Prepare SQL
10.1. Introduction to the prepared10.1. Introduction to the prepared
statement protocolstatement protocol

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Prepare SQL

> Document Version: 20220601 158

https://dev.mysql.com/doc/internals/en/com-stmt-prepare.html#packet-COM_STMT_PREPARE
https://dev.mysql.com/doc/internals/en/com-stmt-execute.html#packet-COM_STMT_EXECUTE
https://dev.mysql.com/doc/internals/en/com-stmt-close.html#packet-COM_STMT_CLOSE
https://dev.mysql.com/doc/internals/en/com-stmt-reset.html#packet-COM_STMT_RESET
https://dev.mysql.com/doc/internals/en/prepared-statements.html?spm=a2c4g.11186623.2.6.6991d84a5691iU

regular query is performed.

Example: jdbc:mysql://xxxxxx:3306/xxxxxx?useServerPrepSt mt s= t rueuseServerPrepSt mt s= t rue

Example in Java:

Class.forName("com.mysql.jdbc.Driver");
Connection connection = DriverManager.getConnection("jdbc:mysql://xxxxxx:3306/xxxxxx?useSe
rverPrepStmts=true", "xxxxx", "xxxxx");
String sql = "insert into batch values(?,?)";
PreparedStatement preparedStatement = connection.prepareStatement(sql);
preparedStatement.setInt(1, 0);
preparedStatement.setString(2, "corona-db");
preparedStatement.executeUpdate();

SQL Reference··Prepare SQL Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

159 > Document Version: 20220601

This topic describes the usage and the syntax of custom hints.

Information provided in this topic is applicable to PolarDB-X 1.0 V5.3 and later.

OverviewOverview
Hints are supplementary to the SQL syntax and play a crucial role in relat ional databases. Hints allow
you to choose execution methods for SQL statements by using the corresponding syntax. This way, you
can optimize the execution of SQL statements.

PolarDB-X 1.0 provides special hint syntax. For example, if you already know data is stored in some table
shards in specific database shards and you need to route an SQL statement to the database shards for
execution, you can use PolarDB-X 1.0 custom hints.

Syntax of Syntax of PolarDB-X 1.0PolarDB-X 1.0 custom hints custom hints
Synt axSynt ax

 /*+TDDL: hint_command [hint_command ...]*/
 /!+TDDL: hint_command [hint_command ...]*/

Not eNot e

PolarDB-X 1.0 custom hints can be specified in the /*+TDDL:hint_command*/ format or in the /!+T
DDL:hint_command*/ format.

A hint is a string that is placed between /* and */ or between /! and */ . The string
begins with +TDDL: . The hint_command parameter specifiesone or more PolarDB-X 1.0 custom
hint commands that are used to affect specific operations. If you specify mult iple hint commands for
the hint_command parameter, separate them with spaces.

If you specify custom hints in the /*+TDDL:hint_command*/ format, PolarDB-X 1.0 add the -c
parameter to the command used to log on to the MySQL command-line client: mysql. This way, you
can execute SQL statements that contain the custom hints on the client. If you do not add the -c
parameter, PolarDB-X 1.0 the client deletes comments in SQL statements before it sends the SQL
statements to servers for execution. custom hints in this format are defined as MySQL comments.
Therefore, PolarDB-X 1.0 the custom hints cannot take effect. For more information, see mysql client
options.

ExamplesExamples

Query the names of physical tables in each database shard.
/*+TDDL:scan()*/SHOW TABLES;
Route the query to database shard 0000 of a read-only ApsaraDB RDS instance.
/*+TDDL:node(0) slave()*/SELECT * FROM t1;

In the examples, /*+TDDL:scan()*/ and /*+TDDL:node(0) slave()*/ are custom hints provided by
PolarDB-X 1.0. The two hints begin with +TDDL: . scan() , node(0) , and slave() are PolarDB-
X 1.0 hint commands and are separated with spaces.

11.Hint11.Hint
11.1. Overview11.1. Overview

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Hint

> Document Version: 20220601 160

https://dev.mysql.com/doc/refman/5.6/en/comments.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_comments

Use a hint in an SQL st at ementUse a hint in an SQL st at ement

PolarDB-X 1.0 allows you to use hints in DML, DDL, and Data Access Language (DAL) statements. The
following list describes the syntax:

For a DML statement, you can specify a hint at the end of the first keyword of the statement, as
shown in the following examples:

/*+TDDL: ... */ SELECT ...
/*+TDDL: ... */ INSERT ...
/*+TDDL: ... */ REPLACE ...
/*+TDDL: ... */ UPDATE ...
/*+TDDL: ... */ DELETE ...
/*+TDDL: ... */ CREATE TABLE ...
/*+TDDL: ... */ ALTER TABLE ...
/*+TDDL: ... */ DROP TABLE ...
/*+TDDL: ... */ SHOW ...
...

For DML statements, you can specify a hint at the end of the first keyword of the statements, as
shown in the following example:

SELECT /*+TDDL: ... */ ...
INSERT /*+TDDL: ... */ ...
REPLACE /*+TDDL: ... */ ...
UPDATE /*+TDDL: ... */ ...
DELETE /*+TDDL: ... */ ...
...

Not e Not e Different hints may be applicable to different statements. For more information
about the applicable statements, see the topics that describe hint commands.

Use mult iple hint s in an SQL st at ementUse mult iple hint s in an SQL st at ement

PolarDB-X 1.0 allows you to use a hint that contains mult iple hint commands in an SQL statement.

SELECT /*+TDDL:node(0) slave()*/ ...;

PolarDB-X 1.0 has the following limits on the use of hints that contain mult iple hint commands:

A single SQL statement cannot contain multiple hints.
SELECT /*+TDDL:node(0)*/ /*+TDDL:slave()*/ ...;
A hint cannot contain duplicate hint commands.
SELECT /*+TDDL:node(0) node(1)*/ ...;

Categories of Categories of PolarDB-X 1.0PolarDB-X 1.0 custom hints custom hints
Read/write split t ing

Specify a custom t ime-out period for an SQL statement

Specify database shards where an SQL statement is to be executed

Scan all or some of the table shards in all or some of the database shards

SQL Reference··Hint Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

161 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/71285.htm#multiTask1148
https://www.alibabacloud.com/help/doc-detail/100641.htm#multiTask821
https://www.alibabacloud.com/help/doc-detail/71287.htm#multiTask4184
https://www.alibabacloud.com/help/doc-detail/71291.htm#multiTask2565

This topic describes hints for read/write split t ing.

Information provided in this topic is applicable to PolarDB-X 1.0 V5.3 and later.

PolarDB-X 1.0 provides read/write split t ing that is transparent to the application layer. A latency of
several milliseconds exists when data is synchronized between primary and read-only ApsaraDB RDS
instances. If you need to read data changes immediately after the data in the primary ApsaraDB RDS
instance is changed, you must make sure that the SQL request for reading data is routed to the primary
ApsaraDB RDS instance. To meet this demand, PolarDB-X 1.0 provides custom hints for read/write
split t ing. These custom hints allow you to route SQL statements to a specified primary or read-only
ApsaraDB RDS instance.

SyntaxSyntax

/*+TDDL:
 master()
 | slave()
*/

You can use the custom hints to specify whether to execute an SQL statement on a primary or read-
only ApsaraDB RDS instance. If you use /*+TDDL:slave()*/ in an SQL statement and a primary
ApsaraDB RDS instance is associated with mult iple read-only ApsaraDB RDS instances, PolarDB-X 1.0
randomly selects a read-only ApsaraDB RDS instance based on the assigned weight to execute the SQL
statement.

NoteNote
PolarDB-X 1.0 custom hints can be specified in the /*+TDDL:hint_command*/ format or in the /!+T
DDL:hint_command*/ format.

If you specify custom hints in the /*+TDDL:hint_command*/ format, PolarDB-X 1.0 add the -c
parameter to the command used to log on to the MySQL command-line client: mysql. This way, you
can execute SQL statements that contain the PolarDB-X 1.0 custom hints on the client. If you do not
add the -c parameter, PolarDB-X 1.0 the client deletes comments in SQL statements before it sends
the SQL statements to servers for execution. PolarDB-X 1.0 custom hints in this format are defined as
MySQL comments. Therefore, PolarDB-X 1.0 the custom hints cannot take effect. For more
information, see mysql client options.

ExamplesExamples
Execute an SQL statement on your primary ApsaraDB RDS instance:

SELECT /*+TDDL:master()*/ * FROM table_name;

After the custom hint /*+TDDL:master()*/ is added at the end of the first keyword in the SQL
statement, this SQL statement is routed to the primary ApsaraDB RDS instance.

Execute an SQL statement on a specified read-only ApsaraDB RDS instance:

SELECT /*+TDDL:slave()*/ * FROM table_name;

11.2. Read/write splitting11.2. Read/write splitting

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Hint

> Document Version: 20220601 162

https://dev.mysql.com/doc/refman/5.6/en/comments.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_comments

After the custom hint /*+TDDL:slave()*/ is added at the end of the first keyword in the SQL
statement, this SQL statement is randomly routed to a read-only ApsaraDB RDS instance based on
the assigned weight.

Not eNot e

The custom hints for read/write split t ing are only applicable to read-only SQL statements
that are not included in transactions. SQL statements that are executed to write data or
are included in transactions are st ill routed to the primary ApsaraDB RDS instance.

If you use the /*+TDDL:slave()*/ hint in an SQL statement, PolarDB-X 1.0 randomly
routes the SQL statement to a read-only ApsaraDB RDS instance based on the assigned
weight. If no read-only ApsaraDB RDS instances are available, no error is reported. Instead,
the primary ApsaraDB RDS instance is selected to execute the SQL statement.

This topic describes the hint syntax for specifying a t ime-out period for SQL statements.

Information provided in this topic is applicable to PolarDB-X 1.0 V5.3 and later.

In PolarDB-X 1.0, the default t ime-out period for the SQL statements in PolarDB-X 1.0 instances and
ApsaraDB RDS instances is 900 seconds. You can change the t ime-out period based on your
requirements. Some SQL statements may take longer than 900 seconds to complete. For these slow SQL
statements, PolarDB-X 1.0 provides a custom hint that you can use to change the t ime-out period for
these statements. You can use this custom hint to change the t ime-out period for SQL statements.

SyntaxSyntax

/*+TDDL:SOCKET_TIMEOUT(time)*/

The value specified by SOCKET_TIMEOUT is measured in milliseconds. You can use this custom hint to
change the t ime-out period for SQL statements based on your business requirements.

NoteNote
PolarDB-X 1.0 custom hints can be specified in the /*+TDDL:hint_command*/ format or in the /!+T
DDL:hint_command*/ format.

If you specify custom hints in the /*+TDDL:hint_command*/ format, add the -c parameter to
the command used to log on to the MySQL command-line client: mysql. This way, you can execute
SQL statements that contain the PolarDB-X 1.0 custom hints on the client. If you do not add the -c
parameter, the client deletes comments in SQL statements before it sends the SQL statements to
servers for execution. PolarDB-X 1.0 custom hints in this format are defined as MySQL comments.
Therefore, the PolarDB-X 1.0 custom hints cannot take effect. For more information, see mysql client
options.

ExamplesExamples
Set the t ime-out period of SQL statements to 40 seconds:

11.3. Specify a custom time-out period for11.3. Specify a custom time-out period for
an SQL statementan SQL statement

SQL Reference··Hint Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

163 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.6/en/comments.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_comments

/*+TDDL:SOCKET_TIMEOUT(40000)*/SELECT * FROM t_item;

Not e Not e A longer t imeout period causes database resources to be occupied for a longer period
of t ime. If excessive SQL statements are executed over a long t ime within the same period, a large
number of database resources may be consumed, and DRDS database services cannot be provided
as expected. To resolve the issue, you must optimize SQL statements that take a long t ime to
execute if possible.

This topic describes the hint syntax that is used to specify one or more database shards on which you
want to execute an SQL statement. This topic also provides some sample code.

Information provided in this topic is applicable to PolarDB-X 1.0 V5.3 and later.

When you are using PolarDB-X 1.0, if you encounter anSQL statement that is not supported by PolarDB-
X 1.0, you can use NODE HINT provided by PolarDB-X 1.0. NODE HINT can route an SQL statement to
one or more database shards on which you want to execute the SQL statement. If you need to query
the data in a specified database shard or in a specified table shard of a database shard, you can use
 NODE HINT to route the SQL statement to the database shard.

SyntaxSyntax
 NODE HINT allows you to specify the names of the database shards on which you want to execute

an SQL statement. A shard name isthe unique identifier of a database shard in a PolarDB-X 1.0
database. To query the names of the database shards in a database, you can execute the SHOW
NODE statement.

You can use two methods to specify the names of the database shards on which an SQL statement is
executed. One of the methods is to specify only one database shard on which you want to execute the
SQL statement. The other method is to specify mult iple database shards on which you want to execute
the SQL statement.

Not ice Not ice If the hint statement that is used to specify database shards is contained in an
INSERT statement and this INSERT statement contains a sequence definit ion for the table on which
the SQL statement is executed, the sequence does not take effect. For more information, see
Limits.

Specify a database shard on which you want to execute an SQL statement.

/*+TDDL:node('node_name')*/

 node_name specifies the name of a database shard. You can customize a PolarDB-X 1.0 hint to
route an SQL statement to a database shard that is specified by node_name for execution.

Specify mult iple database shards on which you want to execute an SQL statement.

/*+TDDL:node('node_name'[,'node_name1','node_name2'])*/

11.4. Specify database shards where an11.4. Specify database shards where an
SQL statement is to be executedSQL statement is to be executed

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Hint

> Document Version: 20220601 164

https://www.alibabacloud.com/help/doc-detail/71255.htm#multiTask1940

You can specify mult iple shard names and separate the shard names with commas (,). The SQL
statement that contains the specified hint is routed to the specified database shards.

Not eNot e

When you execute an SQL statement that contains a DRDS hint, PolarDB-X 1.0 routes the
SQL statement to the database shards for execution. The table names that are specified
in the SQL statement must exist in the specified database shards.

 NODE HINT can be used in DML statements, DDL statements, and Data Access Language
(DAL) statements.

NoteNote
In DRDS V5.4.1 and later, PolarDB-X 1.0 adds a four-character random string to each of the names of
the physical tables that correspond to table shards. You must execute the SHOW TOPOLOGY
statement to obtain the topological relat ionships of logical tables and the names of physical tables.

In DRDS V5.4.4 and later, PolarDB-X 1.0 provides a switch to control whether the name of each
physical table for table shards contains a random string. By default , this switch is turned on. To turn
off the switch, you can log on to the DRDS console and then click the ID of the instance that you
want to manage. In the left-side navigation pane of the instance details page, click Parameter
Sett ings. On the page that appears, click the Database tab, and set the value of
ENABLE_RANDOM_PHY_TABLE_NAME to false. You can also use the following hint to turn off the
switch for the tables that are specified in an SQL statement: /*+TDDL:cmd_extra(ENABLE_RANDOM_PHY
_TABLE_NAME=FALSE)*/ .

You can specify PolarDB-X 1.0 hints in the following formats: /*+TDDL:hint_command*/ and /!+TD
DL:hint_command*/ .

If you specify hints in the /*+TDDL:hint_command*/ format, add the -c parameter to the
command used to log on to the MySQL command-line client: mysql. This way, you can execute SQL
statements that contain the PolarDB-X 1.0 hints on the client. If you do not add the -c parameter,
the client deletes comments in the SQL statements before it sends the SQL statements to servers for
execution. PolarDB-X 1.0 hints in this format are defined as MySQL comments. Therefore, the PolarDB-
X 1.0 hints are deleted and cannot take effect. For more information, see mysql client options.

ExamplesExamples
The following example shows the result that is returned by SHOW NODE for a PolarDB-X 1.0 database
named drds_test :

mysql> SHOW NODE\G
*************************** 1. row ******************
 ID: 0
 NAME: DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0000_RDS
 MASTER_READ_COUNT: 212
 SLAVE_READ_COUNT: 0
MASTER_READ_PERCENT: 100%
 SLAVE_READ_PERCENT: 0%
*************************** 2. row ******************
 ID: 1
 NAME: DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0001_RDS
 MASTER_READ_COUNT: 29
 SLAVE_READ_COUNT: 0
MASTER_READ_PERCENT: 100%

SQL Reference··Hint Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

165 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.6/en/comments.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_comments

MASTER_READ_PERCENT: 100%
 SLAVE_READ_PERCENT: 0%
*************************** 3. row ******************
 ID: 2
 NAME: DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0002_RDS
 MASTER_READ_COUNT: 29
 SLAVE_READ_COUNT: 0
MASTER_READ_PERCENT: 100%
 SLAVE_READ_PERCENT: 0%
*************************** 4. row ******************
 ID: 3
 NAME: DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0003_RDS
 MASTER_READ_COUNT: 29
 SLAVE_READ_COUNT: 0
MASTER_READ_PERCENT: 100%
 SLAVE_READ_PERCENT: 0%
*************************** 5. row ******************
 ID: 4
 NAME: DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0004_RDS
 MASTER_READ_COUNT: 29
 SLAVE_READ_COUNT: 0
MASTER_READ_PERCENT: 100%
 SLAVE_READ_PERCENT: 0%
*************************** 6. row ******************
 ID: 5
 NAME: DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0005_RDS
 MASTER_READ_COUNT: 29
 SLAVE_READ_COUNT: 0
MASTER_READ_PERCENT: 100%
 SLAVE_READ_PERCENT: 0%
*************************** 7. row ******************
 ID: 6
 NAME: DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0006_RDS
 MASTER_READ_COUNT: 29
 SLAVE_READ_COUNT: 0
MASTER_READ_PERCENT: 100%
 SLAVE_READ_PERCENT: 0%
*************************** 8. row ******************
 ID: 7
 NAME: DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0007_RDS
 MASTER_READ_COUNT: 29
 SLAVE_READ_COUNT: 0
MASTER_READ_PERCENT: 100%
 SLAVE_READ_PERCENT: 0%
8 rows in set (0.02 sec)

The result shows that each database shard has the NAME attribute. This attribute indicates the name
of the database shard. Each shard name in the returned result corresponds to one unique database
shard. For example, the shard name DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0003_RDS
corresponds to the database shard drds_test_vtla_0003 . After you obtain the shard names, you
can use a PolarDB-X 1.0 hint to specify the database shards on which you want to execute an SQL
statement.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Hint

> Document Version: 20220601 166

Execute an SQL statement on database shard 0.

SELECT /*TDDL:node('DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0000_RDS')*/ * FROM table_n
ame;

Execute an SQL statement on mult iple database shards.

SELECT /*TDDL:node('DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0000_RDS','DRDS_TEST_147347
1355140LRPRDRDS_TEST_VTLA_0006_RDS')*/ * FROM table_name;

The SQL statement is executed on the DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0000_RDS
shard and the DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0006_RDS shard.

View the physical execution plan of an SQL statement on database shard 0.

/*TDDL:node('DRDS_TEST_1473471355140LRPRDRDS_TEST_VTLA_0000_RDS')*/ EXPLAIN SELECT * FROM
table_name; ```

This topic describes the hint syntax and sample code that can be used to scan all or some of the table
shards in all or some of the database shards.

Information provided in this topic is applicable to PolarDB-X 1.0 V5.3 and later.

DRDS provides the capability to route an SQL statement to one or more database shards for execution.
PolarDB-X 1.0 also provides SCAN HINT to scan all or some of the table shards in all or some of the
database shards. You can use SCAN HINT to route an SQL statement to all database shards at a t ime.
For example, you can query all the table shards in a specified database shard or query the amount of
the data in each physical table that corresponds to a specified logical table.

You can use SCAN HINT to execute SQL statements in the following manners:

1. Execute an SQL statement on all the table shards in all database shards.

2. Execute an SQL statement on all the table shards in the specified database shards.

3. Execute an SQL statement on the specified table shards in the specified database shards. The
names of the physical tables are calculated based on the given condit ions.

4. Execute an SQL statement on the specified table shards in the specified database shards. The
table shards are explicit ly specified by using the names of the physical tables.

 SCAN HINT can be used in DML statements, DDL statements, and some Data Access Language (DAL)
statements.

SyntaxSyntax

11.5. Scan all or some of the table shards11.5. Scan all or some of the table shards
in all or some of the database shardsin all or some of the database shards

SQL Reference··Hint Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

167 > Document Version: 20220601

SCAN HINT
Route an SQL statement to all the table shards in all database shards.
SCAN()
Route an SQL statement to all the table shards in the specified database shards.
SCAN(NODE="node_list") # Specify the database shards.
Route an SQL statement to the specified table shards in the specified database shards. Th
e names of the physical tables are calculated based on the given conditions.
SCAN(
 [TABLE=]"table_name_list" # Specify the names of the logical tables.
 , CONDITION="condition_string" # Calculate the names of the physical tables based on
the values of the TABLE and CONDITION parameters.
 [, NODE="node_list"]) # Filter the results obtained based on the value of th
e CONDITION parameter to retain only the names of the tables that are in the specified phys
ical databases.
Route an SQL statement to the specified table shards in the specified database shards. Th
e table shards are explicitly specified by using the names of the physical tables.
SCAN(
 [TABLE=]"table_name_list" # Specify the names of the logical tables.
 , REAL_TABLE=("table_name_list") # Specify the names of the physical tables. These phys
ical table names are used to query data from all the physical databases.
 [, NODE="node_list"]) # Filter the results obtained based on the value of th
e CONDITION parameter to retain only the names of the tables that are in the specified phys
ical databases.
Specify the names of physical table shards or logical tables.
table_name_list:
 table_name [, table_name]...
Specify physical databases by using GROUP_KEY and GROUP_INDEX. To obtain the values of GR
OUP_KEY and GROUP_INDEX, you can execute the SHOW NODE statement.
node_list:
 {group_key | group_index} [, {group_key | group_index}]...
Specify an SQL WHERE clause. You must specify conditions for each table, such as t1.id =
2 and t2.id = 2.
condition_string:
 where_condition

NoteNote
You can specify PolarDB-X 1.0 hints in the following formats: /*+TDDL:hint_command*/ and /!+TD
DL:hint_command*/ .

If you specify hints in the /*+TDDL:hint_command*/ format, add the -c parameter to the
command used to log on to the MySQL command-line client: mysql. This way, you can execute SQL
statements that contain the PolarDB-X 1.0 hints on the client. If you do not add the -c parameter,
the client deletes comments in the SQL statements before it sends the SQL statements to servers for
execution. PolarDB-X 1.0 hints in this format are defined as MySQL comments. Therefore, the PolarDB-
X 1.0 hints are deleted and cannot take effect. For more information, see mysql client options.

ExamplesExamples
Execute an SQL statement on all the table shards in all database shards.

SELECT /*+TDDL:scan()*/ COUNT(1) FROM t1

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Hint

> Document Version: 20220601 168

https://dev.mysql.com/doc/refman/5.6/en/comments.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_comments

When the SQL statement is executed, DRDS routes the SQL statement to all the physical tables of
logical table t1 . Then, DRDS merges the result sets and returns the final result .

Execute an SQL statement on all the table shards in the specified database shards.

SELECT /*+TDDL:scan(node='0,1,2')*/ COUNT(1) FROM t1

When the SQL statement is executed, DRDS calculates the names of the physical tables of logical
table t1 in database shards 0000, 0001, and 0002. Then, DRDS routes the SQL statement to the
table shards. After the SQL statement is executed, DRDS merges the result sets and returns the final
result .

Execute an SQL statement on the specified table shards based on the given condit ions.

SELECT /*+TDDL:scan('t1', condition='t1.id = 2')*/ COUNT(1) FROM t1

When the SQL statement is executed, DRDS calculates the names of all the physical tables
correspond to logical table t1 and meet the conditions . Then, DRDS routes the SQL
statement to the specified table shards. After the SQL statement is executed, DRDS merges the
result sets and returns the final result .

Execute an SQL statement that contains a JOIN clause on the specified table shards based on the
given condit ions.

SELECT /*+TDDL:scan('t1, t2', condition='t1.id = 2 and t2.id = 2')*/ * FROM t1 a JOIN t2
b ON a.id = b.id WHERE b.name = "test"

When the SQL statement is executed, DRDS calculates the names of the physical tables correspond
to logical tables t1 and t2 and meet the conditions . Then, DRDS routes the SQL statement
to the specified table shards. After the SQL statement is executed, DRDS merges the result sets and
returns the final result . Not eNot e: When you use this hint, you must make sure that the two tables belong
to the same database shard. You must also make sure that the number of shards in one of the table
is the same as the number of shards in the other table. Otherwise, the table shard names obtained by
PolarDB-X 1.0 represent table shards that are not in the same database shard. If this issue occurs,
DRDS reports an error.

Execute an SQL statement on the specified table shards in the specified database shards. The table
shards are explicit ly specified by using the names of the physical tables.

SELECT /*+TDDL:scan('t1', real_table=("t1_00", "t1_01"))*/ COUNT(1) FROM t1

When the SQL statement is executed, DRDS routes the SQL statement to table shards t1_00 and t1
_01 in all database shards. After the SQL statement is executed, DRDS merges the result sets and
returns the final result .

Execute an SQL statement that contains a JOIN clause on the specified table shards in the specified
database shards. The table shards are explicit ly specified by using the names of the physical tables.

SELECT /*+TDDL:scan('t1, t2', real_table=("t1_00,t2_00", "t1_01,t2_01"))*/ * FROM t1 a JO
IN t2 b ON a.id = b.id WHERE b.name = "test";

SQL Reference··Hint Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

169 > Document Version: 20220601

When the SQL statement is executed, DRDS routes the SQL statement to table shards t1_00 , t2_
00 , t1_01 , and t2_01 in all database shards. After the SQL statement is executed, DRDS
merges the result sets and returns the final result .

To prevent data loss due to misoperations, PolarDB-X 1.0 prohibits high-risk SQL statements by default ,
such as a DELETE statement without a WHERE or LIMIT clause and an UPDATE statement without a
WHERE or LIMIT clause. If you need to perform full-table delet ion or update, you can skip the preceding
protect ion by adding a hint to the corresponding statement.

StatementsStatements
You can add the following hint to an UPDATE or DELETE statement to perform full-table delet ion or
update:

/! TDDL:FORBID_EXECUTE_DML_ALL=false*/

ExamplesExamples
If a DELETE statement does not contain any WHERE or LIMIT clauses, the execution of this statement
is intercepted and the following error message appears:

DELETE FROM tt;
ERR-CODE: [TDDL-4620][ERR_FORBID_EXECUTE_DML_ALL] Forbid execute DELETE ALL or UPDATE ALL
sql. More: [http://
example.aliyundoc.com/faq/faqByFaqCode.html?faqCode=TDDL-4620]

The operation is successful after the following hint is added to the statement:

/!TDDL:FORBID_EXECUTE_DML_ALL=false*/DELETE FROM tt;
Query OK, 10 row affected (0.21 sec)

If an UPDATE statement does not contain any WHERE or LIMIT clauses, the execution of this
statement is intercepted and the following error message appears:

UPDATE tt SET id = 1;
ERR-CODE: [TDDL-4620][ERR_FORBID_EXECUTE_DML_ALL] Forbid execute DELETE ALL or UPDATE ALL
sql. More: [http://example.aliyundoc.com/faq/faqByFaqCode.html?faqCode=TDDL-4620]

The operation is successful after the following hint is added to the statement:

/！TDDL:FORBID_EXECUTE_DML_ALL=false*/UPDATE tt SET id = 1;
Query OK, 10 row affected (0.21 sec)

PolarDB-X 1.0 supports global secondary indexes (GSIs). This topic describes how to use the INDEX HINT
command to obtain query results from a specified GSI.

LimitsLimits

11.6. Automatic protection against high-11.6. Automatic protection against high-
risk SQL statementsrisk SQL statements

11.7. INDEX HINT11.7. INDEX HINT

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Hint

> Document Version: 20220601 170

The version of the ApsaraDB RDS for MySQL instance must be 5.7 or later, and the version of the
PolarDB-X 1.0 instance must be 5.4.1 or later.

The INDEX HINT command takes effect only for SELECT statements.

PrecautionsPrecautions
Custom PolarDB-X 1.0 hints can be in the formats of /*+TDDL:hint_command*/ and /!
+TDDL:hint_command*/ . If you use the /*+TDDL:hint_command*/ format, add the -c parameter to the
logon command when you use the MySQL command-line client to execute an SQL statement that
contains a custom PolarDB-X 1.0 hint. Otherwise, the client deletes the MySQL comment, which
represents the custom PolarDB-X 1.0 hint, from the SQL statement and then sends the statement to
the server for execution. As a result , the custom PolarDB-X 1.0 hint becomes invalid. For more
information, see MySQL client options.

SyntaxSyntax
PolarDB-XPolarDB-X 1.0 supports the following two types of hint syntax:

 FORCE INDEX() : Its syntax is the same as that of MySQL FORCE INDEX. If the specified index is not a
GSI, the FORCE INDEX hint is sent to the ApsaraDB RDS for MySQL instance for execution.

FORCE INDEX()
tbl_name [[AS] alias] [index_hint]
index_hint:
 FORCE INDEX({index_name})

 INDEX() : It specifies a GSI based on the combination of the table name and index name or the
combination of the table alias in the current query block and the index name.

INDEX()
/*+TDDL:
 INDEX({table_name | table_alias}, {index_name})
*/

Not e Not e The preceding statement does not take effect in the following scenarios:

The query does not contain the specified table name or alias.

The specified GSI is not in the specified table.

ExamplesExamples

CREATE TABLE t_order (
 `id` bigint(11) NOT NULL AUTO_INCREMENT,
 `order_id` varchar(20) DEFAULT NULL,
 `buyer_id` varchar(20) DEFAULT NULL,
 `seller_id` varchar(20) DEFAULT NULL,
 `order_snapshot` longtext DEFAULT NULL,
 `order_detail` longtext DEFAULT NULL,
 PRIMARY KEY (`id`),
 GLOBAL INDEX `g_i_seller`(`seller_id`) dbpartition by hash(`seller_id`),
 UNIQUE GLOBAL INDEX `g_i_buyer` (`buyer_id`) COVERING(`seller_id`, `order_snapshot`)
 dbpartition by hash(`buyer_id`) tbpartition by hash(`buyer_id`) tbpartitions 3
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(`order_id`);

SQL Reference··Hint Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

171 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.6/en/comments.html?spm=a2c4g.11186623.2.13.30952e844fy7FE
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html?spm=a2c4g.11186623.2.14.30952e844fy7FE#option_mysql_comments
https://dev.mysql.com/doc/refman/5.7/en/index-hints.html

Specify the g_i_seller GSI by using FORCE INDEX in the FROM clause:

SELECT a.*, b.order_id
 FROM t_seller a
 JOIN t_order b FORCE INDEX(g_i_seller) ON a.seller_id = b.seller_id
 WHERE a.seller_nick="abc";

Specify the g_i_buyer GSI by using the combination of the index name and table alias:

/*+TDDL:index(a, g_i_buyer)*/ SELECT * FROM t_order a WHERE a.buyer_id = 123

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Hint

> Document Version: 20220601 172

This topic describes the function that are supported by PolarDB-X 1.0 and some functions that are not
supported by this system.

PolarDB-X 1.0 supports the date and t ime functions, string functions, conversion functions, aggregate
functions, mathematical functions, comparison functions, bit functions, flow control functions,
information functions, encryption functions, compression functions, and other functions. In addit ion,
JSON functions and geographic information functions can be pushed down and executed.

In the WHERE clause or the UPDATE statement, PolarDB-X 1.0 does not support the following functions:
LAST_INSERT_ID(), CONNECTION_ID(), CURRENT_USER(), CURRENT_USER DATABASE(), SCHEMA(), USER(),
and VERSION().

PolarDB-X 1.0 does not support the following functions that are supported by MySQL 5.7:

Full-text search functions

XML functions

Global transaction identifier (GTID) functions

Enterprise encryption functions

The following functions belong to the supported function types. However, these functions are not
supported.

Type Function Description

Date and time functions

CONVERT_TZ()
Convert from one time zone to
another

GET_FORMAT() Return a date format string

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

String functions

FIND_IN_SET()
Return the index posit ion of the
first argument within the second
argument

LOAD_FILE() Load the named file

MATCH Perform full-text search

SOUNDS LIKE Compare sounds

BIT_AND(Return bitwise AND

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

12.Functions12.Functions
12.1. Functions12.1. Functions

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

173 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/fulltext-search.html
https://dev.mysql.com/doc/refman/5.7/en/xml-functions.html
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html
https://dev.mysql.com/doc/refman/5.7/en/enterprise-encryption.html

Aggregate functions

GROUP_CONCAT() Return a concatenated string

STD()
Return the population standard
deviation

STDDEV()
Return the population standard
deviation

STDDEV_POP()
Return the population standard
deviation

STDDEV_SAMP()
Return the sample standard
deviation

VAR_POP()
Return the population standard
variance

VAR_SAMP() Return the sample variance

VARIANCE()
Return the population standard
variance

Mathematical functions RADIANS()
Return argument converted to
radians

Information functions

BENCHMARK()
Repeatedly execute an
expression

CHARSET()
Return the character set of the
argument

COERCIBILITY()
Return the collation coercibility
value of the string argument

COLLATION()
Return the collation of the string
argument

FOUND_ROWS()

For a SELECT with a LIMIT clause,
the number of rows that would
be returned were there no LIMIT
clause

ROW_COUNT() The number of rows updated

ASYMMETRIC_DECRYPT()
Decrypt ciphertext using private
or public key

ASYMMETRIC_DERIVE()
Derive symmetric key from
asymmetric keys

ASYMMETRIC_ENCRYPT()
Encrypt cleartext using private or
public key

ASYMMETRIC_SIGN() Generate signature from digest

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 174

Encryption functions and
compression functions

ASYMMETRIC_VERIFY()
Verify that signature matches
digest

CREATE_ASYMMETRIC_PRIV_KEY() Create private key

CREATE_ASYMMETRIC_PUB_KEY() Create public key

CREATE_DH_PARAMETERS() Generate shared DH secret

CREATE_DIGEST() Generate digest from string

DECODE() (deprecated 5.7.2)
Decodes a string encrypted using
ENCODE()

DES_DECRYPT() (deprecated
5.7.6)

Decrypt a string

DES_ENCRYPT() (deprecated
5.7.6)

Encrypt a string

ENCODE() (deprecated 5.7.2) Encode a string

ENCRYPT() (deprecated 5.7.6) Encrypt a string

OLD_PASSWORD()
Return the value of the pre-4.1
implementation of PASSWORD

PASSWORD() (deprecated 5.7.6)
Calculate and return a password
string

RANDOM_BYTES() Return a random byte vector

SHA1(), SHA()
Calculate an SHA-1 160-bit
checksum

SHA2() Calculate an SHA-2 checksum

VALIDATE_PASSWORD_STRENGTH(
)

Determine strength of password

ANY_VALUE()
Suppress ONLY_FULL_GROUP_BY
value rejection

DEFAULT()
Return the default value for a
table column

GET_LOCK() Get a named lock

INET_ATON()
Return the numeric value of an IP
address

INET_NTOA()
Return the IP address from a
numeric value

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

175 > Document Version: 20220601

Other functions

INET6_ATON()
Return the numeric value of an
IPv6 address

INET6_NTOA()
Return the IPv6 address from a
numeric value

IS_FREE_LOCK() Whether the named lock is free

IS_IPV4()
Whether argument is an IPv4
address

IS_IPV4_COMPAT()
Whether argument is an IPv4-
compatible address

IS_IPV4_MAPPED()
Whether argument is an IPv4-
mapped address

IS_IPV6()
Whether argument is an IPv6
address

IS_USED_LOCK()
Whether the named lock is in use;
return connection identifier if true

MASTER_POS_WAIT()
Block until the slave has read and
applied all updates up to the
specified posit ion

NAME_CONST()
Causes the column to have the
given name

This topic describes the date and t ime functions that are supported or not supported by PolarDB-X 1.0.

Supported functionsSupported functions
PolarDB-X 1.0 supports the following date and t ime functions.

Function Description

ADDDATE() Add time values (intervals) to a date value

ADDTIME() Add time

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(), CURRENT_TIMESTAMP Synonyms for NOW()

CURTIME() Return the current t ime

12.2. Date and time functions12.2. Date and time functions

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 176

DATE()
Extract the date part of a date or datetime
expression

DATE_ADD() Add time values (intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a t ime value (interval) from a date

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (0-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

EXTRACT() Extract part of a date

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format Unix t imestamp as a date

HOUR() Extract the hour

LAST_DAY() Return the last day of the month for the argument

MAKEDATE() Create a date from the year and day of year

MAKETIME() Create t ime from hour, minute, second

MICROSECOND() Return the microseconds from argument

MINUTE() Return the minute from the argument

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

NOW() Return the current date and time

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

QUARTER() Return the quarter from a date argument

SEC_TO_TIME() Converts seconds to 'HH:MM:SS' format

Function Description

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

177 > Document Version: 20220601

SECOND() Return the second (0-59)

STR_TO_DATE() Convert a string to a date

SUBDATE()
Synonym for DATE_SUB() when invoked with three
arguments

SUBTIME() Subtract t imes

SYSDATE() Return the t ime at which the function executes

T IME() Extract the t ime portion of the expression passed

TIME_FORMAT() Format as t ime

TIME_TO_SEC() Return the argument converted to seconds

TIMEDIFF() Subtract t ime

TIMESTAMP()
With a single argument, this function returns the
date or datetime expression; with two arguments,
the sum of the arguments

T IMESTAMPADD() Add an interval to a datetime expression

TIMESTAMPDIFF() Subtract an interval from a datetime expression

TO_DAYS() Return the date argument converted to days

TO_SECONDS()
Return the date or datetime argument converted to
seconds since Year 0

UNIX_TIMESTAMP() Return a Unix t imestamp

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (1-53)

YEAR() Return the year

YEARWEEK() Return the year and week

Function Description

Functions that are not supportedFunctions that are not supported

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 178

PolarDB-X 1.0 does not support the following date and t ime functions that are supported by MySQL
5.7.

Function Description

CONVERT_TZ() Convert from one time zone to another

GET_FORMAT() Return a date format string

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP, LOCALTIMESTAMP() Synonym for NOW()

In addit ion, the UNIX_TIMESTAMP() funct ion without parameters is not supported. We recommend
that you use the UNIX_TIMESTAMP(NOW()) funct ion instead.

This topic describes the string functions that are supported or not supported by PolarDB-X 1.0.

Supported functionsSupported functions
PolarDB-X 1.0 supports the following string functions.

Function Description

ASCII() Return numeric value of left-most character

BIN()
Return a string containing binary representation of a
number

BIT_LENGTH() Return length of argument in bits

CHAR() Return the character for each integer passed

CHAR_LENGTH() Return number of characters in argument

CHARACTER_LENGTH() Synonym for CHAR_LENGTH()

CONCAT() Return concatenated string

CONCAT_WS() Return concatenate with separator

ELT() Return string at index number

EXPORT_SET()
Return a string such that for every bit set in the
value bits, you get an on string and for every unset
bit, you get an off string

FIELD()
Return the index (posit ion) of the first argument in
the subsequent arguments

FORMAT()
Return a number formatted to specified number of
decimal places

12.3. String functions12.3. String functions

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

179 > Document Version: 20220601

FROM_BASE64() Decode to a base-64 string and return result

HEX()
Return a hexadecimal representation of a decimal or
string value

INSERT()
Insert a substring at the specified posit ion up to the
specified number of characters

INSTR() Return the index of the first occurrence of substring

LCASE() Synonym for LOWER()

LEFT()
Return the leftmost number of characters as
specified

LENGTH() Return the length of a string in bytes

LIKE Simple pattern matching

LOCATE()
Return the posit ion of the first occurrence of
substring

LOWER() Return the argument in lowercase

LPAD()
Return the string argument, left-padded with the
specified string

LTRIM() Remove leading spaces

MAKE_SET()
Return a set of comma-separated strings that have
the corresponding bit in bits set

MID()
Return a substring starting from the specified
position

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

OCT()
Return a string containing octal representation of a
number

OCTET_LENGTH() Synonym for LENGTH()

ORD()
Return character code for leftmost character of the
argument

POSIT ION() Synonym for LOCATE()

QUOTE() Escape the argument for use in an SQL statement

REGEXP Whether string matches regular expression

Function Description

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 180

REPEAT() Repeat a string the specified number of t imes

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

RIGHT() Return the specified rightmost number of characters

RLIKE Whether string matches regular expression

RPAD() Append string the specified number of t imes

RTRIM() Remove trailing spaces

SOUNDEX() Return a soundex string

SPACE() Return a string of the specified number of spaces

STRCMP() Compare two strings

SUBSTR() Return the substring as specified

SUBSTRING() Return the substring as specified

SUBSTRING_INDEX()
Return a substring from a string before the specified
number of occurrences of the delimiter

TO_BASE64() Return the argument converted to a base-64 string

TRIM() Remove leading and trailing spaces

UCASE() Synonym for UPPER()

UNHEX()
Return a string containing hex representation of a
number

UPPER() Convert to uppercase

WEIGHT_STRING() Return the weight string for a string

Function Description

Functions that are not supportedFunctions that are not supported
PolarDB-X 1.0 does not support the following string functions that are supported by MySQL 5.7.

Function Description

FIND_IN_SET()
Return the index posit ion of the first argument
within the second argument

LOAD_FILE() Load the named file

MATCH Perform full-text search

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

181 > Document Version: 20220601

SOUNDS LIKE Compare sounds

Function Description

This topic describes the conversion functions that are supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following conversion functions.

Function Description

BINARY Cast a string to a binary string

CAST() Cast a value as a certain type

CONVERT() Cast a value as a certain type

The CONVERT() function supports only the CONVERT(expr USING transcoding_name) syntax. If you need
to use CONVERT(expr,type), use CAST(expr AS type) instead.

This topic describes the aggregate functions. Some functions are not supported by PolarDB-X 1.0.

Supported functionsSupported functions
The following table describes the aggregate functions that are supported by PolarDB-X 1.0.

Function Description

AVG() Return the average value of the argument

COUNT() Return a count of the number of rows returned

COUNT(DIST INCT) Return the count of a number of different values

MAX() Return the maximum value

MIN() Return the minimum value

SUM() Return the sum

Unsupported functionsUnsupported functions
The following table describes the aggregate functions that are not supported by PolarDB-X 1.0. These
functions are supported by databases that run on the MySQL 5.7 engine.

Function Description

BIT_AND() Return bitwise AND

12.4. Conversion functions12.4. Conversion functions

12.5. Aggregate functions12.5. Aggregate functions

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 182

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

GROUP_CONCAT() Return a concatenated string

STD() Return the population standard deviation

STDDEV() Return the population standard deviation

STDDEV_POP() Return the population standard deviation

STDDEV_SAMP() Return the sample standard deviation

VAR_POP() Return the population standard variance

VAR_SAMP() Return the sample variance

VARIANCE() Return the population standard variance

Function Description

This topic describes the mathematical functions supported and not supported by Distributed Relat ional
Database Service (PolarDB-X 1.0).

ContextContext

Supported functionsSupported functions
PolarDB-X 1.0 supports the following mathematical functions.

Function Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

CEIL()
Return the smallest integer value not less than the
argument

CEILING()
Return the smallest integer value not less than the
argument

CONV() Convert numbers between different number bases

12.6. Mathematical functions12.6. Mathematical functions

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

183 > Document Version: 20220601

COS() Return the cosine

COT() Return the cotangent

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

EXP() Raise to the power of

FLOOR()
Return the largest integer value not greater than the
argument

LN() Return the natural logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

MOD() Return the remainder

PI() Return the value of pi

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

TRUNCATE() Truncate to specified number of decimal places

Function Description

Functions that are not supportedFunctions that are not supported
Compared with MySQL 5.7, DRDS does not support the following mathematical functions:

Function Description

RADIANS() Return argument converted to radians

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 184

This topic describes the comparison functions that are supported by PolarDB-X 1.0.

The following table describes the comparison functions that are supported by PolarDB-X 1.0.

Function Description

COALESCE() Return the first non-NULL argument

GREATEST() Return the largest argument

IN() Check whether a value is within a set of values

INTERVAL()
Return the index of the argument that is less than
the first argument

ISNULL() Test whether the argument is NULL

LEAST() Return the smallest argument

NOT IN() Check whether a value is not within a set of values

STRCMP() Compare two strings

This topic describes the bit function BIT_COUNT().

PolarDB-X 1.0 supports only the bit function BIT_COUNT(). The function returns the number of 1s in
binary representation of an integer. The function returns NULL if the argument is NULL.

mysql> SELECT BIT_COUNT(29), BIT_COUNT(b'101010');
+--------------+----------------------+
| BIT_COUNT(29) | BIT_COUNT(b'101010') |
+--------------+----------------------+
| 4 | 3 |
+--------------+----------------------+
1 row in set (0.00 sec)
mysql> SELECT BIT_COUNT(NULL);
+-----------------+
| BIT_COUNT(NULL) |
+-----------------+
| NULL |
+-----------------+
1 row in set (0.00 sec)

This topic describes the flow control functions that are supported by PolarDB-X 1.0.

12.7. Comparison functions12.7. Comparison functions

12.8. Bit functions12.8. Bit functions

12.9. Flow control functions12.9. Flow control functions

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

185 > Document Version: 20220601

PolarDB-X 1.0 supports the following flow control functions.

Function Description

CASE Case operator

IF() If/else construct

IFNULL() Null if/else construct

NULLIF() Return NULL if expr1 = expr2

Information functions are used to retrieve dynamic database information. This topic describes the
information functions that are supported or not supported by PolarDB-X 1.0.

Supported functionsSupported functions
PolarDB-X 1.0 supports the following information functions.

Function Description

CONNECTION_ID()
Return the connection ID (thread ID) for the
connection

CURRENT_USER(), CURRENT_USER The authenticated user name and host name

DATABASE() Return the default (current) database name

LAST_INSERT_ID()
Value of the AUTOINCREMENT column for the last
INSERT

SCHEMA() Synonym for DATABASE()

SESSION_USER() Synonym for USER()

SYSTEM_USER() Synonym for USER()

USER() The user name and host name provided by the client

VERSION()
Return a string that indicates the MySQL server
version

Functions that are not supportedFunctions that are not supported
PolarDB-X 1.0 does not support the following information functions that are supported by MySQL 5.7.

Function Description

BENCHMARK() Repeatedly execute an expression

CHARSET() Return the character set of the argument

12.10. Information functions12.10. Information functions

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 186

COERCIBILITY()
Return the collation coercibility value of the string
argument

COLLATION() Return the collation of the string argument

FOUND_ROWS()
For a SELECT with a LIMIT clause, the number of
rows that would be returned were there no LIMIT
clause

ROW_COUNT() The number of rows updated

Function Description

This topic describes the encryption functions and compression functions. Some functions are not
supported by PolarDB-X 1.0.

Supported encryption functions and compression functionsSupported encryption functions and compression functions
The following table describes the encryption functions and compression functions that are supported
by PolarDB-X 1.0.

Function Description

AES_ENCRYPT() Encrypt using AES

AES_DECRYPT() Decrypt using AES

MD5() Calculate MD5 checksum

UNCOMPRESS() Uncompress a string compressed

UNCOMPRESSED_LENGTH() Return the length of a string before compression

Unsupported encryption functions and compression functionsUnsupported encryption functions and compression functions
The following table describes the encryption functions and compression functions that are not
supported by PolarDB-X 1.0. These functions are supported by databases that run on the MySQL 5.7
engine.

Function Description

ASYMMETRIC_DECRYPT() Decrypt ciphertext using private or public key

ASYMMETRIC_DERIVE() Derive symmetric key from asymmetric keys

ASYMMETRIC_ENCRYPT() Encrypt cleartext using private or public key

ASYMMETRIC_SIGN() Generate signature from digest

12.11. Encryption functions and12.11. Encryption functions and
compression functionscompression functions

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

187 > Document Version: 20220601

ASYMMETRIC_VERIFY() Verify that signature matches digest

CREATE_ASYMMETRIC_PRIV_KEY() Create private key

CREATE_ASYMMETRIC_PUB_KEY() Create public key

CREATE_DH_PARAMETERS() Generate shared DH secret

CREATE_DIGEST() Generate digest from string

DECODE() (deprecated 5.7.2) Decodes a string encrypted using ENCODE()

DES_DECRYPT() (deprecated 5.7.6) Decrypt a string

DES_ENCRYPT() (deprecated 5.7.6) Encrypt a string

ENCODE() (deprecated 5.7.2) Encode a string

ENCRYPT() (deprecated 5.7.6) Encrypt a string

OLD_PASSWORD() Return the value of the pre-4.1 implementation of PASSWORD

PASSWORD() (deprecated 5.7.6) Calculate and return a password string

RANDOM_BYTES() Return a random byte vector

SHA1(), SHA() Calculate an SHA-1 160-bit checksum

SHA2() Calculate an SHA-2 checksum

VALIDATE_PASSWORD_STRENGTH() Determine strength of password

Function Description

The tradit ional GROUP BY function organizes data into groups and aggregates query results based on
groups. In this case, GROUP BY returns only one row for each data group. However, window functions,
also called online analyt ical processing (OLAP) functions, can return mult iple rows for each data group
without aggregating query results. This is different from the tradit ional GROUP BY function. This topic
describes how to use window functions.

PrerequisitesPrerequisites
The PolarDB-X 1.0 instance version is 5.4.8 or later.

LimitsLimits
Window functions can be used only in SELECT statements.

Window functions cannot be used in conjunction with the separate aggregate functions.

In the following statement, the SUM function that does not include the OVER keyword is an
aggregate function. Therefore, this statement cannot be executed.

12.12. Window functions12.12. Window functions

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 188

SELECT SUM(NAME),COUNT() OVER(...) FROM SOME_TABLE

To implement the preceding query, use the following statement:

SELECT SUM(NAME),WIN1 FROM (SELECT NAME,COUNT() OVER(...) AS WIN1 FROM SOME_TABLE) alias

SyntaxSyntax

function OVER ([[partition by column_some1] [order by column_some2] [RANGE|ROWS BETWEEN sta
rt AND end]])

Parameter Description

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

189 > Document Version: 20220601

 function

The window function that you can specify. The following functions are supported:

Window functions that consist of aggregate functions and the OVER keyword:

 SUM()
 COUNT()
 AVG()
 MAX()
 MIN()

Dedicated window functions:

 ROW_NUMBER()
 RANK()
 DESNCE_RANK()
 PERCENT_RANK()
 CUME_DIST()
 FIRST_VALUE()
 LAST_VALUE()
 LAG()
 LEAD()
 NTH_VALUE()

Not eNot e

When you use the RANK() or DENSE_RANK() window function, the
 ORDER BY clause cannot be omitted. For more information about

dedicated window functions, see Window function descriptions.

Only instances whose version is 5.4.9 or later (If your instance version is
earlier than 5.4.9, upgrade the version. For more information, see Upgrade
the version) support the following dedicated window functions.

 PERCENT_RANK()
 CUME_DIST()
 FIRST_VALUE()
 LAST_VALUE()
 LAG()
 LEAD()
 NTH_VALUE()

Parameter Description

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 190

https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html
https://www.alibabacloud.com/help/doc-detail/56452.htm#multiTask412

 [partition by
column_some1]

The partit ion rule for the window function. This clause divides input rows into
different partit ions. The process is similar to the division process of the GROUP BY
clause.

Not e Not e You cannot reference complex expressions in the PARTITION BY
clause. For example, you can reference column_some1 , but cannot reference
 column_some1 + 1 .

 [order by
column_some2]

The sorting rule for the window function. This clause defines the order in which the
input rows are calculated in the window function.

Not e Not e You cannot reference complex expressions in the ORDER BY
clause. For example, you can reference column_some2 , but cannot reference
 column_some2 + 1 .

 [RANGE|ROWS
BETWEEN start
AND end]

The window frame of the window function. You can use RANGE or ROWS to define the
frame. RANGE indicates that the frame is defined by the value range for the computed
column. ROWS indicates that the frame is defined by the number of rows for the
computed column.

You can use the BETWEEN start AND end option to specify the boundary rows in
the window.

Valid values of start :

 CURRENT ROW : The window starts at the current row.

 N PRECEDING : The window starts at the preceding Nth row.

 UNBOUNDED PRECEDING : The window starts at the first row.

Valid values of end :

 CURRENT ROW : The window ends at the current row.

 N FOLLOWING : The window ends at the following Nth row.

 UNBOUNDED FOLLOWING : The window ends at the last row.

Parameter Description

Use casesUse cases
Assume that the following raw data has been created.

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

191 > Document Version: 20220601

year	country	product	profit
2001	Finland	Phone	10
2000	Finland	Computer	1500
2001	USA	Calculator	50
2001	USA	Computer	1500
2000	India	Calculator	75
2000	India	Calculator	75
2001	India	Calculator	79

Use the following aggregate function to calculate the total profit of each country:

select
 country,
 sum(profit) over (partition by country) sum_profit
from test_window;

The following result is returned:

country	sum_profit
India	229
India	229
India	229
USA	1550
USA	1550
Finland	1510
Finland	1510

Use the following dedicated window function to group data by country and rank the products of
each country by profit in ascending order:

select
 'year',
 country,
 product,
 profit,
 rank() over (partition by country order by profit) as rank
from test_window;

The following result is returned:

year	country	product	profit	rank
2001	Finland	Phone	10	1
2000	Finland	Computer	1500	2
2001	USA	Calculator	50	1
2001	USA	Computer	1500	2
2000	India	Calculator	75	1
2000	India	Calculator	75	1
2001	India	Calculator	79	3

Execute the following statement that contains the ROWS option to calculate a cumulative sum of
profits for each row in the current window:

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 192

select
 'year',
 country,
 profit,
 sum(profit) over (partition by country order by 'year' ROWS BETWEEN UNBOUNDED PRECEDI
NG and CURRENT ROW) as sum_win
from test_window;

The following result is returned:

+------+---------+--------+-------------+
| year | country | profit | sum_win |
+------+---------+--------+-------------+
2001	USA	50	50
2001	USA	1500	1550
2000	India	75	75
2000	India	75	150
2001	India	79	229
2000	Finland	1500	1500
2001	Finland	10	1510

This topic describes other functions that are supported by PolarDB-X 1.0.

The following table describes other functions that are supported by PolarDB-X 1.0.

Function Description

RAND() Return a random floating-point value

RELEASE_ALL_LOCKS() Releases all current named locks

RELEASE_LOCK() Releases the named lock

SLEEP() Sleep for a number of seconds

UUID() Return a Universal Unique Identifier (UUID)

UUID_SHORT() Return an integer-valued universal identifier

VALUES() Defines the values to be used during an INSERT

ANY_VALUE() Suppress ONLY_FULL_GROUP_BY value rejection

DEFAULT() Return the default value for a table column

GET_LOCK() Get a named lock

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

12.13. Other functions12.13. Other functions

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

193 > Document Version: 20220601

INET6_ATON() Return the numeric value of an IPv6 address

INET6_NTOA() Return the IPv6 address from a numeric value

IS_FREE_LOCK() Whether the named lock is free

IS_IPV4() Whether argument is an IPv4 address

IS_IPV4_COMPAT() Whether argument is an IPv4-compatible address

IS_IPV4_MAPPED() Whether argument is an IPv4-mapped address

IS_IPV6() Whether argument is an IPv6 address

IS_USED_LOCK()
Whether the named lock is in use; return connection
identifier if true

MASTER_POS_WAIT()
Block until the slave has read and applied all
updates up to the specified posit ion

NAME_CONST() Causes the column to have the given name

Function Description

In relat ional databases, you must use mult iple SELECT and UNION statements to group results based
on mult iple groups of dimensions. PolarDB-X 1.0 provides GROUPING SETS, ROLLUP, and CUBE extensions
that allow you to group results based on mult iple groups of dimensions. In addit ion, PolarDB-X 1.0
allows you to use the GROUPING and GROUPING_ID functions in a SELECT statement or a HAVING clause.
This helps to explain the results of the preceding extensions. This topic describes the relevant syntax
and examples.

PrerequisitesPrerequisites
The PolarDB-X 1.0 instance version is 5.4.10 or later.

ConsiderationsConsiderations
The syntax of all the GROUP BY extensions in this topic does not allow SQL queries to be pushed
down to the LogicalView operators for execution. For more information about SQL query
pushdown, see SQL rewrite and pushdown.

The following test data information is used in the examples of this topic:

Execute the following statement to create a table named requests :

12.14. GROUPING SETS, ROLLUP, and CUBE12.14. GROUPING SETS, ROLLUP, and CUBE
extensionsextensions

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 194

https://www.alibabacloud.com/help/doc-detail/196910.htm#task-1948105

CREATE TABLE requests (
 `id` int(10) UNSIGNED NOT NULL,
 `os` varchar(20) DEFAULT NULL,
 `device` varchar(20) DEFAULT NULL,
 `city` varchar(20) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8 dbpartition BY hash(`id`) tbpartition BY hash(`i
d`);

Execute the following statement to insert the required test data to the requests table:

INSERT INTO requests (id, os, device, city) VALUES
(1, 'windows', 'PC', 'Beijing'),
(2, 'windows', 'PC', 'Shijiazhuang'),
(3, 'linux', 'Phone', 'Beijing'),
(4, 'windows', 'PC', 'Beijing'),
(5, 'ios', 'Phone', 'Shijiazhuang'),
(6, 'linux', 'PC', 'Beijing'),
(7, 'windows', 'Phone', 'Shijiazhuang');

GROUPING SETS extensionGROUPING SETS extension
OverviewOverview

GROUPING SETS is an extension of the GROUP BY clause and can generate a result set. The result set is
a concatenation of mult iple result sets based on different groups. The result returned by the
GROUPING SETS extension is similar to that of the UNION ALL operator. However, the UNION ALL
operator and the GROUPING SETS expansion do not remove duplicate rows from the combined result
sets.

Synt axSynt ax

GROUPING SETS (
 { expr_1 | (expr_1a [, expr_1b] ...) |
 ROLLUP (expr_list) | CUBE (expr_list)
 } [, ...])

Not e Not e A GROUPING SETS extension can contain a combination of one or more comma-
separated expressions, such as expr_1 or (expr_1a [, expr_1b] ...) ,and lists of
expressions enclosed within parentheses (), such as (expr_list) . In the syntax:

Each expression can be used to determine how the result set is grouped.

You can nest a ROLLUP or CUBE extension in a GROUPING SETS extension.

ExamplesExamples

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

195 > Document Version: 20220601

You can group the data that you want to query by using a GROUPING SETS extension. The
following code block shows the relevant syntax:

select os,device, city ,count(*)
from requests
group by grouping sets((os, device), (city), ());
The preceding statement is equivalent to the following statement:
select os, device, NULL, count(*)
from requests group by os, device
union all
select NULL, NULL, NULL, count(*)
from requests
union all
select null, null, city, count(*)
from requests group by city;

The following result is returned:

+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
windows	PC	NULL	3
linux	PC	NULL	1
linux	Phone	NULL	1
windows	Phone	NULL	1
ios	Phone	NULL	1
NULL	NULL	Shijiazhuang	3
NULL	NULL	Beijing	4
NULL	NULL	NULL	7
+---------+--------+--------------+----------+

Not e Not e If an expression is not used in a grouping set, NULL is used as a placeholder for the
expression. This facilitates operations on the result set that is not used in the grouping set. For
example, the result set is the rows where the values of the city column are NULL in the
returned result .

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 196

You can group data by nest ing a ROLLUP extension in a GROUPING SETS extension. The following
code block shows the relevant syntax:

select os,device, city ,count(*) from requests
group by grouping sets((city), ROLLUP(os, device));
The preceding statement is equivalent to the following statement:
select os,device, city ,count(*) from requests
group by grouping sets((city), (os), (os, device), ());

The following result is returned:

+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
NULL	NULL	Shijiazhuang	3
NULL	NULL	Beijing	4
windows	PC	NULL	3
linux	PC	NULL	1
ios	Phone	NULL	1
linux	Phone	NULL	1
windows	Phone	NULL	1
windows	NULL	NULL	4
linux	NULL	NULL	2
ios	NULL	NULL	1
NULL	NULL	NULL	7
+---------+--------+--------------+----------+

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

197 > Document Version: 20220601

You can group data by nest ing a CUBE extension in a GROUPING SETS extension. The following
code block shows the relevant syntax:

select os,device, city ,count(*) from requests
group by grouping sets((city), CUBE(os, device));
The preceding statement is equivalent to the following statement:
select os,device, city ,count(*) from requests
group by grouping sets((city), (os), (os, device), (), (device));

The following result is returned:

+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
NULL	NULL	Beijing	4
NULL	NULL	Shijiazhuang	3
windows	PC	NULL	3
ios	Phone	NULL	1
linux	Phone	NULL	1
windows	Phone	NULL	1
linux	PC	NULL	1
windows	NULL	NULL	4
ios	NULL	NULL	1
linux	NULL	NULL	2
NULL	PC	NULL	4
NULL	Phone	NULL	3
NULL	NULL	NULL	7
+---------+--------+--------------+----------+

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 198

You can combine the GROUP BY clause and the CUBE, and GROUPING SETS extensions to generate
grouping sets, as shown in the following example:

select os,device, city, count(*)
from requests
group by os, cube(os,device), grouping sets(city);
The preceding statement is equivalent to the following statement:
select os,device, city, count(*)
from requests
group by grouping sets((os,device,city),(os,city),(os,device,city));

The following result is returned:

+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
linux	Phone	Beijing	1
windows	Phone	Shijiazhuang	1
windows	PC	Shijiazhuang	1
linux	PC	Beijing	1
windows	PC	Beijing	2
ios	Phone	Shijiazhuang	1
linux	NULL	Beijing	2
windows	NULL	Shijiazhuang	2
windows	NULL	Beijing	2
ios	NULL	Shijiazhuang	1
+---------+--------+--------------+----------+

ROLLUP extensionROLLUP extension
OverviewOverview

A ROLLUP extension generates a hierarchical set of groups. In this set, subtotals for each hierarchical
group and a grand total are available. The order of the hierarchy is determined by the order of the
expressions that are specified in the ROLLUP expression list . The top of the hierarchy is the leftmost
item in the list . Each successive item that proceeds to the right side moves down the hierarchy. The
rightmost item is at the lowest level.

Synt axSynt ax

ROLLUP ({ expr_1 | (expr_1a [, expr_1b] ...) }
 [, expr_2 | (expr_2a [, expr_2b] ...)] ...)

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

199 > Document Version: 20220601

Not eNot e

Each expression is used to determine how the result set is grouped. If the expressions are
enclosed in parentheses (), such as (expr_1a, expr_1b, ...) , the combination of
values returned by expr_1a and expr_1b defines a single grouping level of the
hierarchy.

For the first item in the list , such as expr_1 or the combination of (expr_1a, expr_1b
, ...) , PolarDB-X 1.0a subtotal is returned for each unique value of the first item. For
the second item in the list , such as expr_2 or the combination of (expr_2a, expr_2b
, ...) , PolarDB-X 1.0a subtotal is returned for each unique value of each group in the
second item. Similar rules are used in each grouping level of the first item and other items.
Finally, PolarDB-X 1.0a grand total is returned for the entire result set.

For the subtotal rows, NULL is returned for the items across which the subtotal is taken.

ExamplesExamples

ROLLUP is used to aggregate (os, device, city) in a hierarchical manner to generate grouping
sets. The following code block shows the relevant syntax:

select os,device, city, count(*)
from requests
group by rollup (os, device, city);
The preceding statement is equivalent to the following statement:
select os,device, city, count(*)
from requests
group by os, device, city with rollup;
The first statement is also equivalent to the following statement:
select os,device, city, count(*)
from requests
group by grouping sets ((os, device, city),(os, device),(os),());

The following result is returned:

+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
windows	PC	Beijing	2
ios	Phone	Shijiazhuang	1
windows	PC	Shijiazhuang	1
linux	PC	Beijing	1
linux	Phone	Beijing	1
windows	Phone	Shijiazhuang	1
windows	PC	NULL	3
ios	Phone	NULL	1
linux	PC	NULL	1
linux	Phone	NULL	1
windows	Phone	NULL	1
windows	NULL	NULL	4
ios	NULL	NULL	1
linux	NULL	NULL	2
NULL	NULL	NULL	7
+---------+--------+--------------+----------+

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 200

ROLLUP is used to aggregate os, (os,device), and city in a hierarchical manner to generate
grouping sets. The following code block shows the relevant syntax:

select os,device, city, count(*)
from requests
group by rollup (os, (os,device), city);
The preceding statement is equivalent to the following statement:
select os,device, city, count(*)
from requests
group by os, (os,device), city with rollup;
The first statement is also equivalent to the following statement:
select os,device, city, count(*)
from requests
group by grouping sets ((os, device, city),(os, device),(os),());

The following result is returned:

+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
windows	PC	Beijing	2
windows	PC	Shijiazhuang	1
linux	PC	Beijing	1
linux	Phone	Beijing	1
windows	Phone	Shijiazhuang	1
ios	Phone	Shijiazhuang	1
windows	PC	NULL	3
linux	PC	NULL	1
linux	Phone	NULL	1
windows	Phone	NULL	1
ios	Phone	NULL	1
windows	NULL	NULL	4
linux	NULL	NULL	2
ios	NULL	NULL	1
NULL	NULL	NULL	7
+---------+--------+--------------+----------+

CUBE extensionCUBE extension
OverviewOverview

A CUBE extension is similar to a ROLLUP extension. A ROLLUP extension generates groupings and
results in a hierarchy based on a left-to-right list ing of items in the ROLLUP expression list . However, a
CUBE extension generates groupings and subtotals based on each permutation of all the items in the
CUBE expression list . Therefore, a CUBE extension returns more rows in the generated result set than a
ROLLUP extension that is performed on the same expression list .

Synt axSynt ax

CUBE ({ expr_1 | (expr_1a [, expr_1b] ...) }
 [, expr_2 | (expr_2a [, expr_2b] ...)] ...)

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

201 > Document Version: 20220601

Not eNot e

Each expression is used to determine how the result set is grouped. If the expressions are
enclosed within parentheses (), such as (expr_1a, expr_1b, ...) , the combination of
values that are returned by expr_1a and expr_1b defines a single group.

For the first item in the list , such as expr_1 or the combination of (expr_1a, expr_1b
, ...) , PolarDB-X 1.0a subtotal is returned for each unique value of the first item. For
the second item in the list , such as expr_2 or the combination of (expr_2a, expr_2b
, ...) , PolarDB-X 1.0a subtotal is returned for each unique value of the second item. A
subtotal is also returned for each unique combination of the first item and the second
item. If a third item exists, PolarDB-X 1.0a subtotal is returned for each unique value of the
third item, each unique combination of the third and first items, each unique combination
of the third and second items, and each unique combination of the third, second, and first
items. Finally, a grand total is returned for the entire result set.

For the subtotal rows, NULL is returned for the items across which the subtotal is taken.

ExamplesExamples

CUBE lists all the possible combinations of (os, device, city) columns as grouping sets. The
following code block shows the relevant syntax:

select os,device, city, count(*)
from requests
group by cube (os, device, city);
The preceding statement is equivalent to the following statement:
select os,device, city, count(*)
from requests
group by grouping sets ((os, device, city),(os, device),(os, city),(device,city),(os),(
device),(city),());

The following result is returned:

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 202

+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
linux	Phone	Beijing	1
windows	Phone	Shijiazhuang	1
windows	PC	Beijing	2
ios	Phone	Shijiazhuang	1
windows	PC	Shijiazhuang	1
linux	PC	Beijing	1
linux	Phone	NULL	1
windows	Phone	NULL	1
windows	PC	NULL	3
ios	Phone	NULL	1
linux	PC	NULL	1
linux	NULL	Beijing	2
windows	NULL	Shijiazhuang	2
windows	NULL	Beijing	2
ios	NULL	Shijiazhuang	1
linux	NULL	NULL	2
windows	NULL	NULL	4
ios	NULL	NULL	1
NULL	Phone	Beijing	1
NULL	Phone	Shijiazhuang	2
NULL	PC	Beijing	3
NULL	PC	Shijiazhuang	1
NULL	Phone	NULL	3
NULL	PC	NULL	4
NULL	NULL	Beijing	4
NULL	NULL	Shijiazhuang	3
NULL	NULL	NULL	7
+---------+--------+--------------+----------+

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

203 > Document Version: 20220601

CUBE lists all the possible combinations of (os, device),(device, city) columns as grouping
sets. The following code block shows the relevant syntax:

select os,device, city, count(*)
from requests
group by cube ((os, device), (device, city));
The preceding statement is equivalent to the following statement:
select os,device, city, count(*)
from requests
group by grouping sets ((os, device, city),(os, device),(device,city),());

The following result is returned:

+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
linux	Phone	Beijing	1
windows	Phone	Shijiazhuang	1
windows	PC	Beijing	2
windows	PC	Shijiazhuang	1
linux	PC	Beijing	1
ios	Phone	Shijiazhuang	1
linux	Phone	NULL	1
windows	Phone	NULL	1
windows	PC	NULL	3
linux	PC	NULL	1
ios	Phone	NULL	1
NULL	Phone	Beijing	1
NULL	Phone	Shijiazhuang	2
NULL	PC	Beijing	3
NULL	PC	Shijiazhuang	1
NULL	NULL	NULL	7
+---------+--------+--------------+----------+

GROUPING and GROUPING_ID functionsGROUPING and GROUPING_ID functions
OverviewOverview

GROUPING f unct ionGROUPING f unct ion

When you use the GROUPING SETS, ROLLUP, or CUBE extensions in the GROUP BY clause, NULL is used
as a placeholder in a return value of the GROUPING SETS extension. As a result , the placeholder
NULL cannot be dist inguished from the value NULL. You can use the GROUPING function provided by
PolarDB-X 1.0 to solve this problem.

The GROUPING function allows you to use a column name as a parameter. If the corresponding
rows are aggregated based on the column, 0 is returned in the result . In this case, NULL is a value. If
the corresponding rows are not aggregated based on the column, 1 is returned. In this case, NULL is
a placeholder in a return value of the GROUPING SETS extension.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 204

GROUPING_ID f unct ionGROUPING_ID f unct ion

The GROUPING_ID function simplifies the process of implementing the GROUPING function. The
GROUPING_ID function is used to determine the subtotal level of a row in the result set from a
ROLLBACK, CUBE, or GROUPING SETS extension. The GROUPING function uses only one column
expression and returns a value to indicate whether a row is a subtotal for all the values of the
specified column. Therefore, mult iple GROUPING functions may be required to interpret the level of
subtotals for queries that have mult iple grouping columns. The GROUPING_ID function supports
one or more column expressions that have been used in the ROLLBACK, CUBE, or GROUPING SETS
extensions and returns a single integer. This integer indicates the column on which a subtotal has
been aggregated.

Synt axSynt ax

GROUPING f unct ionGROUPING f unct ion

SELECT [expr ...,] GROUPING(col_expr) [, expr] ...
FROM ...
GROUP BY { ROLLUP | CUBE | GROUPING SETS }([...,] col_expr
 [, ...]) [, ...]

Not e Not e The GROUPING function uses a single parameter. This parameter must be an
expression of a dimension column that is specified in the expression list of a ROLLUP, CUBE, or
GROUPING SETS extension of the GROUP BY clause.

GROUPING_ID f unct ionGROUPING_ID f unct ion

SELECT [expr ...,]
 GROUPING_ID(col_expr_1 [, col_expr_2] ...)
 [, expr] ...
FROM ...
GROUP BY { ROLLUP | CUBE | GROUPING SETS }([...,] col_expr_1
 [, col_expr_2] [, ...]) [, ...]

ExamplesExamples

The GROUPING_ID function uses mult iple column names as parameters, and converts the grouping
results of the parameter columns into integers by using the bitmap algorithm. The following code
block shows the relevant syntax:

select a,b,c,count(*),
grouping(a) ga, grouping(b) gb, grouping(c) gc, grouping_id(a,b,c) groupingid
from (select 1 as a ,2 as b,3 as c)
group by cube(a,b,c);

The following result is returned:

SQL Reference··Funct ions Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

205 > Document Version: 20220601

+------+------+------+----------+------+------+------+------------+
| a | b | c | count(*) | ga | gb | gc | groupingid |
+------+------+------+----------+------+------+------+------------+
1	2	3	1	0	0	0	0
1	2	NULL	1	0	0	1	1
1	NULL	3	1	0	1	0	2
1	NULL	NULL	1	0	1	1	3
NULL	2	3	1	1	0	0	4
NULL	2	NULL	1	1	0	1	5
NULL	NULL	3	1	1	1	0	6
NULL	NULL	NULL	1	1	1	1	7
+------+------+------+----------+------+------+------+------------+

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Funct ions

> Document Version: 20220601 206

This topic describes the logical operators supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following logical operators.

Operator Description

AND, && Logical AND

NOT, ! Negates value

||, OR Logical OR

XOR Logical XOR

This topic describes the arithmetic operators supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following arithmetic operators.

Operator Description

DIV Integer division

/ Division operator

- Minus operator

%, MOD Modulo operator

+ Addition operator

* Multiplication operator

- Change the sign of the argument

This topic describes the comparison operators supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following comparison operators.

Operator Description

BETWEEN ... AND ... Check whether a value is within a range of values

13.Operator13.Operator
13.1. Logical operators13.1. Logical operators

13.2. Arithmetic operators13.2. Arithmetic operators

13.3. Comparison operators13.3. Comparison operators

SQL Reference··Operat or Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

207 > Document Version: 20220601

= Equal operator

<=> NULL-safe equal to operator

> Greater than operator

>= Greater than or equal operator

IS Test a value against a boolean

IS NOT Test a value against a boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

< Less than operator

<= Less than or equal operator

LIKE Simple pattern matching

NOT BETWEEN ... AND ...
Check whether a value is not within a range of
values

!=, <> Not equal operator

NOT LIKE Negation of simple pattern matching

Operator Description

This topic describes the bitwise operators supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following bitwise operators.

Operator Description

& Bitwise AND

~ Bitwise inversion

l Bitwise OR

^ Bitwise XOR

<< Left shift

>> Right shift

13.4. Bitwise operators13.4. Bitwise operators

13.5. Assignment operators13.5. Assignment operators

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Operat or

> Document Version: 20220601 208

This topic describes the assignment operators that are supported by PolarDB-X 1.0 and the assignment
operators that are not supported by DRDS.

PolarDB-X 1.0 supports the = assignment operator. This operator is generally used in the SET clause of
UPDATE statements.

PolarDB-X 1.0 does not support the := assignment operator.

This topic describes the precedence of operators supported by PolarDB-X 1.0.

The following table describes the precedence of operators that are supported by PolarDB-X 1.0. The
operators are listed by precedence in descending order.

PrecedencePrecedence Operat orOperat or

15 !

14 - (unary minus) and ~

13 ^

12 *, /, %, and MOD

11 + and -

10 <<,>>

9 &

8 |

7
= (equality operator for comparison), <=>, >, >=, <,
<=, <>, !=, IS, LIKE, REGEXP, and IN

6 BETWEEN

5 NOT

4 AND, &&

3 XOR

2 OR, ||

1 = (assignment operator)

Compare the precedence of the IN and NOT IN operators and the = comparison operator

Execute the following SQL statements on a database that runs MySQL 5.7.19:

13.6. Operator precedence13.6. Operator precedence

SQL Reference··Operat or Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

209 > Document Version: 20220601

mysql> select binary 'a' = 'a' in (1, 2, 3);
+-------------------------------+
| binary 'a' = 'a' in (1, 2, 3) |
+-------------------------------+
| 1 |
+-------------------------------+
1 row in set, 1 warning (0.01 sec)
mysql> show warnings;
+---------+------+---------------------------------------+
| Level | Code | Message |
+---------+------+---------------------------------------+
| Warning | 1292 | Truncated incorrect DOUBLE value: 'a' |
+---------+------+---------------------------------------+
1 row in set (0.00 sec)
mysql> select 1 in (1, 2, 3) = 'a';
+----------------------+
| 1 in (1, 2, 3) = 'a' |
+----------------------+
| 0 |
+----------------------+
1 row in set, 1 warning (0.00 sec)
mysql> show warnings;
+---------+------+---------------------------------------+
| Level | Code | Message |
+---------+------+---------------------------------------+
| Warning | 1292 | Truncated incorrect DOUBLE value: 'a' |
+---------+------+---------------------------------------+
1 row in set (0.00 sec)

This example shows that in MySQL, the IN and NOT IN operators have a higher precedence than the =
comparison operator.PolarDB-X 1.0 strict ly follows the precedence described in the preceding table. If
two or more operators that have the same precedence are used in one SQL statement, the operators
are evaluated from left to right.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Operat or

> Document Version: 20220601 210

This topic describes the data types supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports four major categories of data types:

Numeric

String

Date and t ime

JSON

Spatial data types are not supported.

For more information about data types, see Data types in the Reference Manual of MySQL.

This topic describes the numeric data types supported by PolarDB-X 1.0.

The numeric data types can be classified into two categories by precision:

Exact numeric data types

Integer data types: TINYINT, SAMLLINT, MEDIUMINT, INTEGER, and BIGINT

Fixed-point data types: DECIMAL and NUMERIC

Approximate numeric data types: FLOAT, REAL, and DOUBLE PRECISION

The supported data types are consistent with those of MySQL. For more information, see Numeric data
types in the Reference Manual of MySQL.

This topic describes the string data types supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following string data types:

CHAR and VARCHAR

BINARY and VARBINARY

BLOB and TEXT

ENUM

SET

For more information, see String data types in the Reference Manual of MySQL.

A character set is a combination of a set of symbols and encoding methods. A collat ion is the rules for
sort ing characters in a character set. This topic summarizes the collat ion types that PolarDB-X 1.0
supports.

14.Data types14.Data types
14.1. Data types14.1. Data types

14.2. Numeric data types14.2. Numeric data types

14.3. String data types14.3. String data types

14.4. Collation types14.4. Collation types

SQL Reference··Dat a t ypes Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

211 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/data-types.html
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-types.html
https://dev.mysql.com/doc/refman/5.7/en/string-types.html

Not e Not e For more information about the collat ion types, see Collat ions.

Character set collation

utf8

utf8_general_ci

utf8_bin

utf8_unicode_ci

utf8mb4

utf8mb4_general_ci

utf8mb4_bin

utf8mb4_unicode_ci

utf16

utf16_general_ci

utf16_bin

utf16_unicode_ci

ascii
ascii_general_ci

ascii_bin

binary binary

latin1

latin1_swedish_ci

latin1_german1_ci

latin1_danish_ci

latin1_bin

latin1_general_ci

latin1_general_cs

latin1_spanish_ci

gbk
gbk_chinese_ci

gbk_bin

This topic describes the date and t ime data types supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following date and t ime data types:

DATE

14.5. Date and time data types14.5. Date and time data types

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Dat a t ypes

> Document Version: 20220601 212

https://dev.mysql.com/doc/refman/5.7/en/charset-general.html

DATETIME

TIMESTAMP

TIME

YEAR

Not e Not e The value range for the TIME data type in MySQL is different from that in PolarDB-X 1.0.
In PolarDB-X 1.0, the value range for the TIME data type is '00:00:00' to '23:59:59'.

For more information, see Date and t ime data types in the Reference Manual of MySQL.

SQL Reference··Dat a t ypes Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

213 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/date-and-time-types.html

This topic describes how to use the TRACE statement.

You can execute the TRACE statement to view the execution result of an SQL statement. You must use
the TRACE <SQL> statement and the SHOW TRACE statement together.

Not e Not e The difference between the TRACE <SQL> statement and the EXPLAIN <SQL>
statement is that the TRACE <SQL> statement is executed.

ExamplesExamples
Use the TRACE statement to view the execution result of the select 1 statement.

mysql> trace select 1;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.03 sec)
mysql> show trace;
+------+----------+----------------+-----------------------------------+---------------+---
-----------------------+------+-----------+--------+
| ID | TYPE | GROUP_NAME | DBKEY_NAME | TIME_COST(MS) | CO
NNECTION_TIME_COST(MS) | ROWS | STATEMENT | PARAMS |
+------+----------+----------------+-----------------------------------+---------------+---
-----------------------+------+-----------+--------+
| 0 | Optimize | DRDS | DRDS | 3 | 0.
00 | 0 | select 1 | NULL |
| 1 | Query | TDDL5_00_GROUP | db218249098_sqa_zmf_tddl5_00_3309 | 7 | 0.
15 | 1 | select 1 | NULL |
+------+----------+----------------+-----------------------------------+---------------+---
-----------------------+------+-----------+--------+
2 rows in set (0.01 sec)

In most cases, mult iple schemas are used in a Distributed Relat ional Database Service (PolarDB-X 1.0)
instance. PolarDB-X 1.0 allows you to execute SQL statements to perform cross-schema queries. The
results are similar to those of cross-schema queries in MySQL.

NoteNote
To use the cross-schema query syntax, you must prefix the dest ination TableName with the
corresponding SchemaName in your SQL statement. For example, if the TableName is xxx_tbl and
the corresponding SchemaName is yyy_db, you must use yyy_db . xxx_tbl to specify the schema

15.Practical SQL statements15.Practical SQL statements
15.1. TRACE15.1. TRACE

15.2. Cross-schema queries15.2. Cross-schema queries

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Pract ical SQL st at e
ment s

> Document Version: 20220601 214

to which the xxx_tbl table belongs. The cross-schema query syntax in PolarDB-X 1.0 is fully
compatible with that in MySQL.

PolarDB-X 1.0 does not support cross-schema queries that contain the following statements:
CREATE SEQUENCE, ALTER SEQUENCE, and DROP SEQUENCE.

The version of your PolarDB-X 1.0 instance must be V5.3.8-15517870 or later.

Before you perform a cross-schema query, you must be granted the required permissions on the
related schemas. For more information about the syntax for granting permissions, see Manage
accounts and permissions.

TermsTerms
Schema: a database in a PolarDB-X 1.0 instance. Horizontal split t ing may or may not be performed on
the database.

SchemaName: the name of a database in a PolarDB-X 1.0 instance. The name is unique within the
instance.

Table: a table in a PolarDB-X 1.0 database. Horizontal split t ing may or may not be performed on the
database.

TableName: the name of a table in a PolarDB-X 1.0 database. The name is unique within the
database.

ExamplesExamples
If you have created three different schemas in a PolarDB-X 1.0 instance, each of the schemas contains
one table and each of the tables corresponds to one sequence, as shown in the following table.

SchemaName TableName Sequence

 new_db new_tbl AUTO_SEQ_new_tbl

 trade_db trade_tbl AUTO_SEQ_trade_tbl

 user_db user_tbl AUTO_SEQ_user_tbl

The SchemaName that you use to log on to the PolarDB-X 1.0 instance is trade_db . You can execute
the following SQL statements to perform cross-schema queries:

Execute the SELECT statement to perform cross-schema queries

To perform an aggregate query across the trade_tbl schema and the user_tbl schema, you
can execute the following SQL statement:

SELECT COUNT(DISTINCT u.user_id)
FROM `trade_tbl` AS t
INNER JOIN `user_db`.`user_tbl` AS u ON t.user_id=u.user_id
WHERE u.user_id >= 10000
GROUP BY t.title

Execute the INSERT statement to perform cross-schema queries

To insert data to the new_tbl table in the new_db schema, you can execute the following SQL
statement:

INSERT INTO `new_db`.`new_tbl` (user_id, title) VALUES (null, 'test');

SQL Reference··Pract ical SQL st at e
ment s

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

215 > Document Version: 20220601

https://www.alibabacloud.com/help/zh/doc-detail/71356.htm

Use a distributed transaction to perform cross-schema queries

To update or delete the new_tbl table and the user_tbl table in a distributed transaction and
commit the operations by using one request, you can execute the following SQL statements:

 SET AUTOCOMMIT=off;
 SET drds_transaction_policy = 'XA';
 UPDATE `new_db`.`new_tbl` SET name='abc' WHERE use_id=1;
 DELETE FROM `user_db`.`user_tbl` WHERE user_id=2;
 COMMIT;

Use sequences to perform cross-schema queries

To explicit ly use sequences to perform cross-schema INSERT operations, you must explicit ly prefix the
sequence name with the SchemaName. For example, change xxx_seq to yyy_db . xxx_seq .

/* This SQL statement uses the `AUTO_SEQ_new_tbl` table in the `new_db` schema as a seque
nce to insert data.*/
INSERT INTO `new_db`.`new_tbl` (id, name) values (null, 'test_seq');

/* This SQL statement uses the `AUTO_SEQ_new_tbl` table in the `new_db` schema as a seque
nce to insert data. In the sequence, the SchemaName is specified.*/
INSERT INTO `new_db`.`new_tbl` (id, name) values (`new_db`.AUTO_SEQ_new_tbl.nextval, 'te
st_seq');

Execute the SHOW CREATE TABLE statement to perform cross-schema queries

To query the data of another schema such as new_db in the current schema, you can execute the
following SQL statement:

 SHOW CREATE TABLE `new_db`.`new_tbl`;

SQL statements that support cross-schema queriesSQL statements that support cross-schema queries
SELECT

INSERT

REPLACE

UPDATE

DELETE

Sequence

DAL

USE

This topic describes the mult iple statements feature supported by PolarDB-X 1.0).

PolarDB-X 1.0 allows you to specify mult iple statements in one statement string. The statements must
be separated with semicolons (;).

mysql> SELECT * FROM t1; SELECT * FROM t2; SELECT NOW().

15.3. Multiple statements15.3. Multiple statements

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Pract ical SQL st at e
ment s

> Document Version: 20220601 216

https://www.alibabacloud.com/help/doc-detail/71274.htm
https://www.alibabacloud.com/help/doc-detail/71278.htm
https://www.alibabacloud.com/help/doc-detail/71281.htm
https://www.alibabacloud.com/help/doc-detail/71292.htm
https://www.alibabacloud.com/help/doc-detail/71283.htm
https://www.alibabacloud.com/help/doc-detail/264126.htm#concept-2068722
https://www.alibabacloud.com/help/doc-detail/71361.htm
https://www.alibabacloud.com/help/doc-detail/109526.htm

Not eNot e

Before you execute the preceding statement string, use the --delimiter parameter on the
MySQL client to change the delimiter for SQL statements to a period (.) on the MySQL client.
This prevents the client from split t ing the SQL request based on semicolons (;).

When PolarDB-X 1.0 executes the preceding SQL statement string, it splits the SQL
statements based on semicolons (;) and then execute the statements in sequence.

Execution PlansExecution Plans
Similar to most database systems, PolarDB-X 1.0 uses an optimizer to generate an execution plan when
it processes an SQL statement. This execution plan has a tree structure of relat ional operators, which
reflects how PolarDB-X 1.0 executes the SQL statement. The difference is that PolarDB-X 1.0 does not
store data but pushes computations down to each ApsaraDB RDS for MySQL database for execution
while the network I/O overheads is considered in a distributed environment. In this way, the efficiency of
SQL statement execution is improved. You can execute the EXPLAIN statement to view an SQL
execution plan.This topic describes the meanings of the operators used in a PolarDB-X 1.0 execution
plan so that you can understand the SQL execution process by using the execution plan. This helps you
optimize SQL statements. The examples in this topic are based on the following table structure:

CREATE TABLE `sbtest1` (
 `id` INT(10) UNSIGNED NOT NULL,
 `k` INT(10) UNSIGNED NOT NULL DEFAULT '0',
 `c` CHAR(120) NOT NULL DEFAULT '',
 `pad` CHAR(60) NOT NULL DEFAULT '',
 KEY `xid` (`id`),
 KEY `k_1` (`k`)
) dbpartition BY HASH (`id`) tbpartition BY HASH (`id`) tbpartitions 4

The following example helps you understand the tree structure of an execution plan in PolarDB-X 1.0:

15.4. EXPLAIN and execution plans15.4. EXPLAIN and execution plans

SQL Reference··Pract ical SQL st at e
ment s

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

217 > Document Version: 20220601

mysql> explain select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id
> 1000 group by k having cnt > 1300 order by cnt limit 5, 10;
+--
---+
| LOGICAL PLAN
|
+--
---+
| TmpSort(sort="cnt ASC", offset=?2, fetch=?3)
|
| Filter(condition="cnt > ?1")
|
| Aggregate(group="k", cnt="COUNT()")
|
| BKAJoin(id="id", k="k", c="c", pad="pad", id0="id0", k0="k0", c0="c0", pad0="pad0",
condition="id = k", type="inner") |
| MergeSort(sort="k ASC")
|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT
* FROM `sbtest1` WHERE (`id` > ?) ORDER BY `k`") |
| UnionAll(concurrent=true)
|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT
* FROM `sbtest1` WHERE ((`k` > ?) AND (`k` IN ('?')))") |
| HitCache:false
|
+--
---+
9 rows in set (0.01 sec)

As shown in the preceding example, the overall results of a PolarDB-X 1.0 EXPLAIN statement are
divided into two parts: the execution plan and other information.

Execution plan: The execution plan represents the parent-child relat ionships between operators in
indent form. In this example, the Filter is a child operator of TmpSort and a parent operator of
Aggregate. From the perspective of execution, each operator pulls data from its child operators,
processes the pulled data, and then exports the processed data to its parent operator. To better
understand the preceding execution plan, we convert the preceding execution plan into a tree
structure:

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Pract ical SQL st at e
ment s

> Document Version: 20220601 218

Other information: In addit ion to the execution plan, other information is included in the EXPLAIN
results. In this example, only HitCache is included. PolarDB-X 1.0 enables the PlanCache function
by default . HitCache indicates whether the current SQL statement hits PlanCache.After PlanCache
is enabled, PolarDB-X 1.0 parameterizes the SQL statement by replacing most constants with a
question mark (?), and construct ing a parameter list . For example, in the execution plan,
LogicalView's SQL has a question mark (?), and certain operators may have some characters like ?
2 . The 2 here indicates the subscript of operators in the parameter list . This will be further
elaborated with specific examples later.

EXPLAIN syntaxEXPLAIN syntax
The EXPLAIN statement is used to view the execution plan of an SQL statement. The following sample
code shows the syntax:

EXPLAIN
{LOGICALVIEW | LOGIC | SIMPLE | DETAIL | EXECUTE | PHYSICAL | OPTIMIZER | SHARDING
 | COST | ANALYZE | BASELINE | JSON_PLAN | ADVISOR}
 {SELECT statement | DELETE statement | INSERT statement | REPLACE statement| UPDATE statem
ent}

Introduction to operatorsIntroduction to operators
LogicalViewLogicalView

LogicalView pulls data from the underlying data source. From the perspective of database, naming with
 TableScan is more conventional. However, given that PolarDB-X 1.0 itself does not store data but

instead obtains data from the underlying data source by using SQL statements, this operator is more
like a ‘view’ as it records the pushed down SQL statement and data source information. The SQL
statements in this ‘view’ are pushed down by an optimizer. This may include mult iple operations such as
project ion, f iltering, aggregation, sort ing, joining, and subqueries.

SQL Reference··Pract ical SQL st at e
ment s

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

219 > Document Version: 20220601

The following example describes the output and meanings of LogicalView in the EXPLAIN statement:

mysql> explain select * From sbtest1 where id > 1000;
+--
-----------------------------+
| LOGICAL PLAN
|
+--
-----------------------------+
| UnionAll(concurrent=true)
|
| LogicalView (tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM
`sbtest1` WHERE (`id` > ?)") |
| HitCache:false
|
+--
-----------------------------+
3 rows in set (0.00 sec)

LogicalView consists of three parts of information:

t ables:t ables: the name of the underlying data source table. The value uses a period (.) as a separator,
which is preceded by the number of the database shard and followed by the name and number of a
table shard. Consecutive numbers will be shortened, for example, [000-127] , indicating all table
shards with numbers ranging from 000 to 127 .

shardCount :shardCount : the total number of table shards that you want to access. In this example, 128 table
shards with numbers ranging from 000 to 127 will be queried.

sql:sql:the SQL template sent to the underlying data source. The value in the example is for reference
only. PolarDB-X 1.0 replaces the table name with the physical table name during execution and
replaces the constant 10 with a question mark (?). This is because PolarDB-X 1.0 enables
PlanCache by default and parameterizes SQL statements.

UnionAllUnionAll

UnionAll corresponds to UNION ALL . Generally, this operator has mult iple inputs and a UNION
operation is performed on the inputs. In the preceding example, UnionAll on LogicalView means that
UNION is performed on the data in all table shards.

The concurrent in UnionAll indicates whether to run its child operators in parallel. Default value:
true.

UnionDist inctUnionDist inct

Similar to UnionAll, UnionDist inct corresponds to UNION DISTINCT . For example:

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Pract ical SQL st at e
ment s

> Document Version: 20220601 220

mysql> explain select * From sbtest1 where id > 1000 union distinct select * From sbtest1 w
here id < 200;
+--
-------------------------------+
| LOGICAL PLAN
|
+--
-------------------------------+
| UnionDistinct(concurrent=true)
|
| UnionAll(concurrent=true)
|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FRO
M `sbtest1` WHERE (`id` > ?)") |
| UnionAll(concurrent=true)
|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FRO
M `sbtest1` WHERE (`id` < ?)") |
| HitCache:false
|
+--
-------------------------------+
6 rows in set (0.02 sec)

MergeSortMergeSort

MergeSort is the merge sort operator. Generally, this operator has mult iple child operators. PolarDB-X
1.0 implements merging sort ing for ordered data and memory sort ing for unordered data. For example:

mysql> explain select *from sbtest1 where id > 1000 order by id limit 5,10;
+--
---+
| LOGICAL PLAN
|
+--
---+
| MergeSort(sort="id ASC", offset=?1, fetch=?2)
|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM
`sbtest1` WHERE (`id` > ?) ORDER BY `id` LIMIT (? + ?)") |
| HitCache:false
|
+--
---+
3 rows in set (0.00 sec)

The MergeSort operator consists of three parts of information:

sort : sort : the sort f ield and sort order. Specifically, id ASC specifies that data is sorted in ascending
order based on the id f ield, and DESC specifies that data is sorted in descending order.

of f set :of f set :the offset to obtain the result set. Similarly, due to the parameterization of SQL
statements, the offst in the example is expressed as ?1 , where the question mark (?) is a

SQL Reference··Pract ical SQL st at e
ment s

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

221 > Document Version: 20220601

dynamic parameter, and the number that follows corresponds to the subscript of the parameter list .
In this example, the parameter corresponding to the SQL statement is [1000, 5, 10] , and
therefore, the actual value of ?1 is 5 .

f et ch: f et ch: the maximum number of returned data rows. Similar to offset , this parameter is also
parameterized. The actual value is 10 .

Aggregat eAggregat e

Aggregate is an aggregate operator, which consists of two parts: the Group By field and the
aggregate function. For example:

mysql> explain select k, count(*) from sbtest1 where id > 1000 group by k;
+--
---+
| LOGICAL PLAN
|
+--
---+
| Aggregate(group="k", count(*)="SUM(count(*))")
|
| MergeSort(sort="k ASC")
|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT `k`,
COUNT(*) AS `count(*)` FROM `sbtest1` WHERE (`id` > ?) GROUP BY `k` ORDER BY `k`") |
| HitCache:true
|
+--
---+
4 rows in set (0.00 sec)

Aggregate consists of two parts of information:

group: group: the GROUP BY field, which is k in this example.

Aggregat e f unct ion:Aggregat e f unct ion:: The equal sign (=) follows the output column name corresponding to the
aggregate function and is followed by the corresponding calculat ion method. In count(*)="SUM(cou
nt(*))" of the example, the first count(*) corresponds to the output column name. The
following SUM(count(*)) means that the final results of the count(*) column is obtained by
performing a SUM operation on the input data of the count(*) .

This indicates that PolarDB-X 1.0 divides aggregate operations into two parts. First , the aggregate
operations are pushed down to the underlying data sources for local aggregation. Then, the global
aggregation of the locally aggregated results is performed at the PolarDB-X 1.0 layer. The final
aggregation of PolarDB-X 1.0 is based on sort ing. Therefore, a child operator Sort is added in the
optimizer, and the Sort operator is further converted to MergeSort by pushdown.

Another example of the AVG aggregate function is as follows:

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Pract ical SQL st at e
ment s

> Document Version: 20220601 222

mysql> explain select k, avg(id) avg_id from sbtest1 where id > 1000 group by k;
+--

----------------------------+
| LOGICAL PLAN|
+--

----------------------------+
| Project(k="k", avg_id="sum_pushed_sum / sum_pushed_count")|
| Aggregate(group="k", sum_pushed_sum="SUM(pushed_sum)", sum_pushed_count="SUM(pushed_cou
nt)")|
| MergeSort(sort="k ASC")|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT `k`
, SUM(`id`) AS `pushed_sum`, COUNT(`id`) AS `pushed_count` FROM `sbtest1` WHERE (`id` > ?)
GROUP BY `k` ORDER BY `k`")|
| HitCache:false|
+--

----------------------------+
5 rows in set (0.01 sec)

PolarDB-X 1.0 converts the AVG aggregate function to SUM or COUNT , and then converts it to
local aggregation and global aggregation respectively based on the push rules of SUM and
 COUNT . You can try to understand the execution plans of other aggregate functions.

Not e Not e PolarDB-X 1.0 converts the DISTINCT operation to the GROUP operation as follows:
mysql> explain select distinct k from sbtest1 where id > 1000;
+--
---+
| LOGICAL PLAN
|
+--
---+
| Aggregate(group="k")
|
| MergeSort(sort="k ASC")
|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT `
k` FROM `sbtest1` WHERE (`id` > ?) GROUP BY `k` ORDER BY `k`") |
| HitCache:false
|
+--
---+
4 rows in set (0.02 sec)

T mpSortT mpSort

TmpSort sorts data in memory. The difference from MergeSort is that MergeSort can have mult iple child
operators, and the data returned by each child operator has been sorted. TmpSort has only one child
operator.

SQL Reference··Pract ical SQL st at e
ment s

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

223 > Document Version: 20220601

The query plan information for TmpSort is consistent with that for MergeSort. For more information,
see MergeSort.

ProjectProject

The Project operator indicates a project ion operation to select some columns from the input data for
output or to convert some columns (by using a function or expression computation) for output. The
Project operator can also contain constants. In the preceding AVG example, the top-level is a
 Project , and its output is k and sum_pushed_sum/sum_pushed_count . The latter corresponds to

a column named avg_id .

mysql> explain select 'Hello, DRDS', 1 / 2, CURTIME();
+---+
| LOGICAL PLAN |
+---+
Project(Hello, DRDS="_UTF-16'Hello, DRDS'", 1 / 2="1 / 2", CURTIME()="CURTIME()")
| |
| HitCache:false |
+---+
3 rows in set (0.00 sec)

The Project plan includes the name of each column and the corresponding columns, values, functions,
and expressions.

Filt erFilt er

The Filter operator performs a filtering operation that contains some filter condit ions. This operator
performs filtering on the input data. The data that meets the filter condit ions is output and the
remaining data is discarded. The following example includes most of the operators described previously
and therefore is rather complex.

mysql> explain select k, avg(id) avg_id from sbtest1 where id > 1000 group by k having avg_
id > 1300;
+--

------------------------------+
| LOGICAL PLAN |
+--

------------------------------+
| Filter(condition="avg_id > ?1") |
| Project(k="k", avg_id="sum_pushed_sum / sum_pushed_count") |
| Aggregate(group="k", sum_pushed_sum="SUM(pushed_sum)", sum_pushed_count="SUM(pushed_c
ount)") |
| MergeSort(sort="k ASC") |
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT `
k`, SUM(`id`) AS `pushed_sum`, COUNT(`id`) AS `pushed_count` FROM `sbtest1` WHERE (`id` > ?
) GROUP BY `k` ORDER BY `k`") |
| HitCache:false |
+--

------------------------------+
6 rows in set (0.01 sec)

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Pract ical SQL st at e
ment s

> Document Version: 20220601 224

Based on the SQL of the preceding AVG example, having avg_id > 1300 is added. A Filter
operator is added at the top of the execution plan to filter all data that sat isfies avg_id > 1300 .

You may ask why the condit ion in WHERE has no corresponding Filter operator? At a stage of the
PolarDB-X 1.0 optimizer, the Filter operator of the WHERE condit ion does exist , but it is f inally pushed
down to LogiacalView. Therefore, you can find id > 1000 in LogicalView's SQL.

NlJoinNlJoin

NlJoin is the NestLoop Join operator, which allows you to use the NestLoop method to join two tables.
PolarDB-X 1.0 implements two JOIN policies: NlJoin and BKAJoin. The latter refers to Batched Key Access
Join. When you query data by using key-value pairs, a batch of data is retrieved from the left table. An
IN condit ion is concatenated into the SQL statement for accessing the right table to obtain a batch of
data from the right table at a t ime.

mysql> explain select a.* from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000;
+--
----------------------------------+
| LOGICAL PLAN
|
+--
----------------------------------+
| Project(id="id", k="k", c="c", pad="pad")
|
| NlJoin(id="id", k="k", c="c", pad="pad", k0="k0", condition="id = k", type="inner")
|
| UnionAll(concurrent=true)
|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * F
ROM `sbtest1` WHERE (`id` > ?)") |
| UnionAll(concurrent=true)
|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT `k`
FROM `sbtest1` WHERE (`k` > ?)") |
| HitCache:false
|
+--
----------------------------------+
7 rows in set (0.03 sec)

The NlJOIN plan includes three parts:

Out put column inf o: Out put column inf o: the output column name. In this example, the JOIN statement returns five
columns. id="id", k="k", c="c", pad="pad", k0="k0" .

condit ion: condit ion: the join condit ion. In this example, the join condit ion is id = k .

t ype: t ype: the connection type. In this example, the type is INNER JOIN. Therefore, the connection type is
 inner .

BKAJoinBKAJoin

BKAJoin: JOIN is performed by using batch key-value queries. That is, a batch of data is retrieved from
the left table. An IN condit ion is concatenated into the SQL statement for accessing the right table to
obtain a batch of data from the right table at a t ime.

SQL Reference··Pract ical SQL st at e
ment s

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

225 > Document Version: 20220601

mysql> explain select a.* from sbtest1 a, sbtest1 b where a.id = b.k order by a.id;
+--
-------------------------------------+
| LOGICAL PLAN
|
+--
-------------------------------------+
| Project(id="id", k="k", c="c", pad="pad")
|
| BKAJoin(id="id", k="k", c="c", pad="pad", id0="id0", k0="k0", c0="c0", pad0="pad0", con
dition="id = k", type="inner") |
| MergeSort(sort="id ASC")
|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * F
ROM `sbtest1` ORDER BY `id`") |
| UnionAll(concurrent=true)
|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * F
ROM `sbtest1` WHERE (`k` IN ('?'))") |
| HitCache:false
|
+--
-------------------------------------+
7 rows in set (0.01 sec)

The plan content of BKAJoin is the same as that of NlJoin. The two operators have different names and
are designed to inform the executor of the method used to perform the JOIN operation. In addit ion,
 'k' IN ('?') in LogicalView on the right table in the preceding execution plan is an IN query

template created by the optimizer for querying data in the right table.

LogicalModif yViewLogicalModif yView

As mentioned above, the LogicalView operator obtains data from the underlying data source.
Correspondingly, the LogicalModifyView operator modifies the underlying data source and also includes
an SQL statement. This SQL statement may be an INSERT, UPDATE, or DELETE statement.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Pract ical SQL st at e
ment s

> Document Version: 20220601 226

mysql> explain update sbtest1 set c='Hello, DRDS' where id > 1000;
+--
--------------------------------------+
| LOGICAL PLAN
|
+--
--------------------------------------+
| LogicalModifyView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="UPDATE `sb
test1` SET `c` = ? WHERE (`id` > ?)") |
| HitCache:false
|
+--
--------------------------------------+
2 rows in set (0.03 sec)
mysql> explain delete from sbtest1 where id > 1000;
+--
-------------------------------+
| LOGICAL PLAN
|
+--
-------------------------------+
| LogicalModifyView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="DELETE FRO
M `sbtest1` WHERE (`id` > ?)") |
| HitCache:false
|
+--
-------------------------------+
2 rows in set (0.03 sec)

The query plan of the LogicalModifyView operator is similar to that of the LogicalView operator,
including the delivered physical table shards, the number of table shards, and an SQL template.
Similarly, PlanCache is enabled, thus the SQL statement is parameterized and constants in the SQL
template are replaced with question marks (?).

PhyT ableOperat ionPhyT ableOperat ion

PhyTableOperation: performs an operation on a physical table shard. This operator is used only in
INSERT INTO… VALUES ….

SQL Reference··Pract ical SQL st at e
ment s

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

227 > Document Version: 20220601

mysql> explain insert into sbtest1 values(1, 1, '1', '1'),(2, 2, '2', '2');
+--

-------------------------+
| LOGICAL PLAN
|
+--

-------------------------+
| PhyTableOperation(tables="SYSBENCH_CORONADB_1526954857179TGMMSYSBENCH_CORONADB_VGOC_0000_
RDS.[sbtest1_001]", sql="INSERT INTO ? (`id`, `k`, `c`, `pad`) VALUES(?, ?, ?, ?)", params=
"`sbtest1_001`,1,1,1,1") |
| PhyTableOperation(tables="SYSBENCH_CORONADB_1526954857179TGMMSYSBENCH_CORONADB_VGOC_0000_
RDS.[sbtest1_002]", sql="INSERT INTO ? (`id`, `k`, `c`, `pad`) VALUES(?, ?, ?, ?)", params=
"`sbtest1_002`,2,2,2,2") |
|
|
| HitCache:false
|
+--

-------------------------+
4 rows in set (0.00 sec)

In this example, the INSERT statement is executed to insert two rows of data, with each row of data
corresponding to one PhyTableOperation operator. The PhyTableOperation operator consists of the
following parts of information:

t ables: t ables: the name of a physical table. Only one physical table name is specified.

sql: sql: the SQL template. Table names and constants in the SQL template are all parameterized and
replaced with question marks (?) and the corresponding parameters are listed in the params
parameter.

params:params: the actual parameters corresponding to the question marks (?) in the SQL template,
including table names and constants.

Other informationOther information
Hit CacheHit Cache

PolarDB-X 1.0 enables PlanCache by default . HitCache is used to inform you about whether the query
hits PlanCache. In the following example, HitCache is set to false for the first run and true for the
second run.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Pract ical SQL st at e
ment s

> Document Version: 20220601 228

mysql> explain select * From sbtest1 where id > 1000;
+--
-----------------------------+
| LOGICAL PLAN
|
+--
-----------------------------+
| UnionAll(concurrent=true)
|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM
`sbtest1` WHERE (`id` > ?)") |
| HitCache:false
|
+--
-----------------------------+
3 rows in set (0.01 sec)
mysql> explain select * From sbtest1 where id > 1000;
+--
-----------------------------+
| LOGICAL PLAN
|
+--
-----------------------------+
| UnionAll(concurrent=true)
|
| LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM
`sbtest1` WHERE (`id` > ?)") |
| HitCache:true
|
+--
-----------------------------+
3 rows in set (0.00 sec)

SQL Reference··Pract ical SQL st at e
ment s

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

229 > Document Version: 20220601

This topic describes the common error codes that may be returned in PolarDB-X 1.0 and how to
troubleshoot the errors.

TDDL-4006 ERR_TABLE_NOT_EXISTTDDL-4006 ERR_TABLE_NOT_EXIST
The error code is returned because the specified data table does not exist .

Example:

ERR-CODE: [TDDL-4006][ERR_TABLE_NOT_EXIST] Table '*****' doesn't exist.

This error code indicates that the data table does not exist in PolarDB-X 1.0 or PolarDB-X 1.0 has failed
to load the metadata of the data table due to unknown reasons.

If this error is returned, Submit a t icket.

TDDL-4007 ERR_CANNOT_FETCH_TABLE_METATDDL-4007 ERR_CANNOT_FETCH_TABLE_META
The error code is returned because PolarDB-X 1.0 has failed to load the metadata of a data table.

Example:

ERR-CODE: [TDDL-4007][ERR_CANNOT_FETCH_TABLE_META] Table '*****' metadata
cannot be fetched because Table '*****.*****' doesn't exist.

This error code indicates that PolarDB-X 1.0 has failed to query the metadata of the data table. This
error may occur due to one of the following reasons:

The data table is not created.

The data table in the database shard is manually deleted or renamed.

PolarDB-X 1.0 cannot connect to the backend ApsaraDB RDS for MySQL instances.

If this error is returned, check whether the specified data table exists and confirm whether the status of
all backend ApsaraDB RDS for MySQL instances of PolarDB-X 1.0 is normal.

If the data table is manually deleted or renamed, you can use the data restoration feature of ApsaraDB
RDS for MySQL to restore the data. If the error persists, Submit a t icket.

TDDL-4100 ERR_ATOM_NOT_AVALILABLETDDL-4100 ERR_ATOM_NOT_AVALILABLE
The error code is returned because a backend ApsaraDB RDS for MySQL instance of PolarDB-X 1.0 is
unavailable.

Example:

ERR-CODE: [TDDL-4100][ERR_ATOM_NOT_AVALILABLE] Atom : ***** isNotAvailable

If PolarDB-X 1.0 detects that the status of an ApsaraDB RDS for MySQL instance on the backend is
abnormal, PolarDB-X 1.0 temporarily blocks access to the instance and returns the TDDL-4100 error. If
this error is returned, check whether the status of all backend ApsaraDB RDS for MySQL instances of
PolarDB-X 1.0 is abnormal. If an abnormal ApsaraDB RDS for MySQL instance is detected, recover the
related instance.

16.Error codes16.Error codes

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Error codes

> Document Version: 20220601 230

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

After the ApsaraDB RDS for MySQL instance is recovered, PolarDB-X 1.0 automatically changes the state
of the instance and allows applications to access the instance.

TDDL-4101TDDL-4101
ERR_ATOM_GET_CONNECTION_FAILED_UNKNOWN_REASONERR_ATOM_GET_CONNECTION_FAILED_UNKNOWN_REASON
The error code is returned because PolarDB-X 1.0 has failed to connect to a backend ApsaraDB RDS for
MySQL instance due to unknown reasons.

Example:

ERR-CODE: [TDDL-4101][ERR_ATOM_GET_CONNECTION_FAILED_UNKNOWN_REASON] Get
connection for db '*****' from pool failed. AppName:*****, Env:*****,
UnitName:null. Message from pool: wait millis 5000, active 0, maxActive 5.
You should look for the following logs which contains the real reason.

When PolarDB-X 1.0 processes requests, PolarDB-X 1.0 asynchronously establishes connections to the
backend ApsaraDB RDS for MySQL instances. If PolarDB-X fails to connect to a backend ApsaraDB RDS
for MySQL instance within a period of t ime and no error causes are returned for the asynchronous task,
PolarDB-X 1.0 returns the TDDL-4101 error to the application.

In most cases, this error is returned because the status of the backend ApsaraDB RDS for MySQL
instance is abnormal. If this error persists after the backend ApsaraDB RDS for MySQL instance is
recovered, Submit a t icket.

TDDL-4102 ERR_ATOM_GET_CONNECTION_FAILED_KNOWN_REASONTDDL-4102 ERR_ATOM_GET_CONNECTION_FAILED_KNOWN_REASON
The error code is returned because PolarDB-X 1.0 has failed to connect to a backend ApsaraDB RDS for
MySQL instance due to known reasons.

Example:

ERR-CODE: [TDDL-4102][ERR_ATOM_GET_CONNECTION_FAILED_KNOWN_REASON] Get
connection for db '*****' failed because wait millis 5000, active 0,
maxActive 5

This error code is returned if an error occurs when PolarDB-X 1.0 connects to a backend ApsaraDB RDS
for MySQL instance. The error causes are included in the ERR-CODE message.

PolarDB-X 1.0 may fail to connect to a backend ApsaraDB RDS for MySQL instance due to one of the
following reasons:

The number of connections to the backend ApsaraDB RDS for MySQL instance has reached the upper
limit .

The connection to the backend ApsaraDB RDS for MySQL instance has t imed out.

The connection to the backend ApsaraDB RDS for MySQL instance is rejected.

If this error persists after you troubleshoot the issues on the backend ApsaraDB RDS for MySQL instance,
Submit a t icket.

TDDL-4103 ERR_ATOM_CONNECTION_POOL_FULLTDDL-4103 ERR_ATOM_CONNECTION_POOL_FULL
The error code is returned because the connection pool of the backend ApsaraDB RDS for MySQL
instances of PolarDB-X 1.0 is full.

SQL Reference··Error codes Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

231 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Example:

ERR-CODE: [TDDL-4103][ERR_ATOM_CONNECTION_POOL_FULL] Pool of DB '*****' is
full. Message from pool: wait millis 5000, active 5, maxActive 5.
AppName:*****, Env:*****, UnitName:null.

This error code indicates that the backend connection pool of PolarDB-X 1.0 is full. The TDDL-4103 error
may be returned due to one of the following reasons:

The execution of SQL statements that are sent from an application is slow, and the operation is
performed over a connection for a long period of t ime. As a result , the number of available
connections is insufficient.

An application does not close the connections to a database. This causes connection leaks.

A large number of cross-database queries are performed in parallel. This operation is performed over
a large number of connections. The cross-database queries include the queries for aggregation and
statist ical analysis and the queries for data in databases that are not sharded.

To resolve this error, we recommend that you use the following methods:

Use frameworks such as Spring JDBC and MyBatis to connect to databases.

Optimize SQL queries based on the performance analysis reports and suggestions of database
administrators.

Use the read/write split t ing feature of PolarDB-X 1.0 to forward cross-database queries to read-only
nodes.

Upgrade the specificat ions of your ApsaraDB RDS for MySQL instances to improve the backend
processing performance.

Submit a t icket to change the maximum number of backend connections for your PolarDB-X 1.0
instance.

TDDL-4104 ERR_ATOM_CREATE_CONNECTION_TOO_SLOWTDDL-4104 ERR_ATOM_CREATE_CONNECTION_TOO_SLOW
The error code is returned because the connection to a backend ApsaraDB RDS for MySQL instance of a
PolarDB-X 1.0 instance has t imed out.

Example:

ERR-CODE: [TDDL-4104][ERR_ATOM_CREATE_CONNECTION_TOO_SLOW] Get connection
for db '*****' from pool timeout. AppName:*****, Env:*****, UnitName:null.
Message from pool: wait millis 5000, active 3, maxActive 5.

When PolarDB-X 1.0 connects to a backend ApsaraDB RDS for MySQL instance in an asynchronously
manner, the connection t imes out if a large number of connection requests are sent in a short period of
t ime or it takes a long t ime to establish a connection to the backend ApsaraDB RDS for MySQL instance.

In most cases, this error occurs due to the heavy workloads on the backend ApsaraDB RDS for MySQL
instance. To resolve this error, we recommend that you use the read/write split t ing feature of PolarDB-
X 1.0 or upgrade the specificat ions of the ApsaraDB RDS for MySQL instance.

If this error persists after you troubleshoot the issues on the backend ApsaraDB RDS for MySQL instance,
Submit a t icket.

If this error occurs because a large number of connection requests are sent in a short period of t ime,
Submit a t icket to change the minimum number of connections for your PolarDB-X 1.0 instance.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Error codes

> Document Version: 20220601 232

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

TDDL-4105 ERR_ATOM_ACCESS_DENIEDTDDL-4105 ERR_ATOM_ACCESS_DENIED
The error code is returned because the connection request that PolarDB-X 1.0 sent to a backend
ApsaraDB RDS for MySQL instance is rejected.

Example:

ERR-CODE: [TDDL-4105][ERR_ATOM_ACCESS_DENIED] DB '*****' Access denied for
user '*****'@'*****'. AppName:*****, Env:*****, UnitName:null. Please
contact DBA to check.

This error code indicates that the access request that includes a username and a password from
PolarDB-X 1.0 to the ApsaraDB RDS for MySQL instance is rejected.

If the username or password that is automatically created by PolarDB-X 1.0 is changed on the backend
ApsaraDB RDS for MySQL instance, PolarDB-X 1.0 returns the TDDL-4105 error for the access request. To
resolve the error, Submit a t icket to rect ify the username or the password of your PolarDB-X 1.0 instance.

PolarDB-X 1.0 also returns the TDDL-4105 error if the backend ApsaraDB RDS for MySQL instance expires
or if an overdue payment occurs in your account. In this case, renew the instance at your earliest
opportunity.

TDDL-4106 ERR_ATOM_DB_DOWNTDDL-4106 ERR_ATOM_DB_DOWN
The error code is returned because PolarDB-X 1.0 has failed to connect to a backend ApsaraDB RDS for
MySQL instance.

Example:

ERR-CODE: [TDDL-4106][ERR_ATOM_DB_DOWN] DB '*****' cannot be connected.
AppName:*****, Env:*****, UnitName:null. It seems a very real possibility
that this DB IS DOWN. Please contact DBA to check.

This error code indicates that the connection request from PolarDB-X 1.0 to the backend ApsaraDB RDS
for MySQL instance has t imed out or no response is returned for the connection request. In most cases,
this error occurs because a fault occurs in the backend ApsaraDB RDS for MySQL instance. To resolve the
error, Submit a t icket.

TDDL-4108 ERR_VARIABLE_CAN_NOT_SET_TO_NULL_FOR_NOWTDDL-4108 ERR_VARIABLE_CAN_NOT_SET_TO_NULL_FOR_NOW
The error code is returned because the value of a variable cannot be set to NULL .

Example:

ERR-CODE: [TDDL-4108][ERR_VARIABLE_CAN_NOT_SET_TO_NULL_FOR_NOW] System
variable ***** can''t set to null for now;

You cannot execute the SET statement to set the value of some MySQL variables to NULL . If the
value of such a variable is set to NULL, PolarDB-X 1.0 returns the TDDL-4108 error.

If this error occurs, check the value of the variable and rect ify the value based on the official
documentation of MySQL. For more information, see Server System Variables.

TDDL-4200 ERR_GROUP_NOT_AVALILABLETDDL-4200 ERR_GROUP_NOT_AVALILABLE
The error code is returned because a PolarDB-X 1.0 database shard is unavailable.

SQL Reference··Error codes Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

233 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html

Example:

ERR-CODE: [TDDL-4200][ERR_GROUP_NOT_AVALILABLE] The TDDL Group ***** is
running in fail-fast status, caused by this SQL:***** which threw a fatal
exception as *****.

If the backend ApsaraDB RDS for MySQL instance in which the database shard resides cannot be
accessed and no other instances are available for the database shard, PolarDB-X 1.0 sets the status of
the database shard to fail-fast and returns the TDDL-4200 error.

In most cases, this error occurs because the backend ApsaraDB RDS for MySQL instance fails.
Troubleshoot the failure based on the error information. After the ApsaraDB RDS for MySQL instance is
recovered, PolarDB-X 1.0 automatically changes the state of the instance from fail-fast .

If this error persists after you resolve the fault in the backend ApsaraDB RDS for MySQL instance, Submit
a t icket.

TDDL-4201 ERR_GROUP_NO_ATOM_AVALILABLETDDL-4201 ERR_GROUP_NO_ATOM_AVALILABLE
The error code is returned because no ApsaraDB RDS for MySQL instances are available for a PolarDB-X
1.0 database shard.

Example:

ERR-CODE: [TDDL-4201][ERR_GROUP_NO_ATOM_AVALILABLE] All weights of DBs in
Group '*****' is 0. Weights is: *****.

When all ApsaraDB RDS for MySQL instances in which a database shard resides are unavailable or the
database shard is in the fail-fast state, PolarDB-X 1.0 returns the TDDL-4201 error.

In most cases, this error occurs because a fault occurs in the backend ApsaraDB RDS for MySQL
instances. Check the status of all backend ApsaraDB RDS for MySQL instances and resolve the fault . If
the error persists, Submit a t icket.

TDDL-4202 ERR_SQL_QUERY_TIMEOUTTDDL-4202 ERR_SQL_QUERY_TIMEOUT
The error code is returned because a query in PolarDB-X 1.0 has t imed out.

Example:

ERR-CODE: [TDDL-4202][ERR_SQL_QUERY_TIMEOUT] Slow query leads to a timeout
exception, please contact DBA to check slow sql. SocketTimout:*** ms,
Atom:*****, Group:*****, AppName:*****, Env:*****, UnitName:null.

This error code indicates that the execution duration of the SQL statement on the backend ApsaraDB
RDS for MySQL instances exceeds the value of the socketTimeout parameter that you specified for
your PolarDB-X 1.0 instance. The default value of the socketTimeout parameter is 900 seconds for your
PolarDB-X 1.0 instance.

We recommend that you optimize the SQL statement and create suitable indexes on the backend
ApsaraDB RDS for MySQL instances to improve the SQL query performance.

If the error persists after the SQL statement is optimized, use the following PolarDB-X 1.0 hint syntax to
specify a temporary t imeout period:

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Error codes

> Document Version: 20220601 234

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

/*TDDL:SOCKET_TIMEOUT=900000*/ SELECT * FROM dual;

Specify the value of the SOCKET_TIMEOUT parameter in milliseconds.

For more information about PolarDB-X 1.0 hints, see Specify a custom time-out period for an SQL statement.

To permanently change the t imeout period for PolarDB-X 1.0, Submit a t icket.

TDDL-4203 ERR_SQL_QUERY_MERGE_TIMEOUTTDDL-4203 ERR_SQL_QUERY_MERGE_TIMEOUT
The error code is returned because a distributed query has t imed out.

Example:

ERR-CODE: [TDDL-4203][ERR_SQL_QUERY_MERGE_TIMEOUT] Slow sql query leads to
a timeout exception during merging results, please optimize the slow sql.
The the default timeout is *** ms. DB is *****

When you query distributed data in PolarDB-X 1.0, the default t imeout period is 900 seconds.

This error code indicates that the system has scanned the data in mult iple database shards to execute
the SQL statement and the execution duration is longer than 900 seconds. To optimize the SQL
statement, perform the following steps:

Include a shard key in the WHERE clause to specify a database shard on which you want to execute
the SQL statement.

Check whether a suitable index can be created on the backend ApsaraDB RDS for MySQL instances.
Indexes can improve the query performance of a database shard.

Eliminate t ime-consuming operations in the distributed query, such as cross-database JOIN queries
and queries that are performed based on data resort ing. This helps reduce the number of resources
that are consumed during data merge operations.

If the error persists after the SQL statement is optimized, use the following hint syntax to specify a
temporary t imeout period for PolarDB-X 1.0:

/*TDDL:SOCKET_TIMEOUT=900000*/ SELECT * FROM dual;

Specify the value of the SOCKET_TIMEOUT parameter in milliseconds.

For more information about PolarDB-X 1.0 hints, see Specify a custom time-out period for an SQL statement.

If this error persists, Submit a t icket.

TDDL-4400 ERR_SEQUENCETDDL-4400 ERR_SEQUENCE
The error code is returned because a sequence has failed to be processed.

Example:

ERR-CODE: [TDDL-4400][ERR_SEQUENCE] Sequence : All dataSource faild to get
value!

This error code indicates that PolarDB-X 1.0 has failed to process the sequence. The error message is
provided after Sequence : .

SQL Reference··Error codes Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

235 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/100641.htm#multiTask821
https://workorder-intl.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/100641.htm#multiTask821
https://workorder-intl.console.aliyun.com/

In most cases, this error occurs because a fault occurs in the backend ApsaraDB RDS for MySQL
instances. As a result , data tables that are related to the sequence cannot be accessed. We
recommend that you check the status of all backend ApsaraDB RDS for MySQL instances. If this error
persists after you resolve the fault in the backend ApsaraDB RDS for MySQL instances, Submit a t icket.

TDDL-4401 ERR_MISS_SEQUENCETDDL-4401 ERR_MISS_SEQUENCE
The error code is returned because the specified sequence does not exist .

Example:

ERR-CODE: [TDDL-4401][ERR_MISS_SEQUENCE] Sequence '*****' is not found

This error code indicates that the sequence that you specified in the statement does not exist . We
recommend that you execute the SHOW SEQUENCES statement to query the name of each sequence
that you created in PolarDB-X 1.0 and specify a valid sequence name.

If the sequence that you want to use does not exist , you can use the following CREATE SEQUENCE
syntax to create the sequence:

CREATE SEQUENCE <sequence name> [START WITH <numeric value>]
[INCREMENT BY <numeric value>] [MAXVALUE <numeric value>]
[CYCLE | NOCYCLE]`

If the sequence that you specified exists and the TDDL-4401 error persists, Submit a t icket.

For more information about sequences, see Sequence.

TDDL-4403 ERR_MISS_SEQUENCE_TABLE_ON_DEFAULT_DBTDDL-4403 ERR_MISS_SEQUENCE_TABLE_ON_DEFAULT_DB
The error code is returned because the data table that corresponds to a sequence does not exist .

Example:

ERR-CODE: [TDDL-4403][ERR_MISS_SEQUENCE_TABLE_ON_DEFAULT_DB] Sequence table
is not in default db.

This error code indicates that the data table named sequence or sequence_opt cannot be found
in the backend database. To troubleshoot the error, Submit a t icket.

TDDL-4404 ERR_SEQUENCE_TABLE_METATDDL-4404 ERR_SEQUENCE_TABLE_META
The error code is returned because the schema of the data table that corresponds to a sequence is
invalid.

Example:

ERR-CODE: [TDDL-4404][ERR_SEQUENCE_TABLE_META] the meta of sequence table
is error, some columns missed

This error code indicates that specific f ields are missing in the data table that corresponds to the
sequence. This data table can be the sequence or sequence_opt table. To troubleshoot the error,
Submit a t icket.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Error codes

> Document Version: 20220601 236

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/71261.htm#multiTask4064
https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

TDDL-4405 ERR_INIT_SEQUENCE_FROM_DBTDDL-4405 ERR_INIT_SEQUENCE_FROM_DB
The error code is returned because a sequence has failed to be init ialized.

Example:

ERR-CODE: [TDDL-4405][ERR_INIT_SEQUENCE_FROM_DB] init sequence manager
error: *****

This error code indicates that the system has failed to init ialize the sequence that you want to use. The
error message is provided after init sequence manager error: .

We recommend that you check the status of all backend ApsaraDB RDS for MySQL instances. If this error
persists after you resolve the faults in the backend ApsaraDB RDS for MySQL instances, Submit a t icket.

TDDL-4407 ERR_OTHER_WHEN_BUILD_SEQUENCETDDL-4407 ERR_OTHER_WHEN_BUILD_SEQUENCE
The error code is returned because the data table that corresponds to a sequence cannot be accessed.

Example:

ERR-CODE: [TDDL-4407][ERR_OTHER_WHEN_BUILD_SEQUENCE] error when build
sequence: *****

This error code is returned if an error occurs when you access a data table that corresponds to the
sequence, such as the sequence or sequence_opt table. The error message is provided after
 error when build sequence: .

We recommend that you check the status of all backend ApsaraDB RDS for MySQL instances. If this error
persists after you resolve the faults in the backend ApsaraDB RDS for MySQL instances, Submit a t icket.

DDL-4408 ERR_SEQUENCE_NEXT_VALUEDDL-4408 ERR_SEQUENCE_NEXT_VALUE
The error code is returned because the system has failed to obtain the values in a sequence.

Example:

ERR-CODE: [TDDL-4408][ERR_SEQUENCE_NEXT_VALUE] error when get sequence's
next value, sequence is: *****, error: *****

This error code is returned if an error occurs when you obtain the values of a sequence by using a
PolarDB-X 1.0 auto-increment primary key or the <sequence name>.NEXTVAL syntax. The cause of error
is provided after error: .

In most cases, this error occurs because a fault occurs in the backend ApsaraDB RDS for MySQL
instances. We recommend that you check the status of and access workloads on the backend ApsaraDB
RDS for MySQL instances. If this error persists after you resolve the fault in the backend ApsaraDB RDS
for MySQL instances, Submit a t icket.

TDDL-4500 ERR_PARSERTDDL-4500 ERR_PARSER
The error code is returned because the SQL statement has failed to be parsed.

Example:

ERR-CODE: [TDDL-4500][ERR_PARSER] not support statement: '*****'

SQL Reference··Error codes Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

237 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

PolarDB-X 1.0 supports the SQL syntax that complies with the SQL-92 standard and the extended
syntax and functions that are supported by MySQL. Check whether the SQL statement that you
executed complies with the standard SQL syntax and MySQL specificat ions that are supported by
PolarDB-X 1.0.

For more information about the standard SQL syntax, see Standard SQL syntax.

For more information about SQL statements that are compatible with PolarDB-X 1.0, see SQL limits.

For more information about the SQL syntax in MySQL 5.6, see SQL syntax in MySQL 5.6.

If this error persists after you rect ify the SQL statement, Submit a t icket.

TDDL-4501 ERR_OPTIMIZERTDDL-4501 ERR_OPTIMIZER
The error code is returned because the optimizer has failed to convert an SQL statement.

Example:

ERR-CODE: [TDDL-4501][ERR_OPTIMIZER] optimize error by: Unknown column
'*****' in 'order clause'

The optimizer of PolarDB-X 1.0 can convert an SQL statement to an internal syntax tree. If a logic error
occurs in an SQL statement, the optimizer fails to convert the SQL statement. In this case, the TDDL-
4501 error is returned.

We recommend that you check and modify the SQL statement based on the cause of error. The cause
of error is provided after optimize error by: . If this error persists after you modify the SQL
statement, Submit a t icket.

TDDL-4502 ERR_OPTIMIZER_MISS_ORDER_FUNCTION_IN_SELECTTDDL-4502 ERR_OPTIMIZER_MISS_ORDER_FUNCTION_IN_SELECT
The error code is returned because the SELECT clause does not contain the columns that are
returned by the function specified in the ORDER BY clause.

Example:

ERR-CODE: [TDDL-4502][ERR_OPTIMIZER_MISS_ORDER_FUNCTION_IN_SELECT] Syntax
Error: orderBy/GroupBy Column ***** is not existed in select clause`

In PolarDB-X 1.0, if the ORDER BY clause contains a function that returns columns, such as RAND(), the
returned columns must also be specified in the SELECT clause. If the SELECT clause does not contain
the returned columns, the TDDL-4502 error is returned.

We recommend that you include the corresponding columns in the SELECT clause.

TDDL-4504 ERR_OPTIMIZER_SELF_CROSS_JOINTDDL-4504 ERR_OPTIMIZER_SELF_CROSS_JOIN
The error code is returned because an SQL statement does not meet the condit ions that are required to
perform a SELF JOIN query on a table.

Example:

ERR-CODE: [TDDL-4504][ERR_OPTIMIZER_SELF_CROSS_JOIN] self cross join case,
add shard column filter on right table

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Error codes

> Document Version: 20220601 238

https://www.w3schools.com/sql/
https://www.alibabacloud.com/help/doc-detail/71252.htm#multiTask1408
https://dev.mysql.com/doc/refman/5.6/en/sql-syntax.html
https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

When PolarDB-X 1.0 performs a SELF JOIN query on a table, the TDDL-4504 error is returned if the
 WHERE clause includes only the shard key of the left table or the right table.

We recommend that you include the shard keys of the left table and the right table in the WHERE
clause in the SQL statement.

TDDL-4506 ERR_MODIFY_SHARD_COLUMNTDDL-4506 ERR_MODIFY_SHARD_COLUMN
The error code is returned because shard keys cannot be updated.

Example:

ERR-CODE: [TDDL-4506][ERR_MODIFY_SHARD_COLUMN] Column '*****' is a sharding
key of table '*****', which is forbidden to be modified.

PolarDB-X 1.0 forbids you to change the value of a shard key by using the UPDATE statement. Update
operations may change the shard where data resides. Therefore, PolarDB-X 1.0 cannot ensure data
consistency and the atomicity of operations.

We recommend that you execute the DELETE and INSERT statements that have the same effect as
the UPDATE statement to change the value of a shard key.

TDDL-4508 ERR_OPTIMIZER_NOT_ALLOWED_SORT_MERGE_JOINTDDL-4508 ERR_OPTIMIZER_NOT_ALLOWED_SORT_MERGE_JOIN
The error code is returned because the sort merge join operation cannot be performed.

Example:

ERR-CODE: [TDDL-4508][ERR_OPTIMIZER_NOT_ALLOWED_SORT_MERGE_JOIN] sort merge
join is not allowed when missing equivalent filter

If the data tables on which you want to perform a join operation by executing an SQL statement are
stored in different ApsaraDB RDS for MySQL instances, PolarDB-X 1.0 uses the sort-merge join
algorithm. This algorithm can be used only if you specify the same join condit ions for the left table and
the right table in the SQL statement. If the join condit ions that you specify for the left table are
different from the join condit ions that you specify for the right table, the TDDL-4508 error is returned.

We recommend that you include the equivalent JOIN condit ions in the JOIN or WHERE clause in the
SQL statement.

TDDL-4509 ERR_OPTIMIZER_ERROR_HINTTDDL-4509 ERR_OPTIMIZER_ERROR_HINT
The error code is returned because the hint syntax is invalid.

Example:

ERR-CODE: [TDDL-4509][ERR_OPTIMIZER_ERROR_HINT] Hint Syntax Error:
unexpected operation: *****.

This error code indicates that the syntax of the hint that you include in the SQL statement cannot be
parsed by PolarDB-X 1.0. For more information about the hint syntax, see Overview.

TDDL-4510 ERR_CONTAINS_NO_SHARDING_KEYTDDL-4510 ERR_CONTAINS_NO_SHARDING_KEY
The error code is returned because a shard key is not specified in an SQL statement.

SQL Reference··Error codes Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

239 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/71270.htm#multiTask2614

Example:

ERR-CODE: [TDDL-4510][ERR_CONTAINS_NO_SHARDING_KEY] Your SQL contains NO
SHARDING KEY '*****' for table '*****', which is not allowed in DEFAULT.

If the full table scan feature is not enabled for a PolarDB-X 1.0 table shard, you must include the shard
key in the WHERE clause to access the table. If the WHERE clause does not contain the shard key, the
TDDL-4510 error is returned.

When PolarDB-X 1.0 creates a table, the full table scan feature is enabled by default . If the full table
scan feature is manually disabled, make sure that the shard key of the table is specified in each SQL
statement that scans the data in the table.

TDDL-4511 ERR_INSERT_CONTAINS_NO_SHARDING_KEYTDDL-4511 ERR_INSERT_CONTAINS_NO_SHARDING_KEY
The error code is returned because a shard key is not specified in the INSERT statement.

Example:

ERR-CODE: [TDDL-4511][ERR_INSERT_CONTAINS_NO_SHARDING_KEY] Your INSERT SQL
contains NO SHARDING KEY '*****' for table '*****'.

In PolarDB-X 1.0, if you want to execute the INSERT statement to insert the data of a sharded table,
you must specify the shard key of the table in the INSERT statement unless the shard key is an auto-
increment primary key. If the INSERT statement does not contain the shard key, the TDDL-4511 error is
returned.

If this error occurs, we recommend that you include the shard key in the INSERT statement.

TDDL-4515 ERR_CONNECTION_CHARSET_NOT_MATCHTDDL-4515 ERR_CONNECTION_CHARSET_NOT_MATCH
The error code is returned because the specified character set is not supported.

Example:

ERR-CODE: [TDDL-4515][ERR_CONNECTION_CHARSET_NOT_MATCH] Caused by MySQL's
character_set_connection doesn't match your input charset. Partition DDL can
only take ASCII or chinese column name. If you want use chinese table or
column name, Make sure MySQL connection's charset support chinese character.
Use "set names xxx" to set correct charset.

PolarDB-X 1.0 supports Chinese characters for table names and field names. The
 character_set_connection parameter specifies the character set that is used by a PolarDB-X 1.0

database to connect to a client. When you execute an SQL statement that contains Chinese characters,
the TDDL-4515 error is returned if the character_set_connection parameter is set to a character set that
does not support Chinese characters, such as latin1 .

You can execute the SHOW VARIABLES LIKE 'character_set_connection' statement to query the
character set that is used by a PolarDB-X 1.0 database to connect to a MySQL client. You can execute
the SET NAMES statement to change the character set. If you use Java Database Connectivity (JDBC)
to connect to a PolarDB-X 1.0 database, configure the characterEncoding parameter.

TDDL-4516 ERR_TRUNCATED_DOUBLE_VALUE_OVERFLOWTDDL-4516 ERR_TRUNCATED_DOUBLE_VALUE_OVERFLOW

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Error codes

> Document Version: 20220601 240

The error code is returned because an overflow has occurred when the system converts a floating-
point number to an integer.

Example:

ERR-CODE: [TDDL-4516][ERR_TRUNCATED_DOUBLE_VALUE_OVERFLOW] Truncated
incorrect DOUBLE value '*****' over column[*****]'s value range.

This error code indicates that the result is out of the valid range of integers when PolarDB-X 1.0
converts the floating-point number to an integer. We recommend that you check the data types of the
specified columns and the input parameters in the SQL statement.

TDDL-4517 ERR_MODIFY_SYSTEM_TABLETDDL-4517 ERR_MODIFY_SYSTEM_TABLE
The error code is returned because system tables cannot be modified.

Example:

ERR-CODE: [TDDL-4517][ERR_MODIFY_SYSTEM_TABLE] Table '*****' is PolarDB-XSYSTEM
TABLE, which is forbidden to be modified.

PolarDB-X 1.0 provides built-in system tables. If you execute an SQL statement to modify the data of a
system table, the TDDL-4517 error is returned.

The following system tables cannot be modified: sequence , sequence_opt , txc_undo_log , and
 __DRDS__SYSTEM__LOCK__ . Make sure that the names of system tables are not used when you create

tables that store business data or when you design a database.

TDDL-4518 ERR_VALIDATETDDL-4518 ERR_VALIDATE
The error code is returned because the metadata verificat ion has failed.

Example:

ERR-CODE: [TDDL-4518][ERR_VALIDATE] Object 'optest1' not found

When a PolarDB-X 1.0 compute node receives an SQL statement, the compute node verifies the SQL
statement based on exist ing metadata. This error code indicates that the table or column information
that you want to query does not meet the requirements of metadata.

TDDL-4600 ERR_FUNCTIONTDDL-4600 ERR_FUNCTION
The error code is returned because an error has occurred for a function call.

Example:

ERR-CODE: [TDDL-4600][ERR_FUNCTION] function compute error by Incorrect
parameter count in the call to native function '*****'

This error code indicates that the SQL statement uses invalid syntax or contains invalid parameters to
call the function. We recommend that you check whether the number and data type of parameters
that you use to call the function in the SQL statement are valid.

TDDL-4600 ERR_FUNCTIONTDDL-4600 ERR_FUNCTION

SQL Reference··Error codes Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

241 > Document Version: 20220601

The error code is returned because an error has occurred for a function call.

Example:

ERR-CODE: [TDDL-4600][ERR_FUNCTION] function compute error by Incorrect
parameter count in the call to native function '*****'

This error code indicates that the SQL statement uses invalid syntax or contains invalid parameters to
call the function. We recommend that you check whether the number and data type of parameters
that you use to call the function in the SQL statement are valid.

TDDL-4601 ERR_EXECUTORTDDL-4601 ERR_EXECUTOR
The error code is returned because an error has occurred when the system executes the SQL statement.

Example:

ERR-CODE: [TDDL-4601][ERR_EXECUTOR] only one column is supported in
distinct aggregate

This error code is returned if an unexpected error occurs when PolarDB-X 1.0 executes an SQL
statement. In most cases, the error occurs because the status of a backend ApsaraDB RDS for MySQL
instance is abnormal. We recommend that you check the status of all backend ApsaraDB RDS for MySQL
instances. If the error persists after you resolve the faults in the backend ApsaraDB RDS for MySQL
instances, Submit a t icket.

TDDL-4602 ERR_CONVERTORTDDL-4602 ERR_CONVERTOR
The error code is returned because the system has failed to convert a data type.

Example:

ERR-CODE: [TDDL-4602][ERR_CONVERTOR] convertor error by Unsupported convert:
[*****]

This error code indicates that the data type cannot be converted when PolarDB-X 1.0 executes the SQL
statement. Check whether the data that is used in the SQL statement requires implicit data type
conversion. We recommend that you specify data of the same type for comparison and computing.

TDDL-4603 ERR_ACCROSS_DB_TRANSACTIONTDDL-4603 ERR_ACCROSS_DB_TRANSACTION
The error code is returned because a cross-database transaction has failed.

Example:

ERR-CODE: [TDDL-4603][ERR_ACCROSS_DB_TRANSACTION] Transaction accross db is
not supported in current transaction policy, transaction node is: {0}, but
this sql execute on: *****.

PolarDB-X 1.0 supports only single-database transactions. All SQL statements for single-database
transactions must be forwarded to the same ApsaraDB RDS for MySQL database shard for execution
based on the specified forwarding rules. Otherwise, the TDDL-4603 error is returned.

TDDL-4604 ERR_CONCURRENT_TRANSACTIONTDDL-4604 ERR_CONCURRENT_TRANSACTION

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Error codes

> Document Version: 20220601 242

https://workorder-intl.console.aliyun.com/

The error code is returned because a nested transaction has failed.

Example:

ERR-CODE: [TDDL-4604][ERR_CONCURRENT_TRANSACTION] Concurrent query is not
supported on transaction group, transaction group is: {0}.

PolarDB-X 1.0 does not support nested transactions. If you attempt to start more than two
transactions at the same t ime over the same database connection, the TDDL-4604 error is returned.

We recommend that you do not use nested transactions when you develop applications. You can
abstract transactions into a transaction framework at the application layer. This way, no nested
transactions are generated.

TDDL-4606 ERR_QUERY_CTDDL-4606 ERR_QUERY_C
The error code is returned because the execution of an SQL statement is canceled.

Example:

ERR-CODE: [TDDL-4606][ERR_QUERY_CANCLED] Getting connection is not allowed
when query has been cancled, group is *****

When the KILL statement is executed to cancel the execution of an SQL statement, PolarDB-X 1.0
returns the TDDL-4606 error for the SQL statement. If this error frequently occurs, check whether the
 KILL statement is executed on a client or a program.

TDDL-4607 ERR_INSERT_WHEN_UPDATETDDL-4607 ERR_INSERT_WHEN_UPDATE
The error code is returned because an error has occurred when PolarDB-X 1.0 executes the UPDATE
statement by executing the DELETE and INSERT statements.

Example:

ERR-CODE: [TDDL-4607][ERR_INSERT_WHEN_UPDATE] Insert new values error,
table is: *****, old Values: *****, new Values: *****

After the shard key update feature is enabled, PolarDB-X 1.0 can replace the UPDATE statement that
updates the shard key with the DELETE and INSERT statements. If the execution fails, the TDDL-4607
error is returned.

In most cases, this error occurs because a fault occurs in the backend ApsaraDB RDS for MySQL
instances. We recommend that you check the status of all backend ApsaraDB RDS for MySQL instances.
If the error persists after you resolve the faults in the backend ApsaraDB RDS for MySQL instances,
Submit a t icket.

TDDL-4610 ERR_CONNECTION_CLOSEDTDDL-4610 ERR_CONNECTION_CLOSED
The error code is returned because a connection is closed.

Example:

ERR-CODE: [TDDL-4610][ERR_CONNECTION_CLOSED] connection has been closed

SQL Reference··Error codes Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

243 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/

After an SQL statement in a transaction fails to be executed or the KILL statement is executed to
cancel the execution of the SQL statement in the transaction, PolarDB-X 1.0 returns the TDDL-4610
error if you execute other SQL statements over the same database connection.

We recommend that you close the connection that executes the SQL statement and establish a new
database connection.

TDDL-1305 ERR_UNKNOWN_SAVEPOINTTDDL-1305 ERR_UNKNOWN_SAVEPOINT
The error code is returned because the specified savepoint does not exist .

Example:

ERR-CODE: [TDDL-1305][ERR_UNKNOWN_SAVEPOINT] SAVEPOINT ***** does not exist

When you execute the ROLLBACK TO SAVEPOINT or RELEASE SAVEPOINT statement in PolarDB-X 1.0,
the TDDL-1305 error is returned if the specified savepoint does not exist .

We recommend that you check whether the savepoint that you specified in the SAVEPOINT
statement is valid.

TDDL-1094 ERR_UNKNOWN_THREAD_IDTDDL-1094 ERR_UNKNOWN_THREAD_ID
The error code is returned because the session ID that is specified in the KILL statement does not
exist .

Example:

ERR-CODE: [TDDL-1094][ERR_UNKNOWN_THREAD_ID] Unknown thread id: *****

When you execute the KILL statement in PolarDB-X 1.0 to terminate an SQL statement that is being
executed, the TDDL-1094 error is returned if the specified session ID does not exist or the SQL
statement is already terminated.

We recommend that you execute the SHOW PROCESSLIST statement to query the session ID that
corresponds to the SQL statement that you want to terminate and specify the queried session ID in the
 KILL statement.

TDDL-4612 ERR_CHECK_SQL_PRIVTDDL-4612 ERR_CHECK_SQL_PRIV
The error code is returned because an SQL statement cannot be executed due to insufficient
permissions.

Example:

ERR-CODE: [TDDL-4612][ERR_CHECK_SQL_PRIV] check user ***** on db ***** sql
privileges failed.

PolarDB-X 1.0 provides a system that allows you to grant permissions to accounts. This system is similar
to the account and permission system in MySQL. Only the accounts that are granted the required
permissions can be used to execute the SQL statement. If the account that you use is not granted the
required permissions, PolarDB-X 1.0 returns the TDDL-4612 error.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Error codes

> Document Version: 20220601 244

We recommend that you check the permissions that the account is granted on the PolarDB-X 1.0
database. If the account is not granted the required permissions, grant the permissions in the PolarDB-X
1.0 console.

TDDL-4613 ERR_INSERT_SELECTTDDL-4613 ERR_INSERT_SELECT
The error code is returned because an error has occurred when PolarDB-X 1.0 executes the INSERT ...
SELECT statement.

Example:

ERR-CODE: [TDDL-4613][ERR_INSERT_SELECT] insert error, table is: *****,
values: *****

PolarDB-X 1.0 allows you to split the INSERT ... SELECT statement that is executed across
databases into the SELECT and INSERT statements and batch execute the statements. If the execution
fails, the TDDL-4613 error is returned.

In most cases, this error occurs because a fault occurs in the backend ApsaraDB RDS for MySQL
instances. We recommend that you check the status of all backend ApsaraDB RDS for MySQL instances.
If the error persists after you resolve the faults in the backend ApsaraDB RDS for MySQL instances,
Submit a t icket.

TDDL-4614 ERR_EXECUTE_ON_MYSQLTDDL-4614 ERR_EXECUTE_ON_MYSQL
The error code is returned because an error has occurred when PolarDB-X 1.0 executes the SQL
statement on a backend ApsaraDB RDS for MySQL instance.

Example:

ERR-CODE: [TDDL-4614][ERR_EXECUTE_ON_MYSQL] Error occurs when execute on GROUP '*****': Dup
licate entry '*****' for key 'PRIMARY'

This error code is returned if an error occurs when PolarDB-X 1.0 executes an SQL statement on a
backend ApsaraDB RDS for MySQL instance. The end part of the returned response contains the error
message that is returned from the backend ApsaraDB RDS for MySQL instance. The following messages
are sample error messages that are returned from a backend ApsaraDB RDS for MySQL instance:

 Duplicate entry '*****' for key 'PRIMARY' indicates that a primary key conflict has occurred
when the system writes data to the data table in the ApsaraDB RDS for MySQL instance.

 The table '*****' is full indicates that the storage of the temporary table that is used by
ApsaraDB RDS for MySQL is full. You must resize the temporary table or optimize the SQL statement.

 Deadlock found when trying to get lock; indicates that a dead lock has occurred in the
ApsaraDB RDS for MySQL instance. In most cases, dead locks are caused because transaction conflicts
occur when the system writes data.

We recommend that you troubleshoot the error based on the error messages that are returned from
the ApsaraDB RDS for MySQL instance. For more information about the error messages that are related
to SQL statements, see MySQL 5.6 documentation.

If this error persists after you troubleshoot the issues in your application or backend ApsaraDB RDS for
MySQL instance, Submit a t icket.

TDDL-4615 ERR_CROSS_JOIN_SIZE_PROTECTIONTDDL-4615 ERR_CROSS_JOIN_SIZE_PROTECTION

SQL Reference··Error codes Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

245 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://dev.mysql.com/doc/refman/5.6/en/error-handling.html
https://workorder-intl.console.aliyun.com/

The error code is returned because the number of rows that are returned for a distributed JOIN query
exceeds the upper limit .

Example:

ERR-CODE: [TDDL-4615][ERR_CROSS_JOIN_SIZE_PROTECTION] across join table size protection, ch
eck your sql or enlarge the limination size .

When PolarDB-X 1.0 runs a distributed JOIN query in nested loops, a large number of memory resources
are used if large amounts of data is returned from the right table. This affects the stability of PolarDB-
X 1.0 in a negative manner. In PolarDB-X 1.0, the maximum number of rows that can be returned from a
right table is 5,000. If this limit is exceeded, PolarDB-X 1.0 returns the TDDL-4615 error.

We recommend that you optimize the SQL statement to prevent large amounts of data from being
returned from the right table, or use a better algorithm such as the sort-merge join algorithm to
perform distributed JOIN operations in PolarDB-X 1.0.

If you need to change this limit for a specific SQL statement, we recommend that you follow these
rules:

We recommend that you do not change this limit if the size of a single record exceeds 100 KB.

You can change this limit if the size of a single record is smaller than or equal to 100 KB. We
recommend that you do not specify a large value to avoid memory exhaustion.

If the size of a single record is 100 KB, 500 MB (100 KB × 5,000) of memory resources are required to
perform a distributed JOIN query. If this SQL statement is executed over mult iple connections, memory
resources are prone to be exhausted. For example, if this SQL statement is executed over five
connections at the same t ime, 2.5 GB (500 MB × 5) of memory resources are required.

To change this limit for an SQL statement, add a hint before the SQL statement. For example, specify
 /*!TDDL:MAX_ROW_RETURN_FROM_RIGHT_INDEX_NESTED_LOOP=5100*/SQL to change the limit to 5,100.

To globally change this limit , Submit a t icket.

TDDL-4616 ERR_UNKNOWN_DATABASETDDL-4616 ERR_UNKNOWN_DATABASE
The error code is returned because the specified database name is invalid.

Example:

ERR-CODE: [TDDL-4616][ERR_UNKNOWN_DATABASE] Unknown database '*****'

PolarDB-X 1.0 allows you to specify a database name in a DDL statement. If the database name that
you specify is not the same as the database name provided by PolarDB-X 1.0, the TDDL-4616 error is
returned.

We recommend that you change the database name in the DDL statement to ensure that the database
name that you specify is the same as the database name provided by PolarDB-X 1.0.

TDDL-4617 ERR_SUBQUERY_LIMIT_PROTECTIONTDDL-4617 ERR_SUBQUERY_LIMIT_PROTECTION
The error code is returned because the number of returned rows for a subquery exceeds the upper limit .

Example:

ERR-CODE: [TDDL-4617][ERR_SUBQUERY_LIMIT_PROTECTION] The number of rows returned by the sub
query exceeds the maximum number of 20000.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Error codes

> Document Version: 20220601 246

https://workorder-intl.console.aliyun.com/

When PolarDB-X 1.0 executes an SQL statement that contains a subquery, a large number of memory
resources are used if large amounts of data is returned for the subquery. This affects the stability of
PolarDB-X 1.0 in a negative manner. In PolarDB-X 1.0, the maximum number of rows that can be returned
for a subquery is 20,000. If this limit is exceeded, PolarDB-X 1.0 returns the TDDL-4617 error.

We recommend that you optimize the subquery in the SQL statement to prevent large amounts of data
from being returned. You can also rewrite the subquery into a JOIN query so that PolarDB-X 1.0 uses a
more suitable algorithm such as the sort-merge join algorithm to perform JOIN operations.

If you need to change this limit , Submit a t icket.

TDDL-4800 ERR_SET_TXCIDTDDL-4800 ERR_SET_TXCID
The error code is returned because the system has failed to execute the SET TXC_ID statement.

Example:

ERR-CODE: [TDDL-4800][ERR_SET_TXCID] set txc_id failed: *****

TDDL-4801 ERR_TXCID_NULLTDDL-4801 ERR_TXCID_NULL
This error code is returned because NULL is returned when the SELECT LAST_TXC_ID statement is
executed.

Example:

ERR-CODE: [TDDL-4801][ERR_TXCID_NULL] txc_xid is null: *****

TDDL-4802 ERR_SELECT_LAST_TXCIDTDDL-4802 ERR_SELECT_LAST_TXCID
The error code is returned because the system has failed to execute the SELECT LAST_TXC_ID
statement.

Example:

ERR-CODE: [TDDL-4802][ERR_SELECT_LAST_TXCID] select last_txc_xid failed: *****

TDDL-4994 ERR_FLOW_CONTROLTDDL-4994 ERR_FLOW_CONTROL
The error code is returned because request thrott ling is triggered.

Example:

ERR-CODE: [TDDL-4994][ERR_FLOW_CONTROL] [*****] flow control by *****

This error code indicates that the number of SQL requests processed by PolarDB-X 1.0 has reached the
upper limit and the current request is rejected.

We recommend that you check whether the peak value of the number of SQL requests is as expected. If
this error persists when the number of SQL requests decreases to be lower than the upper limit , Submit a
ticket.

TDDL-4998 ERR_NOT_SUPPORTTDDL-4998 ERR_NOT_SUPPORT
The error code is returned because the feature is not supported.

SQL Reference··Error codes Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

247 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Example:

ERR-CODE: [TDDL-4998][ERR_NOT_SUPPORT] ***** not support yet!

This error code indicates that the SQL syntax or the feature that you use is not supported by PolarDB-X
1.0.

If the SQL syntax or the feature is required by your business, Submit a t icket.

TDDL-5001 ERR_TRANSTDDL-5001 ERR_TRANS
The error code is returned because a common transaction error has occurred.

Example:

ERR-CODE: [TDDL-5001][ERR_TRANS] Too many lines updated in statement.

Resolve the error based on the error message. Too many lines updated in statement indicates that
the number of rows that you want to update by executing the UPDATE statement exceeds the upper
limit of 1,000. We recommend that you check the WHERE clause in the UPDATE statement. If you need
to update a large amount of data in a transaction, you can use the /*TDDL:UNDO_LOG_LIMIT=
{number}*/ hint that is provided by PolarDB-X 1.0 to change the upper limit .

 Deferred execution is only supported in Flexible or XA Transaction indicates that the deferred
execution feature is available only for flexible or XA transactions. Before you use /*TDDL:DEFER*/ to
enable deferred execution, execute the SET drds_transaction_policy = *** statement to change
the transaction policy of your PolarDB-X 1.0 instance.

For information about other error messages, see Submit a t icket.

TDDL-5002 ERR_TRANS_UNSUPPORTEDTDDL-5002 ERR_TRANS_UNSUPPORTED
The error code is returned because the syntax or the feature used in the transaction is not supported.

Example:

ERR-CODE: [TDDL-5002][ERR_TRANS_UNSUPPORTED] Table without primary keys is not
supported.

This error code indicates that this feature is not supported for PolarDB-X 1.0 transactions. If you need
to use this feature, Submit a t icket.

TDDL-5003 ERR_TRANS_LOGTDDL-5003 ERR_TRANS_LOG
The error code is returned because transaction logs cannot be accessed.

Example:

ERR-CODE: [TDDL-5003][ERR_TRANS_LOG] Failed to update transaction state: *****

When PolarDB-X 1.0 performs a distributed transaction, PolarDB-X 1.0 accesses the transaction logs in
the backend ApsaraDB RDS for MySQL instances. This helps ensure the atomicity of the distributed
transaction. If PolarDB-X 1.0 fails to read or write transaction logs, the TDDL-5003 error is returned.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Error codes

> Document Version: 20220601 248

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

In most cases, this error occurs because a fault occurs in the backend ApsaraDB RDS for MySQL
instances. We recommend that you check the status of and access workloads on the backend ApsaraDB
RDS for MySQL instances of your PolarDB-X 1.0 instance. If this error persists after you resolve the fault
in the backend ApsaraDB RDS for MySQL instances, Submit a t icket.

TDDL-5004 ERR_TRANS_NOT_FOUNDTDDL-5004 ERR_TRANS_NOT_FOUND
The error code is returned because the specified transaction ID does not exist .

Example:

ERR-CODE: [TDDL-5008][ERR_TRANS_TERMINATED] Current transaction was killed
or timeout. You may need to set a longer timeout value.

This error code indicates that the specified transaction is terminated by the KILL statement or the
execution has t imed out. The t imeout period of a transaction is specified by the
drds_transaction_timeout parameter.

If this error is returned due to a transaction t imeout, we recommend that you execute the SET
drds_transaction_timeout = *** statement to change the t imeout period for the transaction. Specify
the value of the drds_transaction_timeout parameter in milliseconds.

TDDL-5006 ERR_TRANS_COMMITTDDL-5006 ERR_TRANS_COMMIT
The error code is returned because PolarDB-X 1.0 has failed to commit a transaction.

Example:

ERR-CODE: [TDDL-5006][ERR_TRANS_COMMIT] Failed to commit primary group *****:
*****, TRANS_ID = *****

If an error occurs when PolarDB-X 1.0 commits a transaction, the transaction is automatically rolled
back. TRANS_ID indicates the ID of the transaction.

In most cases, this error occurs because a fault occurs in the backend ApsaraDB RDS for MySQL
instances. We recommend that you check the status of and access workloads on the backend ApsaraDB
RDS for MySQL instances of your PolarDB-X 1.0 instance. If this error persists after you resolve the fault
in the backend ApsaraDB RDS for MySQL instances, Submit a t icket.

TDDL-5007 ERR_TRANS_PARAMTDDL-5007 ERR_TRANS_PARAM
The error code is returned because the specified transaction parameter is invalid.

Example:

ERR-CODE: [TDDL-5007][ERR_TRANS_PARAM] Illegal timeout value: *****

This error code indicates that you specified an invalid value for the transaction parameter in the
statement. For example, in the SET drds_transaction_timeout = *** statement, the
drds_transaction_timeout parameter is set to a negative number.

TDDL-5008 ERR_TRANS_TERMINATEDTDDL-5008 ERR_TRANS_TERMINATED
The error code is returned because a transaction is terminated by the KILL statement or due to a
t imeout.

SQL Reference··Error codes Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

249 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Example:

ERR-CODE: [TDDL-5008][ERR_TRANS_TERMINATED] Current transaction was killed
or timeout. You may need to set a longer timeout value.

This error code indicates that the specified transaction is terminated by the KILL statement or the
execution has t imed out. The t imeout period of a transaction is specified by the
 drds_transaction_timeout parameter.

If this error is returned due to a transaction t imeout, we recommend that you execute the SET
drds_transaction_timeout = *** statement to change the t imeout period for the transaction.
Specify the value of the drds_transaction_timeout parameter in milliseconds.

Cloud Nat ive Dist ribut ed Dat abase
PolarDB-X

SQL Reference··Error codes

> Document Version: 20220601 250

	1.SQL limits
	2.Instructions for sharding function
	2.1. Overview
	2.2. HASH
	2.3. STR_HASH
	2.4. UNI_HASH
	2.5. RANGE_HASH
	2.6. RIGHT_SHIFT
	2.7. MM
	2.8. DD
	2.9. WEEK
	2.10. MMDD
	2.11. YYYYDD
	2.12. YYYYMM
	2.13. YYYYWEEK

	3.Manage DDL tasks
	3.1. Overview
	3.2. Job management statements
	3.3. Control parameters for DDL execution engine
	3.4. Considerations and limits
	3.5. Best practices

	4.DDL
	4.1. CREATE TABLE
	4.2. DROP TABLE
	4.3. ALTER TABLE
	4.4. TRUNCATE TABLE
	4.5. RENAME TABLE
	4.6. CREATE INDEX
	4.7. DROP INDEX
	4.8. CREATE VIEW
	4.9. DROP VIEW
	4.10. DDL FAQ

	5.DML
	5.1. SELECT
	5.2. Subquery
	5.3. INSERT
	5.4. REPLACE
	5.5. UPDATE
	5.6. DELETE
	5.7. Limits of global secondary indexes on DML

	6.SHOW
	6.1. SHOW HELP
	6.2. Rule and topology query statements
	6.3. Slow SQL queries
	6.4. Statistics queries
	6.5. SHOW PROCESSLIST
	6.6. SHOW GLOBAL INDEX
	6.7. SHOW INDEX
	6.8. SHOW METADATA LOCK

	7.DAL
	7.1. Manage accounts and permissions
	7.2. CHECK TABLE
	7.3. CHECK GLOBAL INDEX
	7.4. KILL
	7.5. USE

	8.Sequence
	8.1. Overview
	8.2. Limits
	8.3. Explicit sequences
	8.4. Implicit sequences

	9.Outline
	9.1. Usage notes
	9.2. Error codes

	10.Prepare SQL
	10.1. Introduction to the prepared statement protocol

	11.Hint
	11.1. Overview
	11.2. Read/write splitting
	11.3. Specify a custom time-out period for an SQL statement
	11.4. Specify database shards where an SQL statement is to be executed
	11.5. Scan all or some of the table shards in all or some of the database shards
	11.6. Automatic protection against high-risk SQL statements
	11.7. INDEX HINT

	12.Functions
	12.1. Functions
	12.2. Date and time functions
	12.3. String functions
	12.4. Conversion functions
	12.5. Aggregate functions
	12.6. Mathematical functions
	12.7. Comparison functions
	12.8. Bit functions
	12.9. Flow control functions
	12.10. Information functions
	12.11. Encryption functions and compression functions
	12.12. Window functions
	12.13. Other functions
	12.14. GROUPING SETS, ROLLUP, and CUBE extensions

	13.Operator
	13.1. Logical operators
	13.2. Arithmetic operators
	13.3. Comparison operators
	13.4. Bitwise operators
	13.5. Assignment operators
	13.6. Operator precedence

	14.Data types
	14.1. Data types
	14.2. Numeric data types
	14.3. String data types
	14.4. Collation types
	14.5. Date and time data types

	15.Practical SQL statements
	15.1. TRACE
	15.2. Cross-schema queries
	15.3. Multiple statements
	15.4. EXPLAIN and execution plans

	16.Error codes

