Alibaba Cloud

Cloud Native Distributed
Database PolarDB-X

SQL Reference

Document Version: 20220601

(-] Alibaba Cloud

Cloud Native Distributed Database

PolarDB-X

SQL Reference-Legal disclaimer

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be deemed
as your total acceptance of this legal disclaimer.

1.

You shall download and obt ain this document from the Alibaba Cloud website or other Alibaba Cloud-
aut horized channels, and use this document for your own legal business activities only. The content of
this document is considered confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided to any third party for
use wit hout the prior written consent of Alibaba Cloud.

. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminated by

any organization, company or individual in any form or by any means without the prior written consent of
Alibaba Cloud.

. The content of this document may be changed because of product version upgrade, adjustment, or

other reasons. Alibaba Cloud reserves the right to modify the content of this document without notice
and an updated version of this document will be released through Alibaba Cloud-aut horized channels
from time to time. You should pay attention to the version changes of this document as they occur and
download and obt ain the most up-to-date version of this document from Alibaba Cloud-aut horized
channels.

. This document serves only as a reference guide for your use of Alibaba Cloud products and services.

Alibaba Cloud provides this document based onthe "status quo", "being defective", and "existing
functions" of its products and services. Alibaba Cloud makes every effort to provide relevant operational
guidance based on existing technologies. However, Alibaba Cloud hereby makes a clear statement that
it in no way guarantees the accuracy, integrity, applicability, and reliability of the content of this
document, either explicitly or implicitly. Alibaba Cloud shall not take legal responsibility for any errors or
lost profits incurred by any organization, company, or individual arising from download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, take responsibility for any indirect,
consequential, punitive, contingent, special, or punitive damages, including lost profits arising from t he
use or trust inthis document (evenif Alibaba Cloud has been notified of the possibility of such a loss).

. By law, allthe contents in Alibaba Cloud documents, including but not limited to pictures, architecture

design, page layout, and text description, are intellectual property of Alibaba Cloud and/or its
affiliates. This intellect ual property includes, but is not limited to, trademark rights, patent rights,
copyrights, and trade secrets. No part of this document shall be used, modified, reproduced, publicly
transmitted, changed, disseminated, distributed, or published wit hout the prior written consent of
Alibaba Cloud and/or its affiliates. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for marketing, advertising, promotion, or ot her purposes wit hout the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited to, "Alibaba Cloud",
"Aliyun", "HiChina", and other brands of Alibaba Cloud and/or its affiliates, which appear separately or in
combination, as well as the auxiliary signs and patterns of the preceding brands, or anyt hing similar to
the company names, trade names, trademarks, product or service names, domain names, patterns,
logos, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates.

. Please directly contact Alibaba Cloud for any errors of this document.

> Document Version: 20220601

Cloud Native Distributed Database

PolarDB-X

SQL Reference-Document conventio
ns

Document conventions

Style

/\ Danger

warning

) Notice

@ Note

Bold

Courier font

Italic

(1 or [alb]

{} or {a|b}

Description

A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

A note indicates supplemental
instructions, best practices, tips, and
other content.

Closing angle brackets are used to
indicate a multi-level menu cascade.

Bold formatting is used for buttons ,
menus, page names, and other Ul
elements.

Courier font is used for commands

ltalic formatting is used for parameters
and variables.

This format is used for an optional value,
where only one item can be selected.

This format is used for a required value,
where only one item can be selected.

Example

& Danger:

Resetting will result in the loss of user
configuration data.

warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

p Notice:

If the weight is set to 0, the server no
longer receives new requests.

@ Note:

You can use Ctrl + A to select all files.

Click Settings> Network> Set network
type.

Click OK.

Runthe cd /d C:/window command to
enter the Windows system folder.

bae log list --instanceid

Instance_ID

ipconfig [-all|-t]

switch {active|stand}

> Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Table of Contents
PolarDB-X

Table of Contents

1.5QL limits St s e e 08
2.Instructions for sharding function ------—----------—--mmmommmmr e 10
2., Overview S e e e 10
2.2, HASH 12
2.3, STR_HASH oo 13
2.4, UNI_HASH —ormm e 17
2.5. RANGE_HASH ——— oo 18
2.6. RIGHT SHIFT —— oo 19
27 MM e 20
2.8, DD 21
2.9, WEEK e oo 21
200, MMDD o e 22
200, YYYY DD oo 23
202, VY Y Y MM oo 24
203, YYYYWEEK oo 25
3.Manage DDL tasks o e e e e s 27
3.1, Overview S e S s 27
3.2. Job management statements ==t e e 27
3.3. Control parameters for DDL execution engine - 36
3.4. Considerations and limits == e e 37
3.5. Best practices s=srrmam s s s 39
] 44
4.1, CREATE TABLE - 44
4.2. DROP TABLE —--ommmm e 64
4.3. ALTER TABLE - 64
4.4, TRUNCATE TABLE —-ommmmm e 70

> Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Table of Contents

PolarDB-X

4.5. RENAME TABLE —--rmem oo 70
4.6. CREATE INDEX =smrmmmm oo 71
4.7. DROP INDEX mmmmmmsm oo e oo 74
4.8. CREATE VIEW s e 75
4.9. DROP VIEW oo 75
410. DDL FAQ ——— o 76
I L 78
5. SELECT St amaairnne s o et 78
5.2. Subquery ==t e e 81
5.3 INSERT =mmmmrmm e oo 86
5.4, REPLACE mrmmmmmmmm e oo 88
5.5, UPDATE oo e e 89
5.6. DELETE +mmmrmm e om e e 90
5.7. Limits of global secondary indexes on DML ——---—mmmmmmmmmmev 92
6.SHOW s svbctemnn s o e e s s Lonben e 93
6.1. SHOW HELP ———m oo 93
6.2. Rule and topology query statements - 95
6.3. Slow SQL queries &ssane e v tam s v s o Ll 101
6.4. Statistics queries =t e e 103
6.5. SHOW PROCESSLIST -mrmmmmmmmmmom e e 11
6.6. SHOW GLOBAL INDEX =-mrmmmmemmmmmm oo e 113
6.7. SHOW INDEX smmmemmm oo e e 116
6.8. SHOW METADATA LOCK —--mmmrmmmmmmmmmm e oo 118
JDAL 121
71. Manage accounts and pPermissions --——----—-----mmmmm e 121
7.2, CHECK TABLE - 126
7.3. CHECK GLOBAL INDEX ----mmmmmmmmmm e 127
7.4. KILL st taiien cnto s et itae s s Lo uinn 131

> Document Version: 20220601

Cloud Native Distributed Database
SQL Reference-Table of Contents

PolarDB-X
7.5 U S oo 132
8.5equence B e s e e S e 133
8.1. Overview S s 133
8.2. Limits St ma s s R e s el 137
8.3. Explicit sequences st et e 138
8.4. Implicit sequences s tam o et e 148
9.0utline == s e s e 155
9.1. Usage notes s==rewssmrmnaswiria s s s e 155
9.2. Error codes E== e e o e e s 157
10.Prepare SQL S—ttrmrtmr e s e e 158
10.1. Introduction to the prepared statement protocol --—----—-----------—-- 158
LT B 160
17,1, Overview = e e 160
11.2. Read/write splitting s====s e m e w o 162
11.3. Specify a custom time-out period for an SQL statement --——-—— 163
11.4. Specify database shards where an SQL statement is to b...-——— 164
11.5. Scan all or some of the table shards in all or some of th...——- 167
11.6. Automatic protection against high-risk SQL statements ——————— 170
11.7. INDEX HINT s==eten— e s e e 170
12.FUNCLIONS s e e e e e 173
12.1. FUNCLIONS =ttt e e s 173
12.2. Date and time functions === e 176
12.3. String functions Efesirmria - o e e 179
12.4. Conversion functions st=ssse s s s misia s i 182
12.5. Aggregate functions ————--rr 182
12.6. Mathematical functions st s e na ss o tamabin 183
12.7. Comparison functions —————————— 185
12.8. Bit functions =2 Fcteninge o o s s L 185

> Document Version: 20220601 I

Cloud Native Distributed Database

SQL Reference-Table of Contents

PolarDB-X

12.9. Flow control functions === ear e 185
12.10. Information functions - 186
12.11. Encryption functions and compression functions ——--——----—-—--- 187
12.12. Window functions - 188
12.13. Other functions 193
12.14. GROUPING SETS, ROLLUP, and CUBE extensions - 194
13.0perator =t ndesi et o N S s e e s 207
13.1. Logical operators == e 207
13.2. Arithmetic operators - 207
13.3. Comparison OpPerators —--————==-=mmmmmmmm 207
13.4. Bitwise Operators ———----=-mmmmmmmm 208
13.5. Assignment Operators ---—-—-=====mmmm s 208
13.6. Operator precedenCe ----=-=====mmmmmm s 209
14.Data types st indssi et o s S s s oI s 21
14.1. Data types B2t eninge s o L e s e L 21
14.2. Numeric data types 21
14.3. String data types ——————— 21
14.4. Collation types sstsmmmn e e 211
14.5. Date and time data types ------—----mmmmmmmmm 212
15.Practical SQL statements f——=—rrrem e 214
15.1. TRACE B = e e e e e e 214
15.2. Cross-schema queries =--—-====mmmmmmmm s e 214
15.3. Multiple statements - 216
15.4. EXPLAIN and execution plans —————— 217
T16.Error codes == e e 230

> Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-SQL limits

PolarDB-X

1.SQL limits

PolarDB-X 1.0is highly compatible with the MySQL protocol and the Structured Query Language (SQL)
syntax of MySQL. However, some limits are imposed on the SQL statements for PolarDB-X 1.0. This is
because the architecture of distributed databases differs fromthat of single-instance databases. T his
topic describes the limits of SQL statements in PolarDB-X 1.0.

General limits on the SQL statements

PolarDB-X 1.0 does not support customdata types or customfunctions.
PolarDB-X 1.0 does not support stored procedures, triggers, or cursors.
PolarDB-X 1.0 does not support temporary tables.

PolarDB-X 1.0 does not support compound statements, such as BEGIN...END, LOOP...END LOOP,
REPEAT...UNTIL...END REPEAT, and WHILE...DO...END WHILE.

PolarDB-X 1.0 does not support flow control statements, such as IF and WHILE statements.

PolarDB-X 1.0 does not support foreign key.

Limits on the SQL syntax

DDL

o You cannot execute the CREATE TABLE tbl name LIKE old tbl name Statement fortable
sharding.

o You cannot execute the CREATE TABLE tbl name SELECT statements fortable sharding.

o You cannot execute the RENAME statement to rename multiple tables at a time.

o You cannot execute the ALTER TABLE statement to change shard key fields.

o PolarDB-X 1.0 does not support data definition language (DDL) operations across schemas, such as
CREATE TABLE db name.tbl name (...)

For more information about DDL statements, see DDL.

DML

o PolarDB-X 1.0 does not support the following statements: SELECT INTO OUTFILE, INT O DUMPFILE,
and INTO var_name.

o PolarDB-X 1.0 does not support STRAIGHT _JOIN or NATURAL JOIN operations.
o PolarDB-X 1.0 does not support subqueries in UPDATE SET clauses.
o PolarDB-X 1.0 does not support INSERT DELAYED statements.

o PolarDB-X 1.0 does not support variable references and operations in SQL statements. For
example, you cannot execute the following statement: SET @c=1, @d=Q@c+1l; SELECT @c, @d .

o You cannot performthe INSERT, REPLACE, UPDATE, or DELETE operations on broadcast tables in
flexible transactions.

For more information about data manipulation language (DML) statements, see DVL.

e Subqueries

o PolarDB-X 1.0 does not support subqueries in HAVING or JOIN ON clauses.

o PolarDB-X 1.0 does not support the ROW functions in the scalar subqueries that use equal signs (=)
as operators.

> Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/71323.htm#multiTask2157
https://www.alibabacloud.com/help/doc-detail/71274.htm#multiTask3341

Cloud Native Distributed Database

SQL Reference-SQL limits
Q QL timi PolarDB-X

For more information about subqueries, see Subgueries.

e Database management

o PolarDB-X 1.0 does not support the combination of LIMIT and COUNT in SHOW WARNINGS
statements.

o PolarDB-X 1.0 does not support the combination of LIMIT and COUNT in SHOW ERRORS statements.

e QOperators that are not supported by PolarDB-X 1.0
PolarDB-X 1.0 does not support the assignment operators ':='
For more information about operators, see Operators.
e Functions that are not supported by PolarDB-X 1.0
o Full-text search functions. For more information, see Full-Text Search Functions.

o XML functions. For more information, see XML Functions.

o Global transaction identifier (GTID) functions. For more information, see Functions Used with Global
Transaction Identifiers (GT IDs)

o Enterprise encryption functions. For more information, see MySQL Enterprise Encryption.

For more information about functions, see Functions.

e Keywords that are not supported by PolarDB-X 1.0
o MILLISECOND
o MICROSECOND

9 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/71295.htm
https://www.alibabacloud.com/help/doc-detail/71266.htm#multiTask241
https://dev.mysql.com/doc/refman/5.7/en/fulltext-search.html
https://dev.mysql.com/doc/refman/5.7/en/xml-functions.html
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html
https://dev.mysql.com/doc/refman/5.7/en/enterprise-encryption.html
https://www.alibabacloud.com/help/doc-detail/71269.htm#multiTask9024

Cloud Native Distributed Database SQL Reference-Instructions for shard
PolarDB-X ing function

2.Instructions for sharding function
2.1. Overview

PolarDB-X 1.0 is a database service that supports both database sharding and table sharding. This
topic describes the sharding functions of PolarDB-X 1.0.

Sharding method

In PolarDB-X 1.0, the sharding method of a logical table is defined by a sharding function and a
sharding key (including the MySQL data type of the key). The sharding function contains the number of
shards and the routing algorithm. The database shard and table shard of a logical table in PolarDB-X
1.0 are generated with the same sharding method only when the same sharding function and sharding
key are used. If the database shard and table shard are generated with the same sharding method,
PolarDB-X 1.0 can locate a unique physical database shard and physical table shard based on the value
of the sharding key. If the sharding methods used for the database sharding and table sharding of a
logical table are different, and no conditions are specified for database sharding and table sharding in
the SQL statement, PolarDB-X 1.0 scans all database shards or all table shards to query data.

Support for database sharding and table sharding

Support database

Sharding function Description) Support table shardin
9 P sharding PP 9

Performs a simple

HASH . Yes Yes
modulo operation.

STR_HASH Returns a substring. Yes Yes
Performs a simpl

UNI_HASH erro) pe Yes Yes

modulo operation.

Performs a signed right
RIGHT _SHIFT shift on the value of the Yes Yes
database shard key.

Performs hashing when
RANGE_HASH two sharding keys are Yes Yes
required.

Performs hashin
MM erforms hashing by No Yes
month.

Performs hashing by

DD No Yes
date.
Performs hashing b

WEEK ror ashing by No Yes
week.
Performs hashin

MMDD erro a g by No Yes

month and date.

> Document Version: 20220601 10

https://www.alibabacloud.com/help/doc-detail/71276.htm#multiTask728
https://www.alibabacloud.com/help/doc-detail/95513.htm#multiTask4295
https://www.alibabacloud.com/help/doc-detail/71279.htm#multiTask1115
https://www.alibabacloud.com/help/doc-detail/71290.htm#multiTask799
https://www.alibabacloud.com/help/doc-detail/71284.htm#multiTask833
https://www.alibabacloud.com/help/doc-detail/71294.htm#multiTask578
https://www.alibabacloud.com/help/doc-detail/71310.htm#multiTask602
https://www.alibabacloud.com/help/doc-detail/71311.htm#multiTask623
https://www.alibabacloud.com/help/doc-detail/71332.htm#multiTask655

SQL Reference:-Instructions for shard Cloud Native Distributed Database
ing function PolarDB-X

Support database

harding f i D ipti hardi

Sharding function escription S Support table sharding
Performs hashing by

YYYYMM Yes Yes
year and month.

YYYYWEEK Performs hashing by Yes Yes
year and week.

VYYYDD Performs hashing by Yes Yes

year and date.

Support for global secondary indexes
e PolarDB-X 1.0 supports Global secondary indexes. In terms of data storage, each GSl corresponds to a
logical table that stores index data. This table is called an index table.

e PolarDB-X 1.0 also allows you to specify the sharding method of the index table when you create a
GSl. Index tables and normal logical tables support the same sharding functions. For more
information, see Use global secondary indexes.

Supported data types

Data
Shar type
ding
funct MEDI TIME Othe
. BIGIN SMAL TINYI VARC DATE
ion INT UMIN CHAR DATE STA r
T LINT NT HAR TIME
T MP type
HASH | v N v N N v x x x x
i V N) N N) N x x x x
HASH
RANG
E_HA N N J N N) N x x x x
SH
RIGH
T_SHI N J J J J x x x X X X
FT
SR X X x X X X x X X
HASH v v
MM X X X X X X X J J J X
DD X X X X X X X J J J X
WEEK x x x x X X X J J J X
MMD
D X X X X X X X J J J X

11 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/71334.htm#topic1014
https://www.alibabacloud.com/help/doc-detail/71335.htm#multiTask1103
https://www.alibabacloud.com/help/doc-detail/71337.htm#multiTask1081
https://www.alibabacloud.com/help/doc-detail/182179.htm#concept-1946505
https://www.alibabacloud.com/help/doc-detail/182180.htm#task-1946506
https://www.alibabacloud.com/help/doc-detail/71276.htm#multiTask728
https://www.alibabacloud.com/help/doc-detail/71279.htm#multiTask1115
https://www.alibabacloud.com/help/doc-detail/71284.htm#multiTask833
https://www.alibabacloud.com/help/doc-detail/71290.htm#multiTask799
https://www.alibabacloud.com/help/doc-detail/95513.htm#multiTask4295
https://www.alibabacloud.com/help/doc-detail/71294.htm#multiTask578
https://www.alibabacloud.com/help/doc-detail/71310.htm#multiTask602
https://www.alibabacloud.com/help/doc-detail/71311.htm#multiTask623
https://www.alibabacloud.com/help/doc-detail/71332.htm#multiTask655

Cloud Native Distributed Database SQL Reference-Instructions for shard

PolarDB-X ing function
Data
Shar type
ding
funct MEDI Othe
. BIGIN SMAL TINYI VARC DATE
ion INT UMIN CHAR DATE r
T LINT NT HAR TIME
T type
ey X X X X X X X J J X
MM
vy X X X X X X X J J X
WEEK
vy X X X X X X X J J X
DD

Sharding function syntax

PolarDB-X 1.0 is compatible with the Data Definition Language (DDL) table statements in MySQL. It also
providesthe drds partition options keyword fordatabase sharding and table sharding, as shown

in the following statements.

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
(create definition,...)
[table options]
[drds partition options]
[partition options]
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl name
[(create definition,...)]
[table options]
[drds partition options]
[partition options]
select statement
drds_partition options:
DBPARTITION BY

{ {HASH|YYYYMM|YYYYWEEK|YYYYDD| ...} ([column]) }
[TBPARTITION BY
{ {HASH|MM|DD|WEEK |MMDD|YYYYMM|YYYYWEEK |YYYYDD] ...} (column) }

[TBPARTITIONS num]

2.2. HASH

This topic describes how to use the HASH function.

Note

The UNI_HASH functions perf orm simple modulo operations. The output of the UNI_HASH functions can
be evenly distributed only when the values in the partitioning key column are evenly distributed.

Limits

The partitioning key must be an integer or a string.

> Document Version: 20220601

12

https://www.alibabacloud.com/help/doc-detail/71334.htm#topic1014
https://www.alibabacloud.com/help/doc-detail/71335.htm#multiTask1103
https://www.alibabacloud.com/help/doc-detail/71337.htm#multiTask1081

SQL Reference:-Instructions for shard Cloud Native Distributed Database
ing function PolarDB-X

Routing method

e [f different partitioning keys are used to execute the HASH function for database shards and table
shards, divide the value of the database shard key by the number of database shards and find the
remainder. If the key value is a string, the string is first converted into a hash value and then used for
route calculation. For example, HasH(8) isequivalentto 8 % p ,where Dindicates the number
of database shards. HasH("aBc") isequivalent to hashcode ("ABC") .abs() % D

e [f the same partitioning key is used to execute the HASH function for database shards and table
shards, divide the value of the partitioning key by the total number of table shards and find the
remainder. Assume that two database shards are created, each database shard contains four table
shards, table shards 0 to 3 are stored in database shard 0, and table shards 4 to 7 are stored in
database shard 1. Based on this routing method, the key value 15 is distributed to table shard 7 in
database shard 1. The equationiis ((15 % (2*4) = 7)).

sScenarios

The HASH function can be used in the following scenarios:

e Partition databases by user ID or order ID.
e Use astring as the partitioning key.
Examples

Assume that you want to execute the HASH function to create non-partitioned tables in database
shards based on the ID column. You can execute the following Data Definition Language (DDL)
statement to create tables:

create table test hash tb (
id int,
name varchar (30) DEFAULT NULL,
create time datetime DEFAULT NULL,
primary key (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by HASH(ID) ;

2.3. STR_HASH

This topic describes how to use the STR_HASH function.

Note

Table shards that are created with the STR_HASH function are applicable only to point query scenarios.
Range queries for a service trigger a full table scan, which causes a slow response.

Limits

e The partitioning key must be a string (CHAR or VARCHAR).

e The parameters of the STR_HASH function cannot be modified after atable is created.
e The version of the PolarDB-X 1.0 instance must be 5.3.5 or later.

Scenarios

e The STR_HASH function is applicable to scenarios that require precise routing where only one table or
database shard corresponds to the value of one partitioning key. T his value must be a string.

13 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Instructions for shard
PolarDB-X ing function

For example, an Internet finance application partitions data into database shards by year and month
of the year by using the YYYYMM function, and then partitions data into table shards by order ID. In
this application, the last three characters of each order ID are an integer that ranges from 000 to 999.
This application is required to route the last three characters of each order ID in a physical database
shard to one physical table shard. Therefore, the application uses the YYYYMM function to partition
data into database shards and then uses the STR_HASH function to partition data into table shards.
To meet the requirements of the application, each database shard contains 1,024 table shards. The
following SQL statement is used to create the required shards:

create table test str hash tb (
id int NOT NULL AUTO INCREMENT,
order id varchar (30) NOT NULL,
create time datetime DEFAULT NULL,
primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by YYYYMM(create time’)
tbpartition by STR HASH(order id", -1, 3, 1) tbpartitions 1024;

This SQL statement finds the last three characters of each order ID, converts theminto an integer
(000 to 999), and then performs the modulo operation to calculate the appropriate table shard. The
total number of table shards is 1,024. The routing result ensures that each physical table shard
corresponds to the value of only one partitioning key. The default partitioning function of PolarDB-X
1.0 cannot achieve this effect because the hashCode function may convert strings into integers that
are not unique. One physical table shard may correspond to the values of multiple partitioning keys.

e Typical scenarios of point query
The STR_HASH function is applicable to scenarios where a string is used as the partitioning key. Point
query is used in most scenarios, such as querying transaction orders and logistics orders by ID.
Syntax

The STR_HASH function allows you to truncate the string value of a partitioning key into a substring by
specifying the start position subscript and end position subscript. Then, the function uses this substring
as a string or an integer input to calculate the routes of specific physical database shards and table
shards. For more information, see the following syntax:

STR _HASH(shardKey [, startIndex, endIndex [, valType [, randSeed]]])

Parameters
Parameter Description
shardKey The name of the partitioning key column.
The start position subscript of the substring. The positions of the
characters in the original string start at 0. This means that the value 0
startindex

indicates the first character in the original string. To disable truncation,
retain the default value of -1.

> Document Version: 20220601 14

SQL Reference:-Instructions for shard Cloud Native Distributed Database
ing function PolarDB-X

Parameter Description

The end position subscript of the target substring. The positions of the
characters in the original string start at 0. This means that the value 0
indicates the first character in the original string. To disable truncation,
retain the default value of -1.

@ Note Note the following values of startindex and endindex:
® For startIndex == j && endIndex = k (3>=0, k>=0
,k>j) ,the [3, k) range of the original string is
used as the substring. For example:
o For the ABCDEFG string, the value of the [1,5)
range is BCDE

o For the ABCDEFG string, the value of the [2,2)
rangeis ''
o For the ABCDEFG string, the value of the [4,100)
endindex rangeis EFG

o For the ABCDEFG string, the value of the [100,10
5) rangeis '

® For startIndex == -1 && endIndex = k (k>=0) ,the
last K characters of the original string are used as the
substring. If the original string contains fewer than K
characters, the entire string is used as the substring.

® For startIndex = k && endIndex == -1 (k>=0) ,the
first K characters of the original string are used as the
substring. If the original string contains fewer than K
characters, the entire string is used as the substring.

® For startIndex == -1 && endIndex == -1 ,noO
truncation is performed. The substring is the same as the
original string.

The type of the substring that is used for calculating routes of

database shards and table shards. Valid values:

® ((default): PolarDB-X 1.0 uses the substring as a string to calculate
valType routes.

® 1: PolarDB-X 1.0 uses the substring as an integer to calculate routes.

The integer value of the substring cannot be greater than
9223372036854775807 and cannot be a floating-point number.

15 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Instructions for shard
PolarDB-X ing function

Parameter Description

The value of a random seed that PolarDB-X 1.0 uses to calculate the
hash value of routes when the substring is used as a string. This value
is used only when the STR_HASH function cannot achieve even data
distribution by using the default random seed. The default value is 31.
You can set this parameter to other values such as 131, 13131, and
1313131.

randSeed
@ Note

® This parameter can be set only when valType is set to 0.

e After you set this parameter, you must redistribute data by
manually exporting all data and then importing it with the
new partitioning algorithm.

Examples

Assume that the data type of order_id is VARCHAR(32). You want to use order_id as the partitioning key
to partition data into four database shards and eight table shards.

e Assume that you want to use the last four characters of the order_id string as an integer to calculate
the routes of the database shards and table shards. You can use the following SQL statement to

create tables:

create table test str hash tb (
id int NOT NULL AUTO INCREMENT,
order id varchar (32) NOT NULL,
create time datetime DEFAULT NULL,
primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by STR HASH(order id", -1, 4, 1)
tbpartition by STR HASH(order id°, -1, 4, 1) tbpartitions 2;

e Assume that you want to use the characters fromthe third character (starindex = 2) to the seventh
character (endindex = 7) of the order_id string as a substring to calculate the routes of the database
and table shards. You can use the following SQL statement to create tables:

create table test str hash tb (
id int NOT NULL AUTO INCREMENT,
order id varchar (32) NOT NULL,
create time datetime DEFAULT NULL,
primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by STR HASH(order id", 2, 7)
tbpartition by STR HASH(order id", 2, 7) tbpartitions 2;

e Assume that you want to use the first five characters of the order id string as a substring to
calculate the routes of the database shards and table shards. You can use the following SQL

statement to create tables:

> Document Version: 20220601 16

SQL Reference:-Instructions for shard Cloud Native Distributed Database
ing function PolarDB-X

create table test str hash tb (
id int NOT NULL AUTO_INCREMENT,
order id varchar(32) NOT NULL,
create time datetime DEFAULT NULL,
primary key (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by STR HASH(order id", 5, -1)
tbpartition by STR HASH(order id', 5, -1) tbpartitions 2;

FAQ

Q: What are the differences between dopartition by STR HASH(order_id) and dobpartition by
HASH (order\ id) ?

A: STR_HASH and HASH both use the value of a string to calculate the hash routes of database shards
and table shards. However, they use different route algorithms. STR_HASH allows you to truncate the
original string into a substring, which it uses to create tables. STR_HASH also uses the UNI_HASH
algorithmwhen the routes of database shards and table shards are calculated based on the hash value
of a string. HASH performs a simple modulo operation to obtain the hash value of a string.

2.4. UNI_HASH

This topic describes how to use UNI_HASH.

Considerations

The UNI_HASH functions perform simple modulo operations. The hash output can be evenly distributed
only when the values in the sharding column are evenly distributed.

Limits
e The datatype of shard keys must be integers or strings.
e The version of the PolarDB-X 1.0 instance must be 5.1.28-1508068 or later.

Routing method

UNI_HASH is used in the following scenarios:

e When you run the UNI_HASH function to perform database sharding, the values of the database
shard key are divided by the number of database shards to obtain the remainders. If the key values
are strings, the strings are converted to hash values. Then, the hash values are calculated to
complete route computing. For example, Hasu('8') isequivalentto 8 % p .LetterD indicates

the number of database shards.

e Assume that you run the UNI_HASH function to implement database sharding and table sharding by
using the same shard key. The values of the database shard key are divided by the number of
database shards to obtain the remainders. Then, data is evenly routed to each table shard of the
database shard.

Scenarios

e Database sharding is implemented based on user IDs or order IDs.
e The datatype of shard keys is an integer or a string.
e The database sharding must be implemented for two logical tables by using the same shard key. The

17 > Document Version: 20220601

Cloud Native Distributed Database
PolarDB-X

SQL Reference: Instructions for shard
ing function

number of table shards for one table is different fromthat for the othertable. The two tables are
often joined by using the shard key.

Use cases

Assume that you must run the UNI_HASH function to implement sharding by using the values of the ID
column and each database shard contains four tables. You can execute the following data definition
language (DDL) statement to create tables:

create table test hash tb (
id int,

name varchar (30)

DEFAULT NULL,

create time datetime DEFAULT NULL,

primary key(id)

) ENGINE=InnoDB DEFAULT CHARSET=utf8

dbpartition by UNI_ HASH (ID)

tbpartition by UNI HASH(ID) tbpartitions 4;

Comparison with HASH

Comparison scenario

Database sharding is
implemented and table sharding
is not implemented.

Sharding is implemented by using
the same shard key.

Sharding must be implemented
for two logical tables by using
the same shard key. However, the
number of table shards for one
logical table is different from
that for the other logical table.

UNI_HASH

HASH

The two functions use the same routing method. In this method, the
values of the database shard key are divided by the number of
database shards to obtain the remainders.

The results that are routed to
database shards by using the
same key value do not change as
the number of table shards
changes.

When one table is joined with the
other table by using the shard
key, a cross-database join does
not occur.

2.5. RANGE_HASH

This topic describes how to use the RANGE_HASH function.

Scenarios

The RANGE_HASH function is applicable to scenarios where two partitioning keys are required but only

one partitioning key value is available during queries.

Limits

The results that are routed to
database shards by using the
same key value change as the
number of table shards changes.

When one table is joined with the
other table by using the shard

key, a cross-database join occurs.

e The two partitioning keys must be of the same data type, which can be the string or number type.

e The two partitioning keys cannot be modified.

e The partitioning keys do not support range query.

> Document Version: 20220601

18

SQL Reference:-Instructions for shard Cloud Native Distributed Database
ing function PolarDB-X

e When datais inserted, the last N characters of the two partitioning keys must be the same.
e A string must contain no less than N characters.

e The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later.

Routing method

Calculate the hash value based on the last N characters of either partitioning key, then divide by the
number of database shards and find the remainder. The letter N indicates the third parameterin the
function. For example, during calculation of the RanNce HasH(conl, conz, N) function, COL1 is
preferentially selected, and then its last N characters are truncated for calculation. If COL1 does not
exist, COL2 is selected and truncated for calculation.

Examples

Assume that PolarDB-X 1.0 has eight physical database shards. You want to partition data into
database shards by buyer ID and order ID. However, only one of these IDs is available during queries. You
can use the following Data Definition Language (DDL) statement to create order tables:

create table test order tb (
id int,
buyer id varchar (30) DEFAULT NULL,
order id varchar (30) DEFAULT NULL,
create time datetime DEFAULT NULL,
primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by RANGE HASH (buyer id,order id, 10)
tbpartition by RANGE HASH (buyer id,order id, 10) tbpartitions 3;

2.6. RIGHT_SHIFT

This topic describes how to use the RIGHT _SHIFT function.

Limits

e The shard key must be an integer.

e The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..
Routing method

The RIGHT _SHIFT function performs a signed right shift on the value of the database shard key. The
function then divides the resulting integer by the number of database or table shards and finds the
remainder. Note that the value of the shard key must be an integer. You can specify the number of bits
to shift by running a data definition language (DDL) statement.

@ Note The number of bitsto shift cannot exceed the number of bits used to represent an
integer.

Scenarios

The RIGHT _SHIFT function can produce more even hashing when the lower-digit parts of most shard key
values are similar but the higher-digit parts vary greatly.

19 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Instructions for shard
PolarDB-X ing function

For example, assume you have the following four shard key values: 0x0100 , 0x0200 , 0x 0300
and 0x0400 .The rightmost eight bits of each value are 0. Services may use the right most bits as
flags. In this case, using the remainder method on the original values can result in less effective hashing.
Youcanuse RIGHT SHIFT (shardKey, 8) to shift the values of the keys eight bits to the right and
obtainthe following values: 0x01 , 0x02 , 0x03 and 0x04 .These new values result in
relatively even hashing. If a database is divided into four shards, each value corresponds to one shard.

Use cases

For example, assume that you are using the ID column as the shard key. You may want to shift the
values of this column four bits to the right for hashing purposes. In this case, you can run the following
statement:
create table test hash tb (
id int,
name varchar (30) DEFAULT NULL,
create time datetime DEFAULT NULL,
primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by RIGHT SHIFT (id, 8)
tbpartition by RIGHT SHIFT (id, 8) tbpartitions 4;

2.7. MM

This topic describes how to use the MM function.
Limits
e The partitioning key must be of the DATE, DATETIME, or TIMESTAMP type.

e This function can be used only for partitioning data into table shards, not into database shards.

e \When you use the MM function to partition data into table shards, ensure that each database shard
has no more than 12 table shards. This is because a year has 12 months.

e The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..
Routing method

To obtain the table shard subscript, divide by the month of the year in the time value of the database
shard key.

Scenarios

The MM function is applicable to scenarios where data needs to be partitioned into table shards by
month. The name of atable shard indicates a specific month.

Examples

Assume that you want to partition data into database shards by user ID and then create a physical
table shard for each month based onthe create time column.You can use the following Data
Definition Language (DDL) statement to create tables:

> Document Version: 20220601 20

SQL Reference:-Instructions for shard Cloud Native Distributed Database
ing function PolarDB-X

create table test mm tb (
id int,
name varchar (30) DEFAULT NULL,
create time datetime DEFAULT NULL,
primary key (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by HASH (id)
tbpartition by MM(create time) tbpartitions 12;

2.8.DD

T his topic describes how to use the DD function.
Limits
e The partitioning key must be of the DATE, DATETIME, or TIMESTAMP type.

e This function can be used only for partitioning data into table shards, not into database shards.

e When you use the DD function to partition data into table shards, ensure that each database shard
has no more than 31 table shards. This is because a month cannot have more than 31 days.

o The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..

Routing method

To obtain the table shard subscript, divide by the day in the time value of the database shard key.

Scenarios

The DD function is applicable to scenarios where data needs to be partitioned into table shards by day.
The name of atable shard indicates a specific day.

Examples

Assume that you want to partition data into database shards by user ID and then create a physical
table shard for each day based onthe create time column.You can use the following Data

Definition Language (DDL) statement to create tables:

create table test dd tb (
id int,
name varchar (30) DEFAULT NULL,
create time datetime DEFAULT NULL,
primary key (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by HASH (id)
tbpartition by DD(create time) tbpartitions 31;

2.9. WEEK

This topic describes how to use the WEEK function.

Limits

21 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Instructions for shard
PolarDB-X ing function

e The partitioning key must be of the DATE, DATETIME, or TIMESTAMP type.
e This function can be used only for partitioning data into table shards, not into database shards.

e When you use the WEEK function to partition data into table shards, ensure that each database
shard has no more than seven table shards. This is because a week has seven days.

e The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..

Routing method

To obtain the table shard subscript, divide by the day of the week in the time value of the database
shard key.

Scenarios

The WEEK function is applicable to scenarios where data needs to be partitioned into table shards by
each day of a week. The name subscript of a table shard indicates a specific day of a week, from
Monday to Sunday.

Examples

Assume that you want to partition data into database shards by user ID and then create a physical
table shard for each day of the week (Monday to Sunday) based onthe create time column. You

can use the following Data Definition Language (DDL) statement to create tables:
create table test week tb (
id int,
name varchar (30) DEFAULT NULL,
create time datetime DEFAULT NULL,
primary key (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by HASH (name)
tbpartition by WEEK (create time) tbpartitions 7;

2.10. MMDD

This topic describes how to use the MMDD function.
Limits
e The partitioning key must be of the DATE, DATETIME, or TIMESTAMP type.

e This function can be used only for partitioning data into table shards, not into database shards.

e When you use the MMDD function to partition data into table shards, ensure that each database
shard has no more than 366 table shards. This is because a year cannot have more than 366 days.

e The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..

Routing method

To obtain the table shard subscript, divide by the day in the time value of the partitioning key of a
database shard.

Scenarios

> Document Version: 20220601 22

SQL Reference:-Instructions for shard Cloud Native Distributed Database
ing function PolarDB-X

The MMDD function is applicable to scenarios where data needs to be partitioned into table shards by
day of ayear. The name subscript of atable shard indicates a specific day of a year.

Examples

Assume that you want to partition data into database shards by user ID and then create a physical
table shard for each day and month based onthe create time column. You can use the following
Data Definition Language (DDL) statement to create tables:

create table test mmdd tb (
id int,
name varchar (30) DEFAULT NULL,
create time datetime DEFAULT NULL,
primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by HASH (name)
tbpartition by MMDD (create time) tbpartitions 366;

2.11.YYYYDD

This topic describes how to use the YYYYDD function.

Limits

e A shard key must be of the DATE, DATETIME, or TIMESTAMP type.

e Before you use the YYYYDD function, determine the total number of physical table shards that are

required based on a specific cycle, such as two years. The YYYYDD function can be used to create
only one table shard for each day within a cycle.

e When a date recurs in the next cycle, data generated on the date may be routed to the same table
shards that store data generated on the same date in the last cycle. For example, if you specify a
two-year cycle starting from March 1, 2012, data generated on March 1, 2014 in the next cycle may
be routed to the same table shard that stores data generated on March 1, 2012. The table shard to
which the data is routed depends on the number of table shards.

e The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later.

Routing method

You can use the YYYYDD function to calculate hash values based on the years and days in the time
values of a database shard key. Then, the function divides the hash values by the number of database
shards to obtain the remainders. As a result, data is partitioned based on the remainders.

For example, if you specify parameters forthe YYYYDD functioninthe yvvyypp('2012-12-31
12:12:12") format, the remainder is calculated based on the following formula: (2012 x 366 +
366) 3D , in which D indicates the number of database shards. The calculation result indicates that
December 31, 2012 is the 366th day of year 2012.

Scenarios

The YYYYDD function is suitable for scenarios in which data needs to be partitioned into database
shards by year and day of the year. We recommend that you use this function with tbpartition by
YYYYDD (ShardKey)

23 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Instructions for shard
PolarDB-X ing function

Example

In this example, the PolarDB-X 1.0 instance has two nodes. By default, each node has eight database
shards. The data must be partitioned based on the following requirements:

e Datais partitioned into the database shards by year and day of the year.

e Data generated on the same day is partitioned into the same table shard. Each day within two years
corresponds to an independent table shard.

e A query is directly distributed to a specific physical table shard of a database shard if shard keys are
specified in the query.

The YYYYDD function can meet the preceding requirements. You require that each day within two years
correspond to a table shard. Therefore, a total of 732 (366 x 2) physical table shards must be created
because a year has up to 366 days. A PolarDB-X 1.0 instance has 16 database shards. The number of
physical table shards in each database shard is calculated in the following two steps: 1. Divide the total
number of physical table shards that must be created by the number of database shards. 2. Round the
result up to the next nearest integer. In this case, the number of physic table shards is 46, which is the
nearest integerto 45.75 (732/16). We recommend that the number of table shards be aninteger
multiple of the number of database shards.

You can use the following Data Definition Language (DDL) statement to create tables:

create table test yyyydd tb (
id int,
name varchar (30) DEFAULT NULL,
create time datetime DEFAULT NULL,
primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by YYYYDD(create time)
tbpartition by YYYYDD(create time) tbpartitions 46;

2.12. YYYYMM

This topic describes how to use the YYYYMM function.
Limits
e The partitioning key must be of the DATE, DATETIME, or TIMESTAMP type.

e Before you use the YYYYMM function, you must determine the total number of physical table shards
required. This number can be determined based on a cycle, such as 2 years. The YYYYMM function can
be used only to create a separate table shard for each month within a cycle.

e \When a month reoccurs after a cycle has completed, data fromthat month may be routed to the
same table shard in the same database shard. For example, with a two-year cycle starting in March
2012, data from March 2014 may be routed to the same table shard as data from March 2012. The
specific table shard to which the data is routed depends on the number of table shards.

o The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..

Routing method

Calculate the hash value based on the year and month of the time value of the database shard key.
Then divide by the number of database shards and find the remainder.

> Document Version: 20220601 24

SQL Reference:-Instructions for shard Cloud Native Distributed Database
ing function PolarDB-X

Forexample, the yyvyymM('2012-12-31 12:12:12') functionis equivalent to (2012 x 12 + 12) &

D

, where D indicates the number of database shards. The calculation result indicates that December

31,2012 isinthe 12nd month of 2012.

sScenarios

The YYYYMM function is applicable to scenarios where data needs to be partitioned into database
shards by year and month of the year. We recommend that you use this function with tobpartition

YYYYMM (ShardKey)

Examples

Assume that a PolarDB-X 1.0 instance has eight physical database shards and that you have the
following requirements:

Partition data into the database shards by year and month of the year.
Distribute data from the same month to the same table shard and ensure that each month within
two years corresponds to a separate table shard.

Directly distribute a query by partitioning key of database shards and table shards to a specific
physical table shard of a database shard.

The YYYYMM function can meet the preceding requirements. You require that each month within two
years correspond to a table shard. Therefore, a total of 24 physical table shards must be created,
because a year has 12 months (12 x 2 = 24).PolarDB-X 1.0 has eight database shards. Therefore, three
physical table shards must be created in each database shard (24/8 = 3).

You can use the following Data Definition Language (DDL) statement to create tables:

create table test yyyymm tb (
id int,
name varchar (30) DEFAULT NULL,
create time datetime DEFAULT NULL,
primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by YYYYMM(create time)
tbpartition by YYYYMM(create time) tbpartitions 3;

2.13. YYYYWEEK

This topic describes how to use the YYYYWEEK function.

Limits

The partitioning key must be of the DATE, DATETIME, or TIMESTAMP type.

Before you use the YYYYWEEK function,you must determine the total number of physical table shards
required. This number can be determined based on a cycle, such as 2 years. The YYYYWEEK function
can be used only to create a separate table shard for each week within a cycle.

When a week reoccurs after a cycle has completed, data fromthat week may be routed to the same
table shard in the same database shard. For example, with a two-year cycle starting on the first week
of 2012, data fromthe first week of 2014 may be routed to the same table shard as data fromthe
first week of 2012. The specific table shard to which the data is routed depends on the number of
table shards.

25 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Instructions for shard
PolarDB-X ing function

e The version of the PolarDB-X 1.0 instance must be 5.1.28-1320920 or later..

Routing method

Calculate the hash value based on the year and week of the time value of the database shard key.
Then divide by the number of database shards and find the remainder.

Forexample, the vYyYyYwEEK ('2012-12-31 12:12:12') functionis equivalent to (2013 x 54 + 1) %
p , where Dindicates the number of database shards. The calculation result indicates that the
December 31, 2012 is in the first week of 2013.

Scenarios

The YYYYWEEK function is applicable to scenarios where data needs to be partitioned into database
shards by year and week of the year. We recommend that you use this function with tobpartition by
YYYYWEEK (ShardKey)

Examples

Assume that a PolarDB-X 1.0 instance has eight physical database shards and that you have the
following requirements:

e Partition data into the database shards by year and week of the year.

e Distribute data fromthe same weekto the same table shard and ensure that each week wit hin two
years corresponds to a separate table shard.

e Directly distribute a query by partitioning key of database shards and table shards to a specific
physical table shard of a database shard.

The YYYYWEEK function can meet the preceding requirements. You require that each week within two
years correspond to a table shard. Therefore, a total of 106 physical table shards must be created,
because a year has up to 53 weeks (53 x 2 = 106). PolarDB-X 1.0 has eight database shards. Therefore,
14 physical table shards must be created in each database shard (106/8 = 13.25, rounded to 14). We
recommend that the number of table shards be an integer multiple of the number of database shards.

You can use the following Data Definition Language (DDL) statement to create tables:

create table test yyyyweek tb (
id int,
name varchar (30) DEFAULT NULL,
create time datetime DEFAULT NULL,
primary key(id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
dbpartition by YYYYWEEK (create time)
tbpartition by YYYYWEEK (create time) tbpartitions 14;

> Document Version: 20220601 26

Cloud Native Distributed Database

SQL Reference-Manage DDL tasks
PolarDB-X

3.Manage DDL tasks
3.1. Overview

PolarDB-X 1.0 introduces a DDL execution engine that is used by the DRDS instances of V5.3.12 or later
to support the DDL task management feature. This feature allows you to view the status of DDL
execution tasks, resume the failed DDL tasks, and roll back the failed DDL t asks.

Concepts related to DDL task management

Before you use the DDL task management feature, we recommend that you understand the following
concepts:

e DDLtask: ataskthat corresponds to the process of executing a DDL statement.

e Management statement: an SQL statement that is specific to PolarDB-X 1.0 and is executed to view
or manage DDL tasks.

e TaskID: the unique identifier of a DDLtask. A taskID is a 64-bit long signed integer.
e Taskstatus: the status of a DDL task.

For more information about the syntax of task management statements and how to use these
statements, see Job management statements.

3.2. Job management statements

Job management statements are extended Structured Query Language (SQL) statements dedicated to
PolarDB-X 1.0. They can be used to query the details of data definition language (DDL) jobs and resume
orroll back failed DDL jobs. T his topic describes the syntax and usage of job management statements.

Query a job

You can query the details of a DDL job in the DDL queue where the DDL job may be either in a non-
PENDING state as it is being executed or in the PENDING state due to failures.

@ Note Jobs that have been executed are in the COMPLETED state and are automatically
cleared. You cannot query these jobs by executing the SHOW DDL statement.

e Syntax

SHOW [FULL] DDL

Parameter Description

27 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/139530.htm#multiTask14544

Cloud Native Distributed Database

SQL Reference- Manage DDL tasks
PolarDB-X

Parameter Description

Queries all information of a DDL job. If you do not specify this parameter, only
the following common information is displayed.

o JOB_ID

o OBJECT_SCHEMA
o OBJECT_NAME
o JOB_TYPE

o PHASE

o STATE

o PROGRESS

o START_TIME

o END_TIME

o ELAPSED_TIME
o REMARK

o PHY_PROCESS
o BACKFILL_PROGRESS

FULL

e Description of the fields in the result set
Field Description
JOB_ID The unique ID of the DDL job. It is a long 64-bit signed integer.

The unique ID of the DDL parent job. It is a long 64-bit signed integer.

PARENT_JOB_ID
JOB. @ Note If no parent job exists, this field is set to 0.

SERVER The information of the DRDS server node that executes the DDL job.

The schema name of the object corresponding to the DDL job. For example,

OBJECT_SCHEMA '€ s) ponaing) xamp
this field can be the name of the current database.

The name of the object corresponding to the DDL job. For example, this field

OBJECT_NAME .

- can be the name of the table where the current DDL statement is executed.

The new name of the object corresponding to the DDL job.

NEW_OBJECT _NAME @ Note This field is valid only when you execute RENAME TABLE. It
indicates the target table name.

JOB_TYPE The type of the DDL job.
PHASE The phase where the DDL job is located.
STATE The status of the DDL job.

> Document Version: 20220601 28

SQL Reference- Manage DDL tasks Cloud Native Distributed Database

PolarDB-X

Field Description
PROGRESS The progress of the DDL job.
START_TIME The time when the execution of the DDL job started.
END_TIME The time when the execution of the DDL job ended.
ELAPSED_TIME The time elapsed after the execution of the DDL job ended. Unit: milliseconds.
DDL_STMT The original DDL statement.

The remarks of the DDL job.
REMARK @ Note This field displays the failure cause of the DDL job when the

DDL job is in the PENDING state.

e Example

Create a logical table that is partitioned into table shards in a database shard. Query the details of
the job when the job is being executed.

i. Execute the CREATE TABLE DDL statement on a connection.

mysql> create table test mdb mtb (cl int not null auto increment primary key, c2 varc
har (10), c3 date) dbpartition by hash(cl) tbpartition by hash(cl) tbpartitions 64;

ii. Query the details of the DDL job on another connection.

mysqgl> show full ddl\G
KKk A AAKkKAAAK A AA kA A Ak hhA A khk*x l_ row KAk KAA KKK AIAK KA AR A A AR KA XA KK h K
JOB_ID: 1103792075578957824
PARENT JOB ID: O
SERVER: 1:102:10.81.69.55
OBJECT SCHEMA: ddltest
OBJECT NAME: test mdb mtb
NEW_OBJECT NAME:
JOB TYPE: CREATE TABLE
PHASE: EXECUTE
STATE: RUNNING
PROGRESS: 90%
START TIME: 2019-08-29 14:29:58.787
END TIME: 2019-08-29 14:30:07.177
ELAPSED TIME (MS): 8416
DDL STMT: create table test mdb mtb (cl int not null auto increment primary key, c2
varchar (10), c3 date) dbpartition by hash(cl) tbpartition by hash(cl) tbpartitions 64
REMARK::

Resume a job

You can resume a pending DDL job that is suspended due to failures.

29 > Document Version: 20220601

Cloud Native Distributed Database
PolarDB-X

SQL Reference- Manage DDL tasks

@ Note Before you resume the job, execute the SHOW DDL statement to check the causes for
the interruption or failure. Resume the job only after the failure causes are eliminated. Otherwise,
the same problem persists when you attempt to resume the job.

e Syntax
RECOVER DDL { ALL | <job_id> [, <job id>] ... }
Parameter Description
ALL Resumes all DDL jobs that are in the PENDING state. Note that this parameter
causes the pending DDL jobs to be executed serially. Use it with caution.
iob id The ID of the pending DDL job. This ID is displayed in the execution result of the
Job_ SHOW DDL statement.
e Example

Create a logical table that is partitioned into table shards in a database shard and interrupt the job
during execution. Execute the SHOW DDL statement to query the statusand job_id of the job.
Then, execute the RECOVER DDL statement to resume the job until the table is created.

i. Interrupt the CREATE TABLE DDL job during execution.

mysgl> create table test mdb mtb (cl int not null auto increment primary key, c2 varc
har (10), c3 date) dbpartition by hash(cl) tbpartition by hash(cl) tbpartitions 64;
~C*"C —-- query aborted

ii. Query the information about the DDL job. The interrupted DDL job is in the PENDING state.

mysgl> show ddl1\G
khkkhkhkkhkhkhkkhkrkkhkhkhkkhkrkhkhkhkkhkrkhkhkhkkhkxkxkx l . Trow khkhkkkhkhkkhkhkhkkhkhkhkhkhkkhkhrkhkhkkrkhkhrhkkhkkkhkxk
JOB_ID: 1103796219480006656
OBJECT SCHEMA: ddltest
OBJECT NAME: test mdb mtb
JOB_TYPE: CREATE TABLE
PHASE: EXECUTE
STATE: PENDING
PROGRESS: 33%
START TIME: 2019-08-29 14:46:26.769
END TIME: 2019-08-29 14:46:29.691
ELAPSED TIME (MS): 2922
DDL STMT: create table test mdb mtb (cl int not null auto_increment primary key, c2
varchar (10), c3 date) dbpartition by hash(cl) tbpartition by hash(cl) tbpartitions 64
REMARK: The job has been interrupted unexpectedly

iii. Execute the RECOVER DDL statement to resume the job.

mysqgl> recover ddl 1103796219480006656;
Query OK, 0 rows affected (7.28 sec)

iv. Execute CHECK TABLE to checkthe consistency of the table.

> Document Version: 20220601

30

Cloud Native Distributed Database

SQL Reference-Manage DDL tasks
PolarDB-X

mysgl> check table test mdb mtb;

o o Fom Fom———————— +
| TABLE | OP | MSG TYPE | MSG TEXT |
e F—m Fom Fom +
| ddltest 1562056402230ocymk.test mdb mtb | check | status | OK

Bt e L F—— o ————— Fom +

1 row in set (2.24 sec)

Roll back a job

You can roll back a pending DDL job that is suspended due to failures.

@ Note Youcan only roll back CREATE TABLE and RENAME TABLE DDL jobs. For other DDL jobs
that cannot be rolled back, we recommend that you resume the pending DDL jobs before you
perform other DDL operations.

e Syntax

ROLLBACK DDL <job_id> [, <job_id>]

Parameter Description

The ID of the pending DDL job. This ID is displayed in the execution result of the

job_id
Job! SHOW DDL statement.

e Example

Create a logical table that is partitioned into table shards in a database shard and interrupt the job
during execution. Execute the SHOW DDL statement to query the statusand job_id of the job.
Then, execute the ROLLBACK DDL statement to roll back the job.

i. Interrupt the CREATE TABLE DDL job during execution.

mysql> create table test mdb mtb (cl int not null auto increment primary key, c2 varc
har (10), c3 date) dbpartition by hash(cl) tbpartition by hash(cl) tbpartitions 64;
~C"C -- query aborted

ii. Querythe information about the DDL job. The interrupted DDL job is in the PENDING state.

31 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Manage DDL tasks
PolarDB-X

mysgl> show ddl\G
khkkhkhkkhkhkhkkhkrkhkhkhkkhkrkhkhkhkkhkrkhkhkhkhkxkxkx l_ row khkhkkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkkrkhkrhkhkxkxk
JOB_ID: 1103797850607083520
OBJECT SCHEMA: ddltest
OBJECT NAME: test mdb mtb
JOB_TYPE: CREATE TABLE
PHASE: EXECUTE
STATE: PENDING
PROGRESS: 40%
START TIME: 2019-08-29 14:52:55.660
END TIME: 2019-08-29 14:52:58.885
ELAPSED TIME (MS): 3225
DDL STMT: create table test mdb mtb (cl int not null auto_increment primary key, c2
varchar (10), c3 date) dbpartition by hash(cl) tbpartition by hash(cl) tbpartitions 64
REMARK: The job has been interrupted unexpectedly

iii. Execute the ROLLBACK DDL statement to roll backthe job.

mysgl> rollback ddl 1103797850607083520;
Query OK, 0 rows affected (6.42 sec)

iv. Rollbackis successful. The table does not exist.

mysql> show tables like 'test mdb mtb';
Empty set (0.00 sec)

Cancel a job
You can cancel a running DDL job that is not in the PENDING state.
e Syntax

CANCEL DDL <job id> [, <job_ id>]

Parameter Description

The ID of the DDL job that is not in the PENDING state. This ID is displayed in the

job_id
Jobt execution result of the SHOW DDL statement.

e Example

Create a logical table that is partitioned into table shards in a database shard. Execute the CANCEL
DDL statement to cancel the job. Execute the SHOW DDL statement to query the status and job_id
of the job. Later, you can resume or roll back the job.

i. Execute the CREATE TABLE DDL statement on a connection.

mysql> create table test mdb mtb (cl int not null auto increment primary key, c2 varc

har (10), c3 date) dbpartition by hash(cl) tbpartition by hash(cl) tbpartitions 64;

ii. Querythe information of the running DDL job by executing the SHOW DDL statement on another
connection.

> Document Version: 20220601 32

Cloud Native Distributed Database

SQL Reference-Manage DDL tasks
PolarDB-X

mysgl> show dd1l\G
khkkhkhkkhkhkhkkhkrkhkhkhkkhkrkhkhkhkkhkrkhkhkhkhkxkxkx l_ row khkhkkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkkrkhkrhkhkxkxk
JOB_ID: 1103798959568478208
OBJECT SCHEMA: ddltest
OBJECT NAME: test mdb mtb
JOB_TYPE: CREATE TABLE
PHASE: EXECUTE
STATE: RUNNING
PROGRESS: 26%
START TIME: 2019-08-29 14:57:20.058
END TIME: 2019-08-29 14:57:22.284
ELAPSED TIME (MS): 2243
DDL STMT: create table test mdb mtb (cl int not null auto_increment primary key, c2
varchar (10), c3 date) dbpartition by hash(cl) tbpartition by hash(cl) tbpartitions 64
REMARK :

iii. Execute the CANCEL DDL statement to cancel the execution of the DDL job.

mysgl> cancel ddl 1103798959568478208;
Query OK, 2 rows affected (0.03 sec)

iv. Execute the SHOW DDL statement to query the status of the DDL job. The DDL job has been
canceled and is in the PENDING state.

mysgl> show dd1\G
hhkkkhkhkkkhkhkkhkhkhkkhkhkkhkhkhkkhkrkkhkhkhkkhkrkkk*k l. Trow kkhkhkkkhkhkkhkhkkkhkhkhkhkhkkhkhkhkhkkkhkhkhkhkkkxk
JOB_ID: 1103798959568478208
OBJECT SCHEMA: ddltest
OBJECT NAME: test mdb mtb
JOB_TYPE: CREATE TABLE
PHASE: EXECUTE
STATE: PENDING
PROGRESS: 87%
START TIME: 2019-08-29 14:57:20.058
END TIME: 2019-08-29 14:57:28.899
ELAPSED TIME (MS): 8841
DDL STMT: create table test mdb mtb (cl int not null auto increment primary key, c2
varchar (10), c3 date) dbpartition by hash(cl) tbpartition by hash(cl) tbpartitions 64
REMARK: ERR-CODE: [TDDL-4636] [ERR DDL JOB ERROR] The job '1103798959568478208' has

been cancelled.

Delete a job

You can delete a pending DDL job that is suspended due to failures, and clear the corresponding
caches.

warning Be cautious about executing REMOVE DDLto delete a DDL job. Afteryou delete a
pending job, the intermediate state during the DDL execution is exposed, causing disturbance to
subsequent operations. Therefore, when you are not sure whether the pending job can be securely
deleted, do not execute the REMOVE DDL statement to delete the job. You can preferably resume
or roll back the job to make the job exit the PENDING state first.

e Syntax

33 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference- Manage DDL tasks

PolarDB-X
REMOVE DDL { ALL PENDING | <job id> [, <job id>] ... }
Parameter Description
ALL PENDING Deletes all jobs that are in the PENDING state and clears internal caches.
iob id The ID of the pending DDL job. This ID is displayed in the execution result of the
Job_ SHOW DDL statement.
e Example

Assume that two tables exist in the database and a referential integrity relationship is established
between the two tables. When you attempt to delete the parent table, an error is reported because
tables with the referential integrity constraint cannot be deleted. In this case, if you do not want
another attempt to delete the table, you can delete the DDL job.

i. Inthe database, create two parent-child tables with the referential integrity relationship.

mysgl> show create table test parent\G

Kokok ok ok ok k ok ok ok ok ok kkkk ok Kk kkokk | POl KKKk ok ok ko k ok ok ok ok ok ok ok ok ok ok ok k kok ok ok
Table: test parent

Create Table: CREATE TABLE ‘test parent’ (

“id® int(11) NOT NULL,

"pkey” int(11) NOT NULL,

‘col’ int(11l) DEFAULT NULL,

PRIMARY KEY ('id’, ‘pkey’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(id")

1 row in set (0.01 sec)

mysgl> show create table test child\G

Kkhkkhkkkhkhkhkkhkrkkhkhkhkkhkrkhkhkhkkhkrkhkhkhkkhkrxkkk l_ Trow khkhkkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkkrkkhkrhkhkxkxk
Table: test child

Create Table: CREATE TABLE “test child® (

“id® int(11) DEFAULT NULL,

\parent_id\ int (11) DEFAULT NULL,

KEY ‘parent id® ('parent id’),

CONSTRAINT ‘“test child ibfk 1° FOREIGN KEY ('parent id') REFERENCES ‘test parent’ (°i
d’) ON DELETE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(parent id")

1 row in set (0.02 sec)

ii. Attempt to delete the parent table. Due to the referential integrity constraint, an error is
reported.

mysgl> drop table test parent;

ERROR 4636 (HY000): [£518265d0066000][10.81.69.55:3306] [ddltest]ERR-CODE: [TDDL-4636]
[ERR DDL JOB ERROR] Not all physical operations have been done successfully: expected
9,

but done 0. Caused by: 1217:DDLTEST 15620564022300YMK 7WW7_ 0007:Cannot delete or upda
te a parent row: a foreign key constraint fails on "test parent ;1217:DDLTEST 1562056
4022

300YMK 7WW7_ 0000:Cannot delete or update a parent row: a foreign key constraint fails
on “test parent ;1217:DDLTEST 15620564022300YMK 7WW7_0002:Cannot delete or update a p
are

nt row: a

> Document Version: 20220601 34

Cloud Native Distributed Database

SQL Reference-Manage DDL tasks
PolarDB-X

iii. Querythe DDL job.

mysgl> show dd1\G
khkkhkhkkhkhkhkkhkrkkhkhkhkkhkrkhkhkhkkhkrkhkhhkhkxkxkx l_ row *hhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhhkhkhrhhkxkxk
JOB_ID: 1103806757547171840
OBJECT SCHEMA: ddltest
OBJECT NAME: test parent
JOB_TYPE: DROP_TABLE
PHASE: EXECUTE
STATE: PENDING
PROGRESS: 0%
START TIME: 2019-08-29 15:28:19.240
END TIME: 2019-08-29 15:28:19.456
ELAPSED TIME (MS) : 216
DDL STMT: drop table test parent
REMARK: ERR-CODE: [TDDL-4636] [ERR DDL JOB ERROR] Not all physical operations hav
e been done successfully: expected 9, but done 0. Caused by: 1217:DDLTEST 1562056402
2300YMK_7WW7_0007:Cannot delete or update a parent row: a foreign key constraint fail

s on "test pare

iv. The DDL job violates the referential integrity constraint when you attempt to delete the table.
As aresult, the delete operation fails. At this time, if you execute CHECK TABLE, you can see that
the table is still consistent.

mysql> check table test parent;

o fom fomm e fomm e +
| TABLE | OP | MSG TYPE | MSG TEXT |
R et e P fomm B fomm +
| ddltest 1562056402230oymk.test parent | check | status | OK

R e e e e e e P P e e e fom— o +

1 row in set (0.05 sec)

v. However, the table is inaccessible because a pending job exists for the table.

mysql> show tables like 'test parent';

Empty set (0.00 sec)

mysgl> show create table test parent;

ERROR 4642 (HYO000): [£5185a78b066000][10.81.69.55:3306] [ddltest]ERR-CODE: [TDDL-4642]
[ERR_UNKNOWN TABLE] Unknown table 'ddltest.test parent'

vi. Inthis case, the table deletion job is not executed and the table structure is still consistent. It
seems that you can choose to roll back the failed DDL operation. However, the DROP TABLE
statement does not allow rollback operations. Therefore, you must choose to delete the failed
DDL job.

mysql> remove ddl 1103806757547171840;
Query OK, 1 row affected (0.02 sec)

vii. Afterthe DDL job is deleted, the table recovers to be accessible.

35 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Manage DDL tasks
PolarDB-X

mysgl> show tables like 'test parent';

1 row in set (0.01 sec)

3.3. Control parameters for DDL execution
engine

You can change the operations of the data definition language (DDL) execution engine by setting
related parameters. This topic describes how to set parameters related to the DDL execution engine.

Parameters

You can set the following parameters in the PolarDB-X 1.0 console as needed.
Parameter Scope of impact Default value
ENABLE_ASYNC_DDL Databases and statements TRUE (enabled)

Databases, sessions, and

FALSE (disabled)
statements

PURE_ASYNC_DDL_MODE

MAX_TABLE_PARTITIONS_PER_DB Databases and statements 128

ENABLE_ASYNC_DDL

e Description
o This parameteris set to TRUE by default, indicating that the new DDL execution engine is used.

o If you set this parameterto FALSE, PolarDB-X 1.0 uses the DDL execution engine of a version earlier
thanv5.3.12, and the PURE_ASYNC_DDL MODE and MAX_TABLE PARTITIONS PER DB parameters
do not take effect. We recommend that you submit a ticket to determine whether to set this
parameterto FALSE. For more information, see Submit a ticket.

e Usage

o Database level: Set this parameter on the Parameter Settings page in the PolarDB-X 1.0 console.
The value that you set takes effect for the entire database. For more information, see Set
parameters.

o Statement level: Add a hint, suchas /*+TDDL:cmd extra (ENABLE ASYNC DDL=FALSE)*/ ,at the
beginning of a DDL statement, so that this parameter can take effect only for this statement.

PURE_ASYNC_DDL_MODE

e Description
o This parameter takes effect only when EnaBLE async ppr is set to TRUE.

> Document Version: 20220601 36

https://workorder-intl.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/91769.htm#multiTask1528

Cloud Native Distributed Database

SQL Reference-Manage DDL tasks
PolarDB-X

o When you set this parameter to FALSE, the client connects to PolarDB-X 1.0 to execute a DDL
statement in synchronous blocking mode. In this way, the client returns a response after it
completes the DDL job. After the client is disconnected from PolarDB-X 1.0, the ongoing DDL job
may be interrupted.

o When you set this parameterto TRUE, the client connects to PolarDB-X 1.0 to execute a DDL
statement in asynchronous mode. In this way, the client returns a response when a DDL request is
received, and the DDL job continues to be runin the background. You can run the SHOW DDL
statement to view the status of the DDL job. For more information about how to use this
statement, see Job management statements.

o We recommend that you set this parameter to TRUE when enabling asynchronous mode is explicitly
required to prevent unexpected disconnection between the client and PolarDB-X 1.0. Otherwise,
we recommend that you set this parameterto its default value (FALSE) to ensure that the DDL
operations in PolarDB-X DRDS are compatible with those in the ApsaraDB RDS for MySQL instance.

e Usage

o Database level: Set this parameter on the Parameter Settings page in the PolarDB-X 1.0 console.
The value that you set takes effect forthe entire database. For more information, see Set
parameters.

o Session level:
m Afterthe client connects to PolarDB-X 1.0, execute the set PURE ASYNC DDI, MODE=true OfF s
et PURE ASYNC DDL MODE=1 Statement to enable the asynchronous mode for this session.

m Executethe set PURE ASYNC DDL MODE=false OF set PURE ASYNC DDI, MODE=0 Statement to
restore the default synchronous mode for this session.

o Statement level: Add a hint, suchas /*+TDDL:cmd extra (PURE ASYNC DDL MODE=TRUE)*/ ,at the
beginning of a DDL statement, so that this parameter can take effect only for this statement.

MAX_TABLE_PARTITIONS_PER_DB

e Description
o This parameter takes effect only when EnaBLE async ppr is set to TRUE.

o If the number of table shards in a single physical database exceeds the limit specified by this
parameter, the DDL job stops and an error is reported.

@ Note The value range of this parameteris 1 to 65535. The default value is 128.

e Usage
o Database level: Set this parameter on the Parameter Settings page in the PolarDB-X 1.0 console.
The value that you set takes effect for the entire database. For more information, see Set
parameters.
o Statement level: Add a hint, such as /*+TDDL:cmd extra (MAX TABLE PARTITIONS PER DB=400)*/ ,
at the beginning of a DDL statement, so that this parameter can take effect only for this
statement.

3.4. Considerations and limits

37 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/139530.htm#multiTask14544
https://www.alibabacloud.com/help/doc-detail/91769.htm#multiTask1528
https://www.alibabacloud.com/help/doc-detail/91769.htm#multiTask1528

Cloud Native Distributed Database

SQL Reference-Manage DDL tasks
PolarDB-X

The new DDL execution engine introduces the task management feature. As a result, statement
behavior is different fromthat in earlier versions. T his topic describes the considerations and limits of
the task management feature.

Considerations

o If the DDL statement of a DDL task is executed, you can ignore the status of the DDL task. The DDL
tasks that are executed are automatically deleted.

e Afterthe DDL statement of a DDL task is executed, we recommend that you immediately execute the
CHECK TABLE statement to check the consistency of the logical tables that correspond to the DDL
task.

e Afteryou execute a DDL task management statement to resume, roll back, or delete a DDL task, we
recommend that you execute the CHECK TABLE statement to check the consistency of the logical
tables that correspond to the DDL task.

e [f a DDL statement fails to be executed, an error code and an error message are returned. You can

also execute the SHOW DDL statement to view the cause of the failure in the pending DDL task. The
cause of the failure is indicated by the revarx field.

) Notice We recommend that you identify the cause of the failure in a DDL task and how to
handle the failure before you execute a DDL task management statement to resume, roll back, or
delete the DDL task. Otherwise, the DDL task management statement may fail to be executed.

e [f a DDL statement fails to be executed and the corresponding DDL task is in the pending state, the
status of the table that you want to use becomes inaccessible for security considerations. Then, no
responses are displayed after a statement such as SHOW TABLES is executed. An error may occur
after you execute a DML statement or perform another operation. The error message may indicate
that the table is unknown OF does not exist .Thetablethat youwant to use canbe
accessed only after the pending DDL task is resumed or rolled back to make this table enter the
consistent state.

e If youusethe 1F nNor Ex1STS clause inthe CREATE TABLE statement oruse the 1F EXISTS
clause in the DROP T ABLE statement, some errors that occur during execution do not cause the
execution of the DDL statement to fail. However, the errors are recorded in warnings . Check
whether a message that indicates the numberof warnings is returned after you execute the DDL
statement. For example, the following message may be returned: 1 warning .Execute the SHOW
WARNINGS statement to check the warnings. T his way, you can avoid missing important information.

e On aclient such as the Data Management (DMS) client,you can configure PURE ASYNC DDL MODE tO
execute DDL statements in asynchronous mode. This prevents the DDL statement execution from
being interrupted due to timeout. This configuration is suitable for scenarios in which the time
required to execute a DDL statement cannot be estimated and the timeout-based interruption for
the connection between the client and the PolarDB-X 1.0 instance is enabled on the client. Afterthe
DDL statement is executed, you can execute the sHow ppr statement onthe client to view the
status of the corresponding DDL task.

Limits
e Only the CREATE TABLE and RENAME TABLE operations can be rolled back.

e The RECOVER DDL and ROLLBACK DDL statements cannot be combined or repeated for a pending DDL
task. For example, you cannot execute ROLLBACK DDL to roll back a failed task and then execute
RECOVER DDL to recover the task after the rollback f ails. Such combinations of operations may cause

> Document Version: 20220601 38

Cloud Native Distributed Database

SQL Reference-Manage DDL tasks
PolarDB-X

inconsistency in the logical tables. If operation combinations are required to meet your business
needs, Submit a ticket.

e Executethe ReMovE DpL statement only when the database security is ensured. If you execute the

REMOVE DDL Statement when the database security is not ensured, the intermediate states of DDL

tasks may be revealed and the logical tables may be inconsistent. If problems occur or the security of
the table data is compromised due to the misuse of RremoveE DppL , Submit a ticket.

e By default, a maximum of 128 table shards can be created for a single physical database. You can
change the limit by using the parameters shown in the following sample code.

mysgl> create table test mdb mtb (cl int not null auto increment primary key, c2 varchar (
10), c3 date) dbpartition by hash(cl) tbpartition by hash(cl) tbpartitions 129;

ERROR 4647 (HY000): [£5bd90594800000][30.25.86.55:8527] [JICHEN LOCAL APP]ERR-CODE: [TDDL-
4647] [ERR_TABLE PARTITIONS EXCEED LIMIT] The number of table partitions '129' exceeds the
upper limit '128'. Please specify less table partitions or adjust the value of the parame
ter MAX TABLE PARTITIONS PER DB.

mysqgl> /*+TDDL:cmd extra (MAX TABLE PARTITIONS PER DB=400) */create table test mdb mtb (cl

int not null auto increment primary key, c2 varchar(10), c3 date) dbpartition by hash(cl)
tbpartition by hash(cl) tbpartitions 129;

Query OK, 0 rows affected (2.64 sec)

e A maximum of 65,535 pending DDL tasks can be accumulated in the task queue of the DDL execution
engine. If the number of pending DDL tasks exceeds this limit, you cannot execute DDL statements. In
this case, you must execute Rremove ppL to remove unwanted pending tasks. This limit cannot be

changed by modifying parameters.

3.5. Best practices

This topic describes the best practices for processing a job in the PENDING state.

Background

In this scenario, an engine is started for a new DDL job. If the DDL job fails or is interrupted due to
exceptions, the job enters the PENDING state. In this case, you must take measures to process and
resume the job. Otherwise, subsequent DDL statements in this job cannot be executed and an error is
returned.

How it works

e Youcanexecutethe sHow [FULL] DDL Statement to query DDL job details and identify the failure
cause. You can view an error message inthe remarx field.

e The following list describes the common methods for processing a job in the PENDING state. You can
select a method based on your business requirements.

o Troubleshoot and resolve an issue. For example, check whether the issue is caused by errors in the
data. If the issue is caused by duplicates, remove duplicates. If the issue persists, check whether the
issue is caused by limits. If the issue is caused by limits, check whether you can lift the limits. After
you resolve the issue, execute the recover ppr, statement to resume the job in the PENDING

state.

39 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference-Manage DDL tasks
PolarDB-X

o If you cannot resolve the issue that causes a job failure, the DDL statements in the job cannot be
executed. In this case, you can execute the REMOVE DDL statement to delete the job. Before you
execute the REMOVE DDL statement, ensure that the DDL statements in the job are not executed.
Otherwise, the table status that is returned by the SHOW statement may be inconsistent with the
actual table status. After you delete the DDL job, the table can be queried again.

o If youwant to delete atable that a DDL job fails to query, you can execute the ReMOVE DDL
statement to delete the job. Then, you can execute the bprop TaBLE IF ExISTS Statement to
delete the table. Before you delete a table, make sure that the table is empty orthe data onthe
table is no longer needed. You must use the 1r ExisTts keywordinthe DroP TABLE
statement. This ensures that the table can be forcibly deleted.

Examples

The following examples show how to process a DDL job in the PENDING state.

1. Create atable without specifying a primary key. Then, insert duplicate rows into the table. The
result indicates that the value 1 forthe id column duplicates.

mysql> create table test pending (id int not null, age int) dbpartition by hash(id);
Query OK, 0 rows affected (0.33 sec)

mysql> insert into test pending values(1,10), (1,20), (2,20), (3,30);

Query OK, 4 rows affected (0.10 sec)

mysql> select * from test pending order by id;

o o +
| id | age |
o o +
| 1] 10 |
\ 11 20|
| 2 20 |
\ 3 | 30 |
tm——m—— o +

4 rows in set (0.10 sec)

2. Configure a primary key forthe table. The result indicates that the id column is incorrectly
configured. In this case, the DDL statement fails because the values for the id column are not
unique.

mysql> alter table test pending add primary key (id);

ERROR 4636 (HY000): [£f5be83373466000][10.81.69.55:3306] [ddltest]ERR-CODE: [TDDL-4636] [E
RR DDL_JOB_ERROR] Not all physical operations have been done successfully: expected 9,
but done 8. Caused by: 1062:DDLTEST 15620564022300YMK 7WW7 0001:Duplicate entry 'l' for
key 'PRIMARY' on “test pending’;.

3. Executethe sHow rFULL DDL statement to query the job status and the failure cause. The result

indicates that the physical DDL statement fails because a physical table contains duplicate column
values.

> Document Version: 20220601 40

Cloud Native Distributed Database

SQL Reference-Manage DDL tasks
PolarDB-X

mysqgl> show full ddl1\G

KAAkKkKhAkAKk kA AKX A AA AR hA XA A A Kk K,k 1 row KAk kA Ak khkhrAkkhhhAkAkhhk Ak hhxkkk

JOB_ID:
PARENT JOB ID:
SERVER:

OBJECT SCHEMA:
OBJECT NAME:

NEW _OBJECT NAME:
JOB TYPE:

PHASE :

STATE:

PROGRESS :

START TIME:

1106733441212637184
0

1:102:10.81.69.55
ddltest

test pending

ALTER TABLE

EXECUTE

PENDING

7%

2019-09-06 17:17:55.002

END TIME: 2019-09-06 17:17:55.273
ELAPSED TIME (MS): 271
DDL STMT: alter table test pending add primary key (id)
REMARK: ERR-CODE: [TDDL-4636] [ERR DDL JOB ERROR] Not all physical operations
have been done successfully: expected 9, but done 8. Caused by: 1062:DDLTEST 1562056402
2300YMK_7WW7_0001:Duplicate entry 'l' for key 'PRIMARY' on "test pending’;.

Content in the REMARK field:

o Not all physical operations have been done successfully: expected 9, but done 8. :YoUu
attempt to execute nine physical DDL statements on the logical table. Eight statements are
executed, but one statement fails. This causes a failure in the DDL job. The DDL job enters the
PENDING state.

o Caused by: 1062:DDLTEST 1562056402 2300YMK 7WW7 0001:Duplicate entry 'l' for key 'PRIM
ARY' on 'test pending'; : Thisindicates the root cause of the failure. The value 1 forthe id
column duplicates in the physicaltable test pending .The physicaltable is stored inthe
physical database DDLTEST 1562056402 2300YMK _7ww7_ 0001 .Therefore, the id column cannot
be used as the primary key.

4. Checkthe table for errors. The result indicates that the logical table status returned is inconsistent
with the actual logical table status.

mysql> check table test pending;

e s FFemmmmmmmes fommmesmesseesse s s e s se s s
___ +

| TABLE | OP | MSG TYPE | MSG TEXT

\

femmeossssssssssssesssssssssssssssssss s emmmmmm e e
___ +

| ddltest 1562056402230oymk.test pending | check | Error | Table 'DDLTEST 1562056402
2300YMK 7WW7 0001.test pending' find incorrect columns 'id', please recreate table |
e e emmmm=m e femmmmmssmssssssssssssssso
___ 4

1 row in set (0.04 sec)

5. Checkwhether subsequent statements in the job can be executed. The result indicates that an
error is returned when you execute the DROP TABLE statement.

41 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference- Manage DDL tasks
PolarDB-X

mysql> drop table test pending;

ERROR 4644 (HYO000): [f5beae39d466000]([10.81.69.55:3306] [ddltest]ERR-CODE: [TDDL-4644] [E
RR_PENDING DDL JOB EXISTS] Another DDL job '1106733441212637184' with operation 'ALTER
TABLE' is pending on ddltest.test pending in ddltest. Please use SHOW DDL to check it,
and then recover or rollback it using RECOVER DDL or ROLLBACK DDL, or just remove it us
ing REMOVE DDL if you confirm that the pending job can be discarded.

6. Use one of the following methods to process the job. For more information about the common
methods, see the "How it works" section. The following code shows the effect of each method.

o Remove duplicates fromthe table. Then, resume the DDL job to configure a primary key for the
table.

a. Remove duplicates fromthe table. Before you performthis operation, make sure that you
need only one copy of the data. If you want to execute the DELETE statement to remove
duplicates, log on to your PolarDB-X 1.0 instance.lf an error message is returned when you
log onto the PolarDB-X 1.0 instance, you can connect to a backend ApsaraDB RDS for
MySQL database based on the error message.

mysgl> delete from test pending where id=1 and age=20;
Query OK, 1 row affected (0.07 sec)
mysgl> select * from test pending order by id;

fomm fomm +
| id | age |
fomm fomm +
	10
	20
	30
Fo————= o +

3 rows in set (0.02 sec)

> Document Version: 20220601 42

Cloud Native Distributed Database

SQL Reference-Manage DDL tasks

PolarDB-X

b. Afteryou remove duplicates, resume the DDL job in the PENDING state. The result indicates
that the DDL job resumes, the record of the job failure is cleared, and the primary key is
configured forthe table.

mysgl> recover ddl 1106733441212637184;
Query OK, 0 rows affected (1.28 sec)
mysgl> show full dd1\G
Empty set (0.00 sec)
mysqgl> show create table test pending\G
Kok ok ok k ok ok ok ok ok ok kkkk kA kkokkk] | PO KRk ok ok ko k ok ok ok ok ok ok ok ok ok ok ok Kk ok ok ok ok
Table: test pending
Create Table: CREATE TABLE "test pending’ (
“id® int(11) NOT NULL,
‘age’ int(ll) DEFAULT NULL,
PRIMARY KEY ('id"),
KEY ‘auto shard key id® ('id’) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(id")
1 row in set (0.02 sec)

mysql> check table test pending;

B et e e et e fom o +
| TABLE | oP | MSG_TYPE | MSG _TEXT |
B et e e e e fomm Fmm +
| ddltest 1562056402230oymk.test pending | check | status | OK

B i e e fomm - fmm +

1 row in set (0.10 sec)

o Delete the failed DDL job, delete the table, and then create the table again. Before you delete
the table, make sure that the data onthe table is no longer needed.

mysgl> remove ddl 1106733441212637184;
Query OK, 1 row affected (0.02 sec)
mysqgl> drop table if exists test pending;
Query OK, 0 rows affected (0.44 sec)
mysql> show tables like 'test pending';
Empty set (0.01 sec)

43

> Document Version: 20220601

Cloud Native Distributed Database SOL Reference- DDL

PolarDB-X

4.DDL
4.17. CREATE TABLE

This topic describes the syntax, clauses, parameters, and basic methods for creating a table by
executing a data definition language (DDL) statement.

Considerations

e PolarDB-X 1.0 does not allow you to directly create a database by executing a DDL statement. You
canlog onto the console of the cloud native distributed database to create a database. For more
information about how to create a database, see Create a database.

e PolarDB-X 1.0 supports global secondary indexes (GSlIs) only when the MySQL version is 5.7 or later
and the PolarDB-X 1.0 instance version is 5.4.1 or later. For more information about the basic
principles, see Global secondary indexes.

> Document Version: 20220601

44

https://www.alibabacloud.com/help/doc-detail/50070.htm#multiTask1273
https://www.alibabacloud.com/help/doc-detail/182179.htm

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

CREATE [SHADOW] TABLE [IF NOT EXISTS] tbl name
(create definition, ...)
[table options]
[drds partition options]
create definition:
col name column definition
| mysqgl create definition
| [UNIQUE] GLOBAL INDEX index name [index type] (index sharding col name, ...)
[global secondary index option]
[index option]
GSI-related syntax
global secondary index option:
[COVERING (col name, ...)]
[drds partition options]
Clauses for sharding
drds partition options:
DBPARTITION BY db partition algorithm
[TBPARTITION BY table partition algorithm [TBPARTITIONS num]]
db_sharding algorithm:
HASH ([col _name])
| {YYYYMM|YYYYWEEK|YYYYDD|YYYYMM OPT|YYYYWEEK OPT|YYYYDD OPT} (col name)
| UNI_HASH (col name)
| RIGHT SHIFT (col name, n)
| RANGE HASH (col name, col name, n)
table sharding algorithm:
HASH (col name)
| {MM|DD|WEEK |MMDD|YYYYMM|YYYYWEEK|YYYYDD|YYYYMM OPT|YYYYWEEK OPT|YYYYDD OPT} (col name)
| UNI_HASH (col name)
| RIGHT SHIFT (col name, n)
| RANGE HASH (col name, col name, n)
MySQL DDL syntax
index sharding col name:
col name [(length)] [ASC | DESC]
index option:
KEY BLOCK SIZE [=] value
| index type
| WITH PARSER parser name
| COMMENT 'string'
index type:
USING {BTREE | HASH}

@ Note The PolarDB-X 1.0 DDL syntax is based on the MySQL syntax. The preceding code lists
the syntax that is different fromthe MySQL syntax. For more information about the syntax, see
MySQL documentation.

Clauses and parameters for sharding
® DBPARTITION BY hash (partition key) : This clause specifies the database shard key and the
database sharding algorithm.

® TBPARTITION BY { HASH(column) | {MM|DD|WEEK|MMDD|YYYYMM|YYYYWEEK|YYYYDD|YYYYMM OPT|YYYYWEE
K_OPT|YYYYDD OPT} (column) : Optional. This clause specifies the method that is used to map data to

45 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/create-table.html

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

a physical table. It is the same asthe bpBparRTITION BY clause by default.

e TBPARTITIONS num : Optional. This parameter specifies the number of physical tables in each

database. The default value is 1. If no table sharding is required, you do not need to specify this
parameter.

e For more information about sharding functions, see Overview.

GSI definition clauses

e [uNTQUE] GLOBAL : defines a GSI. UNIQUE GLOBAL indicates a global unique index.
® index name :the name of the index. It is also the name of the index table.

® index type :thetype of the localindexfora shard key in the index table. For more information
about the supported range, see MySQL documentation.

® index sharding col name, ... :theindex columns. This clause contains only all the shard keys of
the index table. For more information, see Global secondary indexes.

® global secondary index option :the extended syntax forPolarDB-X 1.0PolarDB-X 1.0 GSls.

O COVERING (col name,...) :the covering columns. This clause contains all the columns of the
index table except the index column. By default, this clause contains the primary key and the shard
key of the primary table. For more information, see Global secondary indexes.

0 drds partition options :the sharding clauses inthe index table. For more information, see
Clauses and parameters for sharding.

® index option :the attributes of the localindex onthe shard key of the index table. For more
information, see MySQL documentation.

Shadow table clause for full-link stress testing

SHADOW : Creates a shadow table for full-link stress testing. The table name must be prefixed with
test .The table name that follows the prefix must be consistent with the name of the associated
formal table. In addition, the formal table must be created before the shadow table is created.

Single-database single table
Creates a single-database single table. No sharding is required.

CREATE TABLE single tbl (

id bigint not null auto increment,
name varchar (30),

primary key (id)

)i

View the node topology of the logical table. The node topology shows that a single-database single
logical table is created in database 0.

> Document Version: 20220601 46

https://www.alibabacloud.com/help/doc-detail/71263.htm#multiTask1985
https://dev.mysql.com/doc/refman/5.7/en/create-table.html#create-table-indexes-keys
https://www.alibabacloud.com/help/doc-detail/182179.htm
https://www.alibabacloud.com/help/doc-detail/182179.htm
https://dev.mysql.com/doc/refman/5.7/en/create-table.html#create-table-indexes-keys

SOL Reference- DDL Cloud Native Distributed Database

PolarDB-X
mysql> show topology from single tbl;
S Fommme e e s s e e s e s e e s e e s e s T e e e e T e e e T e e e T o e s ST e s s T e e e fommmmmmme=== +
| ID | GROUP_NAME | TABLE NAME |
Fommmm= T e e e e e e e e e e e e e e e e D D S D D DD DD = eSS +
\ 0 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0000 RDS | single tbl |
Fommmm= T e e e e e e e e e e e e e D e e D D D D D D D DD it +

1 row in set (0.01 sec)

Database sharding instead of table sharding

Assume that eight database shards are created. Create a table for which only database sharding
instead of table sharding is implemented. For the database sharding method, hashing is implemented
by using the ID column.

CREATE TABLE multi db single tbl(
id bigint not null auto increment,
name varchar (30),
primary key (id)

) dbpartition by hash (id) ;

View the node topology of the logical table. The node topology shows that one table shard is created
in each database shard. This indicates that only database sharding is implemented.

mysql> show topology from multi db single tbl;

\ 0 | SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0000 RDS | multi db single

tbl |
| 1 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0001 RDS | multi_db single
tbl |

\ 2 | SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_0002 RDS | multi db single
tbl |

| 3 | SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0003 RDS | multi db single
tbl |

| 4 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0004 RDS | multi db single
tbhl |

\ 5 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0005 RDS | multi db single

_tbl |

\ 6 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0006 RDS | multi db single

_tbl |

\ 7 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS | multi db single

_tbl |

fom o o

8 rows in set (0.01 sec)

47 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

Sharding
You can implement sharding by using the following sharding methods:

e Use the hash function for sharding
e Use the hash function that has double fields for sharding

e Use dates for sharding

@ Note Inthe following examples, assume that eight database shards have been created.

Use the hash function for sharding

Create a table for which both database sharding and table sharding are implemented. Each database
shard contains three physical tables. For the database sharding method, hashing is implemented by
using the ID column. For the table sharding method, hashing is implemented by using the bid column.
You can first perform a hash operation by using the values of the ID column to distribute the table data
to multiple database shards. Then, the data in each database shard is distributed to three physical
tables by using the hash operation result of the bid column values.

CREATE TABLE multi db multi tbl(

id bigint not null auto increment,

bid int,

name varchar (30),

primary key (id)

) dbpartition by hash(id) tbpartition by hash (bid) tbpartitions 3;

View the node topology of the logical table. The node topology shows that three table shards are
created in each database shard.

mysql> show topology from multi db multi tbl;

o e Fomm
——————— +

| ID | GROUP_ NAME | TABLE NAME

\

o o o
——————— +

SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | multi db multi

\
tbl 00 |
\ 1 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | multi db multi
tbl 01 |
\ 2 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | multi db multi
tbl 02 |
\ 3 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0001 RDS | multi db multi
tbl 03 |
\ 4 | SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0001 RDS | multi db multi
tbl 04 |
\ 5 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0001 RDS | multi db multi
tbl 05 |
\ 6 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0002 RDS | multi db multi
tbl 06 |
\ 7 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0002 RDS | multi db multi
tbl 07 |
\ 8 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0002 RDS | multi db multi

> Document Version: 20220601 48

Cloud Native Distributed Database

SQL Reference-DDL

PolarDB-X

thl
\
thl |
\
tbl
\
tbl
\
tbl
\
thl
\
thl
\
thl
\
thl
\
thl
\
tbl
\
thl
\
tbl
\
tbl

08

9
09
10
10
11
11
12
12
13
13
14
14
15
15
16
16
17
17
18
18
19
19
20
20
21
21
22

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_0003 RDS

SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP 0003 RDS

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0003 RDS

SANGUAN_TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP_0004_ RDS

SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP_ 0004 RDS

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0004 RDS

SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP 0005 RDS

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_0005 RDS

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_0005 RDS

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_0006 RDS

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_0006 RDS

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0006 RDS

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0007 RDS

SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP_0007 RDS

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_0007 RDS

24 rows in set (0.01 sec)

multi db multi

multi db multi

multi db multi

multi db multi

multi db multi

multi db multi

multi db multi

multi db multi

multi db multi

multi db multi

multi db multi

multi db multi

multi db multi

multi db multi

multi db multi

View the sharding rule of the logical table. The rule shows that hashing is used for sharding. The shard
key for database sharding is ID and the shard key for table sharding is bid.

mysql> show rule from multi db multi tbl;

+———— Fom e o e Fo——
——————————— e

| ID | TABLE NAME | BROADCAST | DB _PARTITION KEY | DB PARTITION POLICY | DB PARTI
TION COUNT | TB PARTITION KEY | TB PARTITION POLICY | TB PARTITION COUNT |

o e e e e ettt B e E o Fom -
——————————— o

| 0 | multi db multi tbl | 0 | id | hash | 8

| bid | hash | 3 \

o= o R ettt o R B
——————————— e e e s

1 row in set (0.01 sec)

Use the hash function that has double fields for sharding

49

> Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

e The type of the shard key must be the character type or the numeric type.

e Routing method: Calculate a hash value by using the last N digits of a shard key so that the hashing
method can be used to complete route computing. The letter N is the third parameter in the
function. For example, whenthe Rance HasH(cor1, cor2, N) functionis used forcalculation, COL1
is preferentially selected and then truncated to obtain the last N characters for calculation. If COL1
does not exist, COL2 is selected for calculation.

e Scenarios: Two shard keys are required and only the value of one shard key is used for queries.
Assume that eight physical databases have been allocated to PolarDB-X 1.0 of a user and the
following scenarios are required for the service:

o For a specified service, database sharding needs to be implemented for the order table by the
buyer ID and the order ID.

o The condition used during a query is only the buyer ID or the order ID.
In this case, you can execute the following DDL statement to create an order table:

create table test order tb (

id bigint not null auto increment,

seller id varchar (30) DEFAULT NULL,

order id varchar (30) DEFAULT NULL,

buyer id varchar (30) DEFAULT NULL,

create time datetime DEFAULT NULL,

primary key(id)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by RANGE HASH (buyer id, order id, 10) tbpa
rtition by RANGE HASH (buyer id, order id, 10) tbpartitions 3;

@ Note
e The two shard keys cannot be modified.

e Datafailsto be inserted if the two shard keys point to different database shards ortable
shards.

Use dates for sharding

You can use a hash function as the sharding algorithm. You can also use the DATE function MM ,
DD , WEEK ,0r MmvpD as the sharding algorithmfortable sharding. The following examples show
the detailed procedure:

Create a table for which both database sharding and table sharding are implemented. For the
database sharding method, hashing is implemented by using the userta column. Forthe table

sharding method, the table is sharded by using the actionpate column and using seven days as one
week. The WEEK (actionDate) function calculates bpay or weEk

Forexample, if avalue inthe actionpate columnis2017-02-27 that falls on Monday, the value that
the WEEK (actionDate) function returns is 2. In this case, the record is stored intable shard 2 (257 =
2) .Thistable shard is located in a database shard and is named wuser log 2 .Foranother example,
if avalueinthe actionbate columnis2017-02-26 that falls on Sunday, the value that the

WEEK (actionDate) functionreturnsis 1. Inthis case, the record is stored intable shard 1 (137 =
1) .Thistable shard is located in a database shard and is named user log 1

> Document Version: 20220601 50

Cloud Native Distributed Database

SQL Reference-DDL

PolarDB-X

CREATE TABLE user log(

userId int,

name varchar (30),

operation varchar (30),
actionDate DATE
) dbpartition by hash (userId) tbpartition by WEEK (actionDate) tbpartitions 7;

View the node topology of the logical table. The node topology shows that seven table shards (one
week has seven days) are created in each database shard.

mysql> show topology from user log;

o -

- ettt

0 J o U W N P O

e
W N P o

\ 49 |
\ 50 |
\ 51 |
\ 52 |
\ 53 |
\ 54 |
\ \

o o

GROUP_NAME

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0000 RDS
SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP 0000 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0000 RDS
SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP 0000 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_ 0000 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0000 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0000 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0001 RDS
SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP 0001 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0001 RDS
SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP 0001 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0001 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0001 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0001 RDS

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0007 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0007 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0007 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0007 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_ 0007 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0007 RDS
SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP_ 0007 RDS

56 rows in set (0.01 sec)

@ Note

____________ 4
TABLE NAME |
____________ 4
user log 0
user log 1
user log 2
user log 3
user_ log 4

user log 5

|

I

|

|

|

|
user log 6 |
user log 0 |
user log 1 |
user log 2 |
user log 3 |
user log 4 |
user log 5 |
|

user log 6

user log 0
user log 1

user log 2

|
|
I
user log 3 |
user log 4 |
user log 5 |
user log 6 |

____________ 4L

An ellipsis (...) is used to omit some data because the returned result is long.

View the sharding rule of the logical table. The rule shows that the database sharding method is

hashing and the shard key for database sharding is

is sharded by using the time function week and the shard key for table sharding is

userid .Forthe table sharding method, the table

actionDate

51

> Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

mysql> show rule from user log;

+————— Fomm - Fomm o o Fom
B e i e o o +

| ID | TABLE NAME | BROADCAST | DB PARTITION KEY | DB PARTITION POLICY | DB PARTITION COU
NT | TB _PARTITION KEY | TB PARTITION POLICY | TB PARTITION COUNT |

o= e Fom B e E et e o
T e e e e o o +

| 0 | user log | 0 | userId | hash | 8

| actionDate | week |7

o e Fom - o B it B ettt e
e o o +

1 row in set (0.00 sec)

View the physical database shard and its physical table to which the SQL statement is routed when the
parameters of the database shard key and the table shard key are specified.

Create a table for which both database sharding and table sharding are implemented. For the
database sharding method, hashing is implemented by using the usertda column. Forthe table
sharding method, the table is sharded by using the actionbate column and using 12 months as one
year.The MM(actionDate) function calculates MONTH OF YEAR

For example, if avalue inthe actionbate columnis2017-02-27,the value that the

MM (actionDate) function returnsis 02. In this case, the record is stored intable shard 02 (02%12 =
02) .Thistable shard is located in a database shard and is named user 1og 02 .Foranother
example, if the value inthe actionbate columnis2016-12-27,the value that the MM (actionbate)
function returns is 12. In this case, the record is stored in table shard 00 (12212 = 00) .Thistable
shard is located in a database shard and is named user 1og 00

CREATE TABLE user log2 (

userId int,

name varchar (30),

operation varchar (30),

actionDate DATE

) dbpartition by hash (userId) tbpartition by MM(actionDate) tbpartitions 12;

View the node topology of the logical table. The node topology shows that 12 table shards (one year
has 12 months) are created in each database shard.

> Document Version: 20220601 52

Cloud Native Distributed Database

SQL Reference-DDL

PolarDB-X
mysql> show topology from user log2;
S ffemmmmmm==ssssssss=s=ss==s=ss=ssssssssssssssssssssssssssssessss===s ffe====m======== +
| ID | GROUP_NAME | TABLE NAME |
+—————— e e ————————— +
0	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS	user log2 00
1	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS	user log2 01
2	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS	user log2 02
3	SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_0000 RDS	user log2 03
4	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS	user log2 04
5	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS	user log2 05
6	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0000 RDS	user log2 06
7	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS	user_ log2 07
8	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS	user log2 08
9	SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_0000 RDS	user log2 09
10	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS	user log2 10
11	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS	user log2 11
12	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0001 RDS	user log2 00
13	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0001 RDS	user log2 01
14	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0001 RDS	user log2 02
15	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0001 RDS	user log2 03
16	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0001 RDS	user log2 04
17	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0001 RDS	user log2 05
18	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0001 RDS	user log2 06
19	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_ 0001 RDS	user log2 07
20	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0001 RDS	user log2 08
21	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0001 RDS	user log2 09
22	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0001 RDS	user log2 10
23	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0001 RDS	user log2 11
84	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS	user log2 00
85	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log2 01
86	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS	user log2 02
87	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS	user log2 03
88	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS	user log2 04
89	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS	user log2 05
90	SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0007 RDS	user log2 06
91	SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP 0007 RDS	user log2 07
92	SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0007 RDS	user log2 08
93	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log2 09
94	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log2 10
95	SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP 0007 RDS	user log2 11
S R I ffm============= +
96 rows in set (0.02 sec)
@ Note An ellipsis (...) is used to omit some data because the returned result is long.

View the sharding rule of the logical table. The rule shows that the database sharding method is

hashing and the shard key for database sharding is

is sharded by using the time function MM and the shard key for table sharding is

actionDate

userTd .Forthe table sharding method, the table

53

> Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

mysql> show rule from user log2;

+———— fom - Fomm R e e e Bt Fom
B e i e o o +

| ID | TABLE NAME | BROADCAST | DB PARTITION KEY | DB PARTITION POLICY | DB PARTITION COU
NT | TB _PARTITION KEY | TB PARTITION POLICY | TB PARTITION COUNT |

o= e Fom B e E et e o
B R ettt L e e R it o +

| 0 | user log2 | 0 | userId | hash | 8

| actionDate | mm | 12

o e Fom - o B it B ettt e
e e et o e +

1 row in set (0.00 sec)

Create a table for which both database sharding and table sharding are implemented. For the
database sharding method, hashing is implemented by using the usertd column. Forthe table
sharding method, the table is sharded by using 31 days as a month. The Db (actionpate) function
calculates Dpay oF MONTH

Forexample, if avalue inthe actionpate columnis2017-02-27,the value that the
DD (actionbate) function returnsis 27. In this case, the record is stored in table shard 27 (27%31 =
27) .Thistable shard is located in a database shard and is named user log 27

CREATE TABLE user log3(

userId int,

name varchar (30),

operation varchar (30),

actionDate DATE

) dbpartition by hash (userId) tbpartition by DD(actionDate) tbpartitions 31;

View the node topology of the logical table. The node topology shows that 31 table shards (each
month has 31 days) are created in each database shard.

> Document Version: 20220601 54

Cloud Native Distributed Database

SQL Reference-DDL

PolarDB-X
mysql> show topology from user log3;
- T e e T e S e e e et +
| ID | GROUP_NAME | TABLE NAME |
e o e ettt e +
| 0 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 00 |
| 1 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 01 |
| 2 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 02 |
| 3 | SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_0000 RDS | user log3 03 |
| 4 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 04 |
| 5 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user_ log3 05 |
| 6 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0000 RDS | user log3 06 |
| 7 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user_ log3 07 |
| 8 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 08 |
| 9 | SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP_0000 RDS | user log3 09 |
| 10 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 10 |
| 11 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 11 |
| 12 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 12 |
| 13 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 13 |
| 14 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 14 |
| 15 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0000 RDS | user log3 15 |
| 16 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 16 |
| 17 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 17 |
| 18 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 18 |
| 19 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 19 |
| 20 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 20 |
| 21 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 21 |
| 22 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 22 |
| 23 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 23 |
| 24 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 24 |
| 25 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 25 |
| 26 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0000 RDS | user log3 26 |
| 27 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 27 |
| 28 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 28 |
| 29 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 29 |
| 30 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0000 RDS | user log3 30 |
| 237 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS | user log3 20 |
| 238 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS | user log3 21 |
| 239 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS | user log3 22 |
| 240 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS | user log3 23 |
| 241 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS | user log3 24 |
| 242 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS | user log3 25 |
| 243 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS | user log3 26 |
| 244 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS | user log3 27 |
| 245 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS | user log3 28 |
| 246 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS | user log3 29 |
| 247 | SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007 RDS | user log3 30 |
- et et et E e e o +
248 rows in set (0.01 sec)
® Note An ellipsis (...) is used to omit some data because the returned result is long.

55

> Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

View the sharding rule of the logical table. The rule shows that the database sharding method is
hashing and the shard key for database sharding is userid .Forthe table sharding method, the table
is sharded by using the time function bpp and the shard key fortable sharding is actionpate

mysql> show rule from user log3;

o= e Fom o et e R et e
T e L e e o o +

| ID | TABLE NAME | BROADCAST | DB _PARTITION KEY | DB PARTITION POLICY | DB PARTITION COU
NT | TB PARTITION KEY | TB PARTITION POLICY | TB PARTITION COUNT |

o= T Fom - Bt e B o
e e e et o +

| 0 | user log3 | 0 | userId | hash | 8

| actionDate | dd | 31

o o fom e o B it o
e e it o R it C e +

1 row in set (0.01 sec)

Create a table for which both database sharding and table sharding are implemented. Forthe
database sharding method, hashing is implemented by using the userzd column. Forthe table
sharding method, the table is sharded by using 365 days as one year and the table data is routed to
365 physical tables. The MMDD (actionDate) tbpartitions 365 function calculates paY OF YEAR
365

Forexample, if avalue inthe actionpate columnis2017-02-27,the value that the
MMDD (actionDate) function returns is 58. In this case, the record is stored in table shard 58. This table
shard is located in a database shard and is named user 1log 58

CREATE TABLE user log4 (

userId int,

name varchar (30),

operation varchar (30),

actionDate DATE

) dbpartition by hash (userId) tbpartition by MMDD (actionDate) tbpartitions 365;

View the node topology of the logical table. The node topology shows that 365 table shards (each
year has 365 days) are created in each database shard.

> Document Version: 20220601 56

Cloud Native Distributed Database

SQL Reference-DDL

PolarDB-X

mysgl> show topology from user log4;

e R s +
| ID | GROUP_NAME | TABLE NAME
FFommmm= oo m e s e s e e s e e s e s e e s e s s s ffemmmmmmmmemm==s +
2896	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 341
2897	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 342
2898	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 343
2899	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 344
2900	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 345
2901	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 346
2902	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP_0007_RDS	user_log4 347
2903	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 348
2904	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 _RDS	user log4 349
2905	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 350
2906	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 351
2907	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 352
2908	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 353
2909	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 354
2910	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 355
2911	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 356
2912	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 357
2913	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 _RDS	user log4 358
2914	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 359
2915	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 _RDS	user log4 360
2916	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 361
2917	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 362
2918	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 363
2919	SANGUAN TEST 123 1488766060743ACTJSANGUAN TEST 123 WVVP 0007 RDS	user log4 364
Hommmm= R R ffemmmmmmmmmmmm=s +

2920 rows in set (0.07 sec)

@ Note An ellipsis (...) is used to omit some data because the returned result is long.

View the sharding rule of the logical table. The rule shows that the database sharding method is

hashing and the shard key for database sharding is usertd .Forthe table sharding method, the table

is sharded by using the time function wmvpp and the shard key fortable sharding is actionpate
mysql> show rule from user log4;
- Fom - fom - R e e e e L e et e
—==ff================== ffm==================== fe=================== +
| ID | TABLE NAME | BROADCAST | DB PARTITION KEY | DB PARTITION POLICY | DB PARTITION COU
NT | TB_PARTITION KEY | TB PARTITION POLICY | TB PARTITION COUNT |
o= Fomm fom B et o o
—— e e e e L fom +
| 0 | user log4 | 0 | userId | hash
| actionDate | mmdd | 365
S === fe========== e e ffe================
e e e e e o e e e +

1 row in set (0.02 sec)

57 > Document Version: 20220601

Cloud Native
PolarDB-X

Distributed Dat abase

SQL Reference-DDL

Create a table for which both database sharding and table sharding are implemented. For the

database sharding method, hashing is implemented by using the
sharding method, the table is sharded by using 365 days as one year and the table datais routed to 10
physical tables. The

MMDD (actionDate) tbpartitions 10 function calculates

CREATE TABLE user 1og5 (

userId int,

name varchar (30),

operation varchar (30),
actionDate DATE

) dbpartition by hash (userId)

tbpartition by MMDD (actionDate)

DAY OF YEAR %

userId column. Forthe table

10

tbpartitions 10;

View the node topology of the logical table. The node topology shows that 10 table shards are
created in each database shard. The logical table is sharded by using 365 days as one year and the
table datais routed to 10 physical tables.

mysgl> show topology from user log5;

R o

80 rows in set

@ Note

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_ 0000 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0000 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0000 RDS
SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP_0000_ RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0000 RDS
SANGUAN_TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP_0000_ RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0000 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_ 0000 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0000 RDS
SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP_ 0000 RDS

SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0007 RDS
SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP 0007 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0007 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0007 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_ 0007 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0007 RDS
SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP_ 0007 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP_ 0007 RDS
SANGUAN TEST 123 1488766060743ACTISANGUAN TEST 123 WVVP_0007 RDS
SANGUAN TEST 123 1488766060743ACTJISANGUAN TEST 123 WVVP 0007 RDS

(0.02 sec)

TABLE NAME

Fommmmm +

user log5 00
user log5 01
user log5 02
user log5 03
user log5 04
user log5 05
user log5 06
user log5 07
user log5 08
user log5 09

user log5 00
user log5 01
user log5 02
user log5 03
user log5 04
user log5 05
user log5 06
user log5 07
user log5 08
user log5 09

fomm e +

An ellipsis (...) is used to omit some data because the returned result is long.

View the sharding rule of the logical table. The rule shows that the database sharding method is

hashing and the shard key for database sharding is

is sharded by using the time function mvMpp and the table datais routed to 10 physical tables. In

addition, the shard key for table sharding is

actionDate

userId .Forthe table sharding method, the table

> Document

Version: 20220601

SOL Reference- DDL Cloud Native Distributed Database

PolarDB-X
mysql> show rule from user log5;
oo ffommmmmmmm=== o= e fommmmmemmeseeseesee== e
e Fom R e B e +
| ID | TABLE NAME | BROADCAST | DB PARTITION KEY | DB PARTITION POLICY | DB PARTITION COU
NT | TB PARTITION KEY | TB PARTITION POLICY | TB PARTITION COUNT |
—————— e ———— e f— e e ————————
B R et L e B et e e +
| 0 | user log5 | 0 | userId | hash | 8
| actionDate | mmdd | 10
+——— F—m— e o o Fom
R e e e e e +

1 row in set (0.01 sec)

Use the primary key as the shard key

When you do not specify a shard key for the sharding algorithm, the system uses the primary key as the
shard field by default. The following examples illustrate how to use the primary key as the database
shard key and the table shard key.

e Use the primary key as the database shard key

CREATE TABLE prmkey tbl (

id bigint not null auto increment,
name varchar (30),

primary key(id)

) dbpartition by hash();

e Use the primary key as the shard key

CREATE TABLE prmkey multi tbl(

id bigint not null auto increment,

name varchar (30),

primary key(id)

) dbpartition by hash () tbpartition by hash() tbpartitions 3;

Other table creation attributes of MySQL

When you implement sharding, you can also specify other table creation attributes of MySQL, as shown
in the following example:

CREATE TABLE multi db multi tbl(
id bigint not null auto increment,
name varchar (30),
primary key (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(id) tbpartition by hash(id) tbpart

itions 3;

GSI

This section describes how to define a GSIwhen you create a table.

e Define a GSI

e Define a globally unique index

59 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

@ Note Inthe following examples, assume that eight database shards have been created.

Define a GSI

Examples

CREATE TABLE t_order (

"id’ bigint(11) NOT NULL AUTO INCREMENT,

‘order id" varchar (20) DEFAULT NULL,

‘buyer id® varchar (20) DEFAULT NULL,

"seller id’ varchar (20) DEFAULT NULL,

‘order snapshot® longtext DEFAULT NULL,

‘order detail’ longtext DEFAULT NULL,

PRIMARY KEY ('id"),

GLOBAL INDEX ‘g i seller’ ('seller id') dbpartition by hash(seller id")
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(order id");

where:

e Primarytable: t order isthe primarytable forwhich database sharding instead of table sharding
is implemented. For the database sharding method, hashing is implemented by using the order id
column.

e Indextable: g i seller istheindextable forwhich database sharding instead of table sharding
is implemented. For the database sharding method, hashing is implemented by using the seller id
column. No covering column is specified.

e GSldefinition clause: GLOBAL INDEX ‘g i seller' ('seller id') dbpartition by hash('seller id")

Execute sHow INDEX to view index information, such as the localindex on the shard key order id
and GSlson seller id , id ,and order id . seller id isthe shard key of the index table,
and id and order id arethe default covering columns (the primary key and the shard key of the
primary table).

> Document Version: 20220601 60

SOL Reference- DDL Cloud Native Distributed Database

PolarDB-X
mysql> show index from t order;
fommmmmm== et e s e e +
————————————— e e e e e L e T e e
| TABLE | NON_UNIQUE | KEY NAME | SEQ IN INDEX | COLUMN NAME | COLLATION |
CARDINALITY | SUB PART | PACKED | NULL | INDEX TYPE | COMMENT | INDEX COMMENT |
e e ——— e f— f——————————— +
————————————— e e e e e e
| t order | 0 | PRIMARY | 1 | id | A
0 | NULL | NULL | | BTREE |
| t order | 1 | auto_shard key order id | 1 | order id | A
0 NULL | NULL | YES | BTREE |
| t order | 1 | g i seller | 1 | seller id | NULL
0 | NULL | NULL | YES | GLOBAL | INDEX
| t order | 1 | g i seller | 2 | id | NULL
0 | NULL | NULL | | GLOBAL | COVERING |
| t order | 1 | g i seller | 3 | order id | NULL
0 | NULL | NULL | YES | GLOBAL | COVERING | |
tom e o B et Fom - +
————————————— e}

You can separately view the GSlinformation by executing sHow GLoBAL INDEX .Formore information,
see SHOW GLOBAL INDEX.

mysql> show global index from t order;

| SCHEMA | TABLE | NON UNIQUE | KEY NAME | INDEX NAMES | COVERING NAMES | INDEX TYPE |
DB PARTITION KEY | DB PARTITION POLICY | DB PARTITION COUNT | TB PARTITION KEY | TB PARTITI
ON_POLICY | TB PARTITION COUNT | STATUS |

femmmmm=e e e e femmmeesss==as e e +-
————————————————— R B
—————————— e

| d7 | £ order | 1 | g i seller | seller id | id, order id | NULL

seller id | HASH | 8 | | NULL

| NULL | PUBLIC |

e Yemmmm==== f===m======== f=m=mmmm===== et e f============ +-
————————————————— R R e
—————————— e

View the schema of the index table. The index table contains the primary key of the primary table,
shard key, and default covering columns. The auto InNcrREMENT —attribute is removed fromthe primary
key column and the local index is removed from the primary table.

61 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/182338.htm

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

mysql> show create table g i seller;
Fo— - o +
| Table | Create Table |
fom e e et e +
| g i seller | CREATE TABLE "g i seller” (

*id' bigint (11) NOT NULL,

‘order id’ varchar (20) DEFAULT NULL,

‘seller id® varchar (20) DEFAULT NULL,

PRIMARY KEY (°id"),

KEY ‘auto_shard key seller id' (seller id’) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash('seller id") |
o e +

Define a globally unique index

CREATE TABLE t order (

"id’ bigint(11) NOT NULL AUTO INCREMENT,

‘order id" varchar (20) DEFAULT NULL,

‘buyer id’ varchar (20) DEFAULT NULL,

"seller id’ varchar (20) DEFAULT NULL,

‘order snapshot® longtext DEFAULT NULL,

‘order detail’ longtext DEFAULT NULL,

PRIMARY KEY (°id"),

UNIQUE GLOBAL INDEX 'g i buyer ('buyer id’) COVERING(seller id’, “order snapshot’)

dbpartition by hash('buyer id") tbpartition by hash(buyer id’) tbpartitions 3

) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(order id");

where:

e Primarytable: t order isthe primary table forwhich database sharding instead of table sharding
is implemented. For the database sharding method, hashing is implemented by using the order id
column.

e Indextable: g i seller istheindextable forwhich both database sharding and table sharding

are implemented. For the database sharding and table sharding methods, hashing is implemented by
usingthe buyer id column. The covering columns are seller id and order snapshot

e Index definition clause: UNIQUE GLOBAL INDEX ‘g i buyer’ (‘buyer id’) COVERING('seller id', ‘or

der snapshot’) dbpartition by hash('buyer id') tbpartition by hash(buyer id’) tbpartitions
3

Execute sHow INDEX to view index information, such as the localindex onthe shard key order id
and GSls on buyer id , id , order id , seller id ,and order snapshot . buyer id is the
shard key of the index table. id and order id are the default covering columns (the primary key
and the shard key of the primary table). seller id and order snapshot are the explicitly
specified covering columns.

> Document Version: 20220601 62

SOL Reference- DDL Cloud Native Distributed Database

PolarDB-X

mysql> show index from t order;
femmmmmemese=s o= e e e e fommmmmmmmmmm=e e ===
——————— et e e e A e

| TABLE | NON_UNIQUE | KEY NAME | SEQ IN INDEX | COLUMN NAME | COL
LATION | CARDINALITY | SUB PART | PACKED | NULL | INDEX TYPE | COMMENT | INDEX COMMENT |
e e t— e e —————— +————
——————— B it e s s e et e

| t order dthb | 0 | PRIMARY | 1 | id | A

| 0 | NULL | NULL | | BTREE | |

| t order dthb | 1 | auto_shard key order id | 1 | order id | A

| 0 | NULL | NULL | YES | BTREE | |

| t order | 0 | g i buyer | 1 | buyer id | NUL
L | 0 | NULL | NULL | YES | GLOBAL | INDEX |

| t order | 1 | g i buyer | 2 | id | NUL
L | 0 | NULL | NULL | | GLOBAL | COVERING |

| t order | 1 | g i buyer | 3 | order id | NUL
L | 0 | NULL | NULL | YES | GLOBAL | COVERING |

| t order | 1 | g i buyer | 4 | seller id | NUL
L | 0 | NULL | NULL | YES | GLOBAL | COVERING |

| £t order | 1 | g i buyer | 5 | order snapshot | NUL
L | 0 | NULL | NULL | YES | GLOBAL | COVERING |

e o= e e ommmmmmmmmmm= e ===
——————— B it e Rt B et e e e s

You can separately view the GSlinformation by executing sHow GrL.oBAL INDEX .For more information,
see SHOW GLOBAL INDEX.

mysql> show global index from t order;

| SCHEMA | TABLE | NON _UNIQUE | KEY NAME | INDEX NAMES | COVERING NAMES
| INDEX TYPE | DB PARTITION KEY | DB PARTITION POLICY | DB PARTITION COUNT | TB PARTITION K
EY | TB_PARTITION POLICY | TB PARTITION COUNT | STATUS |

to—————— Fm Fom - Fom - Fom e B et e
————————— —_
———————————— e e e e
| d7 | £ order | O | g i buyer | buyer id | id, order id, seller id, order
snapshot | NULL | buyer id | HASH | 8 | buyer
_id | HASH | 3 | PUBLIC |
fommmmmen s e== o= e R e
————————————————————— B T A et e e e
———————————— - ————— |

View the schema of the index table. The index table contains the primary key of the primary table,
shard key, default covering columns, and the covering columns that are specified in the GSI definition.
The avuto 1nNcrEMENT attribute is removed fromthe primary key column. The local index is removed
fromthe primary table. By default, a data table is created for global unique indexes to support global
unigueness.

63 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/182339.htm

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

mysql> show create table g i buyer;

| g i buyer | CREATE TABLE ‘g i buyer’ (

"id" bigint(11l) NOT NULL,

‘order id® varchar (20) DEFAULT NULL,

‘buyer id® varchar (20) DEFAULT NULL,

"seller id’ varchar (20) DEFAULT NULL,

‘order snapshot® longtext,

PRIMARY KEY (°id"),

UNIQUE KEY ‘auto shard key buyer id' (‘buyer id’) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash ('buyer id’) tbpartition by hash('b
uyer id") tbpartitions 3 |

4.2. DROP TABLE

This topic describes how to use the DROP TABLE statement to delete a specified table.

Syntax

DROP [TEMPORARY] TABLE [IF EXISTS]
tbl name [, tbl name]
[RESTRICT | CASCADE]

(@ Note Datatablesin PolarDB-X 1.0 can be deleted by using the same syntax that is used to
delete tables in MySQL databases. The system automatically processes or deletes the related
physical tables. For more information, see DROP TABLE statement.

Note

e If you execute the DROP TABLE statement to delete a table that contains a global secondary index,
the index table and the primary table are both deleted.

e To delete only the index table, execute the ALTER TABLE DROP INDEX statement instead of the DROP
TABLE statement. For more information, see ALTER TABLE.

Examples

The following example shows how to delete the table named wuser 1og

DROP TABLE user log;

4.3. ALTER TABLE

> Document Version: 20220601 64

https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://www.alibabacloud.com/help/doc-detail/71309.htm#multiTask8581

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

You can execute the ALTER TABLE statement to modify the schema of a table. For example, you can
add a column, create an index, or change a data type.

Note

e You cannot execute the ALTER TABLE statement to change a shard key.

e If you need to execute the ALTER TABLE statement on a table that contains a global secondary
index (GSI), use MySQL 5.7 or later and PolarDB-X 1.0 5.4.1 or later.

Modify a standard table

@ Note PolarDB-X 1.0 If you execute the ALTER TABLE statement to modify the schema of a
standard table, the syntax of this statement in DRDS is t he same as that in open source MySQL. For
more information, see ALTER TABLE statement.

Syntax

ALTER [ONLINE |OFFLINE] [IGNORE] TABLE tbliname
[alter specification [, alter specification] ...]

[partition options]

Examples
e Add acolumn

Add the idcard column to the user_log table. You can use the following sample code:

ALTER TABLE user log ADD COLUMN idcard varchar (30);

e Create alocal index

Create an index named idcard_idx on the idcard column in the user_log table. You can use the
following sample code:

ALTER TABLE user log ADD INDEX idcard idx (idcard);

e Rename a local index

Rename the idcard_idx index in the user_log table as idcard_idx_new. You can use the following
sample code:

ALTER TABLE user log RENAME INDEX “idcard idx’® TO “idcard idx new';

e Delete alocal index

Delete the idcard_idx index fromthe user_log table. You can use the following sample code:

ALTER TABLE user log DROP INDEX idcard idx;

e Modify a column

Change the length of the idcard column in the user_log table from 30 characters to 40 characters.
The values forthe idcard column are of the VARCHAR type. You can use the following sample code:

ALTER TABLE user log MODIFY COLUMN idcard varchar (40);

65 > Document Version: 20220601

http://dev.mysql.com/doc/refman/5.7/en/alter-table.html

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

Modify a table that contains a GSI

Modify a column

When you execute the ALTER TABLE statement to modify a column in a table that contains a GS|, the
syntax of this statement is the same as that you use to modify a column in a standard table. We
recommend that you are familiar with the limits. For more information about the limits, see Notes for
executing the ALTER TABLE statement.

Modify an index
Syntax

> Document Version: 20220601 66

https://www.alibabacloud.com/help/doc-detail/182193.htm#concept-1946568/section-5yo-mrf-g9d

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

ALTER TABLE tbl name
alter specification # If you execute the ALTER TABLE statement to modify a GSI, use the
alter specification option once.
alter specification:
| ADD GLOBAL {INDEX|KEY} index name # Explicitly specify the name of a GSI.
[index type] (index sharding col name, ...)
global secondary index option
[index option]
| ADD [CONSTRAINT [symbol]] UNIQUE GLOBAL
[INDEX |KEY] index name # Explicitly specify the name of a GSI.
[index type] (index sharding col name,...)
global secondary index option
[index option]
| DROP {INDEX|KEY} index name
| RENAME {INDEX|KEY} old index name TO new index name
global secondary index option:
[COVERING (col name,...)] # Covering Index
drds partition options # Specify one or more columns that are contained in index shardi
ng col name.
Specify a sharding method for an index table.
drds partition options:
DBPARTITION BY db sharding algorithm
[TBPARTITION BY {table sharding algorithm} [TBPARTITIONS num]]
db_sharding algorithm:
HASH ([col name])
| {YYYYMM|YYYYWEEK|YYYYDD|YYYYMM OPT|YYYYWEEK OPT|YYYYDD OPT} (col name)
| UNI_ HASH(col name)
| RIGHT SHIFT (col name, n)
| RANGE HASH (col name, col name, n)
table sharding algorithm:
HASH (col name)
| {MM|DD|WEEK|MMDD|YYYYMM|YYYYWEEK|YYYYDD|YYYYMM OPT|YYYYWEEK OPT|YYYYDD OPT} (col name)
| UNI HASH (col name)
| RIGHT SHIFT (col name, n)
| RANGE HASH (col name, col name, n)
The following sample code uses the DDL syntax that is supported by the MySQL engine:
index sharding col name:
col name [(length)] [ASC | DESC]
index option:
KEY BLOCK SIZE [=] value
| index type
| WITH PARSER parser name
| COMMENT 'string'
index type:
USING {BTREE | HASH}

Afteryou create atable, you canuse ALTER TABLE ADD GLOBAL INDEX to create a GSI. Compared with

the syntax for MySQL, the syntax for DRDS introduces the GLOBAL keyword to specify that you create a
GSI.

You can also use ALTER TABLE { DROP | RENAME } INDEX to modify a GSl. If you create a GSl aftera
table is created, we recommend that you are familiar with the limits. For more information about the
limits, see Notes for using GSls.

67 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/182193.htm#concept-1946568

Cloud Native Distributed Database SOL Reference- DDL
PolarDB-X

For more information about the clauses that are used to define GSls, see CREATE TABLE.

Examples

The following examples show how to create a unique GSl after atable is created.
o Create a GSl.

Create a table.
CREATE TABLE t order (

“id"® bigint(11) NOT NULL AUTO INCREMENT,

‘order id' varchar (20) DEFAULT NULL,

‘buyer id' varchar (20) DEFAULT NULL,

‘seller id’ varchar (20) DEFAULT NULL,

‘order snapshot’ longtext DEFAULT NULL,

‘order detail’ longtext DEFAULT NULL,

PRIMARY KEY ('id"),

KEY "1 i order’ (‘order id")
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(order id");
Create a GSI.
ALTER TABLE t order ADD UNIQUE GLOBAL INDEX ‘g_i_buyer‘ ("buyer id’) COVERING (\order_sna
pshot’) dbpartition by hash ("buyer id");

o Primary table: The data on the primary table t_orderis partitioned into database shards but not
further partitioned into table shards. The database uses hash sharding based on the order id
column.

o Indextable: The data onthe index table g_i_buyeris partitioned into database shards but not
further partitioned into table shards. The database uses hash sharding based on the buyer id
column. order_snapshot is the covering column that you specify.

o Clause used to define the GSI: GLOBAL INDEX ‘g i seller’ ON t order ('seller id') dbpartiti

on by hash(seller id")

e Executethe sHow TNDEX statement to query index information. For example, you can query local
indexes on the shard key order_id and the GSIs on the columns buyer id, id, order _id, and
order_snapshot. Forthe index table, the buyer_id column is the shard key, the id column is the primary
key, and the order _id column is the shard key. The id and order _id columns are the default covering
columns. order_snapshot is the covering column that you explicitly specify.

> Document Version: 20220601 68

https://www.alibabacloud.com/help/doc-detail/71300.htm#concept-1825026

SQL Reference-DDL

Cloud Native Distributed Database

PolarDB-X
mysgl> show index from t order;
o= e e e e N et Sommmmmm==
————t - +o—————— +-——— e Fom Fom +
| TABLE | NON _UNIQUE | KEY NAME | SEQ IN INDEX | COLUMN NAME | COLLATION | CARDINAL
ITY | SUB PART | PACKED | NULL | INDEX TYPE | COMMENT | INDEX COMMENT |
t———————— e e ————— e —— f——————————— f——————————— e ————
s B Fom to———— Fom Fom o +
| t order | 0 | PRIMARY | 1] id | A
0 | NULL | NULL | | BTREE |
| t order | 1 | 1 i order | 1 | order id | A
0 | NULL | NULL | YES | BTREE |
| £t order | 0 | g i buyer | 1 | buyer id | NULL
0 | NULL | NULL | YES | GLOBAL | INDEX |
| £t order | 1 | g i buyer | 2 | id | NULL
0 | NULL | NULL | | GLOBAL | COVERING |
| £t order | 1 | g i buyer | 3 | order id | NULL
0 | NULL | NULL | YES | GLOBAL | COVERING |
| t order | 1 | g i buyer | 4 | order snapshot | NULL
0 | NULL | NULL | YES | GLOBAL | COVERING | |
o= e fommmmmmmm=s e e N et fommmmmme=
————t +o———— R e Fom o +

Execute the SHOW GLOBAL INDEX
SHOW GLOBAL INDEX.

mysgl> show global index from t order;

| SCHEMA | TABLE
| INDEX TYPE | DB PARTITION KEY |

| NON UNIQUE | KEY NAME |
DB _PARTITION POLICY |

_KEY | TB PARTITION POLICY | TB PARTITION COUNT | STATUS |

| z2ZY3 DRDS LOCAL APP | t order | 0

| g i buyer | buyer id

DB PARTITION COUNT |

statement to query GSl information. For more information, see

INDEX NAMES | COVERING NAMES

TB PARTITION

der_ snapshot | NULL | buyer id | HASH | 4

| NULL | NULL PUBLIC |

o o e e o o
————————————— e L T
—————————————————— o

e View the schema of the index table. The index table contains the primary key of the primary table,
the database shard key and table shard key, the default covering columns, and the custom covering
columns. The AUTO_INCREMENT attribute is removed fromthe primary key. The local index is removed
fromthe primary table. By default, GSIs are created on all the shard keys of the index table and each

GSlis globally unique.

69

> Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/182338.htm#concept-1946549

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

mysgl> show create table g i buyer;

| g i buyer | CREATE TABLE "g i buyer (
‘id® bigint(11l) NOT NULL,
‘order id' varchar (20) DEFAULT NULL,
‘buyer id® varchar(20) DEFAULT NULL,
‘order snapshot’ longtext,
PRIMARY KEY ('id‘),
UNIQUE KEY ‘auto shard key buyer id’ ('buyer id’) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash('buyer id") |

e Delete a GSI.

Delete a GSInamed g_i_seller. In this case, the index table named g_i _selleris also deleted.

ALTER TABLE "t order DROP INDEX ‘g i seller’;

e Rename a GSlI.

By default, you cannot rename a GSl.

4.4. TRUNCATE TABLE

You can execute the TRUNCATE TABLE statement to clear data from a table.
Syntax

TRUNCATE [TABLE] tbl name

For more information about the syntax, see TRUNCATE TABLE statement.

Note

Before you execute the TRUNCATE TABLE statement, ensure that you have the DROP permission.

4.5. RENAME TABLE

T his topic describes how to use the RENAME INDEX statement to rename a table.

Syntax

> Document Version: 20220601 70

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

RENAME TABLE

tbl name TO new tbl name

Note

e PolarDB-X 1.0 does not allow you to execute the RENAME TABLE statement to rename multiple
tables at a time.

e The systemdoes not allow you to rename a table that contains a global secondary index for stability
and performance considerations.

e You cannot use only the RENAME INDEX statement to rename an index table. Iif you need to rename
an index table, we recommend that you use the RENAME INDEX statement. For more information, see
ALTER TABLE.

4.6. CREATE INDEX

This topic describes how to use the CREATE INDEX statement to create a local secondary index (LSI) or a
global secondary index (GSI).

Note

To execute the ALTER statement on a table that contains a GSI, ensure that the MySQL version is 5.7 or
later and the PolarDB-X 1.0 version is V5.4.1 or later.

LSI

For more information, see CREATE INDEX statement.

GSI

Syntax

71 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/71309.htm#multiTask8581
https://dev.mysql.com/doc/refman/8.0/en/create-index.html?spm=a2c4g.11186623.2.5.c4f27cd2WfPxT7

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

CREATE [UNIQUE]
GLOBAL INDEX index name [index type]
ON tbl name (index sharding col name,...)
global secondary index option
[index option]
[algorithm option | lock option]
GSI-specific syntax. For more information, see CREATE TABLE statement in MySQL.
global secondary index option:
[COVERING (col name, ...)]
drds partition options
Clauses for sharding. For more information, see CREATE TABLE statement in MySQL.
drds partition options:
DBPARTITION BY db sharding algorithm
[TBPARTITION BY {table sharding algorithm} [TBPARTITIONS num]]
db_sharding algorithm:
HASH ([col name])
[{YYYYMM|YYYYWEEK|YYYYDD|YYYYMM OPT|YYYYWEEK OPT|YYYYDD OPT} (col name)
| UNI HASH(col name)
| RIGHT SHIFT (col name, n)
| RANGE HASH (col name, col name, n)
table sharding algorithm:
HASH (col name)
| {MM|DD|WEEK |MMDD|YYYYMM|YYYYWEEK|YYYYDD|YYYYMM OPT|YYYYWEEK OPT|YYYYDD OPT} (col name)
| UNI HASH (col name)
| RIGHT SHIFT (col name, n)
| RANGE HASH (col name, col name, n)
The following sample code uses the DDL syntax that is supported by the MySQL engine:
index sharding col name:
col name [(length)] [ASC | DESC] # The length parameter is used only to create LSIs on
the shard keys of an index table.
index option:
KEY BLOCK SIZE [=] value
| index type
| WITH PARSER parser name
| COMMENT 'string'
index type:
USING {BTREE | HASH}

algorithm option:

ALGORITHM [=] {DEFAULT | INPLACE |COPY}
lock option:
LOCK [=] {DEFAULT |NONE | SHARED |EXCLUSIVE }

The CREATE GLOBAL INDEX statement is used to create a GSIforatable afterthe table is created.
This statement introduces the GLOBAL keyword to the CREATE INDEX statement in MySQL. T his keyword
specifies that the type of the index to be created is GSI. Limits are imposed on creating a GSIfor a table
afterthe table is created. For more information about the limits on GSls, see Notes for using GSls.

For more information about the clauses that are used to define GSIs, see CREATE TABLE.
Examples
The following example shows how to create a common GSIfor a table afterthe table is created.

e (Create a GSl.

> Document Version: 20220601 72

https://www.alibabacloud.com/help/doc-detail/182193.htm#concept-1946568
https://www.alibabacloud.com/help/doc-detail/71300.htm#concept-1825026

Cloud Native Distributed Database

SQL Reference-DDL

PolarDB-X

e The following sample code shows how to execute the

Create a table.
CREATE TABLE t order (
"id® bigint(11l) NOT NULL AUTO_INCREMENT,
‘order id" varchar(20) DEFAULT NULL,
‘buyer id’ varchar (20) DEFAULT NULL,
‘seller id® varchar(20) DEFAULT NULL,
‘order snapshot’ longtext DEFAULT NULL,
‘order detail’ longtext DEFAULT NULL,
PRIMARY KEY (°id"),
KEY "1 i order’
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(order id"
Create a GSI.
ALTER TABLE t_order ADD UNIQUE GLOBAL INDEX \g_i_buyer\
pshot’) dbpartition by hash ("buyer id");

(Torder id")

) ;

("buyer id’) COVERING (order sna

o Primary table: The data on the primary table t_orderis partitioned into database shards but not
further partitioned into table shards. The database uses hash sharding based on the order id
column.

Index table: The data onthe index table g_i_buyeris partitioned into database shards but not
further partitioned into table shards. The database uses hash sharding based on the buyer id
column. The order_snapshot column is specified as the covering column.

Clause used to define the GSI: GLOBAL INDEX ‘g i seller’ ON t order ('seller id’) dbpartiti

on by hash('seller id")

SsHOW INDEX Statement to view the
information about indexes that includes the LSIon the order_id shard key and GSlIs on buyer id, id,
order_id, and order_snapshot. buyer id is the shard key of the index table. id and order_id are the
default covering columns. id is the primary key and order _id is the shard key of the primary table.
order_snapshot is the covering column that is explicitly specified.

mysgl> show index from t order;

fpmmm—m==== fpemm—m——e—== e fpom———m—————=== e fpemm—mm—e=== e
———— - o +o———— Fmm Fom o +

| TABLE | NON_UNIQUE | KEY NAME | SEQ IN INDEX | COLUMN NAME | COLLATION | CARDINAL
ITY | SUB PART | PACKED | NULL | INDEX TYPE | COMMENT | INDEX COMMENT |

R - o F—— o o -
s B Fom—————— +o———— Fom Fom o +

| t order | 0 | PRIMARY | 1] id | A

0 | NULL | NULL | | BTREE |

| t order | 1 | 1 i order | 1 | order id | A

0 | NULL | NULL | YES | BTREE |

| t order | 0 | g i buyer | 1 | buyer id | NULL

0 | NULL | NULL | YES | GLOBAL | INDEX |

| t order | 1 | g i buyer | 2 | id | NULL

0 | NULL | NULL | | GLOBAL | COVERING |

| t order | 1 | g i buyer | 3 | order id | NULL

0 | NULL | NULL | YES | GLOBAL | COVERING | |

| t order | 1 | g i buyer | 4 | order snapshot | NULL

0 | NULL | NULL | YES | GLOBAL | COVERING | |

S e N it e e N e e
————t o +-——— e Fom o ——— +

® Youcanexecutethe sHOW GLOBAL INDEX

statement to view only the GSlinformation. For more

73

> Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

information, see SHOW GLOBAL INDEX.

mysgl> show global index from t order;

| SCHEMA | TABLE | NON UNIQUE | KEY NAME | INDEX NAMES | COVERING NAMES
| INDEX TYPE | DB PARTITION KEY | DB PARTITION POLICY | DB PARTITION COUNT | TB PARTITION
_KEY | TB PARTITION POLICY | TB PARTITION COUNT | STATUS |

o o S e o o
————————————— e L R Bt
—————————————————— o

| 7Z2ZY3 DRDS LOCAL APP | t order | O | g i buyer | buyer id | id, order id, or
der snapshot | NULL | buyer id | HASH | 4

| NULL | NULL | PUBLIC |

o tom Fm Fom Fom e B it
————————————— -}
—————————————————— B et et &

e The following sample code can be used to view the schema of the index table. The index table
contains the primary key of the primary table, the database shard key and table shard key, the
default covering columns, and the custom covering columns. The AUTO_INCREMENT attribute is
removed fromthe primary key column. The LSl is removed fromthe primary table. By default, a local
unique index is created on the index table that contains all the index columns of the GSIto achieve
the global unique constraint of the primary table.

mysgl> show create table g i buyer;

| Table | Create Table

| g i buyer | CREATE TABLE "g i buyer (
*id® bigint(11) NOT NULL,
‘order id' varchar (20) DEFAULT NULL,
"buyer id’ varchar (20) DEFAULT NULL,
‘order snapshot® longtext,
PRIMARY KEY (id‘),
UNIQUE KEY ‘auto shard key buyer id® (‘buyer id’) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash ('buyer id") |

4.7. DROP INDEX

> Document Version: 20220601 74

https://www.alibabacloud.com/help/doc-detail/182338.htm#concept-1946549

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

This topic describes how to use the DROP INDEX statement to delete a local secondary index (LSI) and a
global secondary index (GSI).

LSI

LSIs in Distributed Relational Database Service (DRDS) can be deleted by using the same method that is
used to delete LSIs in MySQL databases. For more information, see DROP INDEX.

GSI

Syntax

The index name parameter is the name of the GSI that you want to delete.
DROP INDEX index name ON tbl name

4.8. CREATE VIEW

This topic describes how to use the CREATE VIEW statement to create a view for a PolarDB-X
1.0PolarDB-X instance.

Prerequisites

The version of the PolarDB-X 1.0 instance must be 5.4.5 or later.

Syntax

CREATE
[OR REPLACE]
VIEW view name [(column list)]

AS select statement

Examples

Create a table.
CREATE TABLE t order (

“id’ bigint(11) NOT NULL AUTO INCREMENT,

‘order id" varchar (20) DEFAULT NULL,

"buyer id’ varchar (20) DEFAULT NULL,

"seller id" varchar (20) DEFAULT NULL,

‘order snapshot’ longtext DEFAULT NULL,

‘order detail’ longtext DEFAULT NULL,

PRIMARY KEY (°id"),

KEY "1 i order® (‘order id")
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(‘order_id‘);
Create a view.
create view t detail as select order id,order detail from t order;
Query a view.

select * from t detail;

4.9. DROP VIEW

75 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/drop-index.html

Cloud Native Distributed Database

SQL Reference-DDL
PolarDB-X

This topic describes how to use the DROP VIEW statement to delete a view of a PolarDB-X 1.0 instance.

Prerequisites
The version of the PolarDB-X 1.0 instance must be 5.4.5 or later.
Syntax

DROP VIEW [IF EXISTS] view name

Examples

Create a view: create view v as select 1;

Delete a view: drop view v;

4.10. DDL FAQ

This topic provides answers to commonly asked questions about the execution errors of data definition
language (DDL) statements in PolarDB-X 1.0.

What can | do if an execution error occurs when | create a table?

A DDL statement is processed in distributed mode. An error may cause schema inconsistency among
shards. Therefore, you must manually clean up the error. You can performthe following steps:

1. PolarDB-X 1.0 provides basic error description information, such as syntax errors. If the error
message is too long, the system prompts you to run the SHOW WARNINGS command to view the
execution failure cause for each database shard.

2. Runthe SHOW TOPOLOGY command to view the topology of physical tables.

SHOW TOPOLOGY FROM multi db multi tbl;

e ffemmmmmmmmmemm=== e +
| ID | GROUP_NAME | TABLE NAME |
fommmm= e e +
\ 0 | corona gatest 0 | multi db multi tbl 00 |
\ 1 | corona gatest 0 | multi db multi tbl 01 |
\ 2 | corona gatest 0 | multi db multi tbl 02 |
\ 3 | corona gatest 1 | multi db multi tbl 03 |
| 4 | corona gatest 1 | multi db multi tbl 04 |
\ 5 | corona gatest 1 | multi db multi tbl 05 |
| 6 | corona gatest 2 | multi db multi tbl 06 |
\ 7 | corona gatest 2 | multi db multi tbl 07 |
\ 8 | corona gatest 2 | multi db multi tbl 08 |
\ 9 | corona gatest 3 | multi db multi tbl 09 |
\ 10 | corona gatest 3 | multi db multi tbl 10 |
| 11 | corona gatest 3 | multi db multi tbl 11 |
=== e ffemmmmm e ee e +

12 rows in set (0.21 sec)

3. Runthe CcHECK TABLE tablename command to checkwhetherthe logical table has been created.

> Document Version: 20220601 76

SOL Reference- DDL Cloud Native Distributed Database
PolarDB-X

For example, the following example shows the scenario where a physical table shard of multi db
~multi tpbl failed to be created.

mysql> check table multi db multi tbl;

e e ——— e ———— f——————————
__ +

| TABLE | OP | MSG_TYPE | MSG_TEXT
\

f—_ e e o
__ +

| andor mysql gatest. multi db multi tbl | check | Error | Table 'corona gatest
0. multi do multi tbl 02' doesn't exist |

e Fo———— fom Fom -
__ +

1 row in set (0.16 sec)

4. Create ordelete the table in idempotent mode to create or delete the remaining physical tables.

CREATE TABLE IF NOT EXISTS tablel

(id int, name varchar(30), primary key(id))
dbpartition by hash (id) ;

DROP TABLE IF EXISTS tablel;

What can | do if | failed to create an index or add a column?

The method for handling the failure when you create an index or add a column is similar to the
preceding steps for the table creation failure. For more information, see Troubleshoot DDL exceptions.

77 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/52157.htm

Cloud Native Distributed Database
PolarDB-X

5.DML
5.1. SELECT

This topic describes how to execute the SELECT statement to query data fromone or more tables.

SQL Reference-DML

Syntax

SELECT
[ALL | DISTINCT]
select expr [, select expr ...]
[FROM table references
[WHERE where condition]
[GROUP BY {col name | expr | position}
[HAVING where condition]
[ORDER BY {col name | expr | position}

[ASC | DESC], ...]
[LIMIT {[offset,] row count | row count OFFSET offset}]

[FOR UPDATE]

Descriptions of the clauses in the SELECT statement:

e select_expr specifies the column to be queried. One SELECT statement must contain at least one
select_expr expression.

e table references specifies the tables from which data is retrieved.

e The WHERE clause specifies query criteria. If this clause is specified as where_condition, the system
returns the rows that meet the requirement in where_condition. If this clause is not specified, all rows
are returned.

e The GROUP BY clause supports the references to column names, expressions, and positions in out put
columns.

e The HAVING clause is similar to the WHERE clause. The difference is that the HAVING clause allows you
to use aggregate functions.

e The ORDER BY clause specifies the order in which data is sorted. This clause supports the references
to column names, expressions, and positions in output columns. You can also specify the sort
direction, such as ASC (ascending order) and DESC (descending order).

e The OFFSET clause specifies the offset of an output result set. The LIMIT clause specifies the size of
an output result set. The LIMIT clause allows you to specify one or two numeric parameters. The
parameters must be integer constants. If you specify two parameters, the first parameter specifies
the offset of the first row to be returned and the second parameter specifies the maximum number
of rows to be returned. The initial offset of the first row is 0 instead of 1. To be compatible with
PostgreSQL, MySQL also supports LIMIT and OFFSET.

e The FOR UPDATE clause applies an exclusive lock on each row of the query results. This prevents
other transactions from concurrently updating the rows. This also prevents other transactions from
concurrently reading the rows for which some transaction isolation levels are specified.

Note

e The expressions that are used in a WHERE clause cannot be used in a HAVING clause. For example, the
following SQL statement 1 must be rewritten as SQL statement 2.

> Document Version: 20220601 78

Cloud Native Distributed Database

SQL Reference-DML
PolarDB-X

SQL statement 1:

SELECT col name FROM tbl name HAVING col name > 0;

SQL statement 2:

SELECT col name FROM tbl name WHERE col name > 0;

e You can use aggregate functions in the HAVING clause but not in the WHERE clause.

SELECT user, MAX(salary) FROM users
GROUP BY user HAVING MAX (salary) > 10;

e If the LIMIT clause contains two parameters, the first parameter indicates the offset of the first row
that is returned, and the second parameter indicates the number of rows that are returned. If the
LIMIT clause contains only one parameter, this parameter indicates the number of rows that are
returned, and the default offset is 0.

e The GROUP BY clause does not support ASC or DESC.
e [f both GROUP BY and ORDER BY are used, the expressions that follow ORDER BY must be included in a
SELECT clause or a GROUP BY clause. For example, the following SQL statement is not supported:

SELECT user FROM users GROUP BY age ORDER BY salary;

e Aggregate functions and expressions that contain aggregate functions cannot be used in the ORDER
BY clause. If you want to use such an expression, define the expression as a select_expr, assign an
alias to the expression, and then reference the alias in the ORDER BY clause.

e Empty strings cannot be used as aliases.

JOIN

PolarDB-X 1.0 supports the following JOIN syntax in table_references of the SELECT statement:

79 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-DML
PolarDB-X

table references:
escaped table reference [, escaped table reference]
escaped table reference:
table reference
| { OJ table reference }
table reference:
table factor
| join table
table factor:
[schema name.]tbl name [[AS] alias] [index hint list]
| table subquery [AS] alias
| (table references)
join table:
table reference [INNER | CROSS] JOIN table factor [join condition]
| table reference {LEFT|RIGHT} [OUTER] JOIN table reference join condition
join condition:
ON conditional expr
| USING (column list)
index hint list:
index hint [, index hint]
index hint:
USE {INDEX|KEY}
[FOR {JOIN|ORDER BY|GROUP BY}] ([index list])
| IGNORE {INDEX|KEY}
[FOR {JOIN|ORDER BY|GROUP BY}] (index list)
| FORCE {INDEX|KEY}
[FOR {JOIN|ORDER BY|GROUP BY}] (index list)
index list:

index name [, index name]

To use the JOIN statements, consider the following factors:

e JOIN, CROSS JOIN, and INNER JOIN are syntactic equivalents. This is also the case in MySQL.
e AnINNERJOIN statement without an ON clause is equivalent to using a comma (,). Both of them
indicate a CROSS JOIN. For example, the following SQL statements are equivalent:

SELECT * FROM tl INNER JOIN t2 WHERE tl.id > 10
SELECT * FROM tl, t2 WHERE tl.id > 10

® USING(column list) Iisused to specify the column names that exist in both tables from which you
want to combine data. PolarDB-X 1.0 constructs an equivalent condition based on these columns. For
example, the following SQL fragments are equivalent:

a LEFT JOIN b USING(cl, c2)
a LEFT JOIN b ON a.cl = b.cl AND a.c2 = b.c2

e The JOIN operator has higher precedence than the comma operator (,). The JOIN expressiont1, t2 JOIN
t3isinterpreted as (t1, (t2 JOINt3)), not as ((t1,t2) JOIN t3).

e LEFT JOIN and RIGHT JOIN must contain the ON condition.

e index_hint specifies the index to be used by MySQL. PolarDB-X 1.0 pushes the hint to the underlying
MySQL database.

> Document Version: 20220601 80

Cloud Native Distributed Database

SQL Reference-DML
PolarDB-X

e STRAIGHT_JOIN and NATURALJOIN are not supported.

UNION

PolarDB-X 1.0 supports the following UNION syntax:

SELECT ...
UNION [ALL | DISTINCT] SELECT ...
[UNION [ALL | DISTINCT] SELECT ...]

@ Note Ineach SELECT clause of UNION, PolarDB-X 1.0 does not support multiple columns with
the same name. The following SQL statement is not supported because the column names in the
SELECT clause are duplicates.

SELECT id, id, name FROM tl1 UNION SELECT pk, pk, name FROM t2;

References

e SELECT syntax in MySQL
e |OIN syntax in MySQL
e UNION syntax in MySQL

5.2. Subquery

This topic describes the types of subqueries supported by PolarDB-X 1.0 and the limits and additional
considerations when you use subqueries in PolarDB-X 1.0.

Limits

Compared with the native MySQL, PolarDB-X 1.0 has the following limits when you use subqueries:

e Subqueries cannot be used in HAVING clauses. Example:

SELECT name, AVG(quantity)
FROM tbl
GROUP BY name
HAVING AVG(quantity) > 2% (
SELECT AVG(quantity)
FROM tb2
);

e Subqueries cannot be used in JOIN ON clauses. Example:

SELECT * FROM tbl p JOIN tb2 s on (p.id=s.id and p.quantity>All (select quantity from tb3)
)

e ROW subqueries and scalar subqueries cannot be placed before and after equal signs (=)
simultaneously. Example:

select * from tbl where row(id, name) = (select id, name from tb2)

e Subqueries cannot be used in UPDATE SET clauses. Example:

81 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/join.html
https://dev.mysql.com/doc/refman/5.7/en/union.html

Cloud Native Distributed Database SQL Reference- DML
PolarDB-X

UPDATE tl1 SET cl = (SELECT c2 FROM t2 WHERE tl.cl = t2.cl) LIMIT 10

Additional considerations

In PolarDB-X 1.0, some subqueries can be executed by using only the APPLY operator and result in
inefficient queries. Avoid the following inefficient SQL statements:

e SQL statements whose WHERE clauses contain both OR operators and subqueries. The execution
efficiency is reduced based on the data in the foreign tables. Examples:

Efficient: select * from tbl where id in (select id from tb2)
Efficient: select * from tbl where id in (select id from tb2) and id>3

Inefficient: select * from tbl where id in (select id from tb2) or id>3

e Correlated subqueries whose correlated items are used in functions or used along with non-equal
signs. Examples:

Efficient: select * from tbl a where id in
(select id from tb2 b where a.name=b.name)
Inefficient: select * from tbl a where id in
(select id from tb2 b where UPPER (a.name)=b.name)
Inefficient: select * from tbl a where id in
(select id from tb2 b where a.decimal test=abs(b.decimal test))
Inefficient: select * from tbl a where id in
(select id from tb2 b where a.name! =b.name)
Inefficient: select * from tbl a where id in

(select id from tb2 b where a.name>=b.name)

e Correlated subqueries whose correlated items are connected with other conditions by using OR
operators. Examples:

Efficient: select * from tbl a where id in
(select id from tb2 b where a.name=b.name
and b.date test<'2015-12-02")
Inefficient: select * from tbl a where id in
(select id from tb2 b where a.name=b.name
or b.date test<'2015-12-02")
Inefficient: select * from tbl a where id in
(select id from tb2 b where a.name=b.name

or b.date test=a.date test)

e Scalar subqueries that have correlated items. Examples:

Efficient: select * from tbl a where id >

(select id from tb2 b where b.date test<'2015-12-02")
Inefficient: select * from tbl a where id >

(select id from tb2 b where a.name=b.name

and b.date test<'2015-12-02")

e Subqueries whose correlated items span the correlation levels. Examples:

> Document Version: 20220601 82

Cloud Native Distributed Database

SQL Reference-DML
PolarDB-X

o AnSQL statement has multiple correlation levels. The correlated items in each subquery are
correlated only with the upper level. Such statements are efficient.

Efficient: select * from tbl a where id in(select id from tb2 b
where a.name=b.name and

exists (select name from tb3 ¢ where b.address=c.address))

o AnSQL statement has multiple correlation levels. The correlated items of subqueriesin table c
are correlated with columnsin table a .Such statements are inefficient.

Inefficient: select * from tbl a where id in(select id from tb2 b
where a.name=b.name and

exists (select name from tb3 ¢ where a.address=c.address))

@ Note Inthe preceding example, both table a and table b , table b and table
c belong to the same correlation level. The correlation between table a and table c
spans the correlation levels.

e Subqueries that contain GROUP BY clauses. Make sure that the correlated items are correlated to the
grouping columns. Examples:
o An SQL subquery contains aggregate functions and correlated items. The b.pk correlated item
is correlated tothe px grouping column. Such SQL statements are efficient.

Efficient: select * from tbl a where exists
(select pk from tb2 b
where a.pk=b.pk and b.date test='2003-04-05"

group by pk);

o An SQL subquery contains aggregate functions and correlated items. The b.date test
correlated itemis not correlated to the pk grouping column. Such SQL statements are
inefficient.

Inefficient: select * from tbl a where exists
(select pk from tb2 b
where a.date test=b.date test and b.date test='2003-04-05"'
group by pk);

Supported subqueries
PolarDB-X 1.0 supports the following types of subqueries:
e Comparisons using subqueries

Comparisons using subgueries indicate subgueries that use comparison operators. These subqueries
are commonly used.

o Syntax:

non subquery operand comparison operator (subquery)

comparison operator: = > < >= <= <> | = <=> like

83 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-DML

PolarDB-X

o Example:

select * from tbl WHERE 'a' = (SELECT columnl FROM t1l)

@ Note Subqueries can be placed only to the right of comparison operators.

e Subqueries with ANY, ALL, IN/NOT IN, and EXISTS/NOT EXISTS

o Syntax:

operand comparison operator ANY (subquery)
operand comparison operator ALL (subquery)
operand IN (subquery)

operand NOT IN (subgquery)

operand EXISTS (subgquery)

operand NOT EXISTS (subquery)

comparison operator:= > < >= <= <> 1=

o Examples

= ANY: If any row returned by the subquery meets the expression before ANY, TRUE is returned.

Otherwise, FALSE is returned.

m ALL: If all rows returned by the subquery meet the expression before ALL, TRUE is returned.
Otherwise, FALSE is returned.

m [N: If INis used before the subquery, IN is equivalent to =anvy .Example:

SELECT sl FROM tl WHERE sl = ANY (SELECT sl FROM t2);
SELECT sl FROM tl WHERE sl IN (SELECT sl FROM t2);

m NOT IN: If NOT IN is used before the subquery, NOT IN is equivalent to <>arLL . Example:

SELECT sl FROM tl WHERE sl <> ALL (SELECT sl FROM t2);
SELECT sl FROM tl WHERE sl NOT IN (SELECT sl FROM t2);

m EXISTS: If the subquery returns any rows, TRUE is returned. Otherwise, FALSE is returned.
Example:

SELECT columnl FROM tl WHERE EXISTS (SELECT * FROM t2);

@ Note ffa subquery contains any rows, the WHERE condition returns TRUE even if the
subquery contains only NULL rows.

m NOT EXISTS: If the subquery returns any rows, FALSE is returned. Otherwise, TRUE is returned.

e ROW subqueries

o ROW subqueries support the following comparison operators:

comparison operator: = > < >= <= <> = <=>

> Document Version: 20220601

84

Cloud Native Distributed Database

SQL Reference-DML
PolarDB-X

o Examples:

SELECT * FROM tl

WHERE (coll,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);
SELECT * FROM tl
WHERE ROW (coll,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);

The preceding two SQL statements are equivalent. Data rows intable t1 are returned only when
the following conditions are met:

m The subquery (SELECT col3, cold FROM t2 WHERE id=10)returns only one row. An erroris
reported if multiple rows are returned.

m col3 and col4 returned bythe subquery are equalto coll1 and col2 inthe primary
table.

e (Correlated subqueries

Correlated subqueries are subqueries that contain references to foreign tables in outer queries.
Example:

SELECT * FROM tl
WHERE columnl = ANY (SELECT columnl FROM t2
WHERE t2.column2 = tl.column2);

In the example, the subquery does not contain table t1 and its column column2. In this case, the
subquery finds the table in the outer query.

e Derived tables (subqueries in a FROM clause)
Derived tables are subqueries in a FROM clause.

o Syntax:

SELECT ... FROM (subquery) [AS] tbl name ...

85 > Document Version: 20220601

Cloud Native Distributed Database
PolarDB-X

SQL Reference-DML

o Examples
a. Prepare data:

Execute the following statements to create table t1:

CREATE TABLE tl (sl INT, s2 CHAR(5), s3 FLOAT);
INSERT INTO tl VALUES (1,'l1',1.0);
INSERT INTO tl VALUES (2,'2',2.0);

Execute the following statement. The query result is 2, '2', 4.0

SELECT sbl, sb2,sb3
FROM (SELECT sl AS sbl, s2 AS sb2, s3*2 AS sb3 FROM tl) AS sb
WHERE sbl > 1;

b. Query data: Query the average value of grouped data that is processed by the SUM function.

If you execute the following SQL statement, an error is reported and no result is returned.

SELECT AVG(SUM(sl)) FROM tl GROUP BY sl;

You can execute the following statement that contains a derived table. The query result is 1

.5000
SELECT AVG(sum sl)

FROM (SELECT SUM(sl) AS sum sl
FROM tl GROUP BY sl) AS tl;

® Note

m A derived table must have an alias, suchas t1 inthe previous statement.

m A derived table can return a scalar, a column, a row, or a table.

m Derived tables cannot be correlated subqueries. Derived tables cannot contain

references to foreign tables in outer queries.

5.3. INSERT

You can execute the INSERT statements to insert data into tables.

Syntax
the primary key.

> Document Version: 20220601

86

Cloud Native Distributed Database

SQL Reference-DML
PolarDB-X

INSERT [LOW PRIORITY | DELAYED | HIGH PRIORITY] [IGNORE]
[INTO] [schema name.]tbl name

[(col name [, col name] ...)]

{VALUES | VALUE} (value list) [, (value list)]
[ON DUPLICATE KEY UPDATE assignment list]
INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY} [IGNORE]
[INTO] [schema name.]tbl name

SET assignment list

[ON DUPLICATE KEY UPDATE assignment list]
INSERT [LOW_PRIORITY | HIGH PRIORITY] [IGNORE]
[INTO] [schema name.]tbl name

[(col name [, col name] ...)]

SELECT ...

[ON DUPLICATE KEY UPDATE assignment list]
value list:

value [, value]

value:

{expr | DEFAULT}

assignment list:

assignment [, assignment]

assignment:

col name = value

Limits on syntax
The following INSERT statements are not supported:
o INSERT IGNORE ON DUPLICATE KEY UPDATE.

INSERT IGNORE INTO tb (id) VALUES(7) ON DUPLICATE KEY UPDATE id = id + 1;
e INSERT statements that contain PARTITION functions.

INSERT INTO tb PARTITION (p0) (id) VALUES(7);
e INSERT statements where the NEXTVAL functions are nested.

INSERT INTO tb(id) VALUES (SEQLl.NEXTVAL + 1);

e INSERT statements that contain column names.

INSERT INTO tb(idl, id2) VALUES (1, idl + 1);
Limits on distributed transactions

@ Note If atransaction is processed in the same database shard even when you use table
shards, this transaction is considered as a single-database transaction. For example, a transaction
contains the shard key and the INSERT or UPDATE statement in the transaction is executed in the
same database shard. In this case, this transaction is a single-database transaction.

If the distributed transaction feature is enabled, the INSERT statements that meet the following
conditions are not supported:

e No primary key is specified for the table to which datais to be inserted. The following statements are

87 > Document Version: 20220601

Cloud Native Distributed Database
PolarDB-X

SQL Reference-DML

used as examples:

CREATE TABLE tb(id INT, name VARCHAR(10));
INSERT INTO tb VALUES (1, 'a');

e Thetable to which datais to be inserted is not sharded. The primary key values are auto-
incremented, but no Distributed Relational Database Service (DRDS) sequence is used for the primary
key. For more information about DRDS sequences. The following statements are used as examples:

CREATE TABLE tb(id INT PRIMARY KEY AUTO INCREMENT, name VARCHAR (10)) ;
INSERT INTO tb(name) VALUES('a'); # The statements are not supported.

You can specify a DRDS sequence for the primary key to enable the preceding statements to be
supported. For more information about DRDS sequences. The following statements are used as

examples:

CREATE TABLE tb(id INT PRIMARY KEY AUTO INCREMENT BY GROUP, name VARCHAR(10));

INSERT INTO tb(name) VALUES('a'); # The statements are supported.

References

INSERT Statement forthe native MySQL.

5.4. REPLACE

You can use the REPLACE syntax to insert rows to tables or replace rows in tables.

Syntax

REPLACE [LOW PRIORITY | DELAYED]
[INTO] [schema name.]tbl name
[(col name [, col name] ...)]
{VALUES | VALUE} (value list) [, (value list)]
REPLACE [LOW_ PRIORITY | DELAYED]
[INTO] [schema name.]tbl name
SET assignment list

REPLACE [LOW PRIORITY | DELAYED]
[INTO] [schema name.]tbl name
[(col name [, col name] ...)]
SELECT ...

value list:

value [, value]

value:

{expr | DEFAULT}

assignment list:

assignment [, assignment]
assignment:

col name = value

Limits on syntax

The following syntax is not supported:

e Syntax that contains PARTITION. The following example shows the syntax:

> Document Version: 20220601

88

https://dev.mysql.com/doc/refman/5.7/en/insert.html

Cloud Native Distributed Database

SQL Reference-DML
PolarDB-X

REPLACE INTO tb PARTITION (pO) (id) VALUES(7);

e Syntax where NEXTVAL is nested. The following example shows the syntax:

REPLACE INTO tb(id) VALUES (SEQl.NEXTVAL + 1);

e Syntax that contains column names. The following example shows the syntax:

REPLACE INTO tb(idl, id2) VALUES (1, idl + 1);
Limits on distributed transactions

@ Note If you use table shards, but a transaction is processed in the same database (for
example, INSERT or UPDATE contains the shard key), this transaction is considered as a single-
database transaction.

When the distributed transaction feature is enabled, the following REPLACE command is not supported:

e No primary key is specified for the table, as shown in the following example:

CREATE TABLE tb(id INT, name VARCHAR(10));
REPLACE INTO tb VALUES (1, 'a');

e The table is not sharded. The primary key is auto-incremented, but no sequence is used for the
primary key. For more information about sequences. The following example shows the corresponding
statements:

CREATE TABLE tb(id INT PRIMARY KEY AUTO INCREMENT, name VARCHAR(10));
REPLACE INTO tb(name) VALUES('a'):;

You can specify a sequence for the primary key to prevent the limit. For more information about
sequences. The following example shows the corresponding statements:

CREATE TABLE tb(id INT PRIMARY KEY AUTO INCREMENT BY GROUP, name VARCHAR(10));
REPLACE INTO tb(name) VALUES('a'):;

References

REPLACE syntax for MySQL

5.5. UPDATE

You can use the UPDATE syntax to modify the rows that meet the conditions in tables.

Syntax

e Single logical table.

89 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/replace.html

Cloud Native Distributed Database SQL Reference- DML
PolarDB-X

UPDATE [LOW PRIORITY] [IGNORE] [schema name.]tbl name
SET assignment list
[WHERE where condition]
value:
{expr | DEFAULT}
assignment:
col name = value
assignment list:

assignment [, assignment]

e Multiple logical tables.

UPDATE [LOW PRIORITY] [IGNORE] table references
SET assignment list
[WHERE where condition]

@ Note
e The UPDATE statements support the following modifiers:

o If you specify LOW_PRIORITY, the UPDATE operation is performed after all the read
operations on the table are completed.

o If you specify IGNORE, the errors are ignored during the update process. This indicates
that the update is not interrupted by the errors.

e Each modifierin the UPDATE statements is pushed down to the storage layer MySQL and
remains unchanged. T his process does not affect the modifier operations of PolarDB-X 1.0.

Limits on syntax

Compared with the UPDATE syntax of native MySQL, the UPDATE syntax of PolarDB-X 1.0 has the
following limits:

e Correlated and uncorrelated subqueries are not supported in the SET clauses. This limit is illustrated in
the following example:

UPDATE tl SET name = (SELECT name FROM t2 WHERE t2.id = tl.id) WHERE id > 10;

e By default, an UPDATE statement is forbidden if the statement needs to update more than 10,000
rows and the statement cannot be pushed down. In this case, you must use hints so that the UPDATE
statement can be supported, as shown in the following example:

UPDATE tl SET tl.name = "abc" ORDER BY name LIMIT 10001;
UPDATE tl, t2 SET tl.name = t2.name WHERE tl.id = t2.name LIMIT 10001;

@ Note The shard key of t1 and t2 is ID.

References

UPDATE syntax for MySQL.

5.6. DELETE

> Document Version: 20220601 90

https://dev.mysql.com/doc/refman/5.7/en/update.html

Cloud Native Distributed Database

SQL Reference-DML
PolarDB-X

You can execute the DELETE statements to delete the rows that meet the conditions fromtables.

Syntax

The following DELETE statements delete the rows that meet the conditions specified by
where condition fromthe tables specified by tbl name , and returnthe number of deleted rows.

If you do not specify the WHERE conditions, all the data in the specified tables is deleted.
e Single logical table.

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM [schema name.]tbl name
[WHERE where condition]

e Multiple logical tables.

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
tbl name[.*] [, tbl name[. *]]
FROM table references
[WHERE where condition]
DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
FROM [schema name.]tbl name[.*] [, [schema name.]tbl name[. *]]
USING table references
[WHERE where condition]

@ Note
e The DELETE statements support the following modifiers:

o If you specify LOW_PRIORITY, the DELETE operation is performed after all the read
operations fromthe table are completed.

o If you specify IGNORE, the errors are ignored during the deletion process.

o QUICK is related to the storage engines of MySQL. For more information, see MySQL
documentation.

e Each modifierin the DELETE statements is pushed down to the storage layer MySQL and
remains unchanged. T his process does not affect the modifier operations of PolarDB-X 1.0.

Limits on syntax

Compared with the DELETE syntax of the native MySQL, the DELETE syntax of PolarDB-X 1.0 has the
following limits:

By default, a DELETE statement is forbidden if the statement needs to delete more than 10,000 rows
and the statement cannot be pushed down. In this case, you must use hints so that DELETE statement
can be supported, as shown in the following example:

DELETE FROM tl ORDER BY name LIMIT 10001;

DELETE tl, t2 FROM tl INNER JOIN t2 INNER JOIN t3 WHERE tl.id=t2.id AND t2.id=t3.name LIMIT
10001;

DELETE FROM tl, t2 USING tl INNER JOIN t2 INNER JOIN t3 WHERE tl.id=t2.id AND t2.id=t3.name
LIMIT 10001;

@ Note The shard key of t1,t2, and t3 is ID.

91 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/delete.html

Cloud Native Distributed Database

SQL Reference-DML
PolarDB-X

5.7. Limits of global secondary indexes on
DML

This topic describes the limits that global secondary indexes (GSls) in PolarDB-X 1.0 have on data
manipulation language (DML).

Prerequisites

The versions of the custom ApsaraDB RDS for MySQL instances are 5.7 or later, and the versions of the
PolarDB-X 1.0 instances are 5.4.1 or later.

Examples

The following table is used to describe the limits that GSIs have on DML.

CREATE TABLE t order (

"id® bigint(11) NOT NULL AUTO INCREMENT,

‘order id" varchar (20) DEFAULT NULL,

"buyer id’ varchar (20) DEFAULT NULL,

‘seller id’ varchar (20) DEFAULT NULL,

‘order snapshot® longtext DEFAULT NULL,

‘order detail’ longtext DEFAULT NULL,

PRIMARY KEY (°id"),

UNIQUE KEY "1 i order’ (order id"),

GLOBAL INDEX "g i seller’ ('seller id") dbpartition by hash('seller id’) tbpartition by h
ash(“seller id"),

GLOBAL UNIQUE INDEX "g i buyer ™ ('buyer id’) COVERING (order snapshot) dbpartition by has
h (“buyer id")
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(order id"):;

After a GSIfails to be writtento a table, other DML statements cannot be executed on the table and
transactions cannot be committed on the table.

SET DRDS TRANSACTION POLICY='XA';

INSERT INTO t order (order id, buyer id, seller id) VALUES ('order 1', 'buyer 1', 'seller 1')
A GSI failed to be written to the table.

INSERT IGNORE INTO t order (order id, buyer id, seller id) VALUES ('order 2', 'buyer 1', 'sel
ler 1");

Other DML statements cannot be executed on the table.

INSERT IGNORE INTO t order (order id, buyer id, seller id) VALUES ('order 2', 'buyer 2', 'sel
ler 2'");

Transactions cannot be committed on the table.

COMMIT;

> Document Version: 20220601 92

Cloud Native Distributed Database

Ref -SHOW
SQL Reference PolarDB-X

6.SHOW
6.1. SHOW HELP

This topic describes how to view all auxiliary SQL commands in Distributed Relational Database Service
(DRDS) by executing the SHOW HELP statement.

Context

93 > Document Version: 20220601

Cloud Native Distributed Database
PolarDB-X

SQL Reference-SHOW

mysqgl> show help;

fommmmmes s s e s s s s s s s ssssssssss=s e s s e s e s s s e s s s s s s s s s sssss=s
————————— o
| STATEMENT | DESCRIPTION
| EXAMPLE |
e f
————————— Rt e

show rule | Report all table rule

|

show rule from TABLE | Report table rule

show rule from user

show full rule from TABLE | Report table full rule

show full rule from user

show topology from TABLE | Report table physical topology

show topology from user
show partitions from TABLE
show partitions from user

show broadcasts |
show datasources |
show node |
show slow |
show physical slow |
clear slow |

trace SQL |
ing data | trace select count(*) from user;

show trace |

explain SQL

explain select count (*) from user

explain detail SQL

explain detail select count(*) from user
explain execute SQL |
explain execute select count(*) from user

show sequences

\
\
\
\
\
\
\
\
\
\
| create sequence NAME [start with COUNT] |
| create sequence test start with 0

| alter sequence NAME [start with COUNT] |
| alter sequence test start with 100000

| drop sequence NAME

\

drop sequence test

20 rows in set (0.00 sec)

|
Report

|
Report

|
Report

|
Report

|
Report

|
Report

table dbPartition or tbPartition columns

all broadcast tables

all partition db threadPool info

master/slave read status

top 100 slow sqgl

top 100 physical slow sqgl

Clear slow data

Start trace sql,

show trace |

Report
|
Report

|
Report

|
Report

|
Report

|
Create

sgl execute profiling info

sgl plan info

sgql detail plan info

sgl on physical db plan info

all sequences status

sequence

Alter sequence

Drop sequence

use show trace to print profil

> Document Version: 20220601

94

Cloud Native Distributed Database

SQL Reference-SHOW
PolarDB-X

6.2. Rule and topology query statements

This topic describes rule and topology query statements.

e SHOW RULE [FROM tablename]

e SHOW FULL RULE [FROM tablename]
e SHOW TOPOLOGY FROM tablename
e SHOW PARTITIONS FROM tablename
e SHOW BROADCASTS

e SHOW DATASOURCES

e SHOW NODE

SHOW RULE [FROM tablename]

Description:
e sHOW RULE : queries the sharding details of each logical table in a database.

® SHOW RULE FROM tablename : queriesthe sharding details of a specified logical table in a database.

mysqgl> show rule;

+-——— e Fom o Fom Fom -
————— e e et e e

| ID | TABLE NAME | BROADCAST | DB PARTITION KEY | DB PARTITION POLICY | DB PARTITION C
OUNT | TB_ PARTITION KEY | TB PARTITION POLICY | TB PARTITION COUNT |

to———— Fom e Fom o e e et B et e
————— e e et e e e e e e

| 0 | dept manager | 0 | | NULL |1

\ | NULL |1 [

| 1 | emp | 0 | emp no | hash | 8

| id | hash | 2 |

| 2 | example | 0 | shard key | hash | 8

\ | NULL | 1 |

fo————— e fommm R e e e e e
————— Bt e e T

3 rows in set (0.01 sec)

Important columns:
e BROADCAST : indicates whetherthe table is a broadcast table. A value of 0 indicates that the table
is not a broadcast table. A value of 1 indicates that the table is a broadcast table.

e DB_PARTITION_KEY: indicates the database shard key. If no database shards exist, the parameter
value is empty.

e DB _PARTITION_POLICY: indicates the database sharding policy. The parameter values can be hash
values and date values in the formats such as YYYYMM, YYYYDD, and YYYYWEEK.

e DB _PARTITION_COUNT: indicates the number of database shards.

e TB_PARTITION_KEY: indicates the table shard key. If no table shards exist, the parameter value is
empty.
e TB_PARTITION_POLICY: indicates the table sharding policy. The parameter values can be hash

95 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-SHOW
PolarDB-X

values or date values in the formats such as MM, DD, MMDD, and WEEK.
e TB_PARTITION_COUNT: indicates the number of table shards.

SHOW FULL RULE [FROM tablename]

You can execute this SQL statement to view the sharding rules of the logical tables in a database. T his
statement queries more detailed information than the SHOW RULE statement.

mysgl> show full rule;

= o Fom e o e et B e e e B et e
o o I
—————————————— e
____________________________ +

| ID | TABLE NAME | BROADCAST | JOIN GROUP | ALLOW FULL TABLE SCAN | DB NAME PATTERN

| DB RULES STR | TB NAME PATTERN | TB RULES STR

| PARTITION KEYS | DEFAULT DB INDEX

Fo————— o Fom e o Bt et o
o o b
—————————————— e
____________________________ +

| 0 | dept manager | 0 | NULL 0 | SEQ TEST 148776778
0814RGKKSEQ TEST WNJG 0000 RDS | NULL | de
pt _manager | NULL | NULL | SEQ TEST 148776778081
4RGKKSEQ TEST WNJG 0000 RDS |

| 1 | emp | 0 | NULL | 1 | SEQ TEST 148776778
0814RGKKSEQ TEST WNJG {0000} RDS | ((#emp no,1,8#).longValue().abs() % 8) | em
p {0} | ((#id,1,2#) .longValue().abs() % 2) | emp no id | SEQ TEST 148776778081
4RGKKSEQ TEST WNJG 0000 RDS |

| 2 | example | 0 | NULL | 1 | SEQ TEST 148776778
0814RGKKSEQ TEST WNJG {0000} RDS | ((#shard key,1,8#).longValue().abs() % 8).intdiv(l) | ex
ample | NULL | shard key | SEQ TEST 148776778081
4RGKKSEQ TEST WNJG 0000 RDS |

o Fom e Fom Fom e B et o
e o b
—————————————— et et
____________________________ +

3 rows in set (0.01 sec)

Important columns:

e BROADCAST : indicates whetherthe table is a broadcast table. A value of 0 indicates that the table
is not a broadcast table. A value of 1 indicates that the table is a broadcast table.

e JOIN_GROUP: indicates a reserved field.

e ALLOW_FULL TABLE_SCAN: indicates whether data querying is allowed if no table shard keys are
specified for sharding. If this parameter is set to true, each physical table is scanned to locate the
data that meets the condition. This is a full table scan.

e DB_NAME_PATTERN: The digit 0 inside a pair of braces {} in the parameter value is a placeholder.
When the SQL statement is executed, the placeholders are replaced by the value of DB_RULES STR.
The number of digits in the parameter value remains unchanged. For example, if the value of
DB_NAME_PATTERN is SEQ {0000} RDS and the value of DB_RULES STRis [1,2,3,4], the following
DB_NAME values are generated: SEQ_0001_RDS, SEQ_0002_RDS, SEQ_0003_RDS, and SEQ_0004_RDS.

> Document Version: 20220601 96

Cloud Native Distributed Database

SQL Reference-SHOW
PolarDB-X

e DB _RULES_STR: indicates the database sharding rule.

e TB_NAME_PATTERN: The digit 0 inside a pair of braces {} in the parameter value is a placeholder.
When the SQL statement is executed, the placeholders are replaced by the value of TB_RULES STR.
The number of digits in the parameter value remains unchanged. For example, if the value of
TB_NAME_PATTERN is table_{00} and the value of TB_RULES STRis[1,2,3,4,5,6,7,8], the following
tables are generated: table_01, table_02, table_03, table_04, table_05, table_06, table_07, and
table_08.

e TB_RULES_STR: indicates the table sharding rule.

e PARTITION_KEYS: indicates a set of the database and table shard keys. If both database sharding
and table sharding are performed, the database shard key is placed before the table shard key.

e DEFAULT_DB_INDEX: indicates the database shard in which a single-database non-partitioned
table is stored.

SHOW TOPOLOGY FROM tablename

You can execute this SQL statement to view the topology of a specified logical table. The information
contains the database shards to which data in the logical table is partitioned and the table shards in
each database shard.

mysgl> show topology from emp;

o e e +
| ID | GROUP NAME | TABLE NAME |
o T et e oo +
\ 0 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0000 RDS | emp 0
\ 1 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0000 RDS | emp 1
\ 2 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0001 RDS | emp O
\ 3 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0001 RDS | emp 1
\ 4 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0002 RDS | emp 0
\ 5 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0002 RDS | emp 1
\ 6 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0003 RDS | emp 0
\ 7 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0003 RDS | emp 1
| 8 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0004 RDS | emp 0
\ 9 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0004 RDS | emp 1
| 10 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0005 RDS | emp 0
| 11 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0005 RDS | emp 1
| 12 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0006 RDS | emp 0
| 13 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0006 RDS | emp 1
| 14 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0007 RDS | emp 0
| 15 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0007 RDS | emp 1
R o o +

16 rows in set (0.01 sec)

SHOW PARTITIONS FROM tablename

You can execute this SQL statement to view a set of database and table shard keys, which are
separated by commas (,). If two values are returned, both database sharding and table sharding are
performed. The first value is the database shard key and the second value is the table shard key. If only
one value is returned, only database sharding is perf ormed. T his value is the database shard key.

97 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference- SHOW
PolarDB-X

mysqgl> show partitions from emp;

1 row in set (0.00 sec)

SHOW BROADCASTS

You can execute this SQL statement to view the broadcast tables.

mysql> show broadcasts;

o Fo— +

| ID | TABLE NAME |

fpmmm=== fpemmmmmmmm== +
0 brd2

\ 1 | brd tbl |

+o——— fom - +

2 rows in set (0.01 sec)

SHOW DATASOURCES

You can execute this SQL statement to view the information about the underlying storage. The
information includes the database name, database group name, connection URL, username, storage
type, read and write weights, and connection pool information.

mysqgl> show datasources;

+———— et B et e +————
___ o
————————————————————————————————————— B e B e
e o o e
o R +

ID SCHEMA | NAME | GROU
P | URL

USER | TYPE | INIT | MIN | MAX | IDLE TIMEOUT | MAX WAIT | ACTIVE COUNT | POOLING
_COUNT | ATOM | READ WEIGHT | WRITE WEIGHT |
+———— et B e +———
___ o
————————————————————————————————————— B e B e
—— o o e
o o +

0 seq _test 1487767780814rgkk | rdslur80kcv8g3té6p3ol seq test wnjg 0000 iiab 1 | SEQ

TEST 1487767780814RGKKSEQ TEST WNJG 0000 RDS | jdbc:mysql://rdslur80kcv8g3tép3ol.mysql.rds.
aliyuncs.com:3306/seq_test wnjg 0000 | jnkinseal | mysgl | O | 24 | 72 | 15
| 5000 | 0 | 1 | rdslur80kcv8g3tép3ol seqg test wnjg 0000 iiab |
10 | 10 |

| 1 | seq test 1487767780814rgkk | rdslur80kcv8g3tép3ol seq test wnjg 0001 iiab 2 | SEQ
TEST 1487767780814RGKKSEQ TEST WNJG 0001 RDS | jdbc:mysqgl://rdslur80kcv8g3tép3ol.mysql.rds.
aliyuncs.com:3306/seq_test wnjg 0001 | jnkinseal | mysql | O | 24 | 72 | 15

| 5000 | 0 | 1 | rdslur80kcv8g3tép3ol seqg test wnjg 0001 iiab |

> Document Version: 20220601 98

SQL Reference-SHOW

Cloud Native Distributed Database
PolarDB-X

10 | 10 |

\ 2 | seq test 148776778081l4rgkk | rdslur80kcv8g3tép3ol seqg test wnjg 0002 iiab 3 | SEQ
TEST 1487767780814RGKKSEQ TEST WNJG 0002 RDS | jdbc:mysqgl://rdslur80kcv8g3tép3ol.mysql.rds.
aliyuncs.com:3306/seq_test wnjg 0002 | jnkinseal | mysqgl | O | 24 | 72 | 15

| 5000 | 0 | 1 | rdslur80kcv8g3tép3ol seq test wnjg 0002 iiab |
10 | 10 |

\ 3 | seq test 1487767780814rgkk | rdslur80kcv8g3tép3ol seqg test wnjg 0003 iiab 4 | SEQ
TEST 1487767780814RGKKSEQ TEST WNJG 0003 RDS | jdbc:mysqgl://rdslur80kcv8g3tép3ol.mysqgl.rds.
aliyuncs.com:3306/seq_test wnjg 0003 | jnkinseaO | mysqgl | O | 24 | 72 | 15

| 5000 | O | 1 | rdslur80kcv8g3tép3ol seq test wnjg 0003 iiab |
10 | 10 |

\ 4 | seq test 1487767780814rgkk | rdslur80kcv8g3té6p3ol seq test wnjg 0004 iiab 5 | SEQ
TEST 1487767780814RGKKSEQ TEST WNJG 0004 RDS | jdbc:mysqgl://rdslur80kcv8g3tép3ol.mysqgl.rds.
aliyuncs.com:3306/seq test wnjg 0004 | jnkinseaO | mysqgl | O | 24 | 72 | 15

| 5000 | 0 | 1 | rdslur80kcv8g3tép3ol seq test wnjg 0004 iiab |
10 | 10 |

\ 5 | seq test 1487767780814rgkk | rdslur80kcv8g3tép3ol seq test wnjg 0005 iiab 6 | SEQ
TEST 1487767780814RGKKSEQ TEST WNJG 0005 RDS | jdbc:mysql://rdslur80kcv8g3tép3ol.mysql.rds.
aliyuncs.com:3306/seq_test wnjg 0005 | jnkinseal | mysgl | O | 24 | 72 | 15

| 5000 | 0 | 1 | rdslur80kcv8g3tép3ol seqg test wnjg 0005 iiab |
10 | 10 |

\ 6 | seq test 1487767780814rgkk | rdslur80kcv8g3té6p3ol seq test wnjg 0006 iiab 7 | SEQ
TEST 1487767780814RGKKSEQ TEST WNJG 0006 RDS | jdbc:mysqgl://rdslur80kcv8g3tép3ol.mysql.rds.
aliyuncs.com:3306/seq_test wnjg 0006 | jnkinseal | mysqgl | O | 24 | 72 | 15

| 5000 | 0 | 1 | rdslur80kcv8g3tép3ol seqg test wnjg 0006 iiab |
10 | 10 |

\ 7 | seq test 1487767780814rgkk | rdslur80kcv8g3tép3ol seq test wnjg 0007 iiab 8 | SEQ
TEST 1487767780814RGKKSEQ TEST WNJG 0007 RDS | jdbc:mysqgl://rdslur80kcv8g3tép3ol.mysqgl.rds.

aliyuncs.com:3306/seq_test wnjg 0007 | jnkinseaO | mysqgl | O | 24 | 72 | 15

| 5000 | O | 1 | rdslur80kcv8g3tép3ol seq test wnjg 0007 iiab |
10 | 10 |

+————— e et B e e +———
___ o
————————————————————————————————————— B e B e
e fom e o e
e e e o +

8 rows in set (0.01 sec)

Important columns:

SCHEMA: indicates the database name.

GROUP: indicates the database group name. After the databases are grouped, you can manage
multiple databases that store the same data in a group. For example, after you replicate the data of
a database to an ApsaraDB RDS for MySQL instance, you can manage the primary database and the
secondary database in a group. Database grouping enables read/write splitting and
primary/secondary switchovers.

URL: indicates the URL that is used to connect to an underlying ApsaraDB RDS for MySQL database.
TYPE: indicates the underlying storage type. Only ApsaraDB RDS for MySQL is supported.

READ_WEIGHT : indicates the read weight. If you want to reduce the number of read requests to the
primary ApsaraDB RDS for MySQL instance, you can use the read/write splitting feature to distribute
some read requests to the secondary ApsaraDB RDS for MySQL instances. T his offloads the read

99 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-SHOW
PolarDB-X

requests fromthe primary ApsaraDB RDS for MySQL instance. PolarDB-X 1.0 automatically identif ies
the read and write requests. Then, it sends the write requests to the primary ApsaraDB RDS for MySQL
instance and distributes the read requests to each ApsaraDB RDS for MySQL instance based on the
specified read weights.

e WRITE_WEIGHT : indicates the write weight.

SHOW NODE

You can execute this SQL statement to view the data of a physical database, such as the accumulative
number of read operations, the accumulative number of write operations, the accumulative read
weights, and the accumulative write weights.

mysgl> show node;

o= e o fom
—————— oy

| ID | NAME | MASTER READ COUNT | SLAVE READ
COUNT | MASTER READ PERCENT | SLAVE READ PERCENT |

o St e o fommm e
—————— oy

| 0 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0000 RDS | 12 |

0 | 100% | 0% |

|1 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0001 RDS | 0|

01 0% | 0% |

| 2 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0002 RDS | 0 |

0 0% | 0% |

| 3 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0003 RDS | 0 |

0 0% | 0% |

| 4 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0004 RDS | 0 |

0| 0% | 0% |

| 5 | SEQ_TEST 1487767780814RGKKSEQ TEST WNJG 0005 RDS | 0 |

0| 0% | 0% |

| 6 | SEQ_TEST 1487767780814RGKKSEQ TEST WNJG_0006 RDS | 0 |

0| 0% | 0% |

| 7 | SEQ TEST 1487767780814RGKKSEQ TEST WNJG 0007 RDS | 0 |

0 0% | 0% |

fo—— e o o
—————— e ettt

8 rows in set (0.01 sec)

Important columns:

e MASTER_COUNT : indicates the accumulative number of read and write queries processed by the
primary ApsaraDB RDS for MySQL instance.

e SLAVE_COUNT: indicates the accumulative number of read-only queries processed by the secondary
ApsaraDB RDS for MySQL instances.

e MASTER_PERCENT : indicates the actual percentage of the accumulative read and write queries
processed by the primary ApsaraDB RDS for MySQL instance. This is not the specified percentage.

e SLAVE_PERCENT: indicates the actual percentage of the accumulative read and write queries
processed by the secondary ApsaraDB RDS for MySQL instances. This is not the specified percentage.

> Document Version: 20220601 100

SOL Reference- SHOW Cloud Native Distributed Database
PolarDB-X

@ Note
e Read-only queries in transactions are sent to the primary ApsarabDB RDS for MySQL instance.
e The wmasTER PERCENT and s1ave PERCENT columns indicate the accumulative historical
data. If the ratio between the read weight and the write weight changes, these parameter
values do not immediately reflect the latest ratio. The latest ratio appears aftera long
period of time.

6.3. Slow SQL queries

T his topic describes how to execute the SHOW statements to identify slow SQL queries.

e SHOW [FULL] SLOW [WHERE expr] [limit expr]
e SHOW [FULL] PHYSICAL_SLOW [WHERE expr] [limit expr]
e CLEARSLOW

SHOW [FULL] SLOW [WHERE expr] [limit expr]

SQL queries that take more than 1s are slow SQL queries.Logical slow SQL queries are sent from an
application to a PolarDB-X 1.0 instance.

e sHOW SLOW : queries the top 100 logical slow SQL queries since a PolarDB-X 1.0 instance is started or
the last crear stow statement is executed.

@ Note The SHOW SLOW statement returns top 100 logical slow SQL queries. The returned
datais stored in PolarDB-X 1.0. If you restart the database instance or execute the ciLEAR stow

statement, the returned data is cleared.

e sHow FULL stow : queries all the logical slow SQL queries that are persistently stored in PolarDB-X
1.0 since the database instance is started. The system can retain a limited number of slow queries.
The upper limit varies based on the instance type. PolarDB-X 1.0 dynamically deletes the oldest slow
SQL gueries when the maximum number of slow queries is exceeded. If the specifications of the DRDS
instance include 4 cores and 4 GB memory, the system can retain a maximum of 10,000 slow SQL
queries. If the specifications of the DRDS instance include 8 cores and 8 GB memory, the system can
retain a maximum of 20,000 slow SQL queries. The slow SQL queries include logical slow SQL queries
and physical slow SQL queries. A similar rule applies to other instance specifications.

Sample code

mysql> show slow where execute time > 1000 limit 1;

fomm - T fom e fomm e fommmm +
| HOST | START TIME | EXECUTE TIME | AFFECT ROW | SQL |
fomm - Fomm fomm fomm e fommmm +
| 127.0.0.1 | 2016-03-16 13:02:57 | 2785 | 7 | show rule |
fomm - e Fomm e Fomm - Fomm +

1 row in set (0.02 sec)

Important columns:

e HOST: the IP address of the server from which the SQL statement is sent.

101 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-SHOW
PolarDB-X

e START_TIME: the time when the SQL statement starts to be executed.
e EXECUTE_TIME: the time that is spent executing the SQL statement.

e AFFECT_ROW: the number of affected rows for a DML statement or the number of returned records
for a data query language (DQL) statement.

SHOW [FULL] PHYSICAL_SLOW [WHERE expr] [limit expr]

SQL queries that take more than 1s are slow SQL queries.Physical slow SQL queries are sent from a
PolarDB-X 1.0 instance to an ApsaraDB RDS for MySQL instance.

® SHOW PHYSICAL SLOW : queries the top 100 physical slow SQL queries since a PolarDB-X 1.0 instance
is started orthe last crear stow statement is executed. Take note that the SHOW PHYSICAL SLOW
statement returns the top 100 physical slow SQL queries.The returned data is stored in PolarDB-X 1.0.
If you restart the database instance or execute the CLEAR SLOW statement, the returned data is
cleared.

® SHOW FULL PHYSICAL stow : queries all physical slow SQL queries that are persistently stored in
PolarDB-X 1.0 since the database instance is started. The system can retain a limited number of slow
queries. The upper limit varies based on the instance type. PolarDB-X 1.0 dynamically deletes the
oldest slow SQL queries when the maximum number of slow queries is exceeded. If the specifications
of the DRDS instance include 4 cores and 4 GB memory, the system can retain a maximum of 10,000
slow SQL queries. If the specifications of the DRDS instance include 8 cores and 8 GB memory, the
system can retain a maximum of 20,000 slow SQL queries. The slow SQL queries include logical slow
SQL gueries and physical slow SQL queries. A similar rule applies to other instance specifications.

Sample code

mysql> show physical slow;

| GROUP NAME | DBKEY NAME | START TIME | EXECUTE TIME |
SQL EXECUTE TIME | GETLOCK CONNECTION TIME | CREATE CONNECTION TIME | AFFECT ROW | SQL

o e e e e et ettt Fom - +
—————————————————— - ———————
————————— +

| TDDL5 00 GROUP | db218249098 sga zmf tddl5 00 3309 | 2016-03-16 13:05:38 | 1057 |
1011 | 0 | 0 | 1 | select sleep(l)
R et o fom Fo— +
—————————————————— et I
————————— +

1 row in set (0.01 sec)

Important columns:

o GROUP_NAME: the name of the group to which the database that executes the SQL statement
belongs.

e START_TIME: the time when the SQL statement starts to be executed.
e EXECUTE_TIME: the time that is spent executing the SQL statement.

e AFFECT_ROW: the number of affected rows for a DML statement or the number of returned records
fora DQL statement.

> Document Version: 20220601 102

Cloud Native Distributed Database

SQL Reference-SHOW
PolarDB-X

CLEAR SLOW

You can execute the CLEAR SLOW statement to clear the top 100 logical slow SQL queries and the top
100 physical slow SQL queries since a PolarDB-X 1.0 instance is started orthe last cLEAR stow
statement is executed.

Sample code

mysqgl> clear slow;

Query OK, 0 rows affected (0.00 sec)

@ Note Youcanexecutethe sHOw stow Or SHOW PHYSICAL stow Statement to querythe
top 100 slow SQL queries. If you do not execute the crLEar srow statement foralong period of
time, the system may return some invalid slow SQL queries that are optimized. Therefore, we
recommend that you execute crEAR stow afteryou optimize slow SQL queries. Then, you can
check whether the slow SQL queries are optimized after the systemruns for a period of time.

6.4. Statistics queries

This topic describes how to execute the SHOW statements to query real-time statistics.

e SHOW [FULL] STATS

e SHOW DB STATUS

e SHOW FULL DB STATUS [LIKE {tablename}]

e SHOW TABLE STATUS [LIKE 'pattern' | WHERE expr]

SHOW [FULL] STATS

You can execute this SQL statement to query the overall statistics. The statistics are instantaneous
values. Take note of this point:The query result of the sHow FuLL sTaTs statement varies based on
the PolarDB-X 1.0 instance versions.

Example:

103 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-SHOW
PolarDB-X

mysgl> show stats;

| QPS | RDS QPS | SLOW QPS | PHYSICAL SLOW QPS | ERROR PER SECOND | MERGE QUERY PER SECOND
| ACTIVE CONNECTIONS | RT(MS) | RDS RT(MS) | NET IN(KB/S) | NET OUT (KB/S) | THREAD RUNNING

1 row in set (0.01 sec)

mysgl> show full stats;

| QPS | RDS QPS | SLOW QPS | PHYSICAL SLOW QPS | ERROR PER SECOND | VIOLATION PER SECOND |
MERGE QUERY PER SECOND | ACTIVE CONNECTIONS | CONNECTION CREATE PER SECOND | RT(MS) | RDS R
T(MS) | NET IN(KB/S) | NET OUT (KB/S) | THREAD RUNNING | HINT USED PER SECOND | HINT USED CO
UNT | AGGREGATE QUERY PER SECOND | AGGREGATE QUERY COUNT | TEMP TABLE CREATE PER SECOND | T

EMP TABLE CREATE COUNT | MULTI DB JOIN PER SECOND | MULTI DB JOIN COUNT | CPU | FREEMEM |
FULLGCCOUNT | FULLGCTIME |

R oo pomm o e oo o +
———————————————————————— e et ittt S
——————— e E et
————— BTt Tt it
———————————————————————— ittt T s St
fomm fom +

| 1.63 | 1.68 | 0.03 | 0.03 | 0.02 | 0.00 |
0.00 | 6 | 0.01 | 157.13 | 51.14 | 134.
33 | 1.21 | 1| 0.00 | 54 |

0.00 | 663 | 0.00 | 512 |
0.00 | 516 | 0.09% | 6.96% | 76446 | 21326906 |

oo oo pomm e oo om o +
———————————————————————— e e ettt Rt e
——————— et S et ettt
————— BTt ettt e
———————————————————————— Tt et
B R pomm o +

1 row in set (0.01 sec)

Important columns:

e QPS: the number of queries per second (QPS) sent from an applicationto a PolarDB-X 1.0 instance.

> Document Version: 20220601 104

Cloud Native Distributed Database

SQL Reference-SHOW
PolarDB-X

The QPS is the logical QPS.

e RDS_QPS:the number of QPS sent from a PolarDB-X 1.0 instance to an ApsaraDB RDS for MySQL
instance.The QPS is the physical QPS.

e ERROR_PER_SECOND: the total number of errors that occur per second. These errors include SQL
syntax errors, primary key conflicts, system errors, and connectivity errors.

e VIOLATION_PER_SECOND: the number of primary key conflicts or unique key conflicts per second.

e MERGE_QUERY_PER_SECOND: the number of queries on tables per second. Sharding is enabled for
the DRDS instance.

e ACTIVE_CONNECTIONS: the number of active connections.
e CONNECTION_CREATE_PER_SECCOND: the number of connections that are created per second.

e RT(MS): the time between a sent SQL query and a response. The SQL query is sent from an
application toa PolarDB-X 1.0 instance. The response time (RT) is the logical RT.

e RDS_RT(MS):the time to respond to an SQL query that is sent from a PolarDB-X 1.0 instance to an
ApsaraDB RDS for MySQL instance. The RT is the physical RT.

e NET_IN(KB/S):the amount of inbound traffic of a PolarDB-X 1.0 instance per second.

e NET_OUT(KB/S):the amount of outbound traffic of a PolarDB-X 1.0 instance per second.
e THREAD_RUNNING: the number of threads that are running in a DRDS instance.
e HINT_USED_PER_SECOND: the number of SQL queries that contain hints per second.

e HINT_USED_COUNT : the total number of SQL queries that contain hints since a DRDS instance is
started.

o AGGREGATE_QUERY_PER_SECCOND: the number of aggregate queries per second.

o AGGREGATE_QUERY_COUNT: the total number of aggregate queries. This column shows the
accumulative historical data.

e TEMP_TABLE_CREATE_PER_SECCOND: the number of temporary tables that are created per
second.

e TEMP_TABLE_CREATE_COUNT: the total number of temporary tables that are created since a
DRDS instance is started.

e MULTI_DB_JOIN_PER_SECCOND: the number of cross-database JOIN queries per second.

e MULTI_DB_JOIN_COUNT : the total number of cross-database JOIN queries since a DRDS instance is
started.

SHOW DB STATUS

You can execute this SQL statement to query the storage and performance information about a
physical database in real time. The storage information is obtained from an ApsaraDB RDS for MySQL
systemtable. Therefore, the returned storage may be different fromthe actual storage.

Example:

105 > Document Version: 20220601

Cloud Native Distributed Database
PolarDB-X

SQL Reference-SHOW

mysqgl> show db status;

fom o T o o +-
——————— o

| ID | NAME | CONNECTION STRING | PHYSICAL DB | SIZE IN MB |
RATTIO | THREAD RUNNING |

o o o o o +-
——————— o

\ 1 | drds db 1516187088365daui | 100.100.64.1:59077 | TOTAL | 13.109375 |
100% | 3 |

\ 2 | drds db 1516187088365daui | 100.100.64.1:59077 | drds do xzip 0000 | 1.578125 |
12.04% | |

\ 3 | drds db 1516187088365daui | 100.100.64.1:59077 | drds db xzip 0001 | 1.4375
10.97% | |

\ 4 | drds db 1516187088365daui | 100.100.64.1:59077 | drds db xzip 0002 | 1.4375
10.97% | |

| 5 | drds_db 1516187088365daui | 100.100.64.1:59077 | drds_db_xzip 0003 | 1.4375
10.97% | |

| 6 | drds_do 1516187088365daui | 100.100.64.1:59077 | drds_db xzip 0004 | 1.734375
13.23% | |

| 7 | drds db 1516187088365daui | 100.100.64.1:59077 | drds _db xzip 0005 | 1.734375 |
13.23% | |

| 8 | drds db 1516187088365daui | 100.100.64.1:59077 | drds db xzip 0006 | 2.015625 |
15.38% | |

\ 9 | drds _do 1516187088365daui | 100.100.64.1:59077 | drds db xzip 0007 | 1.734375
13.23% | |

o o o o o +-
——————— o

Important columns:

NAME: the internal tag that represents aPolarDB-X 1.0 database.PolarDB-X 1.0 The value is different
fromthe name of the PolarDB-X 1.0 database.

CONNECTION_STRING: the information about a connection from a DRDS instance to a database
shard.

PHYSICAL_DB: the name of a database shard. The torar row showsthe total storage of allthe
database shards of a PolarDB-X 1.0 database.

SIZE_IN_MB: the used storage in a database shard. Unit: MB.

RATIO: the ratio of the data volume of a database shard to the total data volume of the PolarDB-X
1.0 database.

THREAD_RUNNING: the number of threads that are running on a physical database instance. The
value of the THREAD_RUNNING parameter is the same as that of the Threads_running parameter
returned by the sHow GLoBaL sTATUS statement in MySQL. For more information, see MySQL official
documentation.

SHOW FULL DB STATUS [LIKE {tablename}]

You can execute this SQL statement to query the storage and performance information about a table
in a physical database in real time. The storage information is obtained from an ApsaraDB RDS for
MySQL systemtable. Therefore, the returned storage may be different fromthe actual storage.

Example:

> Document Version: 20220601 106

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html

SOL Reference- SHOW Cloud Native Distributed Database

PolarDB-X

mysql> show full db status like hash tb;
e ommmossssscesssssssssosssos B temmmosssssssssessas B
R fem==m=== ffe===e=========== +
| ID | NAME | CONNECTION STRING | PHYSICAL DB | PHYSICAL TABL
E | SIZE IN MB | RATIO | THREAD RUNNING |
R e B femmeossessssssss=s= emmmmmmmmmm===
s=ffeessssoss=== Ye======= fe===m=========== +

1 | drds db 1516187088365daui | 100.100.64.1:59077 | TOTAL

19.875 | 100% | 3

\

\

\ 2 | drds_db 1516187088365daui | 100.100.64.1:59077
| 3.03125 | 15.25% | |

| 3 | drds_db 1516187088365daui | 100.100.64.1:59077
| 1.515625 | 7.63% |

| 4 | drds _db 1516187088365daui | 100.100.64.1:59077
| 1.515625 | 7.63% |

| 5 | drds db 1516187088365daui | 100.100.64.1:59077
\ 2.0 | 10.06% |

| 6 | drds db 1516187088365daui | 100.100.64.1:59077
| 1.515625 | 7.63% |

| 7 | drds db 1516187088365daui | 100.100.64.1:59077
\ 0.484375 | 2.44% | |

\ 8 | drds db 1516187088365daui | 100.100.64.1:59077
| 3.03125 | 15.25% | |

\ 9 | drds db 1516187088365daui | 100.100.64.1:59077
\ 1.515625 | 7.63% |

\ 10 | drds_db 1516187088365daui | 100.100.64.1:59077
| 1.515625 | 7.63% |

\ 11 | drds _db 1516187088365daui | 100.100.64.1:59077
| 1.953125 | 9.83% |

\ 12 | drds _db 1516187088365daui | 100.100.64.1:59077
\ 1.515625 | 7.63% |
\

\

\

[

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

drds db xzip 0000 | TOTAL

drds db xzip 0000 | hash tb 00

drds db xzip 0000 | hash tb 01

drds db xzip 0001 | TOTAL

drds_dob xzip 0001 | hash tb 02

drds db xzip 0001 | hash tb 03

drds_db xzip 0002 | TOTAL

drds_db xzip 0002 | hash tb 04

drds db xzip 0002 | hash tb 05

drds db xzip 0003 | TOTAL

drds db xzip 0003 | hash tb 06

13 | drds db 1516187088365daui | 100.100.64.1:59077
0.4375 | 2.2% | |
14 | drds db 1516187088365daui | 100.100.64.1:59077
3.03125 | 15.25% | |
15 | drds db 1516187088365daui | 100.100.64.1:59077
1.515625 | 7.63% |
16 | drds db 1516187088365daui | 100.100.64.1:59077
1.515625 | 7.63% |
17 | drds db 1516187088365daui | 100.100.64.1:59077
1.921875 | 9.67% |
18 | drds db 1516187088365daui | 100.100.64.1:59077
1.515625 | 7.63% |
19 | drds _db 1516187088365daui | 100.100.64.1:59077
0.40625 | 2.04% |
20 | drds_db 1516187088365daui | 100.100.64.1:59077
3.03125 | 15.25% | |
21 | drds_db 1516187088365daui | 100.100.64.1:59077
1.515625 | 7.63% |
22 | drds_db 1516187088365daui | 100.100.64.1:59077
1.515625 | 7.63% |
23 | drds_db 1516187088365daui | 100.100.64.1:59077
1.875 | 9.43% | |
24 | drds db 1516187088365daui | 100.100.64.1:59077

drds db xzip 0003 | hash tb 07

drds db xzip 0004 | TOTAL

drds db xzip 0004 | hash tb 08

drds_db _xzip 0004 | hash tb 09

drds db xzip 0005 | TOTAL

drds_db xzip 0005 | hash tb 11

drds db xzip 0005 | hash tb 10

drds db xzip 0006 | TOTAL

drds db xzip 0006 | hash tb 12

drds db xzip 0006 | hash tb 13

drds db xzip 0007 | TOTAL

drds db xzip 0007 | hash tb 14

107 > Document Version: 20220601

Cloud Native Distributed Database
PolarDB-X

SQL Reference-SHOW

1.515625 | 7.63% | |
25 | drds db 1516187088365daui | 100.100.64.1:59077 | drds db xzip 0007 | hash tb 15
0.359375 | 1.81% | |

Important columns:

NAME: the internal tag that represents aPolarDB-X 1.0 database. PolarDB-X 1.0 The value is different
fromthe name of the PolarDB-X 1.0 database.

CONNECTION_STRING: the information about a connection from a DRDS instance to a database

shard.

PHYSICAL_DB: the name of a database shard. If you use the LIKE keyword in a statement, the ToTAL
row shows the storage of the database shard. If you do not use the LIKE keyword in a statement,

the TOTAL row shows the total storage of all the database shards.

PHYSICAL_TABLE: the name of atable shard in a database shard. If you use the LIKE keyword in a

statement, the Torar row shows the storage of the table shard. if you do not use the LIKE

keyword in a statement, the TOTAL row shows the total storage of all the table shards.

SIZE_IN_MB: the used storage in a table shard. Unit: MB.

RATIO: the ratio of the data volume of atable shard to the total data volume of all the returned
table shards.

THREAD_RUNNING: the number of threads that are running on a physical database. The value of
the THREAD_RUNNING parameter is the same as that of the Threads_running parameter returned by
the sHow GLOBAL sTATUS statement in MySQL. For more information, see MySQL official
documentation.

SHOW TABLE STATUS [LIKE 'pattern' | WHERE expr]

You can execute this SQL statement to query information about a table. You can use this statement to
aggregate the data of all underlying physical table shards.

Example:

> Document Version: 20220601 108

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html

SOL Reference- SHOW Cloud Native Distributed Database

PolarDB-X
mysql> show table status like 'multi db multi tbl';
e fomm fomm B to———— Fomm fomm
Fom Fom - tom o e e L e +-——-
————————— st
| NAME | ENGINE | VERSION | ROW FORMAT | ROWS | AVG ROW LENGTH | DATA LENGTH
| MAX DATA LENGTH | INDEX LENGTH | DATA FREE | AUTO INCREMENT | CREATE TIME | UPD
ATE TIME | CHECK TIME | COLLATION | CHECKSUM | CREATE OPTIONS | COMMENT |
o fomm fomm fom e tomm—— fomm e fomm e
R Fomm - R o e e o
————————— o
| multi db multi tbl | InnoDB | 10 | Compact | 2 | 16384 | 16384
| 0 | 16384 | 0 | 100000 | 2017-03-27 17:43:57.0 | NUL
L | NULL | utf8 general ci | NULL \ |
B e B e e Fom o Fom +o———— e Fom e
fom Fomm fomm - o e B +o——-
————————— i e e R 5

1 row in set (0.03 sec)

Important columns:

e NAME: the name of atable.
e ENGINE: the storage engine for a table.
e VERSION: the version of atable storage engine.

e ROW_FORMAT: the format of the rows in a table. Sample values: Dynamic, Fixed, and Compressed.
The Dynamic value specifies that the length of a row is variable, for example, a row of the VARCHAR
or BLOB type. The Fixed value specifies that the length of a row is constant, for example, a row of
the CHAR or INTEGER type.

e ROWS: the number of rows in atable.

e AVG_ROW_LENGTH: the average number of bytes in each row.

e DATA_LENGTH: the data volume of afulltable. Unit: byte.

o MAX_DATA_LENGTH: the maximum volume of data that can be stored in atable.
e INDEX_LENGTH: the used disk storage by indexes.

e CREATE_TIME: the time when a table was created.

e UPDATE_TIME: the time when a table was last updated.

o COLLATION: the default character set and collation of atable.

e CREATE_OPTIONS: the other options specified when you created a table.

You can use the SCAN hint that is provided by PolarDB-X 1.0 in the SHOW TABLE STATUS statement.
This way, you can query the data volume of each physical table shard. For more information, see Hints.

mysqgl> /!TDDL:SCAN='multi db multi tbl'*/show table status like 'multi db multi tbl%';

B Fom Fomm - Fom Fo———— o e et
—— Fom Fo— B Fom +———
————————— BT T e e
—-—+

| Name | Engine | Version | Row format | Rows | Avg row length | Data lengt
h | Max data length | Index length | Data free | Auto increment | Create time | Upd
ate time | Check time | Collation | Checksum | Create options | Comment | Block forma
t |

109 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/71270.htm#multiTask2614

Cloud Native Distributed Database

SQL Reference- SHOW

PolarDB-X
o e R o R Fom Fom—
e e e oo e ===
————————— e e st e et e e e
==t
| multi db multi tbl 1 | InnoDB | 10 | Compact 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original
\
| multi db multi tbl 0 | InnoDB | 10 | Compact 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original
\
| multi db multi tbl 1 | InnoDB | 10 | Compact 01 01 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original
\
| multi db multi tbl 0 | InnoDB | 10 | Compact 1 | 16384 | 1638
4 | 0 | 16384 | 0 | 2 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original
\
| multi db multi tbl 1 | InnoDB | 10 | Compact 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original
\
| multi db multi tbl 0 | InnoDB | 10 | Compact 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original
\
| multi db multi tbl 1 | InnoDB | 10 | Compact 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original
\
| multi db multi tbl 0 | InnoDB | 10 | Compact 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original
\
| multi db multi tbl 1 | InnoDB | 10 | Compact 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original
\
| multi db multi tbl 0 | InnoDB | 10 | Compact 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original
\
| multi db multi tbl 1 | InnoDB | 10 | Compact 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original
\
| multi db multi tbl O | InnoDB | 10 | Compact 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original
\
| multi db multi tbl 1 | InnoDB | 10 | Compact 01 01 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL

> Document Version: 20220601

110

SOL Reference- SHOW Cloud Native Distributed Database

PolarDB-X

L | NULL | utf8 general ci | NULL | | Original

\

| multi db multi tbl 0 | InnoDB | 10 | Compact 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original

\

| multi db multi tbl 1 | InnoDB | 10 | Compact 0 | 0 | 1638
4 | 0 | 16384 | 0 | 1 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original

\

| multi db multi tbl 0 | InnoDB | 10 | Compact 1 16384 | 1638
4 | 0 | 16384 | 0 | 3 | 2017-03-27 17:43:57 | NUL
L | NULL | utf8 general ci | NULL | | | Original

\

o fomm fomm o to———— fomm fomm -
e o Fom - o o +-——
————————— e et B

16 rows in set (0.04 sec)

6.5. SHOW PROCESSLIST

This topic describes how to use the SHOW PROCESSLIST and SHOW PHYSICAL_PROCESSLIST statements.

SHOW PROCESSLIST

You can execute the following statement to view the connections in PolarDB-X 1.0 and the SQL
statements being executed.

e Syntax

SHOW PROCESSLIST

e Example

mysgl> SHOW PROCESSLIST\G
ID: 1971050
USER: admin
HOST: 111.111.111.111:4303
DB: drds test
COMMAND: Query
TIME: O
STATE:
INFO: show processlist

1 row in set (0.01 sec)

Field Description
ID The ID of the connection. The value is a long-type number.
USER The user name used to establish this connection.

111 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference- SHOW

PolarDB-X
Field Description
HOST The IP address and port number of the host that establishes the
connection.
DB The name of the database accessed by this connection.
This field can be set to the either of the following values:
COMMAND © Query: The current connection is executing an SQL statement.
o Sleep: The current connection is idle.
It is the duration when the connection is in the current state.
o When the value of COMMAND is Query, this field indicates how long
TIME the SQL statement has been executed on the connection.
o When the value of COMMAND is Sleep, this field indicates how long
the connection has been idle.
STATE This field is meaningless and is constantly empty.

o When the value of COMMAND is Query, this field indicates the
content of the SQL statement that is being executed on the
connection.

@ Note If the FULL parameter is not specified, SHOW
PROCESSLIST returns the first 30 characters of each SQL
statement that is being executed. If the FULL parameter is

INFO specified, SHOW PROCESSLIST returns the first 1,000 characters
of each SQL statement that is being executed.

o If the value of the COMMAND is Sleep, this field is meaningless and
is empty.

SHOW PHYSICAL_PROCESSLIST

You can execute the following statement to view information about all physical SQL statements that
are being executed.

e Syntax

SHOW PHYSICAL PROCESSLIST

@ Note When an SQL statement in the returned results of the szow PHYSICAL PROCESSLIST
statement is excessively long, the SQL statement is truncated. In this case, you can execute the
SHOW FULL PHYSICAL PROCESSLIST Statement to query the complete SQL statement.

e Example

> Document Version: 20220601 112

Cloud Native Distributed Database

SQL Reference-SHOW
PolarDB-X

mysgl> SHOW PHYSICAL_PROCESSLIST\G
khkhkkkhkhkhkkhkhkkhkhkhkkhkrkhkhkhkkhkrkhkhkhkkhkxkxkx l_ row khkhkkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkkxk
ID: 0-0-521414
USER: tddl5
DB: tddl5 00
COMMAND: Query
TIME: O
STATE: init
INFO: show processlist
KAk Ak hhkhhkhkhkhkhkhkhkrkhkrxhkhkrkhkrxkkxkxk 2‘ Trow Kk Ak hkhkh Ak khkhkhkhkhkhkhhkhkhkhkhhkxkkxk
ID: 0-0-521570
USER: tddl5
DB: tddl5 00
COMMAND: Query
TIME: O
STATE: User sleep
INFO: /*DRDS /88.88.88.88/b67a0e4d8800000/ */ select sleep (1000)

2 rows in set (0.01 sec)

@ Note

o The meaning of each column in the returned results is equivalent to that of the saow PrO
CESSLIST statement in MySQL. For more information, see SHOW PROCESSLIST Syntax.

o Different from ApsaraDB RDS for MySQL, the PolarDB-X 1.0 instance returns a string
instead of a number inthe ID column of a physical connection.

6.6. SHOW GLOBAL INDEX

PolarDB-X 1.0 supports global secondary indexes (GSIs). T his topic describes how to use the SHOW
GLOBAL INDEX statement to view the GSls that have been created or are being created.

Syntax

SHOW GLOBAL {INDEX | INDEXES} [FROM [schema name.]tbl name]

schema_name and tbl name are optional and are used to filter table names or view table
information in other databases.

show global index; # Queries the GSIs of all tables in the current database.
show global index from xxx tb; # Queries the GSI of xxx tb in the current database.
show global index from xxx db.xxx tb; # Queries the GSI of xxx tb in xxx db. This is a cros

s-database query.

Examples
mysgl> show global index;
B e femmmmmmemessssssssosas B fommmmmmsmesssssssssssssssssosss +
____________________________ +__

113 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.5/en/show-processlist.html

Cloud Native Distributed Database SQL Reference- SHOW

PolarDB-X
———————————————————— R et B e e e e L
s e et e L e e +
| SCHEMA | TABLE | NON UNIQUE | KEY NAME
INDEX NAMES | COVERING NAMES

| INDEX TYPE | DB PARTITION KEY | DB PARTITION POLICY | DB PARTITION COUNT | TB PARTITION K
EY | TB_PARTITION POLICY | TB PARTITION COUNT | STATUS |

femmmmessoosssssoessas R femmmmosmsmmo emmmessssssessssssessssssosssos +
____________________________ o
———————————————————— R e
e R femmmemmeemseesss=sos e +

| XXXX DRDS LOCAL APP | full gsi ddl renamed | 1 | g i c ddl c blob long renamed |
c blob long | id, c bit 1, c bit 8, c bit 16, c bit 32, c bit 64, c tinyint

1, c_tinyint 1 un, c_tinyint 4, c tinyint 4 un, c tinyint 8, c tinyint 8 un, c smallint 16,
c smallint 16 un, c mediumint 1, c mediumint 24, c mediumint 24 un, c int 1, c int 32, c in
t 32 un, c bigint 1, c bigint 64, c bigint 64 un, c decimal, c _decimal pr, c float, c_float
_pr, c float un, c double, c double pr, c double un, c date, c datetime, c datetime 3, c da
tetime 6, c timestamp 1, c timestamp 3, c time, c time 1, c time 3, c time 6, c year, c yea
r 4, c char, c varchar, c binary, c varbinary, c blob tiny, c blob medium, c_text tiny, c t
ext, c text medium, c text long, c enum, c _set, c json, c point, c linestring, c_polygon, c

multipoint, ¢ multilinestring, c multipolygon, c geometrycollection, c geometory

| NULL | ¢ blob long | HASH | 4 | ¢ blob long

| HASH | 3 | PUBLIC \

| XXXX DRDS LOCAL APP | full gsi ddl renamed | 1 | g i c ddl ¢ mediumint 1

c mediumint 1 | id, c bit 1, c bit 8, c bit 16, c bit 32, c bit 64, c tinyint

1, c_tinyint 1 un, c_tinyint 4, c tinyint 4 un, c tinyint 8, c tinyint 8 un, c smallint 16,
c smallint 16 un, c mediumint 24, c mediumint 24 un, c int 1, c int 32, c int 32 un, c bigi
nt 1, c bigint 64, c bigint 64 un, c decimal, c _decimal pr, c_ float, c_float pr, c_ float un
, Cc double, c double pr, c double un, c date, c datetime, c datetime 3, c datetime 6, c tim
estamp 1, c timestamp 3, c time, c time 1, c time 3, c time 6, c_year, c_year 4, c _char, c_
varchar, c binary, c varbinary, c blob tiny, c blob medium, c blob long, c text tiny, c tex
t, c _text medium, c text long, c _enum, c_set, c_json, c _point, c_linestring, c_polygon, c m

ultipoint, ¢ multilinestring, ¢ multipolygon, c geometrycollection, c geometory, c smallint

1, c timestamp 6 | NULL | ¢ mediumint 1 | HASH | 4
| ¢ mediumint 1 | HASH | 3 | PUBLIC |
| XXXX DRDS LOCAL APP | full gsi ddl renamed | 1 | g i c ddl ¢ smallint 16 un |

c smallint 16 un, c time 1 | id, c bit 1, c bit 8, c bit 16, c bit 32, c bit 64, c tinyint
1, ¢ tinyint 1 un, c tinyint 4, c tinyint 4 un, c tinyint 8, c tinyint 8 un, c smallint 16,
c mediumint 1, c mediumint 24, c mediumint 24 un, c int 1, c int 32, c int 32 un, c bigint
1, c bigint 64, c bigint 64 un, c decimal, c decimal pr, c float, c float pr, c float un, c
_double, c double pr, c double un, c date, c datetime, c datetime 3, c datetime 6, c timest

amn 1 ~ timeatamn R ~ Fima o Fime R ~ time A ~ wvear o~ vear 4 ~ rhar o~ wvarchar o~ hi

> Document Version: 20220601 114

SQL Reference-SHOW

Cloud Native Distributed Database

PolarDB-X

O I 7 A I S RO I A S S A R Ty PR L T Oy

nary, c varbinary, c blob tiny, c blob medium, c blob long, c text tiny, c text, c text med
ium, c_text long, c enum, c set, c json, c point, c linestring, c polygon, c multipoint, c_

multilinestring, ¢ multipolygon, ¢ geometrycollection, c geometory

| NULL | ¢ smallint 16 un | HASH | 4 | ¢ smallint 16
un | HASH |3 | PUBLIC |

| XXXX DRDS LOCAL APP | t order |0 | g i seller

seller id | id, order id

| HASH | seller id | HASH | 4 | seller id

| HASH | 2 | CREATING |

femmmmessoossessosssas e e Femmmossssssssssssssssssessossss +
____________________________ O,
———————————————————— R R
R ffemmmemmsessesssossses femmmmssssssossosssos e +

4 rows in set (0.01 sec)

List of column names

Column name Description
SCHEMA The name of the database.
TABLE The name of the table.

Indicates whether the index is a unique GSI. Valid values:
NON_UNIQUE ® 1:acommon GSI

® 0: aunique GSI

KEY_NAME The name of the index.
INDEX_NAMES The index column.
COVERING_NAMES The covering column.
The index type. Valid values:
® NULL: not specified
INDEX_TYPE
- e BTREE
e HASH

DB_PARTITION_KEY

DB_PARTITION_POLICY

DB_PARTITION_COUNT

The database shard key.

The database sharding function.

The number of database shards.

> Document Version: 20220601

Cloud Native Distributed Database

SQL Reference- SHOW

PolarDB-X
Column name Description
TB_PARTITION_KEY The table shard key.
TB_PARTITION_POLICY The table sharding function.
TB_PARTITION_COUNT The number of table shards.
The current status of the index. Valid values:
® (CREATING
® DELETE_ONLY
STATUS ® WRITE_ONLY
® WRITE_REORG
® PUBLIC
® ABSENT

6.7. SHOW INDEX

This topic describes how to use the SHOW INDEX statement to view local secondary indexes (LSIs) and

global secondary indexes (GSls) of PolarDB-X 1.0 tables.

Syntax

SHOW {INDEX | INDEXES | KEYS}
{FROM | IN} tbl name
[{FROM | IN} db name]
[WHERE expr]

Examples

> Document Version: 20220601

116

SQL Reference-SHOW

Cloud Native Distributed Database

PolarDB-X
mysql> show index from t order;
o ——— e e fom o Fo—— o
——————— B B et e e i Tt
| TABLE | NON_UNIQUE | KEY NAME | SEQ IN INDEX | COLUMN NAME | COLLATION | CARDINALIT
Y | SUB PART | PACKED | NULL | INDEX TYPE | COMMENT | INDEX COMMENT |
o Fom e e ettt o i e e Fom o
——————— e
| t order | 0 | PRIMARY | 1 | id | A
0 | NULL | NULL | | BTREE | |
| t order | 1 | 1 i order | 1 | order id | A
0 | NULL | NULL | YES | BTREE | |
| t order | 0 | g i buyer | 1 | buyer id | NULL
0 | NULL | NULL | YES | GLOBAL | INDEX | |
| t order | 1 | g i buyer | 2 | id | NULL
0 | NULL | NULL | | GLOBAL | COVERING | |
| t order | 1 | g i buyer | 3 | order id | NULL
0 | NULL | NULL | YES | GLOBAL | COVERING | |
| t order | 1 | g i buyer | 4 | order snapshot | NULL
0 | NULL | NULL | YES | GLOBAL | COVERING | |
o ——— e fo—— o ——— o fo—m o
——————— B e e e R
6 rows in set (0.01 sec)
List of column names
Column name Description

TABLE

NON_UNIQUE

KEY_NAME

SEQ_IN_INDEX

COLUMN_NAME

COLLATION

CARDINALITY

SUB_PART

The name of the table.

Indicates whether the index is a unique GSI. Valid values:

® 7:acommon GSI

® (: a unique GSI

The name of the index.

The sequence number of the index column in the index. The value

starts from 1.
The name of the index column.

The sorting order. Valid values:
® A: ascending order
® D: descending order

e NULL: not sorted

The number of estimated unique values.

The prefix of the index. NULL indicates that the prefix of the index is

the entire column.

117

> Document Version: 20220601

Cloud Native Distributed Database SQL Reference- SHOW

PolarDB-X
Column name Description
The information about field compression. NULL indicates no
PACKED .
compression.
NULL Indicates whether the column can be empty.
The index type. Valid values:
® NULL: not specified
INDEX_TYPE
- ® BTREE
e HASH
The index information. Valid values:
® NULL: local index
COMMENT
® |NDEX: the index column of the GSI
® COVERING: the covering column of the GSI
INDEX_COMMENT Other information of the index.

6.8. SHOW METADATA LOCK

This topic describes how to use the SHOW METADATA LOCK statement in PolarDB-X 1.0 to query a
transaction that holds a metadata lock.

Overview

When PolarDB-X 1.0 creates a global secondary index (GSI), it uses a built-in metadata lockto ensure
transaction and data consistency. It usually takes a long time to create a GSIfor an existing table. If a
transaction that holds a metadata lock is running when a GSl is being created, you cannot make
changes to the schema before the transaction is completed. In this case, you can use the SHOW
METADATA LOCK statement to query the transaction that holds a metadata lock and the
corresponding SQL statement that is being executed. This allows you to troubleshoot the long-running
transaction that is blocking schema changes.

@ Note PolarDB-X 1.0 provides the online schema change feature. During the creation of a GS,
the metadata version are switched four times. Two of these switches obtain the write lock of the
metadata lock and are immediately unlocked after the metadata is loaded. The write lock is not
held for the rest of the time.

Syntax

SHOW METADATA {LOCK | LOCKS} [schema name[.table name]]

schema_name and tbl name are optional and are used to filter the displayed database names or
table names.

> Document Version: 20220601 118

Cloud Native Distributed Database

SQL Reference-SHOW
PolarDB-X

show metadata lock; ## Displays all the connections that hold a metadata lock on the node.
show metadata lock xxx db; # Displays all the connections that hold a metadata lock in xxx
db on the node.

show metadata lock xxx db.tb name; # Displays all the connections that hold a metadata lock

in tb name of xxx db on the node.

Examples
mysgl> show metadata lock;
femmmmmmee e e e eees e e e
——tm e o Fom
__________________________ +
| CONN ID | TRX ID | TRACE ID | SCHEMA | TABLE | TYPE
| DURATION | VALIDATE | FRONTEND | SQL
\
- F——— e e t—— F—— f—————
e Fom B e R e
__________________________ +
| 4 | 0 | £88cf71cbc00001 | XXXX DRDS LOCAL APP | full gsi ddl | MDL SHARED WRIT
E | MDL TRANSACTION | 1 | XXXX DRDS LOCAL APP@127.0.0.1:54788 | insert into “full gs
i ddl® (id) VALUE (null); |
| 5 | 0 | £88c£f71cbc00000 | XXXX DRDS LOCAL APP | full gsi ddl | MDL SHARED WRIT
E | MDL TRANSACTION | 1 | XXXX DRDS_LOCAL APP@127.0.0.1:54789 | insert into "full gs
i ddl® (id) VALUE (null); |
e e e ———————— e e e ——————
et Fom B e o
__________________________ +

2 rows in set (0.00 sec)

@ Note This statement is only used to display connections that already hold a metadata lock.
It cannot be used to display connections that wait for a metadata lock.

List of column names

Column name Description

CONN_ID The ID of the connection that holds the metadata lock.

TRX_ID The ID of the transaction that holds the metadata lock.
TRACE_ID The trace ID of the SQL statement that holds the metadata lock.
SCHEMA The name of the database.

TABLE The name of the table.

TYPE The type of the metadata lock that is held.

DURATION The period for which the metadata lock is held.

VALIDATE Indicates whether the metadata lock is released.

119 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference- SHOW

PolarDB-X
Column name Description
FRONTEND The frontend connection information.
SQL The SQL statement that holds the metadata lock.

> Document Version: 20220601 120

Cloud Native Distributed Database

SQL Reference- DAL
PolarDB-X

/.DAL
7.1. Manage accounts and permissions

The method to manage accounts and permissions in Distributed Relational Database Service (PolarDB-X
1.0) is the same as that in MySQL. DRDS supports statements such as GRANT , REVOKE , SHOW
GRANTS , CREATE USER , DROP USER , and SET PASSWORD

Accounts

Account description

An account name consists of a username and a hostname. The format is username@'host' .If two

accounts have the same username but different hostnames, the accounts are each considered to be
different accounts. Forexample, 1i1ye30.9.73.96 and 1i1y@30.9.73.100 aretwo different
accounts. The passwords and permissions of the two accounts may be different.

Aftera database is created in the PolarDB-X 1.0 console, the system automatically creates two system
accounts for the database: an administrator account and a read-only account. These accounts are
built-in accounts. You cannot delete them or modify their permissions.

e The administrator account name is the same as the database name. For example, if the database
nameis easydb ,the administrator account nameis also easydb

e The read-only account name is the database name suffixed with _ro . Forexample, if the
database nameis easydb ,the read-only account nameis easydo RO

For example, two databases are created: dreamdo and andordo .The dreamdo database hasan
administrator account named dreamdo and a read-only account named dreamdb RO .The
andordb database has an administrator account named andordo and a read-only account named
andordb RO

@ Note Accounts created by executing CREATE USER statements in PolarDB-X 1.0 exist only in
PolarDB-X 1.0. These accounts cannot be used in ApsaraDB RDS, so they are not synchronized to
ApsaraDB RDS.

Account permissions

e An administrator account has full permissions.

e Only administrator accounts can be used to create other accounts and grant permissions to the
created accounts.

e An administrator account is bound to a database and does not have permissions on other databases.
The administrator account can only be used to access the database that is bound to the account.
You cannot use the administrator account to grant permissions on other databases to other
accounts. For example, the easydb administrator account can be used to connect only to the easydb
database and can grant permissions only on the easydb database or tables in the easydb database
to other accounts.

e A read-only account has only the SELECT permission.
Naming conventions

e An account name is case-sensitive.

e Anaccount name must be 4 to 20 characters in length.

121 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference- DAL
PolarDB-X

e An account name must start with a letter.

e An account name can contain letters and digits.

Password complexity requirements

e A password must be 6 to 20 characters in length.

e A password can contain letters, digits, and the following special characters: @#$%"&+=
Hostname matching rules

e A hostname must be a value that represents one or more IP addresses. It can contain underscores (
)and wildcards (¢). Anunderscore (_) represents a characterand a wildcard (¢)represents
zero or more characters. Hostnames that contain wildcards must be enclosed in single quotation
marks ('),such as lily@'30.9.%.%"' and david@'%'.
e [f two accounts in DRDS match the logon userin a host, the account whose hostname contains the

longer prefix is the logon account. The name prefix of a host is the IP segment that precedes the
wildcards in the IP address of the host. For example, if the davider30.9.12 .xxx' account and the

david@'30.9.1%.234' account exist in DRDS and the david username is used to log onto the 30.
9.127.xxx host, the logon account is david@'30.9.12 .xxx'

e After Virtual Private Cloud (VPC) is activated, the IP addresses of hosts change.

) Notice To prevent invalid account and permission configurations, we recommend that you
set the hostname to '%' to match all IP addresses.

Permissions

Support for permissions of different levels

e Database-level permissions are supported.

Table-level permissions are supported.

Global permissions are not supported.

Column-level permissions are not supported.

e Subprogram-level permissions are not supported.
Permission description

Eight basic table permissions are supported: CREATE, DROP, ALTER, INDEX, INSERT, DELETE, UPDATE, and
SELECT.

e To execute TRUNCATE statements on a table, you must have the DROP permission on the table.

e To execute REPLACE statements on a table, you must have the INSERT and DELETE permissions on the
table.

e To execute CREATE INDEX and DROP INDEX statements, you must have the INDEX permission on the
table.

e To execute CREATE SEQUENCE statements, you must have the database-level CREATE permission.
e To execute DROP SEQUENCE statements, you must have the database-level DROP permission.
e To execute ALTER SEQUENCE statements, you must have the database-level ALTER permission.

e To execute INSERT ON DUPLICATE UPDATE statements on a table, you must have the INSERT and
UPDATE permissions on the table.

Permission rules

> Document Version: 20220601 122

Cloud Native Distributed Database

SQL Reference- DAL
PolarDB-X

e Permissions are bound to an account (username@'host') instead of a username (username).

e \When you grant permissions on a table to an account, the system checks whether the table exists. If
the table does not exist, an error is reported.

e The following database account permissions are listed by level in descending order: global
permissions, database-level permissions, table-level permissions, and column-level permissions. Global
permissions are not supported.

e A granted higher-level permission overwrites lower-level permissions. If you remove the higher-level
permission, the lower-level permissions are also removed.

e The USAGE permission is not supported.
Grant permissions on multiple databases to an account

For PolarDB-X 1.0 V5.3.6 or later, the following methods can be used to grant a single account
permissions on multiple databases:

e Inthe Alibaba Cloud PolarDB-X 1.0 console, go to the account management page, create an
account, and then grant the required permissions to the account. We recommend that you use this
method.

e Execute the CREATE USER statement to create an account, and then execute the GRANT statement
to grant the required permissions to the account.

@ Note If you want to execute SQL statements, pay attention to the following limits:
i. Only administrator accounts can be used to create users and grant them permissions.

ii. An administrator account can only grant permissions on its bound database to other
accounts. For example, you create an account named new_user@'%' by using the
administrator account of Database A and want to grant the permissions on Database A and
Database Bto new_user. To meet this demand, you must use the administrator account of
Database A to grant the permissions on Database A to new_user and use the administrator
account of Database B to grant the permissions on Database B to new_user.

Use an account granted permissions on multiple databases

DRDS V5.3.6 or later allows you to grant a single account the permissions on multiple databases. For
example, if an account named new_user@'%' has the SELECT and INSERT permissions on Database A
and Database B, pay attention to the following limits when you use this account:

e [f youlog onto Database A by using the account and you want to query data in Database B, execute
the wuse B; SELECT * FROM table in B; statement instead of the SELECT * FROM B.table in B;
statement. This is because cross-database queries are not supported.

e If youlog onto Database A by using the account and you want to write data to Database B, execute

the wuse B; INSERT INTO table in B VALUES ('value'); Statement,instead of the INSERT INTO B
.table_in B VALUES ('value'); Statement. Thisis because cross-database data insertion is not
supported.

e The same limits also apply to other SQL statements.

Related statements

CREATE USER used to create an account

e Syntax

123 > Document Version: 20220601

Cloud Native Distributed Database SOL Reference- DAL
PolarDB-X

CREATE USER user specification [, user specification]
user_ specification: user [auth option]
auth option: IDENTIFIED BY 'auth#string'

e Examples

o Create an account named lily@30.9.73.96. The password of the account is 123456. lily is the
username. The account can be used to log on to your database only fromthe host whose IP
address is 30.9.73.96.

CREATE USER 1ily@30.9.73.96 IDENTIFIED BY '123456';

o Create an account named david@'%'. T his account has no password. david is the username. The
account can be used to log onto your database from all hosts.

CREATE USER david@'$';

DROP USER used to delete an account
e Syntax

DROP USER user [, user]

e Examples

Delete the lily@30.9.73.96 account.

DROP USER 1i1y@30.9.73.96;

SET PASSWORD used to change the password of an account

e Syntax

SET PASSWORD FOR user = password option
password option: {

PASSWORD ('auth string')
}

e Examples
Change the password of the lily@30.9.73.96 account to 123456.

SET PASSWORD FOR 1ily@30.9.73.96 = PASSWORD ('123456")

GRANT used to grant permissions to an account

e Syntax

> Document Version: 20220601 124

SOL Reference- DAL Cloud Native Distributed Database
PolarDB-X

GRANT
priv _typel[, priv typel
ON priv level
TO user specification [, user specification]
[WITH GRANT OPTION]
priv_level: {
| db name.*
| db name.tbl name
| tbl name
}
user specification:
user [auth option]
auth option: {
IDENTIFIED BY 'auth#string'

@ Note If the account specified in the GRANT statement does not exist and no IDENTIFIED BY
clause is used, an error message is returned. The error message indicates that the account does
not exist. If the account specified in the GRANT statement does not exist but the IDENTIFIED BY
clause is used, the specified account is created, and the permissions are granted.

e Examples

o Create an account named david@'%' for the easydb database. david is the username. The account
can be used to log onto the easydb database from all hosts and has full permissions on the
easydb database.

#Method 1: Execute a statement to create an account, and then execute another statement
to grant permissions to the account.

CREATE USER david@'$' IDENTIFIED BY 'your#password';

GRANT ALL PRIVILEGES ON easydb.* to david@'S';

#Method 2: Execute only one statement to create an account and grant permissions to the
account.

GRANT ALL PRIVILEGES ON easydb.* to david@'$%' IDENTIFIED BY 'your#password';

o Create an account named hanson@'%' for the easydb database. hanson is the username. The
account can be used to log onto the easydb database from all hosts and has full permissions on
the easydb.employees table.

GRANT ALL PRIVILEGES ON easydb.employees to hanson@'$'
IDENTIFIED BY 'your#password';

o Create an account named hanson@192.168.3.10 for the easydb database. hanson is the username.
The account can be used to log onto the easydb database fromonly 192.168.3.10 and has the
INSERT and SELECT permissions on the easydb.emp table.

GRANT INSERT,SELECT ON easydb.emp to hanson@'192.168.3.10"'
IDENTIFIED BY 'your#password';

o Create aread-only account named actro@'%' for the easydb database. actro is the username. The
account can be used to log onto the easydb database from all hosts.

GRANT SELECT ON easydb.* to actro@'$' IDENTIFIED BY 'your#password';

125 > Document Version: 20220601

Cloud Native Distributed Database SOL Reference- DAL
PolarDB-X

REVOKE used to revoke permissions
e Syntax

o Delete the permissions at a specific level from an account. The permission level is specified by
priv_level.

REVOKE
priv_type

[, priv_type]
ON priv_level

o Delete the permissions at the database level and the table level from an account.

REVOKE ALL PRIVILEGES, GRANT OPTION

FROM user [, user]
e Examples
o Delete the CREATE, DROP, and INDEX permissions on the easydb.emp table fromthe hanson@'%'
account.

REVOKE CREATE, DROP, INDEX ON easydb.emp FROM hanson@'$';

o Delete all permissions fromthe lily@30.9.73.96 account.

REVOKE ALL PRIVILEGES,GRANT OPTION FROM 1ily@30.9.73.96;

(@ Note GRANT OPTION must be added to the preceding statement to ensure the
compatibility with MySQL.

SHOW GRANTS used to query granted permissions

e Syntax

SHOW GRANTS[FOR user@host];

e Examples

SHOW GRANTS FOR userl@host;

@ Note InDRDS V5.3.6 and later, the SHOW GRANTS statement can be executed to query the
permissions of only the current account. You can log on tothe PolarDB-X 1.0 console to view the
information about all accounts and permissions.

7.2. CHECK TABLE

This topic describes how to use the CHECK TABLE statement.

CHECK TABLE checks a table ortables for errors, especially the tables that failed to be created by
executing DDL statements.

e Forasharded table, CHECK TABLE checks whether the underlying physical table shards are complete
and whether the columns and indexes of each underlying physical table shard are consistent.

e Forasingle-database non-sharded table, CHECK TABLE checks whether the table exists.

> Document Version: 20220601 126

Cloud Native Distributed Database

SQL Reference- DAL
PolarDB-X

Syntax

CHECK TABLE tbl name

Examples
mysgl> check table tddl mgr log;
o B Fo— to— +
| TABLE | OP | MSG TYPE | MSG TEXT |
o B R et to— +
| TDDL5 APP.tddl mgr log | check | status | OK
B e e F————— tom to— +

1 row in set (0.56 sec)
mysgl> check table tddl mg;

e ————— e e t +
| TABLE | OP | MSG TYPE | MSG TEXT

o e t———— —— +
| TDDL5 APP.tddl mg | check | Error | Table 'tddl5 00.tddl mg' doesn't exist |
o e B o +

1 row in set (0.02 sec)

7.3. CHECK GLOBAL INDEX

You can execute the CHECK GLOBAL INDEX statement to check whether data is consistent between
primary tables and index tables, and modify inconsistent data.

Syntax

CHECK GLOBAL INDEX gsi name [ON tbl name] [extra cmd]

Parameter Description
gsi name The name of the global secondary index (GSI) that needs to be verified.

Optional. The primary table where the GSI resides. If you enter the
tbl name specific name of a primary table, the system checks whether the index
relationship between the GSItable and the primary table is valid.

The reserved extra instruction. Valid values:
e -:indicates that only the GSlis checked if no keywords are specified.

® SHOW: displays the result of the latest verification or correction for
extra_cmd the specified GSI table.

® (CORRECTION_BASED_ON_PRIMARY: corrects data in the GSl table
based on the primary table.

127 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference- DAL
PolarDB-X

@ Note

e Some systemresources are occupied when data in the GSltable is verified or corrected. T his
occurs especially when data in the primary table or the index table is locked and corrected in
batches during the correction operation. We recommend that you performthese operations
during of f-peak hours. For more information about how to use GSls, see Use global
secondary indexes.

e [t may take a long time to verify the GSls of large tables. You can use HINT to specify
PURE_ASYNC DDL_MODE to execute data definition language (DDL) statements in pure
asynchronous mode. For more information, see Control parameters for DDL execution engine.

Examples
e You can execute the following statement for verification:

mysgl> CHECK GLOBAL INDEX g i check’;

o If no errors are reported during the verification, the following results are returned:

o fomm o fomm - Bt e +
| GSI_TABLE | ERROR TYPE | STATUS | PRIMARY KEY | DETAILS

o fomm e fomm - fomm B +
| g i check® | SUMMARY | == | == | OK (7025/7025 rows checked)
o fomm fomm fomm e +

1 row in set (1.40 sec)

o If errors are reported during the verification, the following results are returned:

> Document Version: 20220601 128

https://www.alibabacloud.com/help/doc-detail/182180.htm#task-1946506
https://www.alibabacloud.com/help/doc-detail/139533.htm#multiTask1729

SOL Reference- DAL Cloud Native Distributed Database

PolarDB-X

o fom e fomm fomm e B e

+

| GSI TABLE | ERROR TYPE | STATUS | PRIMARY KEY | DETAILS

\

et fe=========== Sem=m==== o= m==== ffemmmmssssssssssssssssssssccsssss====

+

| g i check® | ORPHAN | FOUND | (100722) | {"GSI":{"id":100722,"c_timestamp 6"

:"2000-01-01 00:00:00.000000","c timestamp 3":"2000-01-01 00:00:00.000","c timestamp 1"
:"2000-01-01 00:00:00.0","c_binary":"OTKkAAAAAAAAAAA==","c_ int 32":271}}

\

| g i check® | CONFLICT | FOUND | (108710) | {"Primary":{"id":108710,"c timestam
p 6":"2000-01-01 00:00:00.000000","c timestamp 3":"2000-01-01 00:00:00.000","c timestam
p_1":"2000-01-01 00:00:00.0","c_year":"2000","c_int 32":255},"GSI":{"c_int 32 un":12345
6,"1d":108710,"c timestamp 6":"2000-01-01 00:00:00.000000","c timestamp 3":"2000-01-01
00:00:00.000","c_timestamp 1":"2000-01-01 00:00:00.0","c year":"2000","c int 32":255}}

\

| g i check®™ | MISSING | FOUND | (100090) | {"Primary":{"id":100090,"c timestam
p_6":"2000-01-01 00:00:00.000000","c_timestamp 3":"2000-01-01 00:00:00.000","c timestam
p 1":"2000-01-01 00:00:00.0","c blob tiny":"YeS4reWbvWE=","c int 32":280}}

\

| "g i check®™ | SUMMARY —— | -- | 3 error found (7025/7025 rows check
ed)

4 rows in set (1.92 sec)

@ Note If data has multiple types of errors, multiple values of ERROR_TYPE are returned for
the same row of data.

e You can execute the following statement for correction:

mysgl> CHECK GLOBAL INDEX g i check CORRECTION BASED ON PRIMARY;

The following results are returned:

129 > Document Version: 20220601

Cloud Native Distributed Database SOL Reference- DAL

PolarDB-X
o fom e o fom e B ettt
__________________________________ +
| GSI_TABLE | ERROR TYPE | STATUS | PRIMARY KEY | DETAILS
|
oo fom e fomm fom e o
__________________________________ +
| ‘g i check' | SUMMARY | — | — | Done. Use SQL: { CHECK GLOBAL INDEX °
g i check’ SHOW; } to get result. |
fom e fom e o fom e B ettt
__________________________________ +

1 row in set (1.40 sec)

e You can execute the following statement to view the report of the latest verification or correction:

mysgl> CHECK GLOBAL INDEX “g i check® SHOW;

The following results are returned:

o o fom e B e e e
___ +

| GSI_TABLE | ERROR_TYPE | STATUS | PRIMARY KEY | DETAILS

|

o o o o e
___ +

| g i check® | MISSING | REPAIRED | (100090) | {"Primary":{"id":100090,"c timestam

p_6":"2000-01-01 00:00:00.000000","c timestamp 3":"2000-01-01 00:00:00.000","c timestamp
1":"2000-01-01 00:00:00.0","c blob tiny":"YeS4reWbvWE=","c int 32":280}}

|

| g i check® | CONFLICT | REPAIRED | (108710) | {"Primary":{"id":108710,"c timestam
p_6":"2000-01-01 00:00:00.000000","c_timestamp 3":"2000-01-01 00:00:00.000","c timestamp
1":"2000-01-01 00:00:00.0","c_year":"2000","c int 32":255},"GSI":{"c_int 32 un":123456,"i
d":108710,"c_timestamp 6":"2000-01-01 00:00:00.000000","c timestamp 3":"2000-01-01 00:00:
00.000","c_timestamp 1":"2000-01-01 00:00:00.0","c year":"2000","c int 32":255}} |

| "g i check® | ORPHAN | REPAIRED | (100722) | {"GSI":{"id":100722,"c timestamp 6"
:"2000-01-01 00:00:00.000000","c_timestamp 3":"2000-01-01 00:00:00.000","c timestamp 1":"
2000-01-01 00:00:00.0","c_binary":"OTKAAAAAAAAAAA==","c int 32":271}}

|

| g i check® | SUMMARY | -- | —- | 3 error found (7025/7026 rows check
ed.) Finish time: 2020-01-13 14:41:51.0

4 rows in set (0.02 sec)

Descriptions of column names

> Document Version: 20220601 130

Cloud Native Distributed Database

SQL Reference- DAL
PolarDB-X

Column name Description
GSI_TABLE The name of the GSI.

The error type. Valid values:
® MISSING: missing index
® ORPHAN: orphan index

ERROR_TYPE . . .
- ® CONFLICT: inconsistent index data
® ERROR_SHARD: position error of data shards
® SUMMARY: result summary
The status. Valid values:
STATUS ® FOUND: An erroris found.
® REPAIRED: The error has been repaired.
PRIMARY _KEY The primary key.
DETAILS The details of the error.

7.4. KILL

This topic describes how to end the execution of an SQL statement in a PolarDB-X 1.0PolarDB-X
database by executing the KILL statement.

Prerequisites

You must connect to the PolarDB-X 1.0PolarDB-X database before you can end the execution of an
SQL statement in the PolarDB-X 1.0PolarDB-X database by executing the KILL statement. For more
information about how to connect to a PolarDB-X 1.0PolarDB-X database, see Connect to database.

Syntax
The syntax of the KILL command supports the following usages.

e You can execute the following statement to end the execution of logical and physical SQL
statements on a connection and end the connection.

KILL PROCESS ID

@ Note
o Youcanexecutethe sHow [FULL] PROCESSLIST Statement to query PROCESS ID

o PolarDB-X 1.0PolarDB-X databases do not support KILL QUERY Statements.

e You can execute the following statement to end the execution of a specific physical SQL statement.

KILL 'PHYSICAL PROCESS ID'

Example

131 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/50085.htm#multiTask2397

Cloud Native Distributed Database

SQL Reference- DAL
PolarDB-X

mysqgl> KILL '0-0-521570"';
Query OK, 0 rows affected (0.01 sec)

@ Note

o Youcanexecutethe sHOW PHYSICAL PROCESS ID statement to query PHYSICAL PROCES
S_ID

o Valuesinthe prYSICAL PROCESs ID column are strings rather than numbers. Therefore,
you must enclose the pHysicaL procEss ID Vvalue in this statement with single
quotation marks (').

e You can execute the following statement to end the execution of all the physical SQL statements in
a PolarDB-X 1.0PolarDB-X database.

KILL 'ALL'

7.5. USE

The USE statement tells PolarDB-X 1.0 to use the named database as the default database for
subsequent operations. T his topic describes how to execute the USE statement.

Context

PolarDB-X 1.0 allows you to connect to different databases that are deployed in a PolarDB-X 1.0
instance. This feature is similar to the feature that enables data queries across standalone databases
that run on the MySQL engine. When you log on to a PolarDB-X 1.0 instance, use DB_NAME to configure
the default database for subsequent operations. You can execute the USE statement to switch
between databases. T his helps you manage multiple databases at a time.

Note

e Before you switch between databases, ensure that you have the permissions on the databases. You
can grant the permissions in the console. For more information, see Account and permission system.

e Afteryou switch to another database, the hints and sequences in original SQL statements take
effect onthe new database. This rule applies if you do not specify a database in the hints or
sequences.

Syntax

USE db_name

Example

You can execute the following statement to switch to a database named n~ew DB

USE NEW DB

> Document Version: 20220601 132

https://www.alibabacloud.com/help/zh/doc-detail/71356.htm

Cloud Native Distributed Database

SQL Reference-Sequence
PolarDB-X

8.5equence
8.1. Overview

This topic introduces the concepts related to sequences. This topic also describes the supported types
of sequences.

A sequence provided by Distributed Relational Database Service (PolarDB-X 1.0) generates globally
unique numeric values. DRDS sequence values are of the MySQL BIGINT data type that stores signed 64-
bit integers. The term DRDS sequence is referred to as sequence in the following description. Sequences
are often used to generate globally unique and sequentially increment al numeric values, such as values
of primary key columns and values of unique index columns.

Terms

Afteryou understand the following terms, you can select a sequence type that is suitable for your
business:

e Consecutive: If the current value in a consecutive sequence is n, the next value must be n+ 1. If the
next value is not n+ 1, the sequence is a nonconsecutive sequence.

e Monotonically increasing: If the current value in a monotonic increasing sequence is n, the next value
must be a number greaterthann.

e Single point: A single point of failure (SPOF) risk exists.

e Monotonically increasing at the macro level and non-monotonically increasing at the micro level: For
example, the values of a sequence canbe 1, 3, 2, 4, 5, 7, 6, 8, ... Suchasequenceis
monotonically increasing at the macro level and non-monotonically increasing at the micro level.

e Unitization capability: The unitization capability can help you generate numeric sequences that are
unique among multiple instances or multiple databases.

Usage
PolarDB-X 1.0 sequences are divided into the following two types:

e Explicit sequence: Use the DDL syntax to create and maintain an explicit sequence. An explicit
sequence can be independently used. For example, you can directly modify and query an explicit
sequence.Youcanuse select seq.nextval to obtainthe values in anexplicit sequence. seq
specifies the name of the sequence.

e Implicit sequence: If you specify the AUTO_INCREMENT attribute for a primary key column, an implicit
sequence can be used to automatically generate primary key values. PolarDB-X 1.0 automatically
maintains the sequence.

Supported types and features of sequences

PolarDB-X 1.0 supports the following four types of sequences.

133 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Sequence

PolarDB-X
Monoto
Monoto nically Unitizati
Type . . . Non- .
. Globally Consecu nically increasin . Data Readabil on
(abbrevi .) . . . single . .
. unique tive increasin g inthe ; type ity capabilit
ation) point
g same y
session
Group All
sequen)
integer .
ce Yes No No Yes Yes data High No
(GROUP
types
)
Unit
group All
s n integer
eque Yes No No Yes Yes 9 High Yes
ce data
(GROUP types
)
Monoto
nically
increasin
g at the
Time- macro
based level
and BIGINT
sequen Yes No Yes Yes Low No
non- only
ce
monoto
(TIME) .
nically
increasin
g at the
micro
level
impl
Simple All
sequen .
integer .
ce Yes Yes Yes Yes No High No
data
(SIMPLE
types

)

Group sequence (GROUP, default sequence type)

A group sequence is a globally unique sequence that provides natural numeric values. Values in a group
sequence do not need to be consecutive or monotonically increasing. Iif you do not specify a sequence
type, PolarDB-X 1.0 uses the group sequence type by default.

Implementation mechanism: DRDS uses multiple nodes to generate sequence values. The multi-node
model ensures high availability. The system retrieves a segment of values from a database at a time. In
scenarios such as network disconnections, not all the values in a segment are used. Therefore, the
sequence values are nonconsecutive.

e Advantages: Group sequences are globally unique and prevent SPOFs. Group sequences deliver
excellent performance.

e Disadvantages: Group sequences may contain nonconsecutive values and may not start fromthe

> Document Version: 20220601

134

Cloud Native Distributed Database

SQL Reference-Sequence
PolarDB-X

specified start value. The values of group sequences cannot be cyclical.
Unit group sequence (GROUP)

Unit group sequences extend the capabilities of group sequences. A unit group sequence has
unitization capabilities and can provide values that are unique among multiple instances or multiple
databases. Values in unit group sequences may not be consecutive or monotonically increasing. If only
one unit is configured for a unit group sequence, the unit group sequence is equivalent to a common
group sequence.

e Advantages: Unit group sequences have all the advantages of group sequences and have unitization
capabilities.

e Disadvantages: Unit group sequences may contain nonconsecutive values and may not start fromthe
specified start value. The values of unit group sequences cannot be cyclical.

The way how unit group sequences work is the same as the way how group sequences work. You can
use the extension parameters to customize unit indexes and the number of units.

e The number of units determines the global unique sequence space assigned to the unit group
sequence.
e A unit index identifies a unit. Each unit occupies a subset of the global unique sequence space.

e [f you specify multiple unit indexes, multiple units are specified. The sequence subsets for different
units do not overlap. This means that DRDS does not generate the same sequence value for dif ferent
units.

e You must specify the same number of units and different unit indexes for all the unit group
sequences that belong to the same sequence space.

@ Note
The following versions of DRDS provide unit group sequences:

e \/5.2:V5.2.7-1606682 and later. DRDS V5.2.7-1606682 was released on April 27, 2018.
e V/5.3:V5.3.3-1670435 and later. DRDS V5.3.3-1670435 was released on August 15, 2018.

Time-based sequence (TIME)

A time-based sequence value consists of a timestamp, node ID, and serial number. Such a sequence is
globally unigue and auto-incremental at the macro level. When the values of a time-based sequence
are updated, the system does not retrieve values from a database. The sequence values are also not
stored as persistent data in the related database. Only the sequence names and types are stored inthe
database. Time-based sequences deliver excellent performance. For example, the values of a time-
based sequence canbe 776668092129345536, 776668098018148352, 776668111578333184,
776668114812141568...

e Advantages: Time-based sequences are globally unique and deliver excellent performance.

e Disadvantages: The values of time-based sequences are nonconsecutive. The START WITH,
INCREMENT BY, MAXVALUE, and CYCLE or NOCYCLE parameters are invalid for time-based sequences.

135 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Sequence

PolarDB-X

@ Note

e [f atime-based sequence is used for an auto-increment column of a table, the auto-
increment column must be of the BIGINT type.

e The following versions of DRDS provide time-based sequences:

o V5.2:V5.2.8-15432885 and later. DRDS V5.2.8-15432885 was released on December
27,2018.

o V5.3:V5.3.6-15439241 and later. DRDS V5.3.6-15439241 was released on December
29, 2018.

Simple sequence (SIMPLE)
Only simple sequences support the INCREMENT BY, MAXVALUE, and CYCLE or NOCYCLE parameters.

e Advantages: Simple sequence values are globally unique, consecutive, and monotonically increasing.

Simple sequences provide multiple features. For example, a simple sequence can have a maximum
value and the values of a simple sequence can be cyclical.

e Disadvantages: Simple sequences are prone to SPOFs, low performance, and bottlenecks. Use simple

sequences with caution.

Each time a simple sequence generates a value, the system stores the value as persistent data inthe

related database.

Scenarios

The fourtypes of sequences are globally unique and can be used for primary key columns and unique

index columns.

e In most scenarios, we recommend that you use group sequences.

e If you need sequence values that are globally unigue among multiple instances or multiple
databases, you can use unit group sequences.

e In some cases, your business may require the sequence values to be auto-incremental only at the

macro level in the overall trend. The values are not necessarily auto-incremental at the micro level.

You may also not want the sequence values to be allocated by using the allocation mechanism of a

database. In such scenarios, you can use time-based sequences.

e Use only simple sequences for services that have high requirements for consecutive sequence values.

Make sure that you understand the low performance of simple sequences.

For example, you can create a sequence that starts from 100000 and has a step size of 1.

e Asimple sequence generates globally unique, consecutive, and monotonically increasing values,

suchas 100000, 100001, 100002, 100003, 100004, ..., 200000, 200001, 200002, 200003...
Simple sequence values are persistently stored. Even after services are restarted upon an SPOF,

values are still consecutively generated fromthe breakpoint. However, simple sequences have poor

performance because each time a value is generated the system persistently stores the value.

e A group sequence oraunit group sequence may generate values suchas 200001, 200002, 200

003, 200004, 100001, 100002, 100003...

> Document Version: 20220601

136

SQL Reference-Sequence

Cloud Native Distributed Database
PolarDB-X

@ Note

e The start value of a group sequence is not necessarily the same as the value specified by
START WITH. A group sequence always starts from a value that is greater than the specified
start value. In this example, the specified start value is 100000, but the actual start value of
the group sequence is 200001.

e A group sequence provides globally unique values and may contain nonconsecutive values.
For example, if a node fails or only some of the values in a segment are used when the
connection is closed, the sequence contains nonconsecutive values. In this example, the
values are nonconsecutive. The values between 200004 and 100001 are missing.

e You must specify the same number of units and different unit indexes for unit group
sequences that belong to the same globally unique sequence. T his ensures that the
sequence values are unique among multiple instances or multiple databases.

8.2. Limits

This topic describes the limits on using sequences. T his topic also describes how to troubleshoot
primary key conflicts.

Limits and additional considerations

When you use a sequence, take note of the following points:

You must specify the START WITH parameter when you convert a sequence fromone type to
another.

You cannot convert a unit group sequence to another type or convert a sequence of anothertype to
a unit group sequence. In addition, you cannot change the parameter values of a unit group
sequence, except the value of the START WITH parameter.

Unit group sequences that belong to the same globally unique sequence space must have the same
number of units but have different unit indexes.

Whenthe INSERT statement is executed in a non-sharded Distributed Relational Database Service
(PolarDB-X 1.0) database or in a sharded database that has only non-sharded tables but no
broadcast tables, PolarDB-X 1.0 automatically optimizes and sends the statement. This way, you do
not need to use an optimizerto allocate sequence values. The INSERT INTO ... VALUES (seq.nextv
al, ...) statementis not supported. We recommend that you use the auto-increment column
feature provided by ApsaraDB RDS instead.

If a hint for a specific database shard is used in the INSERT statement such as INSERT INTO ... VALUES
... Or INSERT INTO ...SELECT ..., and the destination table uses a sequence, PolarDB-X 1.0 bypasses the
optimizer and directly sends the statement for execution. T his way, the sequence does not take
effect and the auto-increment column in the ApsaraDB RDS table is used to generate IDs in the
destination table.

Make sure that the auto-increment IDs in the same table are generated by using the same method: a
sequence or the auto-increment feature provided by ApsaraDB RDS. If the two methods are used in
the same table, duplicate IDs may be generated. Duplicate IDs are difficult to identify.

If you want to use a time-based sequence in an auto-increment column of a table, make sure that
the data type of the column is BIGINT.

Troubleshoot primary key conflicts

137 > Document Version: 20220601

Cloud Native Distributed Database
PolarDB-X

SQL Reference-Sequence

If a data record is directly written to ApsaraDB RDS and the corresponding primary key value is nota
sequence value generated by PolarDB-X 1.0, the primary key value automatically generated by PolarDB-
X 1.0 may conflict with the primary key value that corresponds to the data record. To solve this issue,
performthe following steps:

1. Executethe sHow SEQUENCES statement to view the existing sequences. Sequences prefixed

with AUTO_SEQ_ are implicit sequences. To create an implicit sequence, you must specify the
AUT O_INCREMENT parameter in the statement executed to create atable.

Execute the following statement in your CLI:

mysgl> SHOW SEQUENCES;

The following query result is returned:

o o o o fom B o +
| NAME | VALUE | INCREMENT BY | START WITH | MAX VALUE | CYCLE | TYPE |
o fo———— o fmm fom R e +
| AUTO SEQ xkv t item | O | N/A | N/A | N/A | N/A | GROUP |
| AUTO SEQ xkv_shard | O | N/A | N/A | N/A | N/A | GROUP |
e fommm - o oo oo o fommm - +

2 rows in set (0.04 sec)

2. If the primary key of the xkv_t_itemtable is ID and duplicate primary key values exist in this table,
query the maximum primary key value of this table from PolarDB-X 1.0.

Execute the following statement in your CLI:

mysql> SELECT MAX(id) FROM xkv_t item;

The following query result is returned:

fommm - +
| MAX(id) |
fommm +
| 8231 |
e +

1 row in set (0.01 sec)

3. Change the maximum sequence value in the table to a value greater than 8231, such as 9000. Then,
no error is returned for the subsequently generated auto-increment primary key values when you
execute the INSERT statement.

Execute the following statement in your CLI:

mysql> ALTER SEQUENCE AUTO SEQ xkv t item START WITH 9000;

8.3. Explicit sequences

Create A cspniIANCe

> Document Version: 20220601 138

Cloud Native Distributed Database

SQL Reference-Sequence
PolarDB-X

A S A R A

Group Sequence

e Syntax

CREATE [GROUP] SEQUENCE <name>
[START WITH <numeric value>]

e Parameters
Parameter Description

The start value of the group sequence. If you do
START WITH not specify this parameter, the default value is
used. Default value: 100001.

e Examples
o Method 1

mysqgl> CREATE SEQUENCE seql;

o Method 2

mysgl> CREATE GROUP SEQUENCE seql;

Unit group sequence
e Syntax

CREATE [GROUP] SEQUENCE <name>
[START WITH <numeric value>]
[UNIT COUNT <numeric value> INDEX <numeric value>]

e Parameters

Parameter Description

The start value of the unit group sequence. The
default start value depends on the unit index and
the number of units. If you do not specify the
INDEX parameter or the UNIT COUNT parameter,
the default start value is used. Default value:
100001.

START WITH

The number of units specified for the unit group
UNIT COUNT
sequence. Default value: 1.
The unit index of the unit group sequence. The
value range is from 0 to the value obtained by
subtracting 1 from the number of units. Default
value: 0.

INDEX

139 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Sequence
PolarDB-X

@ Note
o If you do not specify a sequence type, the group sequence type is used by default.

o Values of group sequences and unit group sequences may be nonconsecutive. The
START WITH parameter only provides reference for group sequences and unit group
seguences. A group sequence or a unit group sequence may not start fromthe value
specified by START WITH. The actual start value is always greater than the specified start
value.

o A group sequence can be regarded as a special case of unit group sequences. A
group sequence means that when you create a unit group sequence, you set the UNIT
COUNT parameterto 1 and the INDEX parameterto 0.

e Examples

Create a globally unique numeric sequence that has three units. In this example, create three unit
group sequences that have the same sequence name, the same number of units, and different unit
indexes for three different instances or databases. These three sequences form a globally unique
sequence.

i. Create a unit group sequence for Instance 1 or Database 1.

mysgl> CREATE GROUP SEQUENCE seg2 UNIT COUNT 3 INDEX O;
ii. Create a unit group sequence forInstance 2 or Database 2.
mysqgl> CREATE GROUP SEQUENCE seq2 UNIT COUNT 3 INDEX 1;

iii. Create a unit group sequence forInstance 3 or Database 3.
mysgl> CREATE GROUP SEQUENCE seqg2 UNIT COUNT 3 INDEX 2;
Time-based Sequence
e Syntax

CREATE TIME SEQUENCE <name>

) Notice The columnthat is used to store the values of atime-based sequence must be
of the BIGINT data type.

e Examples

Execute the following statement in your CLI:
Tmysqgl> CREATE TIME SEQUENCE seq3;
Simple Sequence
e Syntax

CREATE SIMPLE SEQUENCE <name>

[START WITH <numeric value>]

[INCREMENT BY <numeric value>]

[MAXVALUE <numeric value>][CYCLE | NOCYCLE]

e Parameters

> Document Version: 20220601 140

Cloud Native Distributed Database

SQL Reference-Sequence
PolarDB-X

Parameter Description

The start value of the simple sequence. If you do
START WITH not specify this parameter, the default value is
used. Default value: 1.

The increment between two adjacent sequence
INCREMENT BY values. If you do not specify this parameter, the
default value is used. Default value: 1.

The maximum value allowed by the simple
sequence. If you do not specify this parameter, the
default value is used. The default maximum value
is of the signed BIGINT data type. For example, you
can set the maximum value to
9223372036854775807.

MAXVALUE

You can select only CYCLE or NOCYCLE. These
options are used to specify whether to repeat the
sequence that starts from the value specified by

CYCLE or NOCYCLE START WITH after the sequence reaches the
specified maximum value. If you do not specify an
option, the default option is used. Default option:
NOCYCLE.

e Examples

Create a simple sequence. The start value of the simple sequence is 1000, the step size is 2, and the
maximum value is 99999999999. After the maximum value is reached, the sequence does not
generate values fromthe start value.

Execute the following statement in your CLI:

mysql> CREATE SIMPLE SEQUENCE seg4 START WITH 1000 INCREMENT BY 2 MAXVALUE 99999999999 NO
CYCLE;

Modify a sequence

Distributed Relational Database Service (PolarDB-X 1.0) allows you to modify a sequence in the
following ways:

e For asimple sequence, you can change the values of START WITH, INCREMENT BY, MAXVALUE, and
CYCLE or NOCYCLE.
e Foragroup sequence or a unit group sequence, you can change the value of START WITH.

e You can convert a sequence fromone type to another, but neither of the source type northe
destination type can be a unit group sequence.

141 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Sequence
PolarDB-X

@ Note
When you convert a sequence from one type to another, take note of the following points:

e The values of group sequences are nonconsecutive. The values of unit group sequences are
also nonconsecutive. The value of the START WITH parameter serves only as a reference for
these two types of sequences. A group sequence or a unit group sequence may not start
fromthe value specified by START WITH but must start from a value that is greater than the
specified value.

e You cannot convert a sequence from a unit group type to another or from another type to
a unit group sequence. In addition, you cannot change the parameter values of a unit group
sequence.

e If you have specified a value for START WITH when you modify a simple sequence, the value
takes effect immediately. The next sequence value starts fromthe specified value. For
example, if you change the value of START WITHto 200 when the sequence value increases
to 100, the next sequence value starts from 200.

e Before you change the value of START WITH, analyze the existing sequence values and the
rate of generating sequence values to prevent duplicate sequence values from being
generated. Exercise caution when you change the value of START WITH.

Group Sequence
e Syntax

ALTER SEQUENCE <name> [CHANGE TO SIMPLE | TIME]
START WITH <numeric value>

[INCREMENT BY <numeric value>]

[MAXVALUE <numeric value>]

[CYCLE | NOCYCLE]

e Parameters
Parameter Description

The start value of the sequence. This parameter
has no default value. If this parameter is not

START WITH specified, it is ignored. This parameter is required
when you convert the sequence from one type to
another.

The increment between two adjacent simple
sequence values. This parameter takes effect only
INCREMENT BY when you convert a group sequence to a simple
sequence. If this parameter is not specified, the
default value is used. The default value is 1.

The maximum value of the simple sequence. This
parameter takes effect only when you convert a
group sequence to a simple sequence. If this
parameter is not specified, the default value is
used. The default value is the maximum value of
the signed BIGINT type: 9223372036854775807.

MAXVALUE

> Document Version: 20220601 142

Cloud Native Distributed Database

SQL Reference-Sequence
PolarDB-X

Parameter Description

Specifies whether to continue generating sequence
values after the sequence value reaches the
maximum value of the sequence that starts from
the value specified by START WITH. You can specify
only one of the two options: CYCLE and NOCYCLE.
Specify the CYCLE option to continue generating
sequence values. Specify the NOCYCLE option to
stop generating sequence values. The CYCLE or
NOCYCLE option takes effect only when you
convert a group sequence to a simple sequence. If
no options are specified, the default option takes
effect. The default option is NOCYCLE.

CYCLE or NOCYCLE

@ Note When you convert a sequence to a time-based sequence, the preceding parameters
are not supported.

Unit group sequences

e Syntax

ALTER SEQUENCE <name>
START WITH <numeric value>

e Parameters
Parameter Description

The start value of the unit group sequence. T his
START WITH parameter has no default value. If this parameter
is not specified, it is ignored.

@ Note You cannot convert a unit group sequence to anothertype. In addition, you
cannot modify the parameters of a unit group sequence.

Time-based Sequence

e Syntax
ALTER SEQUENCE <name>[CHANGE TO GROUP | SIMPLE]
START WITH <numeric value>
[INCREMENT BY <numeric value>]

[MAXVALUE <numeric value>]
[CYCLE | NOCYCLE]

e Parameters

Parameter Description

143 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Sequence

PolarDB-X
Parameter Description
The start value of the sequence. This parameter
has no default value. If this parameter is not
START WITH specified, it is ignored. This parameter is required
when you convert the sequence from one type to
another.

The increment between two adjacent simple
sequence values. This parameter does not take
INCREMENT BY effect when you convert a simple sequence to a
group sequence. If this parameter is not specified,
the default value is used. The default value is 1.

The maximum value of the simple sequence. This
parameter does not take effect when you convert
a simple sequence to a group sequence. If this
parameter is not specified, the default value is
used. The default value is the maximum value of
the signed BIGINT type: 9223372036854775807.

MAXVALUE

Specifies whether to continue generating sequence
values after the sequence value reaches the
maximum value of the sequence that starts from
the value specified by START WITH. You can specify
only one of the two options: CYCLE and NOCYCLE.
Specify the CYCLE option to continue generating
sequence values. Specify the NOCYCLE option to
stop generating sequence values. The CYCLE or
NOCYCLE is ineffective when you convert a simple
sequence to a group sequence. If no options are
specified, the default option takes effect. The
default option is NOCYCLE.

CYCLE or NOCYCLE

Simple Sequence
e Syntax

ALTER SEQUENCE <name> [CHANGE TO GROUP | TIME]
START WITH <numeric value>

[INCREMENT BY <numeric value>]

[MAXVALUE <numeric value>]

[CYCLE | NOCYCLE]

e Parameters
Parameter Description

The start value of the sequence. This parameter
has no default value. If this parameter is not

START WITH specified, it is ignored. This parameter is required
when you convert the sequence from one type to
another.

> Document Version: 20220601 144

Cloud Native Distributed Database

SQL Reference-Sequence
PolarDB-X

Parameter Description

The increment between two adjacent simple
sequence values. This parameter does not take
INCREMENT BY effect when you convert a simple sequence to a
group sequence. If this parameter is not specified,
the default value is used. The default value is 1.

The maximum value of the simple sequence. This
parameter does not take effect when you convert
a simple sequence to a group sequence. If this
parameter is not specified, the default value is
used. The default value is the maximum value of
the signed BIGINT type: 9223372036854775807.

MAXVALUE

Specifies whether to continue generating sequence
values after the sequence value reaches the
maximum value of the sequence that starts from
the value specified by START WITH. You can specify
only one of the two options: CYCLE and NOCYCLE.
Specify the CYCLE option to continue generating
sequence values. Specify the NOCYCLE option to
stop generating sequence values. The CYCLE or
NOCYCLE is ineffective when you convert a simple
sequence to a group sequence. If no options are
specified, the default option takes effect. The
default option is NOCYCLE.

CYCLE or NOCYCLE

@ Note When you convert a sequence to a time-based sequence, the preceding parameters
are not supported.

Convert a sequence from one type to another

When you convert a sequence fromone type to another, take note of the following points:

e Usethe CHANGE TO <sequence type> clauseinthe ALTER SEQUENCE statement to convert a
sequence to another type.

e [f youincludethe cuanGge To clausein ALTER SEQUENCE ,Yyou must specify the START WITH
parameter to prevent duplicate values from being generated. This way, if you forget to specify a
start value, duplicate values are not generated. The CHANGE T O clause is optional. If you omit this
clause, you do not need to specify the START WITH parameter.

e You cannot convert a unit group sequence to another type or convert a sequence of anothertype to
a unit group sequence.

Examples

e Modify a simple sequence named seq4: Set START WITHto 3000, INCREMENT BY to 5, and MAXVALUE
to 1000000, and change NOCYCLE to CYCLE. To modify the simple sequence, execute the following
statement:

mysgl> ALTER SEQUENCE seqg4 START WITH 3000 INCREMENT BY 5 MAXVALUE 1000000 CYCLE;

e Convert a group sequence to a simple sequence.

145 > Document Version: 20220601

Cloud Native Distributed Database

PolarDB-X

SQL Reference-Sequence

mysqgl> ALTER SEQUENCE seqgl CHANGE TO SIMPLE START WITH 1000000;

Query the type and value of a sequence

Query a sequence

e Syntax

SHOW SEQUENCES

e Examples

Execute the following statement in your CLI:

mysql> SHOW SEQU.

ENCES;

The following query result is returned:

o fo———— o Fo— e Fom - F—— +————
———————— fom e —————+
| NAME | VALUE | UNIT COUNT | UNIT INDEX | INNER STEP | INCREMENT BY | START WITH | MAX
VALUE | CYCLE | TYPE \
S === femmmmmmm==== ffmmmmmmmm==== ffe=========== e femmmmmmmm=== f=====
———————— tom e —————+
| seql | 100000 | 1 | 0 | 100000 | N/A | N/A | N/A
| N/JA | GROUP |
| seq2 | 400000 | 3 | 1 | 100000 | N/A | N/A | N/A
| N/JA | GROUP |
| seq3 | N/A | N/A | N/A | N/A | N/A | N/A | N/A
| N/A | TIME |
| seqd | 1006 | N/A | N/A | N/A | 2 | 1000 | 9999
9999999 | N | SIMPLE |
Fmm——— fomm B o o fom e fom e =
———————— fpm======ff=======3
4 rows in set (0.00 sec)
@ Note Inthe query result, the values in the TYPE column are the abbreviations of the
sequence types.

Query a sequence

e Syntax
[<schema name>.]<sequence name>.NEXTVAL

e Examples

> Document Version: 20220601 146

SQL Reference- Sequence Cloud Native Distributed Database
PolarDB-X

o Method 1

mysql> SELECT sample seq.nextval FROM dual;

The following query result is returned:

o +
| SAMPLE SEQ.NEXTVAL |
o +

101001 |
B e e +

1 row in set (0.04 sec)

o Method 2

Execute the following statement in your CLI:

mysql> INSERT INTO some users (name,address,gmt create,gmt modified, intro) VALUES ('sun

', sample seq.nextval,now(),now(),'aa'");

@ Note
m When you use this statement, you include sample_seq.nextval in the SQL statement as a
value.

m If the AUTO_INCREMENT parameter is specified when you create a table, you do not
need to specify an auto-increment column when you execute the INSERT statement.
PolarDB-X 1.0 automatically manage the value of the AUTO_INCREMENT parameter.

Use the following syntax to query multiple sequence values at a time:
e Syntax

The following code provides the syntax:

SELECT [<schema name>.]<sequence name>.NEXTVAL FROM DUAL WHERE COUNT = <numeric value>

e Examples

Execute the following statement in your CLI:

mysgl> SELECT sample seq.nextval FROM dual WHERE count = 10;

The following query result is returned:

147 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Sequence
PolarDB-X

| 101002 |
I 101003 |
| 101004 |
| 101005 |
| 101006 |
| 101007 |
| 101008 |
| 101009 |
| 101010 |
| 101011 |

10 row in set (0.04 sec)

Delete a sequence
e Syntax

Use the following the syntax to delete a sequence:

DROP SEQUENCE <name>

e Examples

Execute the following statement in your CLI:

mysgl> DROP SEQUENCE seq3;

8.4. Implicit sequences

Create a sequence

After you specify the AUTO_INCREMENT attribute for a primary key columnin a table shard or a
broadcast table, a sequence can be used to automatically generate primary key values.Distributed
Relational Database Service (PolarDB-X 1.0) automatically maintains the sequence.

The standard CREATE TABLE syntax is extended, so that you can add the sequence type for an auto-
increment column. If you do not specify a type, the default type is used. The default type is GROUP. If a
sequence is automatically created by DRDS and associated with a table, the sequence name consists of
the auto seg prefix and the table name.

Group sequence, time-based sequence, or simple sequence

You can use the following syntax to create a table that uses a group sequence, time-based
sequence, orsimple sequence for an auto-increment column:

CREATE TABLE <name> (
<column> ... AUTO INCREMENT [BY GROUP | SIMPLE | TIME],

<column definition>,

) ... AUTO INCREMENT=<start value>

> Document Version: 20220601 148

SQL Reference- Sequence Cloud Native Distributed Database
PolarDB-X

@ Note If you set thetypeto By TIME that representsthe time-based sequence type,
the data type of the specified column must be BIGINT.

Unit group sequence
You can use the following syntax to create a table that use an unit group sequence:

CREATE TABLE <name> (

<column> ... AUTO INCREMENT [BY GROUP] [UNIT COUNT <numeric value> INDEX <numeric val
ue>],

<column definition>,

) ... AUTO INCREMENT=<start value>

Examples

e Example 1: Create a table that uses a group sequence by default to generate values for an auto-
increment column.

mysgl> CREATE TABLE tabl (

coll BIGINT NOT NULL AUTO INCREMENT,
col2 VARCHAR(16),

PRIMARY KEY (coll)

) DBPARTITION BY HASH(coll);

e Example 2: Create three tables. Each table uses an unit group sequence to generate values for an
auto-increment column. These three tables are created in three instances or databases. The unit

group sequences for the three tables have the same name, the same number of units, and different
unit indexes.

i. Create atable inInstance 1 or Database 1.

Execute the following statement in your CLIto create a table that uses a unit group sequence
and set the unit index of the sequence to 0:

mysql> CREATE TABLE tab2 (

coll BIGINT NOT NULL AUTO INCREMENT UNIT COUNT 3 INDEX O,
col2 VARCHAR(16),

PRIMARY KEY (coll)

) DBPARTITION BY HASH(coll);

ii. Create atable inInstance 2 or Database 2.

Execute the following statement in your CLIto create a table that uses a unit group sequence
and set the unit index of the sequenceto 1:

mysql> CREATE TABLE tab2 (

coll BIGINT NOT NULL AUTO INCREMENT UNIT COUNT 3 INDEX 1,
col2 VARCHAR(16),

PRIMARY KEY (coll)

) DBPARTITION BY HASH(coll);

ii. Create atable inInstance 3 or Database 3.

Execute the following statement in your CLIto create a table that uses a unit group sequence
and set the unit index of the sequence to 2:

149 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Sequence
PolarDB-X

mysgl> CREATE TABLE tab2 (

coll BIGINT NOT NULL AUTO INCREMENT UNIT COUNT 3 INDEX 2,
col2 VARCHAR(16),

PRIMARY KEY (coll)

) DBPARTITION BY HASH(coll);

e Example 3: Create a table that uses a time-based sequence to generate values for an auto-
increment column.

Execute the following statement in your CLIto create a table that uses a time-based sequence:

mysgl> CREATE TABLE tab3 (

coll BIGINT NOT NULL AUTO_INCREMENT BY TIME,
col2 VARCHAR(16),

PRIMARY KEY (coll)

) DBPARTITION BY HASH (coll);

e Example 4: Create a table that uses a simple sequence to generate values for an auto-increment
column.

Execute the following statement in your CLIto create a table that uses a simple sequence:

mysgl> CREATE TABLE tab4 (

coll BIGINT NOT NULL AUTO INCREMENT BY SIMPLE,
col2 VARCHAR(16),

PRIMARY KEY (coll)

) DBPARTITION BY HASH (coll);

ALTER TABLE

ALTER TABLE cannot be used to change the type of a sequence. The following ALTER TABLE
syntax can be used to change the start value of a sequence:

ALTER TABLE <name> ... AUTO INCREMENT=<start value>

® Note

e To change the sequence type of atable, executethe sHow SEQUENCES statement to
check the sequence name and the sequence type, and then execute the ALTER SEQUENCE
statement to change the sequence type.

e Afterasequence is used, we recommend that you do not modify the start value specified
forthe auto 1NCREMENT parameter. If you need to modify the start value, analyze the

existing sequence values and the rate of generating sequence values to prevent duplicate
sequence values from being generated.

Query the information and sequence types of a table
SHOW CREATE TABLE

The SHOW CREATE TABLE statement returns the type of the sequence that is used to generate values
for an auto-increment column in a table shard or a broadcast table.

Use the following syntax to query the information about a table:

> Document Version: 20220601 150

SQL Reference-Sequence

Cloud Native Distributed Database
PolarDB-X

SHOW CREATE TABLE <name>

® Note

SHOW CREATE TABLE returns only the type of the sequence and does not return the
sequence details. To query the sequence details, execute the sHow sEQuENCES statement.

For a table that uses an unit group sequence, SsHOW CREATE TABLE returns a DDL
statement that does not contain the number of units and the unit index of the unit group
sequence. Therefore, you cannot execute this DDL statement to create a table and define
the table to use an unit group sequence that has the same unitization capability of the
returned sequence.

If you need to create atable and define the table to use an unit group sequence that has
the same unitization capability of the sequence of anothertable, you must execute the sH
OW SEQUENCES Statement to query the number of units and the unit index. Then, modify the
DDL statement that is returned by sHow CREATE TABLE based onthe CREATE TABLE

syntax.

Examples

Example 1: When you were creating the tab1 table, you did not specify a sequence type forthe auto-

increment column. A group sequence is used by default.

Execute the following statement in your CLI to query the information about the tab1 table:

mysqgl> SHOW CREATE TABLE tabl;

The following result is returned:

___________________________ +

| Table | Create Table

|

+om e
___________________________ +

| tabl | CREATE TABLE “tabl’® (

“coll’ bigint (20) NOT NULL AUTO INCREMENT BY GROUP,

‘col2’ varchar (16) DEFAULT NULL,

PRIMARY KEY ('coll’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(coll’) |

1 row in set (0.02 sec)

151 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Sequence
PolarDB-X

Example 2: When you were creating the tab2 table, you specified the number of units and the unit
index for anunit group sequence that is used foran auto-increment column. However, suHow
crReATE TABLE does not return the number of units orthe unit index. The returned DDL statement
cannot be executed to create a table and define the table to use an unit group sequence that have
the same unitization capability as the sequence used by the tab2 table.

Execute the following statement in your CLIto query the information about the tab2 table:

mysqgl> SHOW CREATE TABLE tab2;

The following result is returned:

___________________________ +

| Table | Create Table

\

Fo———— et e e e e e e
___________________________ +

| tab2 | CREATE TABLE “tab2’ (

‘coll® bigint (20) NOT NULL AUTO_INCREMENT BY GROUP,

‘col2’ varchar(16) DEFAULT NULL,

PRIMARY KEY ('coll’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash (' coll”) |

1 row in set (0.01 sec)

Example 3: When you were creating the tab3 table, you specified a sequence of the By TIME type
foran auto-increment column. This means that you specified atime-based sequence.

Execute the following statement in your CLIto query the information about the tab3 table:

mysqgl> SHOW CREATE TABLE tab3;

The following result is returned:

> Document Version: 20220601 152

Cloud Native Distributed Database

SQL Reference-Sequence
PolarDB-X

| tab3 | CREATE TABLE “tab3 ™ (

‘coll’ bigint (20) NOT NULL AUTO_ INCREMENT BY TIME,

‘col2’ varchar (16) DEFAULT NULL,

PRIMARY KEY (‘coll’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(coll’) |

1 row in set (0.01 sec)

Example 4: When you were creating the tab4 table, you specified a sequence of the By siMpLE type
foran auto-increment column. This means that you specified a simple sequence.

Execute the following statement in your CLI to query the information about the tab4 table:

mysqgl> SHOW CREATE TABLE tab4;

The following result is returned:

| tab3 | CREATE TABLE "tab4d (

"coll” bigint (20) NOT NULL AUTO INCREMENT BY TIME,

‘col2’ varchar(16) DEFAULT NULL,

PRIMARY KEY ('coll’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(coll”) |

1 row in set (0.01 sec)

SHOW SEQUENCES

You can executethe smow SEQUENCES Statement to query the name and details of the sequences in
the tables of a database.

Execute the following statement in your CLIto query the names and details of sequences in the tables
of adatabase:

153 > Document Version: 20220601

Cloud Native Distributed Database
PolarDB-X

SQL Reference-Sequence

mysqgl> SHOW SEQUENCES;

The following result is returned:

o Fo—— Fomm Fo— o e Fo——————
—t————————————————————— - t———————— +
| NAME | VALUE | UNIT COUNT | UNIT INDEX | INNER STEP | INCREMENT BY | START WITH
| MAX VALUE | CYCLE | TYPE [
e Fommmmme= Fommmmmmme=== fommmmmecemos fomemmmosamos e e e
R e e B et +
| seql | 100000 | 1 | 0 | 100000 | N/A | N/A
| N/A | N/A | GROUP |
| seq2 | 400000 | 3 | 1 | 100000 | N/A | N/A
| N/A | N/A | GROUP |
| seq3 | N/A | N/A | N/A | N/A | N/A | N/A
| N/A | N/A | TIME |
| seq4 | 1006 | N/A | N/A | N/A | 2 | 1000
| 99999999999 | N | SIMPLE |
| AUTO SEQ tabl | 100000 | 1 | 0 | 100000 | N/A | N/A
| N/A | N/A | GROUP |
| AUTO SEQ tab2 | 400000 | 3 |1 100000 | N/A | N/A
| N/A | N/A | GROUP |
| AUTO SEQ tab3 | N/A | N/A | N/A | N/A | N/A | N/A
| N/A | N/A | TIME |
| AUTO SEQ tabd | 2 | N/A | N/A | N/A | 1 | 1
| 9223372036854775807 | N | SIMPLE |
B e e Fommmm=== fommmmmmme=== fommmmmememos I e fommmmmmme=a=== fommmmmmm===
—t— e o +
8 rows in set (0.01 sec)
> Document Version: 20220601 154

Cloud Native Distributed Database

Ref -Outli
SQL Reference-Outline PolarDB-X

9.0utline
9.1. Usage notes

This topic describes the outline feature and how to use this feature.

Background

When you use a PolarDB-X 1.0 database, execution plans generated by SQL optimizers may not meet
your business requirements. For example, some JOIN or AGGREGATE functions that can be processed by
the underlying ApsaraDB RDS for MySQL instances are not pushed down. The outline feature provides a
method to specify an execution plan forthe SQL statement. You can use hints to create an SQL
execution plan, and use the outline feature to ensure that your SQL statement is executed based on
the SQL execution plan.

The outline feature allows you to create and manage outlines in the system by executing the CREATE,
DROP, RESYNC, DISABLE, ENABLE, and SHOW statements. The following sections describe these
statements.

Limits
e AnSQL query that includes multiple statements is not supported.
e The question mark (?) cannot be usedas a bind variable in the GROUP BY and ORDER BY clauses.

e In parameter-based match mode, origin_stmt cannot contain constants.

e |n parameter-based match mode, the number of bind variables in origin_stmt and the number of bind
variables in target_stmt must be the same.

e In exact match mode, target_stmt cannot contain bind variables.

e When you create an outline, origin_stmt cannot be the same as that of an existing outline in the
system.

e When you create an outline, the syntax of target_stmt must be correct so that the desired execution
plan can be generated.

Create an outline

The CREATE statement is used to create an outline. By default, an outline takes effect afterit is
created.

CREATE outline name ON origin stmt TO target stmt

Parameter description:

e name indicates the name of the outline that you want to create.

e origin_stmt specifies the SQL statement for which you want to create an outline. If the SQL
statement does not contain the question mark (?) variable,an exact match is performed.

e [f the SQL statement contains the question mark (?)variable, the SQL statement cannot contain
constants and a parameter-based match is performed after the SQL statement is formatted.

e target_stmt is the statement that uses hints to generate a logical plan.

Example 1: Create an outline in exact match mode

155 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Outline
PolarDB-X

mysgl> create outline tl on select 1 to select 2;
Query OK, 1 row affected (1.09 sec)
mysgl> select 1;

- +
| 2 \
o +
\ 2|
e +

When the SQL statement is being executed, the select 1 clause is replaced by the select 2 clause.

Example 2: Create an outline in parameter-based match mode

mysql> create outline t2 on select ? to select /*+TDDL:slave()*/ * from msl0 where cl=?;
Query OK, 1 row affected (0.16 sec)
mysqgl> explain select 1;

| LogicalView (tables="01.ms10", sgl="SELECT * FROM 'msl0" WHERE ('cl” = 2)") |
| HitCache:false |
| UsingOutline: T2 |

Delete an outline

The DROP statement is used to delete a specified outline.

DROP OUTLINE name #name specifies the name of the outline that you want to delete.

Synchronize an outline again

A PolarDB-X 1.0 instance runs on multiple servers. After you create an outline on a server, the outline is
synchronized to other servers. An error may occur when the outline is being synchronized. In this case,
you must synchronize the outline again.

RESYNC OUTLINE name #name specifies the name of the outline that you want to synchronize a

gain.

Disable a specified outline

The DISABLE statement is used to disable a specified outline.

DISABLE OUTLINE name #name specifies the name of the outline that you want to disable.

Enable a specified outline

The ENABLE statement is used to enable a specified outline.

ENABLE OUTLINE name #name specifies the name of the outline you want to enable.

> Document Version: 20220601 156

Cloud Native Distributed Database

SQL Reference- Outline
PolarDB-X

Query the outlines in the system

The SHOW statement is used to query the outlines in the system.

SHOW OUTLINES

9.2. Error codes

This topic describes the common error codes and the causes of the errors.

e ERR_ORIGIN_STMT_UNEXPECTED_CONST: In parameter-based match mode, origin_stmt contains the
constants that are not parameters.

e ERR PARAM_COUNT_NOT_EQUAL: In parameter-based match mode, the number of bind variables in
origin_stmt differs fromthe number of bind variables in target_stmt.

e ERR TARGET_STMT_UNEXPECTED_PARAM: In exact match mode, target_stmt contains the bind
variables.

e ERR ORIGIN_STMT_CONFLICTED: origin_stmt used for creating an outline is the same as that of an
existing outline in the system.

e ERR TARGET_STMT_ERROR: target_stmt used for creating an outline fails to generate an execution
plan.

157 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference:-Prepare SQL
PolarDB-X Q P Q

10.Prepare SQL
10.17. Introduction to the prepared
statement protocol

This topic describes the prepared statement protocol and its support for prepared statements. This
topic also describes how to enable the prepared statement protocolin a Java client.

Overview

Distributed Relational Database Service (PolarDB-X 1.0) allows you to enable the client /server binary
protocol to execute server-side prepared statements. Prepared statements with placeholders for
parameter values have the following benefits:

e Minimized overhead of statement parsing each time a statement is executed. In most cases,
database applications process large numbers of near-identical statements in which only a few
variable values are different. To execute these near-identical statements in an efficient manner, you
need only to change the variable values in a prepared statement.

e Protection against SQL injection attacks.

Description

e Basic information about the prepared statement protocol
o The protocol supports the following commands:
m COM_STMT_PREPARE
m COM _STMT_EXECUTE
m COM STMT_CLOSE
m COM STMT_RESET

o The protocol supports Java and ot her programming languages.

o Forinformation about the commands supported by prepared statements in MySQL, see Prepared
statements.

e AllSQL DML statements can be used as prepared statements, such as SELECT, UPDATE, DELETE, and
INSERT statements.

e Non-DML SQL statements cannot be used as prepared statements, such as SHOW and SET
statements.

e The following statements cannot be used as prepared statements in a MySQL CLI:

mysgl> SET @s = 'SELECT SQRT (POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> PREPARE stmt2 FROM @s;

mysgl> SET @a = 6;

mysgl> SET @b = 8;

mysqgl> EXECUTE stmt2 USING @a, @b;

Enable the prepared statement protocol in a Java client

e [f you want to execute prepared statements in your Java client, forcibly add the
useServerPrepStmts=true field to the URL for connecting to MySQL. If you do not add this field, a

> Document Version: 20220601 158

https://dev.mysql.com/doc/internals/en/com-stmt-prepare.html#packet-COM_STMT_PREPARE
https://dev.mysql.com/doc/internals/en/com-stmt-execute.html#packet-COM_STMT_EXECUTE
https://dev.mysql.com/doc/internals/en/com-stmt-close.html#packet-COM_STMT_CLOSE
https://dev.mysql.com/doc/internals/en/com-stmt-reset.html#packet-COM_STMT_RESET
https://dev.mysql.com/doc/internals/en/prepared-statements.html?spm=a2c4g.11186623.2.6.6991d84a5691iU

SQL Reference- Prepare SOL Cloud Native Distributed Database

PolarDB-X
regular query is performed.
e Example: jdbc:mysqgl://xxxxxx:3306/xxxxxx?useServerPrepSt mts=true
Example in Java:
Class.forName ("com.mysql.jdbc.Driver") ;
Connection connection = DriverManager.getConnection ("jdbc:mysql://xxxxxx:3306/xxxxxx?2useSe

rverPrepStmts=true", "xxxxx", "xxxxx");

String sgl = "insert into batch values(?,?)"

PreparedStatement preparedStatement = connection.prepareStatement (sql);
preparedStatement.setInt (1, 0);

preparedStatement.setString (2, "corona-db");
preparedStatement.executeUpdate () ;

159 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference- Hint
PolarDB-X

11.Hint
11.1. Overview

This topic describes the usage and the syntax of custom hints.

Information provided in this topic is applicable to PolarDB-X 1.0 V5.3 and later.

Overview

Hints are supplementary to the SQL syntax and play a crucial role in relational databases. Hints allow
you to choose execution methods for SQL statements by using the corresponding syntax. T his way, you
can optimize the execution of SQL statements.

PolarDB-X 1.0 provides special hint syntax. For example, if you already know data is stored in some table
shards in specific database shards and you need to route an SQL statement to the database shards for
execution, you can use PolarDB-X 1.0 custom hints.

Syntax of PolarDB-X 1.0 custom hints

Syntax
/*+TDDL: hint command [hint command ...]%*/
/!+TDDL: hint command [hint command ...]*/
Note

e PolarDB-X 1.0 custom hints can be specified inthe /*+TbbL:hint command*/ format orinthe /i+tT
DDL:hint command*/ format.

e A hint is a string that is placed between /+x and */ orbetween /! and =/ .The string
begins with +tppL: .The nint command parameter specifiesone or more PolarDB-X 1.0 custom
hint commands that are used to affect specific operations. If you specify multiple hint commands for
the hint command parameter, separate them with spaces.

e If you specify customhintsinthe /*+TDDL:hint command*/ format, PolarDB-X 1.0 addthe -c
parameter to the command used to log on to the MySQL command-line client: mysgl. T his way, you
can execute SQL statements that contain the custom hints on the client. If you do not add the -c
parameter, PolarDB-X 1.0 the client deletes comments in SQL statements before it sends the SQL
statements to servers for execution. custom hints in this format are defined as MySQL comments.
Therefore, PolarDB-X 1.0 the custom hints cannot take effect. For more information, see mysql client
options.

Examples

Query the names of physical tables in each database shard.

/*+TDDL:scan () */SHOW TABLES;

Route the query to database shard 0000 of a read-only ApsaraDB RDS instance.
/*+TDDL:node (0) slave()*/SELECT * FROM tl1;

Inthe examples, /*+TDDL:scan()*/ and /*+TDDL:node (0) slave()*/ are custom hints provided by
PolarDB-X 1.0. The two hints beginwith +TpbL: . scan() , node(0) ,and slave() are PolarDB-
X 1.0 hint commands and are separated with spaces.

> Document Version: 20220601 160

https://dev.mysql.com/doc/refman/5.6/en/comments.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_comments

Cloud Native Distributed Database

SQL Reference- Hint

PolarDB-X

Use a hint in an SQL statement

PolarDB-X 1.0 allows you to use hints in DML, DDL, and Data Access Language (DAL) statements. The

following list describes the syntax:

e Fora DML statement, you can specify a hint at the end of the first keyword of the statement, as

shown in the following examples:

/*+TDDL: ... */ SELECT ...
/*+TDDL: ... */ INSERT ...
/*+TDDL: ... */ REPLACE ...
/*+TDDL: ... */ UPDATE ...
/*+TDDL: ... */ DELETE ...
/*+TDDL: ... */ CREATE TABLE ...
/*+TDDL: ... */ ALTER TABLE ...
/*+TDDL: ... */ DROP TABLE ...
/*+TDDL: ... */ SHOW ...

e For DML statements, you can specify a hint at the end of the first keyword of the statements, as

shown in the following example:

SELECT /*+TDDL: ... */
INSERT /*+TDDL: ... */
REPLACE /*+TDDL: ... */
UPDATE /*+TDDL: ... */
DELETE /*+TDDL: ... */

@ Note Different hints may be applicable to different statements. For more information

about the applicable statements, see the topics that describe hint commands.

Use multiple hints in an SQL statement

PolarDB-X 1.0 allows you to use a hint that contains multiple hint commands in an SQL statement.

SELECT /*+TDDL:node (0) slave()*/ ...;

PolarDB-X 1.0 has the following limits on the use of hints that contain multiple hint commands:

A single SQL statement cannot contain multiple hints.
SELECT /*+TDDL:node (0)*/ /*+TDDL:slave()*/ ...;

A hint cannot contain duplicate hint commands.

SELECT /*+TDDL:node (0) node(l)*/ ...;

Categories of PolarDB-X 1.0 custom hints

e Read/write splitting
e Specify a customtime-out period for an SQL statement
e Specify database shards where an SQL statement is to be executed

e Scan all or some of the table shards in all or some of the database shards

161 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/71285.htm#multiTask1148
https://www.alibabacloud.com/help/doc-detail/100641.htm#multiTask821
https://www.alibabacloud.com/help/doc-detail/71287.htm#multiTask4184
https://www.alibabacloud.com/help/doc-detail/71291.htm#multiTask2565

Cloud Native Distributed Database

SQL Reference- Hint
PolarDB-X

11.2. Read/write splitting

This topic describes hints for read/write splitting.

Information provided in this topic is applicable to PolarDB-X 1.0 V5.3 and later.

PolarDB-X 1.0 provides read/write splitting that is transparent to the application layer. A latency of
several milliseconds exists when data is synchronized between primary and read-only ApsaraDB RDS
instances. If you need to read data changes immediately after the data in the primary ApsaraDB RDS
instance is changed, you must make sure that the SQL request for reading data is routed to the primary
ApsaraDB RDS instance. To meet this demand, PolarDB-X 1.0 provides custom hints for read/write
splitting. These custom hints allow you to route SQL statements to a specified primary or read-only
ApsaraDB RDS instance.

Syntax

/*+TDDL:
master ()
| slave ()

*/

You can use the custom hints to specify whether to execute an SQL statement on a primary or read-
only ApsaraDB RDS instance. If you use /*+TDDL:slave () */ inanSQLstatement and a primary
ApsaraDB RDS instance is associated with multiple read-only ApsaraDB RDS instances, PolarDB-X 1.0
randomly selects a read-only ApsaraDB RDS instance based on the assigned weight to execute the SQL
statement.

Note
e PolarDB-X 1.0 custom hints can be specified inthe /*+TDDL:hint command*/ format orinthe /i+t
DDL:hint command*/ format.

o If you specify customhintsinthe /*+TDDL:hint command*/ format, PolarDB-X 1.0 add the -c
parameter to the command used to log on to the MySQL command-line client: mysqgl. T his way, you
can execute SQL statements that contain the PolarDB-X 1.0 custom hints on the client. If you do not
add the -c parameter, PolarDB-X 1.0 the client deletes comments in SQL statements before it sends
the SQL statements to servers for execution. PolarDB-X 1.0 custom hints in this format are defined as
MySQL comments. Therefore, PolarDB-X 1.0 the custom hints cannot take effect. For more
information, see mysgl client options.

Examples

e Execute an SQL statement on your primary ApsaraDB RDS instance:

SELECT /*+TDDL:master ()*/ * FROM table name;

Afterthe customhint /*+TDpDL:master ()*/ is added at the end of the first keyword in the SQL
statement, this SQL statement is routed to the primary ApsarabDB RDS instance.

e Execute an SQL statement on a specified read-only ApsaraDB RDS instance:

SELECT /*+TDDL:slave()*/ * FROM table name;

> Document Version: 20220601 162

https://dev.mysql.com/doc/refman/5.6/en/comments.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_comments

Cloud Native Distributed Database

SQL Reference- Hint
PolarDB-X

Afterthe customhint /*+TDDL:slave()*/ is added at the end of the first keyword in the SQL
statement, this SQL statement is randomly routed to a read-only ApsaraDB RDS instance based on
the assigned weight.

@ Note

o The custom hints for read/write splitting are only applicable to read-only SQL statements
that are not included in transactions. SQL statements that are executed to write data or
are included in transactions are still routed to the primary ApsaraDB RDS instance.

o If youusethe /*+TDDL:slave()*/ hint in anSQL statement, PolarDB-X 1.0 randomly
routes the SQL statement to a read-only ApsaraDB RDS instance based on the assigned
weight. If no read-only ApsaraDB RDS instances are available, no error is reported. Instead,
the primary ApsaraDB RDS instance is selected to execute the SQL statement.

11.3. Specify a custom time-out period for
an SQL statement

This topic describes the hint syntax for specifying a time-out period for SQL statements.

Information provided in this topic is applicable to PolarDB-X 1.0 V5.3 and later.

In PolarDB-X 1.0, the default time-out period forthe SQL statements in PolarDB-X 1.0 instances and
ApsaraDB RDS instances is 900 seconds. You can change the time-out period based on your
requirements. Some SQL statements may take longer than 900 seconds to complete. For these slow SQL
statements, PolarDB-X 1.0 provides a custom hint that you can use to change the time-out period for
these statements. You can use this custom hint to change the time-out period for SQL statements.

Syntax

/*+TDDL: SOCKET TIMEOUT (time) */

The value specified by socker TiMEOUT is measured in milliseconds. You can use this custom hint to
change the time-out period for SQL statements based on your business requirements.

Note

e PolarDB-X 1.0 custom hints can be specified inthe /*+TDDL:hint command*/ format orinthe /i+t
DDL:hint command*/ format.

e If you specify customhintsinthe /*+TDDL:hint command*/ format,addthe -c parameterto
the command used to log on to the MySQL command-line client: mysqgl. This way, you can execute
SQL statements that contain the PolarDB-X 1.0 custom hints on the client. If you do not add the -c
parameter, the client deletes comments in SQL statements before it sends the SQL statements to
servers for execution. PolarDB-X 1.0 custom hints in this format are defined as MySQL comments.
Therefore, the PolarDB-X 1.0 custom hints cannot take effect. For more information, see mysql client
options.

Examples

Set the time-out period of SQL statements to 40 seconds:

163 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.6/en/comments.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_comments

Cloud Native Distributed Database

SQL Reference- Hint
PolarDB-X

/*+TDDL: SOCKET TIMEOUT (40000) */SELECT * FROM t item;

@ Note A longer timeout period causes database resources to be occupied for a longer period
of time. If excessive SQL statements are executed over a long time within the same period, a large
number of database resources may be consumed, and DRDS database services cannot be provided
as expected. To resolve the issue, you must optimize SQL statements that take a long time to
execute if possible.

11.4. Specify database shards where an
SQL statement is to be executed

This topic describes the hint syntax that is used to specify one or more database shards on which you
want to execute an SQL statement. T his topic also provides some sample code.

Information provided in this topic is applicable to PolarDB-X 1.0 V5.3 and later.

When you are using PolarDB-X 1.0, if you encounter anSQL statement that is not supported by PolarDB-

X 1.0,youcanuse nobe HINT provided by PolarDB-X 1.0. NODE HINT can route an SQL statement to

one or more database shards on which you want to execute the SQL statement. If you need to query

the data in a specified database shard or in a specified table shard of a database shard, you can use
NODE HINT to routethe SQLstatement to the database shard.

Syntax

nNopE HINT allows you to specify the names of the database shards on which you want to execute

an SQL statement. A shard name isthe unique identifier of a database shard in a PolarDB-X 1.0
database. To query the names of the database shards in a database, you can execute the suaow

NODE Statement.

You can use two methods to specify the names of the database shards on which an SQL statement is
executed. One of the methods is to specify only one database shard on which you want to execute the
SQL statement. The other method is to specify multiple database shards on which you want to execute
the SQL statement.

) Notice If the hint statement that is used to specify database shards is contained in an
INSERT statement and this INSERT statement contains a sequence definition for the table on which
the SQL statement is executed, the sequence does not take effect. For more information, see
Limits.

e Specify a database shard on which you want to execute an SQL statement.

/*+TDDL:node ('node name') */

node name specifies the name of a database shard. You can customize a PolarDB-X 1.0 hint to
route an SQL statement to a database shard that is specified by node name forexecution.

e Specify multiple database shards on which you want to execute an SQL statement.

/*+TDDL:node ('node name' [, 'node namel', 'node name2'])*/

> Document Version: 20220601 164

https://www.alibabacloud.com/help/doc-detail/71255.htm#multiTask1940

Cloud Native Distributed Database

SQL Reference- Hint
PolarDB-X

You can specify multiple shard names and separate the shard names with commas (,). The SQL
statement that contains the specified hint is routed to the specified database shards.

@ Note

o When you execute an SQL statement that contains a DRDS hint, PolarDB-X 1.0 routes the
SQL statement to the database shards for execution. The table names that are specified
inthe SQL statement must exist in the specified database shards.

o NODE HINT can be used in DML statements, DDL statements, and Data Access Language
(DAL) statements.

Note

e InDRDS V5.4.1 and later, PolarDB-X 1.0 adds a four-character random string to each of the names of
the physical tables that correspond to table shards. You must execute the SHOW TOPOLOGY
statement to obtain the topological relationships of logical tables and the names of physical tables.

e InDRDS V5.4.4 and later, PolarDB-X 1.0 provides a switch to control whether the name of each
physical table fortable shards contains a random string. By default, this switch is turned on. To turn
of f the switch, you can log on to the DRDS console and then click the ID of the instance that you
want to manage. In the left-side navigation pane of the instance details page, click Parameter
Settings. On the page that appears, click the Database tab, and set the value of
ENABLE_RANDOM_PHY_TABLE_NAME to false. You can also use the following hint to turn off the
switch forthe tables that are specified in an SQLstatement: /*+TDDL:cmd_extra (ENABLE_RANDOM PHY

_TABLE_NAME=FALSE) */

e You can specify PolarDB-X 1.0 hints in the following formats: /*+TDDL:hint command*/ and /!+TD

DL:hint command*/

e If you specify hintsinthe /*+TpbL:hint command*/ format,addthe -c parameterto the
command used to log on to the MySQL command-line client: mysqgl. This way, you can execute SQL
statements that contain the PolarDB-X 1.0 hints on the client. If you do not add the -c parameter,
the client deletes comments in the SQL statements before it sends the SQL statements to servers for
execution. PolarDB-X 1.0 hints in this format are defined as MySQL comments. Therefore, the PolarDB-
X 1.0 hints are deleted and cannot take effect. For more information, see mysql client options.

Examples

The following example shows the result that is returned by srow nope for a PolarDB-X 1.0 database
named drds_test

mysgl> SHOW NODE\G
khkhkkhkhkkhkhkkkhkhkkhkhkhkkhkhkhkhkhkkhkhkkhkkkhxk 1. oW khkkkhkhkkkhkhkkhkhkhkkhkhkkkkkk
ID: O
NAME: DRDS TEST 1473471355140LRPRDRDS TEST VTLA 0000 RDS
MASTER READ COUNT: 212
SLAVE READ COUNT: 0
MASTER READ PERCENT: 1 00%
SLAVE READ PERCENT: 0%
hhkrhkhkhkkhkrhhkhkkhkrhkhkhkhkhkhkhkrxkhkkhkx* 2. oW hhkkkhkrhkhkrkhkhkhkhkrxkhkkkkx
ID: 1
NAME:: DRDS TEST 147 347135514 OLRPRDRDS_TEST_VTLA_O 00 1 RDS
MASTER READ COUNT: 29
SLAVE READ COUNT: O

nAm AT T T T AT T A AnAa

165 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.6/en/comments.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_comments

Cloud Native Distributed Database

SQL Reference- Hint
PolarDB-X

MASTEK KEAD PERCENL: LUU%
SLAVE READ PERCENT: 0%
hhkrkhkhkhkkhkrhhkhkhkrkhkhkhkhkhkhkhkrkkkkhx* 3. TOW hhkkkhkrhkhkrkhkhkhkhkrkhkkkk*x
ID: 2
NAME: DRDS TEST 1473471355140LRPRDRDS TEST VTLA 0002 RDS
MASTER READ COUNT: 29
SLAVE READ COUNT: O
MASTER READ PERCENT: 100
SLAVE READ PERCENT: 0O

R R R R R R 4 Trow Kkhkkkhkkhkk kkhkhkkhkkhkkhkkhkkhkkhkkkk*k

oo

oo

ID: 3

NAME: DRDS TEST 1473471355140LRPRDRDS TEST VTLA 0003 RDS
MASTER READ COUNT: 29
SLAVE READ COUNT: 0

MASTER READ PERCENT: 100

SLAVE READ PERCENT: O

R R R R R R R R R R g 5 Trow Kkkhkkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkk*k

o©

o©

ID: 4

NAME: DRDS TEST 1473471355140LRPRDRDS TEST VTLA 0004 RDS
MASTER READ COUNT: 29
SLAVE READ COUNT: 0

MASTER READ PERCENT: 100

SLAVE READ PERCENT: 0O

Ak KKk kA Ak hhAkAkhhAhAkxkhhkhk Ak hkkkkkx 6 rOow Kk AhkhkkkkhkhAkkkhkhAkkkkkk

o©

oo

ID: 5

NAME: DRDS TEST 1473471355140LRPRDRDS TEST VTLA 0005 RDS
MASTER READ COUNT: 29
SLAVE READ COUNT: 0

MASTER READ PERCENT: 100

SLAVE READ PERCENT: O

KAAkKkKAAAKAAAKA KA AA A XA A A I AKX Ak K 7 row LR R

oo

oo

ID: 6

NAME: DRDS TEST 1473471355140LRPRDRDS TEST VTLA 0006 RDS
MASTER READ COUNT: 29
SLAVE READ COUNT: 0

MASTER READ PERCENT: 100

SLAVE READ PERCENT: 0O

KAKKAAAKARIAAA KA AAXA XA A AR KK AK* K 8. row LR R

oe

oo

ID: 7
NAME: DRDS TEST 1473471355140LRPRDRDS TEST VTLA 0007 RDS
MASTER READ COUNT: 29
SLAVE READ COUNT: 0
MASTER READ PERCENT: 100
SLAVE READ PERCENT:

8 rows in set (0.02 se

o
oo
oe

Q

The result shows that each database shard hasthe wame attribute. This attribute indicates the name
of the database shard. Each shard name in the returned result corresponds to one unique database
shard. For example, the shard name DRDS TEST 1473471355140LRPRDRDS TEST VTLA 0003 RDS
corresponds to the database shard drds test vtla 0003 .Afteryou obtainthe shard names, you

can use a PolarDB-X 1.0 hint to specify the database shards on which you want to execute an SQL
statement.

> Document Version: 20220601 166

SOL Reference- Hint Cloud Native Distributed Database
PolarDB-X

e Execute an SQL statement on database shard 0.

SELECT /*TDDL:node ('DRDS TEST 1473471355140LRPRDRDS TEST VTLA 0000 RDS')*/ * FROM table n

ame;

e Execute an SQL statement on multiple database shards.

SELECT /*TDDL:node ('DRDS_TEST 1473471355140LRPRDRDS TEST VTLA 0000 RDS', 'DRDS_TEST 147347
1355140LRPRDRDS TEST VTLA 0006 RDS')*/ * FROM table name;

The SQL statement is executed onthe DRDS TEST 1473471355140LRPRDRDS_TEST VTLA 0000 RDS
shard and the DRDS TEST 1473471355140LRPRDRDS TEST VILA 0006 RDS shard.

e View the physical execution plan of an SQL statement on database shard 0.

/*TDDL:node ('DRDS TEST 1473471355140LRPRDRDS TEST VTLA 0000 RDS')*/ EXPLAIN SELECT * FROM

table name; °°°

11.5. Scan all or some of the table shards
in all or some of the database shards

This topic describes the hint syntax and sample code that can be used to scan all or some of the table
shards in all or some of the database shards.
Information provided in this topic is applicable to PolarDB-X 1.0 V5.3 and later.

DRDS provides the capability to route an SQL statement to one or more database shards for execution.
PolarDB-X 1.0 also provides scan mINT to scan all or some of the table shards in all or some of the
database shards. You canuse scan HINT to route anSQLstatement to all database shards at a time.
For example, you can query all the table shards in a specified database shard or query the amount of
the data in each physical table that corresponds to a specified logical table.

Youcanuse scan HINT toexecute SQLstatements inthe following manners:

1. Execute an SQL statement on all the table shards in all database shards.
2. Execute an SQL statement on all the table shards in the specified database shards.

3. Execute an SQL statement on the specified table shards in the specified database shards. The
names of the physical tables are calculated based on the given conditions.

4. Execute an SQL statement on the specified table shards in the specified database shards. The
table shards are explicitly specified by using the names of the physical tables.

SCAN HINT can be used in DML statements, DDL statements, and some Data Access Language (DAL)
statements.

Syntax

167 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference- Hint
PolarDB-X

SCAN HINT

Route an SQL statement to all the table shards in all database shards.

SCAN ()

Route an SQL statement to all the table shards in the specified database shards.

SCAN (NODE="node list") # Specify the database shards.

Route an SQL statement to the specified table shards in the specified database shards. Th
e names of the physical tables are calculated based on the given conditions.

SCAN (

[TABLE=]"table name list" # Specify the names of the logical tables.

, CONDITION="condition string" # Calculate the names of the physical tables based on
the values of the TABLE and CONDITION parameters.

[, NODE="node list"]) # Filter the results obtained based on the value of th

e CONDITION parameter to retain only the names of the tables that are in the specified phys
ical databases.
Route an SQL statement to the specified table shards in the specified database shards. Th
e table shards are explicitly specified by using the names of the physical tables.
SCAN (

[TABLE=]"table name list" # Specify the names of the logical tables.

, REAL TABLE=("table name list") # Specify the names of the physical tables. These phys
ical table names are used to query data from all the physical databases.

[, NODE="node list"]) # Filter the results obtained based on the value of th
e CONDITION parameter to retain only the names of the tables that are in the specified phys
ical databases.
Specify the names of physical table shards or logical tables.
table name list:

table name [, table name]...
Specify physical databases by using GROUP KEY and GROUP_ INDEX. To obtain the values of GR
OUP_KEY and GROUP_ INDEX, you can execute the SHOW NODE statement.
node list:
{group key | group index} [, {group key | group index}]...

Specify an SQL WHERE clause. You must specify conditions for each table, such as tl.id =
2 and t2.id = 2.
condition string:

where condition

Note

e You can specify PolarDB-X 1.0 hints in the following formats: /*+TDDL:hint command*/ and /!+TD
DL:hint command*/

o If you specify hintsinthe /*+TpbL:hint command*/ format,addthe -c parametertothe
command used to log on to the MySQL command-line client: mysqgl. This way, you can execute SQL
statements that contain the PolarDB-X 1.0 hints on the client. If you do not add the -c parameter,
the client deletes comments in the SQL statements before it sends the SQL statements to servers for
execution. PolarDB-X 1.0 hints in this format are defined as MySQOL comments. Therefore, the PolarDB-
X 1.0 hints are deleted and cannot take effect. For more information, see mysql client options.

Examples
e Execute an SQL statement on all the table shards in all database shards.

SELECT /*+TDDL:scan ()*/ COUNT (1) FROM tl

> Document Version: 20220601 168

https://dev.mysql.com/doc/refman/5.6/en/comments.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_comments

Cloud Native Distributed Database

SQL Reference- Hint
PolarDB-X

When the SQL statement is executed, DRDS routes the SQL statement to all the physical tables of
logicaltable t1 .Then, DRDS merges the result sets and returns the final result.

e Execute an SQL statement on all the table shards in the specified database shards.

SELECT /*+TDDL:scan (node='0,1,2")*/ COUNT (1) FROM tl

When the SQL statement is executed, DRDS calculates the names of the physical tables of logical
table t1 indatabase shards 0000, 0001, and 0002. Then, DRDS routes the SQL statement to the

table shards. After the SQL statement is executed, DRDS merges the result sets and returns the final
result.

e Execute an SQL statement on the specified table shards based on the given conditions.

SELECT /*+TDDL:scan('tl', condition='tl.id = 2')*/ COUNT (1) FROM tl

When the SQL statement is executed, DRDS calculates the names of all the physical tables
correspond to logicaltable ti1 and meet the conditions .Then, DRDS routesthe SQL
statement to the specified table shards. After the SQL statement is executed, DRDS merges the
result sets and returns the final result.

e Execute an SQL statement that contains a JOIN clause on the specified table shards based on the
given conditions.

SELECT /*+TDDL:scan('tl, t2', condition='tl.id = 2 and t2.id = 2')*/ * FROM tl a JOIN t2
b ON a.id = b.id WHERE b.name = "test"

When the SQL statement is executed, DRDS calculates the names of the physical tables correspond
to logicaltables t1 and t2 and meetthe conditions .Then, DRDS routesthe SQL statement
to the specified table shards. After the SQL statement is executed, DRDS merges the result sets and
returns the final result. Note: When you use this hint, you must make sure that the two tables belong
to the same database shard. You must also make sure that the number of shards in one of the table
is the same as the number of shards in the other table. Otherwise, the table shard names obtained by
PolarDB-X 1.0 represent table shards that are not in the same database shard. If this issue occurs,
DRDS reports an error.

e Execute an SQL statement on the specified table shards in the specified database shards. The table
shards are explicitly specified by using the names of the physical tables.

SELECT /*+TDDL:scan('tl', real table=("tl 00", "tl1 01"))*/ COUNT (1) FROM tl

When the SQL statement is executed, DRDS routes the SQL statement to table shards t1 00 and t1
_01 inalldatabase shards. Afterthe SQL statement is executed, DRDS merges the result sets and
returns the final result.

e Execute an SQL statement that contains a JOIN clause on the specified table shards in the specified
database shards. The table shards are explicitly specified by using the names of the physical tables.

SELECT /*+TDDL:scan('tl, t2', real table=("tl 00,t2 00", "tl 01,t2 01"))*/ * FROM tl a JO
IN t2 b ON a.id = b.id WHERE b.name = "test";

169 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference- Hirt
PolarDB-X

When the SQL statement is executed, DRDS routes the SQL statement to table shards t1 00 , t2
00 , ti1 01 ,and t2 01 inalldatabase shards. Afterthe SQL statement is executed, DRDS
merges the result sets and returns the final result.

11.6. Automatic protection against high-
risk SQL statements

To prevent data loss due to misoperations, PolarDB-X 1.0 prohibits high-risk SQL statements by default,
such as a DELETE statement without a WHERE or LIMIT clause and an UPDATE statement without a
WHERE or LIMIT clause. If you need to performfull-table deletion or update, you can skip the preceding
protection by adding a hint to the corresponding statement.

Statements

You can add the following hint to an UPDATE or DELETE statement to performfull-table deletion or
update:

/! TDDL:FORBID EXECUTE DML ALL=false*/

Examples

e [f a DELETE statement does not contain any WHERE or LIMIT clauses, the execution of this statement
is intercepted and the following error message appears:

DELETE FROM tt;
ERR-CODE: [TDDL-4620] [ERR FORBID EXECUTE DML ALL] Forbid execute DELETE ALL or UPDATE ALL

sqgl. More: [http://
example.aliyundoc.com/faqg/fagByFagCode.html?fagqCode=TDDL-4620]

The operation is successful after the following hint is added to the statement:

/!TDDL:FORBIDiEXECUTEiDMLiALL=false*/DELETE FROM tt;
Query OK, 10 row affected (0.21 sec)

o If an UPDATE statement does not contain any WHERE or LIMIT clauses, the execution of this
statement is intercepted and the following error message appears:

UPDATE tt SET id = 1;
ERR-CODE: [TDDL-4620] [ERR FORBID EXECUTE DML ALL] Forbid execute DELETE ALL or UPDATE ALL

sgql. More: [http://example.aliyundoc.com/faq/fagByFagCode.html?fagqCode=TDDL-4620]

The operation is successful after the following hint is added to the statement:

/! TDDL:FORBIDfEXECUTEiDMLiALL=falSe*/UPDATE tt SET id = 1;
Query OK, 10 row affected (0.21 sec)

11.7. INDEX HINT

PolarDB-X 1.0 supports global secondary indexes (GSIs). T his topic describes how to use the INDEX HINT
command to obtain query results from a specified GSI.

Limits

> Document Version: 20220601 170

Cloud Native Distributed Database
PolarDB-X

SQL Reference- Hint

e The version of the ApsaraDB RDS for MySQL instance must be 5.7 or later, and the version of the
PolarDB-X 1.0 instance must be 5.4.1 or later.

e The INDEX HINT command takes effect only for SELECT statements.

Precautions

Custom PolarDB-X 1.0 hints can be in the formats of /*+TDDL:hint command*/ and /!

+TDDL:hint command*/ .If youusethe /*+TDDL:hint command*/ format, add the -c parameterto the
logon command when you use the MySQL command-line client to execute an SQL statement that
contains a custom PolarDB-X 1.0 hint. Otherwise, the client deletes the MySQL comment, which
represents the custom PolarDB-X 1.0 hint, fromthe SQL statement and then sends the statement to
the server for execution. As a result, the custom PolarDB-X 1.0 hint becomes invalid. For more
information, see MySQL client options.

Syntax
PolarDB-XPolarDB-X 1.0 supports the following two types of hint syntax:

® FORCE INDEX() : Itssyntaxisthe same asthat of MySQL FORCE INDEX. If the specified index is not a
GSI, the FORCE INDEX hint is sent to the ApsarabDB RDS for MySQL instance for execution.

FORCE INDEX ()
tbl name [[AS] alias] [index hint]
index hint:

FORCE INDEX ({index name})

e 1INDEX() : It specifies a GSlIbased onthe combination of the table name and index name orthe
combination of the table alias in the current query block and the index name.

INDEX ()
/*+TDDL:

INDEX ({table name | table alias}, {index name})
=/

@ Note The preceding statement does not take effect in the following scenarios:
o The query does not contain the specified table name or alias.
o The specified GSlis not in the specified table.

Examples

CREATE TABLE t_order (
"id® bigint(11) NOT NULL AUTO INCREMENT,
‘order id® varchar (20) DEFAULT NULL,
"buyer id’ varchar (20) DEFAULT NULL,
‘seller id® varchar (20) DEFAULT NULL,
‘order snapshot’ longtext DEFAULT NULL,
‘order detail’ longtext DEFAULT NULL,
PRIMARY KEY (°id"),
GLOBAL INDEX 'g i seller ('seller id') dbpartition by hash(seller id"),
UNIQUE GLOBAL INDEX 'g i buyer® ("buyer id’) COVERING(seller id', “order snapshot’)
dbpartition by hash('buyer id') tbpartition by hash('buyer id’) tbpartitions 3
) ENGINE=InnoDB DEFAULT CHARSET=utf8 dbpartition by hash(order id");

171 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.6/en/comments.html?spm=a2c4g.11186623.2.13.30952e844fy7FE
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html?spm=a2c4g.11186623.2.14.30952e844fy7FE#option_mysql_comments
https://dev.mysql.com/doc/refman/5.7/en/index-hints.html

Cloud Native Distributed Database SQL Reference- Hint
PolarDB-X

e Specifythe g i seller GSlby using FORCE INDEX inthe FROM clause:

SELECT a.*, b.order id
FROM t seller a

JOIN t order b FORCE INDEX (g i seller) ON a.seller id = b.seller id
WHERE a.seller nick="abc";

e Specifythe g i buyer GSIby using the combination of the index name and table alias:

/*+TDDL:index (a, g i buyer)*/ SELECT * FROM t order a WHERE a.buyer id = 123

> Document Version: 20220601 172

SQL Reference-Functions

Cloud Native Distributed Database
PolarDB-X

12.Functions
12.1. Functions

This topic describes the function that are supported by PolarDB-X 1.0 and some functions that are not

supported by this system.

PolarDB-X 1.0 supports the date and time functions, string functions, conversion functions, aggregate
functions, mathematical functions, comparison functions, bit functions, flow control functions,
information functions, encryption functions, compression functions, and other functions. In addition,
JSON functions and geographic information functions can be pushed down and executed.

In the WHERE clause or the UPDATE statement, PolarDB-X 1.0 does not support the following functions:
LAST _INSERT _ID(), CONNECTION_ID(), CURRENT _USER(), CURRENT _USER DAT ABASE(), SCHEMA(), USER(),
and VERSION().

PolarDB-X 1.0 does not support the following functions that are supported by MySQL 5.7:

Full-text search functions

XML functions

Global transaction identifier (GTID) functions

Enterprise encryption functions

The following functions belong to the supported function types. However, these functions are not
supported.

Type

Date and time functions

String functions

Function

CONVERT _TZ()

GET_FORMAT()
LOCALTIME(), LOCALTIME
LOCALTIMESTAMP,
LOCALTIMEST AMP()

FIND_IN_SET()

LOAD_FILE()
MAT CH
SOUNDS LIKE
BIT_AND(
BIT_OR()

BIT_XOR()

Description

Convert from one time zone to
another

Return a date format string

Synonym for NOW()

Synonym for NOW()

Return the index position of the
first argument within the second
argument

Load the named file

Perform full-text search
Compare sounds

Return bitwise AND

Return bitwise OR

Return bitwise XOR

173

> Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/fulltext-search.html
https://dev.mysql.com/doc/refman/5.7/en/xml-functions.html
https://dev.mysql.com/doc/refman/5.7/en/gtid-functions.html
https://dev.mysql.com/doc/refman/5.7/en/enterprise-encryption.html

Cloud Native Distributed Database

PolarDB-X

SQL Reference- Functions

Aggregate functions

Mathematical functions

Information functions

GROUP_CONCAT()

STD()

STDDEV()

STDDEV_POP()

STDDEV_SAMP()

VAR_POP()

VAR_SAMP()

VARIANCE()

RADIANS()

BENCHMARK()

CHARSET ()

COERCIBILITY()

COLLATION()

FOUND_ROWS()

ROW_COUNT()

ASYMMET RIC_DECRYPT ()

ASYMMETRIC_DERIVE()

ASYMMETRIC_ENCRYPT ()

ASYMMET RIC_SIGN()

Return a concatenated string

Return the population standard
deviation

Return the population standard
deviation

Return the population standard
deviation

Return the sample standard
deviation

Return the population standard
variance

Return the sample variance

Return the population standard
variance

Return argument converted to
radians

Repeatedly execute an
expression

Return the character set of the
argument

Return the collation coercibility
value of the string argument

Return the collation of the string
argument

For a SELECT with a LIMIT clause,
the number of rows that would
be returned were there no LIMIT
clause

The number of rows updated

Decrypt ciphertext using private
or public key

Derive symmetric key from
asymmetric keys

Encrypt cleartext using private or
public key

Generate signature from digest

> Document Version: 20220601

174

SQL Reference- Functions

Cloud Native Distributed Database
PolarDB-X

Encryption functions and
compression functions

ASYMMETRIC_VERIFY()

CREATE_ASYMMETRIC_PRIV_KEY()

CREATE_ASYMMETRIC_PUB_KEY()

CREATE_DH_PARAMETERS()

CREATE_DIGEST()

DECODE() (deprecated 5.7.2)

DES_DECRYPT() (deprecated
5.7.6)

DES_ENCRYPT() (deprecated
5.7.6)

ENCODE() (deprecated 5.7.2)

ENCRYPT() (deprecated 5.7.6)

OLD_PASSWORD()

PASSWORD() (deprecated 5.7.6)

RANDOM_BYTES()

SHA1(), SHA()

SHA2()

VALIDATE_PASSWORD_STRENGT H(
)

ANY_VALUE()

DEFAULT()

GET_LOCK()

INET_ATON()

INET_NT OA()

Verify that signature matches
digest

Create private key

Create public key

Generate shared DH secret
Generate digest from string

Decodes a string encrypted using
ENCODE()

Decrypt a string

Encrypt a string

Encode a string
Encrypt a string

Return the value of the pre-4.1
implementation of PASSWORD

Calculate and return a password
string

Return a random byte vector

Calculate an SHA-1 160-bit
checksum

Calculate an SHA-2 checksum

Determine strength of password

Suppress ONLY_FULL_GROUP_BY
value rejection

Return the default value for a
table column

Get a named lock

Return the numeric value of an IP
address

Return the IP address from a
numeric value

175

> Document Version: 20220601

Cloud Native Distributed Database SOL Reference- Functions

PolarDB-X

Return the numeric value of an

INET6_ATON

- 0 IPv6 address

Return the IPv6 address from a

INET6_NT OA())
numeric value

Other functions IS_FREE_LOCK() Whether the named lock is free

I5_IPV4() Whether argument is an IPv4
address

IS_IPV4_COMPAT() Whether argument is an IPv4-
compatible address

Whether argument is an IPv4-

IS_IPV4_MAPPED() gument | v
mapped address

5. IPV6() Whether argument is an IPv6
address

Whether the named lock is in use;

IS_USED_LOCK() ' é . . .I I. "
return connection identifier if true

Block until the slave has read and

MASTER_POS_WAIT() applied all updates up to the
specified position

Causes the column to have the

NAME_CONST() given name

12.2. Date and time functions

This topic describes the date and time functions that are supported or not supported by PolarDB-X 1.0.

Supported functions

PolarDB-X 1.0 supports the following date and time functions.

Function Description

ADDDATE() Add time values (intervals) to a date value
ADDT IME() Add time

CURDATE() Return the current date

CURRENT _DATE(), CURRENT DATE Synonyms for CURDATE()

CURRENT _TIME(), CURRENT _TIME Synonyms for CURT IME()

CURRENT _TIMESTAMP(), CURRENT _TIMEST AMP Synonyms for NOW()

CURTIME() Return the current time

> Document Version: 20220601 176

SQL Reference- Functions

Cloud Native Distributed Database

PolarDB-X

Function

DATE()

DATE_ADD()

DATE_FORMAT()

DATE_SUB()

DAT EDIFF()

DAY()

DAYNAME()

DAY OFMONT H()

DAY OFWEEK()

DAY OFYEAR()

EXTRACT()

FROM_DAYS()

FROM_UNIXT IME()

HOUR()

LAST_DAY()

MAKEDAT E()

MAKET IME()

MICROSECOND()

MINUT E()

MONT H()

MONT HNAME()

NOW/()

PERIOD_ADD()

PERIOD_DIFF()

QUARTER()

SEC_TO_TIME()

Description

Extract the date part of a date or datetime
expression

Add time values (intervals) to a date value

Format date as specified

Subtract a time value (interval) from a date

Subtract two dates

Synonym for DAY OFMONT H()

Return the name of the weekday

Return the day of the month (0-31)

Return the weekday index of the argument

Return the day of the year (1-366)

Extract part of a date

Convert a day number to a date

Format Unix timestamp as a date

Extract the hour

Return the last day of the month for the argument

Create a date from the year and day of year

Create time from hour, minute, second

Return the microseconds from argument

Return the minute from the argument

Return the month from the date passed

Return the name of the month

Return the current date and time

Add a period to a year-month

Return the number of months between periods

Return the quarter from a date argument

Converts seconds to 'HH:MM:SS' format

177

> Document Version: 20220601

Cloud Native Distributed Database

SQL Reference- Functions

PolarDB-X
Function Description
SECOND() Return the second (0-59)

STR_TO_DATE()
SUBDATE()

SUBTIME()
SYSDATE()
TIME()
TIME_FORMAT ()
TIME_TO_SEC()

TIMEDIFF()
TIMESTAMP()

TIMEST AMPADDY()
TIMEST AMPDIFF()

TO_DAYS()
TO_SECONDS()

UNIX_TIMEST AMP()
UTC_DATE()

UT C_TIME()
UTC_TIMESTAMP()
WEEK()

WEEKDAY ()
WEEKOFYEAR()
YEAR()

YEARWEEK()

Functions that are not supported

Convert a string to a date

Synonym for DATE_SUB() when invoked with three
arguments

Subtract times

Return the time at which the function executes
Extract the time portion of the expression passed
Format as time

Return the argument converted to seconds
Subtract time

With a single argument, this function returns the
date or datetime expression; with two arguments,
the sum of the arguments

Add an interval to a datetime expression
Subtract an interval from a datetime expression

Return the date argument converted to days

Return the date or datetime argument converted to
seconds since Year 0

Return a Unix timestamp

Return the current UTC date

Return the current UTC time

Return the current UTC date and time

Return the week number

Return the weekday index

Return the calendar week of the date (1-53)

Return the year

Return the year and week

> Document Version: 20220601

178

Cloud Native Distributed Database

SQL Reference- Functions
PolarDB-X

PolarDB-X 1.0 does not support the following date and time functions that are supported by MySQL
5.7.

Function Description

CONVERT _TZ() Convert from one time zone to another
GET_FORMAT() Return a date format string
LOCALTIME(), LOCALT IME Synonym for NOW()

LOCALTIMEST AMP, LOCALT IMEST AMP() Synonym for NOW()

In addition, the untx TIMESTAMP () function without parameters is not supported. We recommend
that you use the uN1x TIMESTAMP (Now ()) function instead.

12.3. String functions

T his topic describes the string functions that are supported or not supported by PolarDB-X 1.0.

Supported functions

PolarDB-X 1.0 supports the following string functions.

Function Description
ASCII() Return numeric value of left-most character
BIN() Return a string containing binary representation of a

BIT_LENGTH()

CHAR()

CHAR_LENGTH()

CHARACT ER_LENGTH()

CONCAT()

CONCAT_WS()

ELT()

EXPORT_SET()

FIELD()

FORMAT ()

number

Return length of argument in bits

Return the character for each integer passed
Return number of characters in argument

Synonym for CHAR_LENGT H()

Return concatenated string

Return concatenate with separator

Return string at index number

Return a string such that for every bit set in the
value bits, you get an on string and for every unset

bit, you get an off string

Return the index (position) of the first argument in
the subsequent arguments

Return a number formatted to specified number of
decimal places

179

> Document Version: 20220601

Cloud Native Distributed Database
PolarDB-X

SQL Reference- Functions

Function

FROM_BASE64()

HEX()

INSERT ()

INSTR()

LCASE()

LEFT()

LENGTH()

LIKE

LOCATE()

LOWER()

LPAD()

LTRIM()

MAKE_SET ()

MID()

NOT LIKE

NOT REGEXP

0cT()

OCTET_LENGTH()

ORD()

POSITION()

QUOTE()

REGEXP

Description
Decode to a base-64 string and return result

Return a hexadecimal representation of a decimal or
string value

Insert a substring at the specified position up to the
specified number of characters

Return the index of the first occurrence of substring
Synonym for LOWER()

Return the leftmost number of characters as
specified

Return the length of a string in bytes
Simple pattern matching

Return the position of the first occurrence of
substring

Return the argument in lowercase

Return the string argument, left-padded with the
specified string

Remove leading spaces

Return a set of comma-separated strings that have
the corresponding bit in bits set

Return a substring starting from the specified
position

Negation of simple pattern matching
Negation of REGEXP

Return a string containing octal representation of a
number

Synonym for LENGTH()

Return character code for leftmost character of the
argument

Synonym for LOCATE()
Escape the argument for use in an SQL statement

Whether string matches regular expression

> Document Version: 20220601

180

SOL Reference- Functions Cloud Native Distributed Database

PolarDB-X
Function Description
REPEAT() Repeat a string the specified number of times
REPLACE() Replace occurrences of a specified string
REVERSE() Reverse the characters in a string
RIGHT () Return the specified rightmost number of characters
RLIKE Whether string matches regular expression
RPAD() Append string the specified number of times
RTRIM() Remove trailing spaces
SOUNDEX() Return a soundex string
SPACE() Return a string of the specified number of spaces
STRCMP() Compare two strings
SUBSTR() Return the substring as specified
SUBSTRING() Return the substring as specified

Return a substring from a string before the specified

SUBSTRING_INDEX
- 0 number of occurrences of the delimiter

TO_BASE64() Return the argument converted to a base-64 string
TRIM() Remove leading and trailing spaces

UCASE() Synonym for UPPER()

UNHEX() EE::E; string containing hex representation of a
UPPER() Convert to uppercase

WEIGHT _STRING() Return the weight string for a string

Functions that are not supported

PolarDB-X 1.0 does not support the following string functions that are supported by MySQL 5.7.
Function Description

Return the index position of the first argument

FIND_IN_SET

-IN_SETO) within the second argument
LOAD_FILE() Load the named file
MAT CH Perform full-text search

181 > Document Version: 20220601

Cloud Native Distributed Database SOL Reference- Functions

PolarDB-X
Function Description
SOUNDS LIKE Compare sounds

12.4. Conversion functions

This topic describes the conversion functions that are supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following conversion functions.

Function Description

BINARY Cast a string to a binary string
CAST() Cast a value as a certain type
CONVERTY() Cast a value as a certain type

The CONVERT () function supports only the CONVERT (expr USING transcoding_name) syntax. If you need
to use CONVERT (expr.type), use CAST (expr AS type) instead.

12.5. Aggregate functions

This topic describes the aggregate functions. Some functions are not supported by PolarDB-X 1.0.

Supported functions

The following table describes the aggregate functions that are supported by PolarDB-X 1.0.

Function Description

AVG() Return the average value of the argument
COUNT() Return a count of the number of rows returned
COUNT (DISTINCT) Return the count of a number of different values
MAX() Return the maximum value

MIN() Return the minimum value

SUM() Return the sum

Unsupported functions

The following table describes the aggregate functions that are not supported by PolarDB-X 1.0. These
functions are supported by databases that run on the MySQL 5.7 engine.

Function Description

BIT_AND() Return bitwise AND

> Document Version: 20220601 182

Cloud Native Distributed Database

SQL Reference- Functions
PolarDB-X

Function Description

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

GROUP_CONCAT() Return a concatenated string

STD() Return the population standard deviation
STDDEV() Return the population standard deviation
STDDEV_POP() Return the population standard deviation
STDDEV_SAMP() Return the sample standard deviation
VAR _POP() Return the population standard variance
VAR _SAMP() Return the sample variance

VARIANCE() Return the population standard variance

12.6. Mathematical functions

This topic describes the mathematical functions supported and not supported by Distributed Relational
Database Service (PolarDB-X 1.0).

Context

Supported functions

PolarDB-X 1.0 supports the following mathematical functions.

Function Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

CEIL() Return the smallest integer value not less than the
argument

CEILING() :z:gta::et:te smallest integer value not less than the

CONV() Convert numbers between different number bases

183 > Document Version: 20220601

Cloud Native Distributed Database
PolarDB-X

SQL Reference- Functions

Function

cos()

coT()

CRC32()

DEGREES()

EXP()

FLOOR()

LN()

LOG()

LOG10()

LOG2()

MOD()

PI()

POW()

POWER()

RAND()

ROUND()

SIGN()

SIN()

SQRT()

TAN()

TRUNCATE()

Functions that are not supported

Description

Return the cosine

Return the cotangent

Compute a cyclic redundancy check value

Convert radians to degrees

Raise to the power of

Return the largest integer value not greater than the
argument

Return the natural logarithm of the argument

Return the natural logarithm of the first argument

Return the base-10 logarithm of the argument

Return the base-2 logarithm of the argument

Return the remainder

Return the value of pi

Return the argument raised to the specified power

Return the argument raised to the specified power

Return a random floating-point value

Round the argument

Return the sign of the argument

Return the sine of the argument

Return the square root of the argument

Return the tangent of the argument

Truncate to specified number of decimal places

Compared with MySQL 5.7, DRDS does not support the following mathematical functions:

Function

RADIANS()

Description

Return argument converted to radians

> Document Version: 20220601

184

SOL Reference- Functions Cloud Native Distributed Database

PolarDB-X
12.7. Comparison functions
This topic describes the comparison functions that are supported by PolarDB-X 1.0.
The following table describes the comparison functions that are supported by PolarDB-X 1.0.
Function Description
COALESCE() Return the first non-NULL argument
GREATEST() Return the largest argument
IN() Check whether a value is within a set of values
INTERVAL() Sﬁél;::str;er;rl:orls:notf the argument that is less than
ISNULL() Test whether the argument is NULL
LEAST() Return the smallest argument
NOT IN() Check whether a value is not within a set of values
STRCMP() Compare two strings

12.8. Bit functions

This topic describes the bit function BIT_COUNT ().

PolarDB-X 1.0 supports only the bit function BIT_COUNT (). The function returns the number of 1sin
binary representation of aninteger. The function returns NULL if the argument is NULL.

mysql> SELECT BIT COUNT (29), BIT COUNT (b'101010");

o o +

| BIT COUNT (29) | BIT COUNT (b'101010") |
e o +

\ 4 | 3
o o +

1 row in set (0.00 sec)
mysgl> SELECT BIT7COUNT(NULL);

o +
| BIT COUNT (NULL) |
B +
\ NULL |
o +

12.9. Flow control functions

This topic describes the flow control functions that are supported by PolarDB-X 1.0.

185 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Functions
PolarDB-X

PolarDB-X 1.0 supports the following flow control functions.

Function Description

CASE Case operator

IF() If /else construct

IFNULL() Null if /else construct
NULLIF() Return NULL if expr1 = expr2

12.10. Information functions

Information functions are used to retrieve dynamic database information. T his topic describes the
information functions that are supported or not supported by PolarDB-X 1.0.

Supported functions

PolarDB-X 1.0 supports the following information functions.
Function Description

CONNECTION_ID() Return the connection ID (thread ID) for the

connection
CURRENT _USER(), CURRENT _USER The authenticated user name and host name
DAT ABASE() Return the default (current) database name

Value of the AUTOINCREMENT column for the last
LAST_INSERT_ID()

INSERT
SCHEMA() Synonym for DAT ABASE()
SESSION_USER() Synonym for USER()
SYSTEM_USER() Synonym for USER()
USER() The user name and host name provided by the client

Return a string that indicates the MySQL server

VERSION() version

Functions that are not supported

PolarDB-X 1.0 does not support the following information functions that are supported by MySQL 5.7.

Function Description
BENCHMARK() Repeatedly execute an expression
CHARSET() Return the character set of the argument

> Document Version: 20220601 186

Cloud Native Distributed Database

SQL Reference-Functions
PolarDB-X

Function Description

Return the collation coercibility value of the string

COERCIBILITY/() argument
COLLATION() Return the collation of the string argument
For a SELECT with a LIMIT clause, the number of
FOUND_ROWS() rows that would be returned were there no LIMIT
clause
ROW_COUNT() The number of rows updated

12.11. Encryption functions and
compression functions

This topic describes the encryption functions and compression functions. Some functions are not
supported by PolarDB-X 1.0.

Supported encryption functions and compression functions

The following table describes the encryption functions and compression functions that are supported
by PolarDB-X 1.0.

Function Description

AES_ENCRYPT() Encrypt using AES

AES_DECRYPT() Decrypt using AES

MD5() Calculate MD5 checksum

UNCOMPRESS() Uncompress a string compressed
UNCOMPRESSED_LENGTH() Return the length of a string before compression

Unsupported encryption functions and compression functions

The following table describes the encryption functions and compression functions that are not
supported by PolarDB-X 1.0. These functions are supported by databases that run on the MySQL 5.7
engine.

Function Description

ASYMMETRIC_DECRYPT() Decrypt ciphertext using private or public key
ASYMMETRIC_DERIVE() Derive symmetric key from asymmetric keys
ASYMMETRIC_ENCRYPT() Encrypt cleartext using private or public key
ASYMMETRIC_SIGN() Generate signature from digest

187 > Document Version: 20220601

Cloud Native Distributed Database SOL Reference- Functions

PolarDB-X
Function Description
ASYMMETRIC_VERIFY() Verify that signature matches digest
CREATE_ASYMMETRIC_PRIV_KEY() Create private key
CREATE_ASYMMETRIC_PUB_KEY() Create public key
CREATE_DH_PARAMET ERS() Generate shared DH secret
CREATE_DIGEST() Generate digest from string
DECODE() (deprecated 5.7.2) Decodes a string encrypted using ENCODE()
DES_DECRYPT() (deprecated 5.7.6) Decrypt a string
DES_ENCRYPT() (deprecated 5.7.6) Encrypt a string
ENCODE() (deprecated 5.7.2) Encode a string
ENCRYPT() (deprecated 5.7.6) Encrypt a string
OLD_PASSWORD() Return the value of the pre-4.1 implementation of PASSWORD
PASSWORD() (deprecated 5.7.6) Calculate and return a password string
RANDOM_BYTES() Return a random byte vector
SHA1(), SHA() Calculate an SHA-1 160-bit checksum
SHA2() Calculate an SHA-2 checksum
VALIDATE_PASSWORD_STRENGTH() Determine strength of password

12.12. Window functions

The traditional GROUP BY function organizes data into groups and aggregates query results based on
groups. In this case, GROUP BY returns only one row for each data group. However, window functions,
also called online analytical processing (OLAP) functions, can return multiple rows for each data group
without aggregating query results. This is different from the traditional GROUP BY function. T his topic
describes how to use window functions.

Prerequisites

The PolarDB-X 1.0 instance version is 5.4.8 or later.

Limits

e Window functions can be used only in SELECT statements.

e Window functions cannot be used in conjunction with the separate aggregate functions.

In the following statement, the SUM function that does not include the OVER keyword is an
aggregate function. Therefore, this statement cannot be executed.

> Document Version: 20220601 188

SOL Reference- Functions Cloud Native Distributed Database

PolarDB-X
SELECT SUM (NAME) , COUNT () OVER(...) FROM SOME TABLE
To implement the preceding query, use the following statement:
SELECT SUM(NAME) ,WIN1 FROM (SELECT NAME,COUNT () OVER(...) AS WIN1 FROM SOME_TABLE) alias

Syntax

function OVER ([[partition by column somel] [order by column some2] [RANGE|ROWS BETWEEN sta
rt AND end]])

Parameter Description

189 > Document Version: 20220601

Cloud Native Distributed Datab
PolarDB-X

ase

SQL Reference-Functions

The window function that you can specify. The following functions are supported:

e Window functions that consist of aggregate functions and the OVER keyword:

Parameter Description
o SUM()
© COUNT ()
°© AVG()
© MAX()
o MIN()
e Dedicated window functions:
© ROW NUMBER()
© RANK()
© DESNCE RANK ()
© PERCENT RANK ()
© CUME DIST()
© FIRST VALUE ()
© LAST VALUE ()
o LAG()
o LEAD()
© NTH VALUE ()
function

@ Note

® When you use the
ORDER BY

RANK ()
clause cannot be omitted. For more information about

or

DENSE_RANK ()

window function, the

dedicated window functions, see Window function descriptions.

® Only instances whose version is 5.4.9 or later (If your instance version is

earlier than 5.4.9, upgrade the version. For more information, see Upgrade

the version) support the following dedicated window functions.

o PERCENT RANK ()

o

o

CUME DIST ()
FIRST VALUE ()
LAST VALUE ()
LAG ()

LEAD ()

NTH VALUE ()

> Document Version: 20220601

190

https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html
https://www.alibabacloud.com/help/doc-detail/56452.htm#multiTask412

Cloud Native Distributed Database

SQL Reference-Functions
PolarDB-X

Parameter Description

The partition rule for the window function. This clause divides input rows into
different partitions. The process is similar to the division process of the GROUP BY
clause.

@ Note You cannot reference complex expressions inthe PARTITION BY

[partition by
clause. For example, you can reference column somel , but cannot reference

column somel]
- column somel + 1

The sorting rule for the window function. This clause defines the order in which the
input rows are calculated in the window function.

[order by () . .
Note You cannot reference complex expressions inthe ORDER BY

column some?2]
- clause. For example, you can reference column some2 , but cannot reference

column some2 + 1

The window frame of the window function. You can use RANGE or ROWS to define the
frame. RANGE indicates that the frame is defined by the value range for the computed
column. ROWS indicates that the frame is defined by the number of rows for the
computed column.

You canuse the BETWEEN start AND end optionto specify the boundary rows in
the window.

e Valid values of start

[RANGE | ROWS O CURRENT ROW : The window starts at the current row.

BETWEEN start

AND end] © N PRECEDING : The window starts at the preceding Nth row.
© UNBOUNDED PRECEDING : The window starts at the first row.

e Valid values of end
© CURRENT ROW : The window ends at the current row.
© N FOLLOWING : The window ends at the following Nth row.
© UNBOUNDED FOLLOWING : The window ends at the last row.
Use cases

Assume that the following raw data has been created.

191 > Document Version: 20220601

Cloud Native Distributed Database SOL Reference- Functions

PolarDB-X

| year | country | product | profit |
o oo B e |
2001	Finland	Phone	10
2000	Finland	Computer	1500
2001	USA	Calculator	50
2001	USA	Computer	1500

2000	India	Calculator	75
2000	India	Calculator	75
2001	India	Calculator	79

e Use the following aggregate function to calculate the total profit of each country:

select
country,
sum (profit) over (partition by country) sum profit

from test window;

The following result is returned:

| country | sum profit |
e oo \
India	229
India	229
India	229
USA	1550
UsA	1550
Finland	1510
Finland	1510

e Use the following dedicated window function to group data by country and rank the products of
each country by profit in ascending order:

select
'year',
country,
product,
profit,
rank () over (partition by country order by profit) as rank

from test window;

The following result is returned:

| year | country | product | profit | rank |
[=== === [== | === [===——= |
| 2001 | Finland | Phone | 10 | 1 |
| 2000 | Finland | Computer | 1500 | 2 |
| 2001 | UsSA | Calculator | 50 | 1
| 2001 | USA | Computer | 1500 | 2 |
| 2000 | India | Calculator | 75 | 1
| 2000 | India | Calculator | 75 | 1
| 2001 | India | Calculator | 79 | 3

e Execute the following statement that contains the ROWS option to calculate a cumulative sum of
profits for each row in the current window:

> Document Version: 20220601 192

SQL Reference-

Functions

Cloud Native Distributed Database
PolarDB-X

select

'year',

country,

profit,

sum (profit) over
NG and CURRENT ROW) as sum win

from test window;

(partition by country order by 'year' ROWS BETWEEN UNBOUNDED PRECEDI

The following result is returned:

12.13. Other functions

USA |
USA |
India |
India |
India |
Finland |
Finland |

1500
10

sum_win

_____________ +

50
1550
75
150
229
1500
1510

This topic describes other functions that are supported by PolarDB-X 1.0.

The following table describes other functions that are supported by PolarDB-X 1.0.

Function

RAND()

RELEASE_ALL_LOCKS()

RELEASE_LOCK()

SLEEP()

uuID()

UUID_SHORT(

VALUES()

ANY_VALUE()

DEFAULT()

GET_LOCK()

INET_ATON()

INET_NT OA()

)

Description

Return a random floating-point value

Releases all current named locks

Releases the named lock

Sleep for a number of seconds

Return a Universal Unique Identifier (UUID)
Return an integer-valued universal identifier
Defines the values to be used during an INSERT
Suppress ONLY_FULL_GROUP_BY value rejection
Return the default value for a table column
Get a named lock

Return the numeric value of an IP address

Return the IP address from a numeric value

193

> Document Version: 20220601

Cloud Native Distributed Database SOL Reference- Functions

PolarDB-X
Function Description
INET6_ATON() Return the numeric value of an IPv6 address
INET6_NT OA() Return the IPv6 address from a numeric value
IS_FREE_LOCK() Whether the named lock is free
IS_IPV4() Whether argument is an IPv4 address
IS_IPV4_COMPAT() Whether argument is an IPv4-compatible address
IS_IPV4_MAPPED() Whether argument is an IPv4-mapped address
IS_IPV6() Whether argument is an IPv6 address

Whether the named lock is in use; return connection

IS_USED LOCK
- - 0 identifier if true

Block until the slave has read and applied all

MASTER_POS_WAIT
- - Y updates up to the specified position

NAME_CONST() Causes the column to have the given name

12.14. GROUPING SETS, ROLLUP, and CUBE
extensions

In relational databases, you must use multiple seLECT and UnTON Statementsto group results based
on multiple groups of dimensions. PolarDB-X 1.0 provides GROUPING SETS, ROLLUP, and CUBE extensions
that allow you to group results based on multiple groups of dimensions. In addition, PolarDB-X 1.0
allows you to use the GROUPING and GROUPING_ID functions in a SELECT statement or a HAVING clause.
This helps to explain the results of the preceding extensions. This topic describes the relevant syntax
and examples.

Prerequisites

The PolarDB-X 1.0 instance version is 5.4.10 or later.

Considerations

e The syntax of all the GROUP BY extensions in this topic does not allow SQL queries to be pushed
downtothe 1ogicalview operatorsforexecution. For more information about SQL query

pushdown, see SQL rewrite and pushdown.

e The following test data information is used in the examples of this topic:

Execute the following statement to create atable named requests

> Document Version: 20220601 194

https://www.alibabacloud.com/help/doc-detail/196910.htm#task-1948105

Cloud Native Distributed Database

SQL Reference- Functions
PolarDB-X

CREATE TABLE requests (

“id" int (10) UNSIGNED NOT NULL,

os’ varchar (20) DEFAULT NULL,

“device’ varchar (20) DEFAULT NULL,

“city® varchar (20) DEFAULT NULL,

PRIMARY KEY (" id’)
) ENGINE = InnoDB DEFAULT CHARSET = utf8 dbpartition BY hash(id’) tbpartition BY hash(i
da);

Execute the following statement to insert the required test datatothe requests table:
INSERT INTO requests (id, os, device, city) VALUES

1, 'windows', 'PC', 'Beijing'),

2, 'windows', 'PC', 'Shijiazhuang'),

w

, 'linux', 'Phone', 'Beijing'),

(
(
(
(4, 'windows', 'PC', 'Beijing'),
(5, 'ios', 'Phone', 'Shijiazhuang'),
(6, 'linux', 'PC', 'Beijing'),

(

7, 'windows', 'Phone', 'Shijiazhuang');

GROUPING SETS extension

e QOverview

GROUPING SETS is an extension of the GROUP BY clause and can generate a result set. The result set is
a concatenation of multiple result sets based on different groups. The result returned by the
GROUPING SETS extension is similar to that of the UNION ALL operator. However, the UNION ALL
operator and the GROUPING SETS expansion do not remove duplicate rows from the combined result
sets.

e Syntax

GROUPING SETS (
{ expr 1 | (expr la [, expr 1b] ...) |
ROLLUP (expr list) | CUBE (expr list)
Py oo.o10)

® Note A GROUPING SETS extension can contain a combination of one or more comma-
separated expressions, suchas expr 1 Or (expr la [, expr 1b] ...) ,and lists of
expressions enclosed within parentheses (), suchas (expr list) .Inthe syntax:

o Each expression can be used to determine how the result set is grouped.
o You can nest a ROLLUP or CUBE extension in @ GROUPING SETS extension.

e Examples

195 > Document Version: 20220601

Cloud Native Distributed Database
PolarDB-X

SQL Reference- Functions

o You can group the data that you want to query by using a GROUPING SETS extension. The
following code block shows the relevant syntax:

select os,device, city ,count (*)

from requests

group by grouping sets((os,

The preceding statement is equivalent to the following statement:
select os, device, NULL, count (*)

from requests group by os, device

union all

select NULL, NULL, NULL, count (*)

from requests

union all

select null, null, city, count (*)

from requests group by city;

The following result is returned:

- +——— S
| os | device | city
o f———— e
| windows | PC | NULL

| linux | PC | NULL

| linux | Phone | NULL

| windows | Phone | NULL

| ios | Phone | NULL

| NULL | NULL |

| NULL | NULL | Beijing

| NULL | NULL | NULL

R +——— R

Shijiazhuang

device), (city), ());

@ Note If an expression is not used in a grouping set, NULL is used as a placeholder forthe
expression. T his facilitates operations on the result set that is not used in the grouping set. For

example, the result set is the rows where the values of the

returned result.

city column are NULL inthe

> Document Version: 20220601

196

Cloud Native Distributed Database

SQL Reference- Functions
PolarDB-X

o You can group data by nesting a ROLLUP extension in a GROUPING SETS extension. The following
code block shows the relevant syntax:

select os,device, city ,count(*) from requests

group by grouping sets((city), ROLLUP (os, device)):;

The preceding statement is equivalent to the following statement:
select os,device, city ,count(*) from requests

group by grouping sets((city), (os), (os, device), ());

The following result is returned:

o fomm o o +
| os | device | city | count (*)

to————— Fom Fom tom————— +
NULL	NULL	Shijiazhuang	3
NULL	NULL	Beijing [4	
windows	PC	NULL	3
linux	PC	NULL	1]
ios	Phone	NULL	1
linux	Phone	NULL	1]
windows	Phone	NULL	1
windows	NULL	NULL	4
linux	NULL	NULL	2
ios	NULL	NULL	1]
NULL	NULL	NULL [7	
fommmm———— fomm - e fomm +

197 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference- Functions
PolarDB-X

o You can group data by nesting a CUBE extension in a GROUPING SETS extension. The following
code block shows the relevant syntax:

select os,device, city ,count(*) from requests

group by grouping sets((city), CUBE (os, device));

The preceding statement is equivalent to the following statement:
select os,device, city ,count(*) from requests

group by grouping sets((city), (os), (os, device), (), (device)):;

The following result is returned:

o fomm fmm e fom +
| os | device | city | count (*)

B Fom———— Fom - tom +
| NULL | NULL | Beijing [4 |
| NULL | NULL | Shijiazhuang | 3

| windows | PC | NULL | 3 |
| ios | Phone | NULL | 1 |
| linux | Phone | NULL | 1]
| windows | Phone | NULL | 1 |
| linux | PC | NULL | 1]
| windows | NULL | NULL | 4 |
| ios | NULL | NULL | 1]
linux	NULL	NULL	2
NULL	PC	NULL	4
NULL	Phone	NULL	3
NULL	NULL	NULL	7
pommmm fomm e e +

> Document Version: 20220601 198

Cloud Native Distributed Database

SQL Reference-Functions
PolarDB-X

o You can combine the GROUP BY clause and the CUBE, and GROUPING SETS extensions to generate
grouping sets, as shown in the following example:

select os,device, city, count (*)

from requests

group by os, cube (os,device), grouping sets(city);

The preceding statement is equivalent to the following statement:
select os,device, city, count (*)

from requests

group by grouping sets((os,device,city), (os,city), (os,device,city));

The following result is returned:

to————— Fom Fom tom————— +
| os | device | city | count (*)

B Fom Fom e Fom +
| linux | Phone | Beijing | 1]
windows	Phone	Shijiazhuang	1
windows	PC	Shijiazhuang	1
linux	PC	Beijing	1
windows	PC	Beijing	2
ios	Phone	Shijiazhuang	1
linux	NULL	Beijing	2
windows	NULL	Shijiazhuang	2
windows	NULL	Beijing	2
ios	NULL	Shijiazhuang	1
Fom Fom o Fom +

ROLLUP extension

e Overview

A ROLLUP extension generates a hierarchical set of groups. In this set, subtotals for each hierarchical
group and a grand total are available. The order of the hierarchy is determined by the order of the
expressions that are specified in the ROLLUP expression list. The top of the hierarchy is the left most
itemin the list. Each successive itemthat proceeds to the right side moves down the hierarchy. The
rightmost itemiis at the lowest level.

e Syntax
ROLLUP ({ expr 1 | (expr la [, expr 1b] ...) }
[, expr 2 | (expr 2a [, expr 2b] ...)] ...)

199 > Document Version: 20220601

Cloud Native Distributed Database SOL Reference- Functions

PolarDB-X
@ Note

o Each expression is used to determine how the result set is grouped. If the expressions are
enclosed in parentheses (), suchas (expr 1a, expr 1b, ...) ,the combination of
values returned by expr 1a and expr 1b defines a single grouping level of the
hierarchy.

o Forthefirst iteminthe list, suchas expr 1 orthe combinationof (expr la, expr 1b
, ...) ,PolarDB-X 1.0a subtotalis returned for each unique value of the first item. For
the second iteminthe list, such as expr 2 orthe combination of (expr 2a, expr 2b
, ...) ,PolarDB-X 1.0a subtotalis returned for each unique value of each group inthe

second item. Similar rules are used in each grouping level of the first item and other items.
Finally, PolarDB-X 1.0a grand total is returned for the entire result set.

o Forthe subtotal rows, NULL is returned for the items across which the subtotal is taken.

e Examples

o ROLLUP is used to aggregate (os, device, city) ina hierarchical mannerto generate grouping
sets. The following code block shows the relevant syntax:

select os,device, city, count(*)

from requests

group by rollup (os, device, city);

The preceding statement is equivalent to the following statement:
select os,device, city, count (*)

from requests

group by os, device, city with rollup;

The first statement is also equivalent to the following statement:
select os,device, city, count (*)

from requests

group by grouping sets ((os, device, city), (os, device), (os), ()):

The following result is returned:

fommm————— fomm fom fomm +
| os | device | city | count (*)

o fomm fomm e +
| windows | PC | Beijing | 2 |
| ios | Phone | Shijiazhuang | 1

| windows | PC | Shijiazhuang | 1]
linux	PC	Beijing	1
linux	Phone	Beijing	1
windows	Phone	Shijiazhuang	1
windows	PC	NULL	3
ios	Phone	NULL	1
linux	PC	NULL	1]
linux	Phone	NULL	1]
windows	Phone	NULL	1]
windows	NULL	NULL	4
ios	NULL	NULL	1]
linux	NULL	NULL	2
NULL	NULL	NULL	7
fommm————— fomm e e fomm +

> Document Version: 20220601 200

Cloud Native Distributed Database

SQL Reference-Functions

PolarDB-X

o ROLLUP is used to aggregate os, (os,device), and city ina hierarchical mannerto generate

grouping sets. The following code block shows the relevant syntax:

select os,device, city, count (*)

from requests

group by rollup (os, (os,device), city);

The preceding statement is equivalent to the following statement:
select os,device, city, count (*)

from requests

group by os, (os,device), city with rollup;

The first statement is also equivalent to the following statement:
select os,device, city, count (*)

from requests

group by grouping sets ((os, device, city), (os, device), (os), ());

The following result is returned:

Fom Fom Fom e Fom +
| os | device | city | count (*)

fommmm———— R Fommmm e +
windows	PC	Beijing	2
windows	PC	Shijiazhuang	1
linux	PC	Beijing	1
linux	Phone	Beijing	1
windows	Phone	Shijiazhuang	1
ios	Phone	Shijiazhuang	1]
windows	PC	NULL	3
linux	PC	NULL	1]
linux	Phone	NULL	1]
windows	Phone	NULL	1
ios	Phone	NULL	1
windows	NULL	NULL	4
linux	NULL	NULL	2
ios	NULL	NULL	1]
NULL	NULL	NULL	7
B Fom Fom e Fom +

CUBE extension

e Overview

A CUBE extension is similar to a ROLLUP extension. A ROLLUP extension generates groupings and
results in a hierarchy based on a left-to-right listing of items in the ROLLUP expression list. However, a
CUBE extension generates groupings and subtotals based on each permutation of all the items inthe
CUBE expression list. Therefore, a CUBE extension returns more rows in the generated result set than a
ROLLUP extension that is performed on the same expression list.

e Syntax
CUBE ({ expr 1 | (expr la [, expr 1b] ...) }
[, expr 2 | (expr 2a [, expr 2b] ...)] ...)

201

> Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Functions
PolarDB-X

@ Note

o Each expression is used to determine how the result set is grouped. If the expressions are
enclosed within parentheses (), suchas (expr la, expr 1b, ...) ,the combination of
values that are returned by expr 12 and expr 1b defines a single group.

o Forthefirst iteminthe list, suchas expr 1 orthe combination of (expr 1a, expr 1b

, ...) ,PolarDB-X 1.0a subtotalis returned for each unique value of the first item. For
the second itemin the list, such as expr 2 orthe combination of (expr 2a, expr 2b
, ...) ,PolarDB-X 1.0a subtotalis returned for each unique value of the second item. A

subtotalis also returned for each unique combination of the first item and the second
item. If athird item exists, PolarDB-X 1.0a subtotal is returned for each unique value of the
third item, each unique combination of the third and first items, each unique combination
of the third and second items, and each unique combination of the third, second, and first
items. Finally, a grand total is returned for the entire result set.

o Forthe subtotal rows, NULL is returned for the items across which the subtotal is taken.

e Examples

o CUBE lists all the possible combinations of (os, device, city) columns as grouping sets. The
following code block shows the relevant syntax:

select os,device, city, count (*)

from requests

group by cube (os, device, city);

The preceding statement is equivalent to the following statement:

select os,device, city, count (*)

from requests

group by grouping sets ((os, device, city), (os, device), (os, city), (device,city), (os), (

device) ’ (Clty) r ()) 7

The following result is returned:

> Document Version: 20220601 202

SQL Reference- Functions

Cloud Native Distributed Database
PolarDB-X

windows
ios
windows
linux
linux
windows
windows
ios
linux
linux

windows

ios
linux
windows
ios
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

\
\
\
\
\
\
\
\
\
\
\
\
\
| windows
\
\
\
\
\
\
\
\
\
\
\
\
| NULL

N

| device

I

|

I

I

I

|

| Phone
| Phone
| PC

| Phone
| PC

| NULL
| NULL
| NULL
| NULL
| NULL
| NULL
| NULL
| Phone
I

I

|

I

I

I

|

I

Phone

Beijing
Shijiazhuang
Beijing
Shijiazhuang
Shijiazhuang
Beijing

NULL

NULL

NULL

NULL

NULL

Beijing

Shijiazhuang

|

I

|

I

I

I

|

|

I

|

|

|

I

| Beijing

| Shijiazhuang
| NULL

| NULL

| NULL

| Beijing
| Shijiazhuang
| Beijing
| Shijiazhuang
| NULL

| NULL

| Beijing

| Shijiazhuang
|

NULL

203

> Document Version: 20220601

Cloud Native Distributed Database

SQL Reference-Functions
PolarDB-X

o CUBE lists all the possible combinations of (os, device), (device, city) columns as grouping
sets. The following code block shows the relevant syntax:

select os,device, city, count (*)

from requests

group by cube ((os, device), (device, city)):

The preceding statement is equivalent to the following statement:
select os,device, city, count (*)

from requests

group by grouping sets ((os, device, city), (os, device), (device,city), ());

The following result is returned:

B Fom——— Fom e ——— R e +
| os | device | city | count (*)

to———— F—— Fom Fom +
linux	Phone	Beijing	1
windows	Phone	Shijiazhuang	1
windows	PC	Beijing	2
windows	PC	Shijiazhuang	1
linux	PC	Beijing	1
ios	Phone	Shijiazhuang	1
linux	Phone	NULL	1
windows	Phone	NULL	1
windows	PC	NULL	3
linux	PC	NULL	1]
ios	Phone	NULL	1
NULL	Phone	Beijing	1
NULL	Phone	Shijiazhuang	2
NULL	PC	Beijing	3
NULL	PC	Shijiazhuang	1
NULL	NULL	NULL [7	
fommm————— Fomm Fomm e +

GROUPING and GROUPING_ID functions

e Overview
o GROUPING function

When you use the GROUPING SETS, ROLLUP, or CUBE extensions in the GROUP BY clause, NULL is used
as a placeholder in a return value of the GROUPING SETS extension. As a result, the placeholder
NULL cannot be distinguished fromthe value NULL. You can use the GROUPING function provided by
PolarDB-X 1.0 to solve this problem.

The GROUPING function allows you to use a column name as a parameter. If the corresponding
rows are aggregated based on the column, 0 is returned in the result. In this case, NULL is a value. If
the corresponding rows are not aggregated based on the column, 1 is returned. In this case, NULL is
a placeholder in a return value of the GROUPING SETS extension.

> Document Version: 20220601 204

Cloud Native Distributed Database

SQL Reference-Functions
PolarDB-X

o GROUPING_ID function

The GROUPING_ID function simplifies the process of implementing the GROUPING function. The
GROUPING_ID function is used to determine the subtotal level of a row inthe result set froma
ROLLBACK, CUBE, or GROUPING SETS extension. The GROUPING function uses only one column
expression and returns a value to indicate whether a row is a subtotal for all the values of the
specified column. Therefore, multiple GROUPING functions may be required to interpret the level of
subtotals for queries that have multiple grouping columns. The GROUPING_ID function supports
one or more column expressions that have been used in the ROLLBACK, CUBE, or GROUPING SETS
extensions and returns a single integer. This integer indicates the column on which a subtotal has
been aggregated.

e Syntax
o GROUPING function

SELECT [expr ...,] GROUPING(col expr) [, expr]
FROM ...
GROUP BY { ROLLUP | CUBE | GROUPING SETS }([...,] coliexpr

Ly --.1) [, ...1

@ Note The GROUPING function uses a single parameter. T his parameter must be an
expression of a dimension column that is specified in the expression list of a ROLLUP, CUBE, or
GROUPING SETS extension of the GROUP BY clause.

o GROUPING_ID function

SELECT [expr ...,]

GROUPING ID(col expr 1 [, col expr 2] ...)
[, expr]
FROM ...
GROUP BY { ROLLUP | CUBE | GROUPING SETS }([...,] col expr 1

[, col expr 2 1 [, ...1) [, ...]

e Examples

The GROUPING_ID function uses multiple column names as parameters, and converts the grouping
results of the parameter columns into integers by using the bitmap algorithm. The following code
block shows the relevant syntax:

select a,b,c,count (*),
grouping(a) ga, grouping(b) gb, grouping(c) gc, grouping id(a,b,c) groupingid
from (select 1 as a ,2 as b,3 as c)

group by cube(a,b,c);

The following result is returned:

205 > Document Version: 20220601

Cloud Native Distributed Database

PolarDB-X

SQL Reference-Functions

e S T Tt Tt S

| groupingid |

gc

gb

ga

count (*)

206

> Document Version: 20220601

SQL Reference-Operator

Cloud Native Distributed Database
PolarDB-X

13.0perator

13.1. Logical operators

This topic describes the logical operators supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following logical operators.

Operator

AND, &&

NOT, !

Il OR

XOR

Description

Logical AND

Negates value

Logical OR

Logical XOR

13.2. Arithmetic operators

This topic describes the arithmetic operators supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following arithmetic operators.

Operator

DIV

Description

Integer division
Division operator
Minus operator
Modulo operator
Addition operator
Multiplication operator

Change the sign of the argument

13.3. Comparison operators

This topic describes the comparison operators supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following comparison operators.

Operator

BETWEEN ... AND ...

Description

Check whether a value is within a range of values

207

> Document Version: 20220601

Cloud Native Distributed Database SQL Reference- Operat or

NOT BETWEEN ... AND ...

NOT LIKE

PolarDB-X
Operator Description
= Equal operator
<=> NULL-safe equal to operator
> Greater than operator
>= Greater than or equal operator
IS Test avalue against a boolean
IS NOT Test a value against a boolean
IS NOT NULL NOT NULL value test
IS NULL NULL value test
< Less than operator
<= Less than or equal operator
LIKE Simple pattern matching

Check whether a value is not within a range of
values

Not equal operator

Negation of simple pattern matching

13.4. Bitwise operators

This topic describes the bitwise operators supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following bitwise operators.

Operator Description

& Bitwise AND

~ Bitwise inversion
L Bitwise OR

A Bitwise XOR

<< Left shift

>> Right shift

13.5. Assignment operators

> Document Version: 20220601

208

SQL Reference-Operator

Cloud Native Distributed Database
PolarDB-X

This topic describes the assignment operators that are supported by PolarDB-X 1.0 and the assignment

operators that are not supported by DRDS.

PolarDB-X 1.0 supports the = assignment operator. This operator is generally used in the SET clause of

UPDATE statements.

PolarDB-X 1.0 does not support the := assignment operator.

13.6. Operator precedence

This topic describes the precedence of operators supported by PolarDB-X 1.0.

The following table describes the precedence of operators that are supported by PolarDB-X 1.0. The
operators are listed by precedence in descending order.

Precedence

15

14

13

12

11

10

Operator

- (unary minus) and ~

*,/, %, and MOD
+ and -
<<,>>

&

= (equality operator for comparison), <=>, >, >=, <,
<=,<>, I=, IS, LIKE, REGEXP, and IN

BETWEEN

NOT

AND, &&

XOR

OR, |

= (assignment operator)

Compare the precedence of the IN and NOT IN operators and the = comparison operator

Execute the following SQL statements on a database that runs MySQL 5.7.19:

209

> Document Version: 20220601

Cloud Native Distributed Database SQL Reference- Operat or

PolarDB-X
mysqgl> select binary 'a' = 'a' in (1, 2, 3);
e +
| binary 'a' = 'a' in (1, 2, 3) |
e e +
\ 1]
e +

1 row in set, 1 warning (0.01 sec)

mysgl> show warnings;

B Fo———— e e +
| Level | Code | Message

fomm - Fo———— et e e +
| Warning | 1292 | Truncated incorrect DOUBLE value: 'a' |
fommm fo———— e +

1 row in set (0.00 sec)

mysqgl> select 1 in (1, 2, 3) = 'a';
B et e +
| 1 in (1, 2, 3) = 'a' |
B T +
\ 01
R ettt +

1 row in set, 1 warning (0.00 sec)

mysgl> show warnings;

fomm e fomm——— o +
| Level | Code | Message

o fo————= R +
| Warning | 1292 | Truncated incorrect DOUBLE value: 'a' |
- F-——— o +

1 row in set (0.00 sec)

This example shows that in MySQL, the IN and NOT IN operators have a higher precedence thanthe =
comparison operator.PolarDB-X 1.0 strictly follows the precedence described in the preceding table. If
two or more operators that have the same precedence are used in one SQL statement, the operators
are evaluated from left to right.

> Document Version: 20220601 210

Cloud Native Distributed Database

SQL Reference-Data types
Q /P PolarDB-X

14.Data types
14.1. Data types

This topic describes the data types supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports four major categories of data types:

e Numeric

e String

e Date and time
e |SON

Spatial data types are not supported.

For more information about data types, see Data types in the Reference Manual of MySQL.

14.2. Numeric data types

This topic describes the numeric data types supported by PolarDB-X 1.0.

The numeric data types can be classified into two categories by precision:

e Exact numeric data types
o Integerdatatypes: TINYINT, SAMLLINT, MEDIUMINT, INT EGER, and BIGINT
o Fixed-point data types: DECIMAL and NUMERIC

e Approximate numeric data types: FLOAT, REAL, and DOUBLE PRECISION

The supported data types are consistent with those of MySQL. For more information, see Numeric data
types in the Reference Manual of MySQL.

14.3. String data types

This topic describes the string data types supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following string data types:

e CHAR and VARCHAR

e BINARY and VARBINARY
e BLOB and TEXT

e ENUM

e SET

For more information, see String data types in the Reference Manual of MySQL.

14.4. Collation types

A character set is a combination of a set of symbols and encoding methods. A collation is the rules for
sorting characters in a character set. T his topic summarizes the collation types that PolarDB-X 1.0
supports.

211 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/data-types.html
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-types.html
https://dev.mysql.com/doc/refman/5.7/en/string-types.html

Cloud Native Distributed Database

PolarDB-X

SQL Reference-Data types

@ Note

Character set

utf8

utf8mb4

utf1é

ascii

binary

latini

gbk

For more information about the collation types, see Collations.

collation

utf8_general_ci

utf8_hin

utf8_unicode_ci

utf8mb4_general_ci

utf8mb4_bin

utf8mb4_unicode_ci

utf16_general_ci

utf16_bin

utf16_unicode_ci

ascii_general_ci

ascii_bin

binary

latin1_swedish_ci

latin1_germani_ci

latin1_danish_ci

latin1_bin

latin1_general_ci

latin1_general_cs

latin1_spanish_ci

gbk_chinese_ci

gbk_bin

14.5. Date and time data types

This topic describes the date and time data types supported by PolarDB-X 1.0.

PolarDB-X 1.0 supports the following date and time data types:

e DATE

> Document Version: 20220601

212

https://dev.mysql.com/doc/refman/5.7/en/charset-general.html

Cloud Native Distributed Database

SQL Reference-Data types
Q yp PolarDB-X

DATETIME
TIMESTAMP
e TIME

o YEAR

@ Note The value range for the TIME data type in MySQL is different fromthat in PolarDB-X 1.0.
In PolarDB-X 1.0, the value range forthe TIME data type is '00:00:00' to '23:59:59'.

For more information, see Date and time data types in the Reference Manual of MySQL.

213 > Document Version: 20220601

https://dev.mysql.com/doc/refman/5.7/en/date-and-time-types.html

Cloud Native Distributed Database SQL Reference-Practical SQL state
PolarDB-X ments

15.Practical SQL statements
15.1. TRACE

This topic describes how to use the TRACE statement.

You can execute the TRACE statement to view the execution result of an SQL statement. You must use
the TRACE <SQL> statement and the SHOW TRACE statement together.

@ Note The difference between the TRACE <SQL> statement and the EXPLAIN <SQL>
statement is that the TRACE <SQL> statement is executed.

Examples

Use the TRACE statement to view the execution result of the select 1 statement.

mysql> trace select 1;

+-——+
1]

+———+
1]

+———+

1 row in set (0.03 sec)

mysqgl> show trace;

to———— e o B it Fom e +-—=
——————————————————————— e

| ID | TYPE | GROUP NAME | DBKEY NAME | TIME COST(MS) | CO
NNECTION TIME COST(MS) | ROWS | STATEMENT | PARAMS |

o fomm - Fomm Bt R e +-—=
——————————————————————— e R

| 0 | Optimize | DRDS | DRDS | 3 | 0.
00 | 0 | select 1 | NULL

| 1 | Query | TDDL5 00 GROUP | db218249098 sga zmf tddl5 00 3309 | 7 | 0.
15 | 1 | select 1 | NULL

tomm pomm e Bt S e fom +-—=
——————————————————————— B e

2 rows in set (0.01 sec)

15.2. Cross-schema queries

In most cases, multiple schemas are used in a Distributed Relational Database Service (PolarDB-X 1.0)
instance. PolarDB-X 1.0 allows you to execute SQL statements to perf orm cross-schema queries. The
results are similar to those of cross-schema queries in MySQL.

Note

e To use the cross-schema query syntax, you must prefix the destination TableName with the
corresponding SchemaName in your SQL statement. For example, if the TableName is xxx tbl and
the corresponding SchemaName is yyy_db, you must use yyy do . xxx tbl to specify the schema

> Document Version: 20220601 214

SQL Reference-Practical SQL state Cloud Native Distributed Database
ments PolarDB-X

towhichthe =xxx tb1 table belongs. The cross-schema query syntax in PolarDB-X 1.0 is fully
compatible with that in MySQL.

e PolarDB-X 1.0 does not support cross-schema queries that contain the following statements:
CREATE SEQUENCE, ALT ER SEQUENCE, and DROP SEQUENCE.

e The version of your PolarDB-X 1.0 instance must be V5.3.8-15517870 or later.

e Before you perform a cross-schema query, you must be granted the required permissions on the
related schemas. For more information about the syntax for granting permissions, see Manage
accounts and permissions.

Terms
e Schema: a database in a PolarDB-X 1.0 instance. Horizontal splitting may or may not be performed on
the database.

e SchemaName: the name of a database in a PolarDB-X 1.0 instance. The name is unique within the
instance.

e Table: atable in a PolarDB-X 1.0 database. Horizontal splitting may or may not be performed on the
database.

e TableName: the name of atable in a PolarDB-X 1.0 database. The name is unique within the
database.

Examples

If you have created three different schemas in a PolarDB-X 1.0 instance, each of the schemas contains
one table and each of the tables corresponds to one sequence, as shown in the following table.

SchemaName TableName Sequence
new db new tbl AUTO_SEQ new tbl
trade db trade tbl AUTO_SEQ trade tbl
user db user tbl AUTO SEQ user tbl

The SchemaName that you use to log onto the PolarDB-X 1.0 instanceis trade db .YoOu can execute
the following SQL statements to perform cross-schema queries:

e Execute the SELECT statement to perform cross-schema queries

To perform an aggregate query acrossthe trade tbl schemaandthe wuser tbl schema, you
can execute the following SQL statement:

SELECT COUNT (DISTINCT u.user id)

FROM “trade tbl® AS t

INNER JOIN ‘user db . user tbl® AS u ON t.user id=u.user id
WHERE u.user id >= 10000

GROUP BY t.title

e Execute the INSERT statement to perform cross-schema queries

Toinsert datatothe new tbl tableinthe new db schema, you can execute the following SQL
statement:

INSERT INTO ‘new db . new tbl® (user id, title) VALUES (null, 'test');

215 > Document Version: 20220601

https://www.alibabacloud.com/help/zh/doc-detail/71356.htm

Cloud Native Distributed Database SQL Reference-Practical SQL state
PolarDB-X ments

e Use adistributed transaction to perform cross-schema queries

Toupdate ordeletethe new tbl tableandthe user tbl tableinadistributed transaction and
commit the operations by using one request, you can execute the following SQL statements:

SET AUTOCOMMIT=off;

SET drds_transaction policy = 'XA';

UPDATE "new db' . new tbl' SET name='abc' WHERE use id=1l;
DELETE FROM ‘user db'. user tbl' WHERE user id=2;
COMMIT;

e Use sequences to perform cross-schema queries

To explicitly use sequences to perform cross-schema INSERT operations, you must explicitly prefix the
sequence name with the SchemaName. For example, change xxx seq t0 yyy db . xxx seq

/* This SQL statement uses the ‘AUTO SEQ new tbl" table in the ‘new db" schema as a seque
nce to insert data.*/
INSERT INTO ‘new db . new tbl® (id, name) values (null, 'test seq');

/* This SQL statement uses the 'AUTO SEQ new tbl® table in the 'new db’ schema as a seque
nce to insert data. In the sequence, the SchemaName is specified.*/

INSERT INTO "new db'. new tbl® (id, name) values (‘new db’ .AUTO SEQ new tbl.nextval, 'te
st_seq');

e Execute the SHOW CREATE TABLE statement to perform cross-schema queries

To query the data of another schema suchas new db inthe current schema, you can execute the
following SQL statement :

SHOW CREATE TABLE "new db . new tbl;

SQL statements that support cross-schema queries

e SELECT

e INSERT

e REPLACE
e UPDATE
e DELETE

® Sequence
e DAL

e USE

15.3. Multiple statements

This topic describes the multiple statements feature supported by PolarDB-X 1.0).

PolarDB-X 1.0 allows you to specify multiple statements in one statement string. The statements must
be separated with semicolons (;).

mysgl> SELECT * FROM tl; SELECT * FROM t2; SELECT NOW() .

> Document Version: 20220601 216

https://www.alibabacloud.com/help/doc-detail/71274.htm
https://www.alibabacloud.com/help/doc-detail/71278.htm
https://www.alibabacloud.com/help/doc-detail/71281.htm
https://www.alibabacloud.com/help/doc-detail/71292.htm
https://www.alibabacloud.com/help/doc-detail/71283.htm
https://www.alibabacloud.com/help/doc-detail/264126.htm#concept-2068722
https://www.alibabacloud.com/help/doc-detail/71361.htm
https://www.alibabacloud.com/help/doc-detail/109526.htm

SQL Reference-Practical SQL state Cloud Native Distributed Database
ments PolarDB-X

@ Note

e Before you execute the preceding statement string, use the --delimiter parameter on the
MySQL client to change the delimiter for SQL statements to a period (.) on the MySQL client.
This prevents the client from splitting the SQL request based on semicolons (;).

e When PolarDB-X 1.0 executes the preceding SQL statement string, it splits the SQL
statements based on semicolons (;) and then execute the statements in sequence.

15.4. EXPLAIN and execution plans

Execution Plans

Similar to most database systems, PolarDB-X 1.0 uses an optimizer to generate an execution plan when
it processes an SQL statement. This execution plan has a tree structure of relational operators, which
reflects how PolarDB-X 1.0 executes the SQL statement. The difference is that PolarDB-X 1.0 does not
store data but pushes computations down to each ApsarabDB RDS for MySQL database for execution
while the network I/0 overheads is considered in a distributed environment. In this way, the efficiency of
SQL statement execution is improved. You can execute the EXPLAIN statement to view an SQL
execution plan.This topic describes the meanings of the operators used in a PolarDB-X 1.0 execution
plan so that you can understand the SQL execution process by using the execution plan. This helps you
optimize SQL statements. The examples in this topic are based on the following table structure:

CREATE TABLE ‘sbtestl™ (
*id® INT(10) UNSIGNED NOT NULL,
kT INT (10) UNSIGNED NOT NULL DEFAULT '0O',

‘c> CHAR(120) NOT NULL DEFAULT '',
‘pad’ CHAR (60) NOT NULL DEFAULT '',
KEY “xid> ("id),

KEY "k 1° (k)

) dbpartition BY HASH (°id’) tbpartition BY HASH (id’) tbpartitions 4

The following example helps you understand the tree structure of an execution plan in PolarDB-X 1.0:

217 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Practical SQL state
PolarDB-X ments

mysqgl> explain select a.k, count(*) cnt from sbtestl a, sbtestl b where a.id = b.k and a.id

> 1000 group by k having cnt > 1300 order by cnt limit 5, 10;

TmpSort (sort="cnt ASC", offset=?2, fetch=7?3)
Filter (condition="cnt > ?21")
Aggregate (group="k", cnt="COUNT ()")

BKAJoin (id="id", k="k", c="c", pad="pad", id0="id0", kO0="kO0", c0="c0", pad0="padO0",
condition="id = k", type="inner")
MergeSort (sort="k ASC")

\
\
| LogicalView (tables="[0000-0031] .sbtestl [000-127]", shardCount=128, sql="SELECT
* FROM ‘sbtestl®™ WHERE (id" > ?) ORDER BY k")

UnionAll (concurrent=true)

\

\

| LogicalView (tables="[0000-0031] .sbtestl [000-127]", shardCount=128, sql="SELECT
* FROM “sbtestl® WHERE (('k™ > ?) AND (k™ IN ('?2")))") |

| HitCache:false

9 rows in set (0.01 sec)

As shown in the preceding example, the overall results of a PolarDB-X 1.0 EXPLAIN statement are
divided into two parts: the execution plan and other information.

e Execution plan: The execution plan represents the parent-child relationships between operators in
indent form. In this example, the Filter is a child operator of TmpSort and a parent operator of
Aggregate. Fromthe perspective of execution, each operator pulls data fromits child operators,
processes the pulled data, and then exports the processed datato its parent operator. To better
understand the preceding execution plan, we convert the preceding execution planinto a tree
structure:

> Document Version: 20220601 218

SQL Reference-Practical SQL state Cloud Native Distributed Database

ments PolarDB-X
TmpSort
*
Filter
!
Aggregate
t
BKAJoin
/\
MergeSort UnionAll
1 !
LogicalView LogicalView

e Otherinformation: In addition to the execution plan, other information is included in the EXPLAIN
results. In this example, only Hitcache isincluded. PolarDB-X 1.0 enables the PlanCache function
by default. Hitcache indicates whetherthe current SQL statement hits PlanCache.After PlanCache
is enabled, PolarDB-X 1.0 parameterizes the SQL statement by replacing most constants with a
questionmark(2), and constructing a parameter list. For example, in the execution plan,
LogicalView's SQL has a question mark (»), and certain operators may have some characters like 2
2 .The 2 hereindicatesthe subscript of operatorsinthe parameter list. This will be further
elaborated with specific examples later.

EXPLAIN syntax

The EXPLAIN statement is used to view the execution plan of an SQL statement. The following sample
code shows the syntax:

EXPLAIN

{LOGICALVIEW | LOGIC | SIMPLE | DETAIL | EXECUTE | PHYSICAL | OPTIMIZER | SHARDING

| COST | ANALYZE | BASELINE | JSON PLAN | ADVISOR}

{SELECT statement | DELETE statement | INSERT statement | REPLACE statement| UPDATE statem
ent}

Introduction to operators
LogicalView

LogicalView pulls data fromthe underlying data source. Fromthe perspective of database, naming with

TableScan IS more conventional. However, given that PolarDB-X 1.0 itself does not store data but
instead obtains data fromthe underlying data source by using SQL statements, this operator is more
like a 'view' as it records the pushed down SQL statement and data source information. The SQL
statements in this ‘view' are pushed down by an optimizer. This may include multiple operations such as
projection, filtering, aggregation, sorting, joining, and subqueries.

219 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Practical SQL state
PolarDB-X ments

The following example describes the output and meanings of LogicalView in the EXPLAIN statement:

mysqgl> explain select * From sbtestl where id > 1000;

| UnionAll (concurrent=true)

\

| LogicalView (tables="[0000-0031].sbtestl [000-127]", shardCount=128, sql="SELECT * FROM
‘sbtestl’ WHERE (id™ > ?)") |

| HitCache:false

3 rows in set (0.00 sec)

LogicalView consists of three parts of information:

e tables: the name of the underlying data source table. The value uses a period (.) as a separator,
which is preceded by the number of the database shard and followed by the name and number of a
table shard. Consecutive numbers will be shortened, forexample, [000-127] ,indicating all table
shards with numbers ranging from 000 to 127

e shardCount: the total number of table shards that you want to access. In this example, 128 table
shards with numbers ranging from 000 to 127 will be queried.

e sql:the SQL template sent to the underlying data source. The value in the example is for reference
only. PolarDB-X 1.0 replaces the table name with the physical table name during execution and
replaces the constant 10 with a question mark(2). Thisis because PolarDB-X 1.0 enables
PlanCache by default and parameterizes SQL statements.

UnionAll

UnionAll correspondsto unton arn . Generally, this operator has multiple inputs and a UNION
operation is performed on the inputs. In the preceding example, UnionAll on LogicalView means that
UNION is performed on the data in all table shards.

The concurrent in UnionAllindicates whetherto runits child operators in parallel. Def ault value:
true.

UnionDistinct

Similar to UnionAll, UnionDistinct correspondsto uNToN DISTINCT .Forexample:

> Document Version: 20220601 220

SQL Reference-Practical SQL state Cloud Native Distributed Database
ments PolarDB-X

mysqgl> explain select * From sbtestl where id > 1000 union distinct select * From sbtestl w
here id < 200;

UnionDistinct (concurrent=true)
UnionAll (concurrent=true)

\
\
\
\
| LogicalView (tables="[0000-0031] .sbtestl [000-127]", shardCount=128, sql="SELECT * FRO
M “sbtestl® WHERE (id™ > 2)") |

UnionAll (concurrent=true)

\

\

| LogicalView (tables="[0000-0031] .sbtestl [000-127]", shardCount=128, sql="SELECT * FRO
M “sbtestl® WHERE (“id™ < ?)") |

| HitCache:false

6 rows in set (0.02 sec)

MergeSort

MergeSort is the merge sort operator. Generally, this operator has multiple child operators. PolarDB-X
1.0 implements merging sorting for ordered data and memory sorting for unordered data. For example:

mysgl> explain select *from sbtestl where id > 1000 order by id limit 5,10;

| MergeSort (sort="id ASC", offset=?1, fetch=72)

| LogicalView (tables="[0000-0031] .sbtestl [000-127]", shardCount=128, sgl="SELECT * FROM
‘sbtestl® WHERE ('id' > ?) ORDER BY ‘id' LIMIT (? + 2)") |
| HitCache:false

3 rows in set (0.00 sec)

The MergeSort operator consists of three parts of information:

e sort: the sort field and sort order. Specifically, id asc specifiesthat datais sorted in ascending
orderbased onthe id field,and bpesc specifiesthat datais sorted in descending order.

e offset :the offset to obtain the result set. Similarly, due to the parameterization of SQL
statements, the offst inthe example is expressed as 21 , where the questionmark(2)isa

221 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Practical SQL state
PolarDB-X ments

dynamic parameter, and the number that follows corresponds to the subscript of the parameter list.
In this example, the parameter corresponding to the SQL statement is [1000, 5, 10] ,and
therefore, the actualvalue of =21 is 5

e fetch: the maximum number of returned data rows. Similarto offset , this parameter is also
parameterized. The actual value is 10

Aggregate

Aggregate is an aggregate operator, which consists of two parts: the Group By field and the
aggregate function. For example:

mysqgl> explain select k, count(*) from sbtestl where id > 1000 group by k;

| Aggregate (group="k", count (*)="SUM (count (*))")

\

| MergeSort (sort="k ASC")

\

| LogicalView (tables="[0000-0031] .sbtestl [000-127]", shardCount=128, sql="SELECT kT,
COUNT (*) AS “count(*)" FROM "sbtestl® WHERE (id" > ?) GROUP BY “k° ORDER BY ‘k™'") |

| HitCache:true

4 rows in set (0.00 sec)

Aggregate consists of two parts of information:
e group: the GROUP BY field, whichis x inthis example.

e Aggregate function:: The equalsign(=)follows the output column name corresponding to the
aggregate function and is followed by the corresponding calculation method. In count (*)="SUM (cou
nt (*))" of the example, the first count (*) corresponds to the output column name. The
following suM(count (¥)) meansthat the final results of the count(*) columnis obtained by
performinga sum operationonthe input data of the count (*)

This indicates that PolarDB-X 1.0 divides aggregate operations into two parts. First, the aggregate
operations are pushed down to the underlying data sources for local aggregation. Then, the global
aggregation of the locally aggregated results is performed at the PolarDB-X 1.0 layer. The final
aggregation of PolarDB-X 1.0 is based on sorting. Therefore, a child operator sort isadded inthe
optimizer, and the sort operatorisfurtherconvertedto Mergesort by pushdown.

Another example of the ave aggregate functionis as follows:

> Document Version: 20220601 222

SQL Reference-Practical SQL state Cloud Native Distributed Database
ments PolarDB-X

mysql> explain select k, avg(id) avg id from sbtestl where id > 1000 group by k;

| Project (k="k", avg id="sum pushed sum / sum pushed count") |
| Aggregate (group="k", sum pushed sum="SUM (pushed sum)", sum pushed count="SUM (pushed cou
nt)") |

| MergeSort (sort="k ASC") |

| LogicalView (tables="[0000-0031] .sbtestl [000-127]", shardCount=128, sgl="SELECT ‘k’
, SUM(id’) AS ‘pushed sum’, COUNT(id') AS "pushed count' FROM 'sbtestl’ WHERE (" id’ > ?)
GROUP BY "k ORDER BY ‘k'") |

| HitCache:false]|

5 rows in set (0.01 sec)

PolarDB-X 1.0 convertsthe avec aggregate functionto sumM or count ,andthenconvertsit to
local aggregation and global aggregation respectively based on the push rules of sum and
counT .You cantryto understand the execution plans of other aggregate functions.

(@ Note PolarDB-X 1.0 converts the DISTINCT operation to the GROUP operation as follows:

mysgl> explain select distinct k from sbtestl where id > 1000;

o
,,, +

| LOGICAL PLAN

|
o
,,, +

| Aggregate (group="k")

|

| MergeSort (sort="k ASC")

|

| LogicalView (tables="[0000-0031] .sbtestl [000-127]", shardCount=128, sql="SELECT
k® FROM “sbtestl® WHERE (°id"® > ?) GROUP BY ‘k° ORDER BY k") |

| HitCache:false

|
o ___
___ +

4 rows in set (0.02 sec)

TmpSort

TmpSort sorts data in memory. The difference from MergeSort is that MergeSort can have multiple child
operators, and the data returned by each child operator has been sorted. TmpSort has only one child
operator.

223 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Practical SQL state
PolarDB-X ments

The query plan information for TmpSort is consistent with that for MergeSort. For more information,
see MergeSort.

Project

The Project operatorindicates a projection operation to select some columns fromthe input data for
output orto convert some columns (by using a function or expression computation) for output. The
Project operator can also contain constants. Inthe preceding avec example, the top-levelis a

Project ,anditsoutputis k and sum pushed sum/sum pushed count .The lattercorrespondsto
acolumnnamed avg id

mysgl> explain select 'Hello, DRDS', 1 / 2, CURTIME();

I
| LOGICAL PLAN |
e +
Project (Hello, DRDS:"_UTF—16'HellO, DRDS'", 1 / 2="1 / 2", CURTIME ()="CURTIME ()")

\ |
| HitCache:false

e +

3 rows in set (0.00 sec)

The Project plan includes the name of each column and the corresponding columns, values, functions,
and expressions.

Filter

The Filter operator performs a filtering operation that contains some filter conditions. This operator
performs filtering on the input data. The data that meets the filter conditions is output and the
remaining data is discarded. The following example includes most of the operators described previously
and therefore is rather complex.

mysgl> explain select k, avg(id) avg id from sbtestl where id > 1000 group by k having avg
id > 1300;

| Filter (condition="avg id > ?1") |
| Project (k="k", avg id="sum pushed sum / sum pushed count") |

| Aggregate (group="k", sum pushed sum="SUM(pushed sum)", sum pushed count="SUM(pushed c
ount)") |

| MergeSort (sort="k ASC") |

| LogicalView (tables="[0000-0031].sbtestl [000-127]", shardCount=128, sgl="SELECT °
k*, SUM(id’) AS ‘pushed sum’, COUNT('id’) AS ‘pushed count’ FROM 'sbtestl’ WHERE (id" > 2
) GROUP BY "k ORDER BY “k™") |

| HitCache:false |

6 rows in set (0.01 sec)

> Document Version: 20220601 224

SQL Reference-Practical SQL state Cloud Native Distributed Database
ments PolarDB-X

Based onthe SQL of the preceding avc example, having avg id > 1300 is added. A Filter
operatoris added at the top of the execution planto filter all data that satisfies avg id > 1300

You may ask why the condition in WHERE has no corresponding Filter operator? At a stage of the
PolarDB-X 1.0 optimizer, the Filter operator of the WHERE condition does exist, but it is finally pushed
down to LogiacalView. Therefore, you canfind id > 1000 in LogicalView's SQL.

NUoin

NUoin is the NestLoop Join operator, which allows you to use the NestLoop method to join two tables.

PolarDB-X 1.0 implements two JOIN policies: Nljoin and BKAJoin. The latter refers to Batched Key Access
Join. When you query data by using key-value pairs, a batch of datais retrieved fromthe left table. An

IN condition is concatenated into the SQL statement for accessing the right table to obtain a batch of
data fromthe right table at a time.

mysql> explain select a.* from sbtestl a, sbtestl b where a.id = b.k and a.id > 1000;

Project (id="id", k="k", c="c", pad="pad")
NlJoin (id="id", k="k", c="c", pad="pad", k0="k0", condition="id = k", type="inner")
UnionAll (concurrent=true)

LogicalView (tables="[0000-0031] .sbtestl [000-127]", shardCount=128, sql="SELECT * F
ROM “sbtestl’™ WHERE (“id™ > ?)") |

| UnionAll (concurrent=true)

\

| LogicalView (tables="[0000-0031].sbtestl [000-127]", shardCount=128, sqgl="SELECT "k’
FROM ‘sbtestl’™ WHERE (‘k™ > 2)") |

| HitCache:false

7 rows in set (0.03 sec)

The NYOIN plan includes three parts:

e Qutput column info: the output column name. In this example, the JOIN statement returns five
columns. id="id", k="k", c="c", pad="pad", k0="k0"

e condition: the join condition. In this example, the join conditionis id = k

e type: the connection type. In this example, the type is INNER JOIN. Therefore, the connection type is

inner
BKAJoin

BKAJoin: JOIN is performed by using batch key-value queries. That is, a batch of data is retrieved from
the left table. An IN condition is concatenated into the SQL statement for accessing the right table to
obtain a batch of data fromthe right table at a time.

225 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Practical SQL state
PolarDB-X ments

mysql> explain select a.* from sbtestl a, sbtestl b where a.id = b.k order by a.id;

| Project (id="id", k="k", c="c", pad="pad")

\

| BKAJoin (id="id", k="k", c="c", pad="pad", 1d0="id0", kO0="kO", c0="cO0", padO="padO0", con
dition="id = k", type="inner") |

| MergeSort (sort="1id ASC")

\

| LogicalView (tables="[0000-0031] .sbtestl [000-127]", shardCount=128, sql="SELECT * F
ROM “sbtestl’™ ORDER BY “id"™") |

| UnionAll (concurrent=true)

\

| LogicalView (tables="[0000-0031] .sbtestl [000-127]", shardCount=128, sql="SELECT * F
ROM “sbtestl’® WHERE (k™ IN ('?'))") |

| HitCache:false

7 rows in set (0.01 sec)

The plan content of BKAJoin is the same as that of Nloin. The two operators have different names and
are designed to inform the executor of the method used to performthe JOIN operation. In addition,

'k' IN ('2') inLogicalView onthe right table in the preceding execution planis an IN query
template created by the optimizer for querying data in the right table.

LogicalModifyView

As mentioned above, the LogicalView operator obtains data from the underlying data source.
Correspondingly, the LogicalModifyView operator modifies the underlying data source and also includes
an SQL statement. This SQL statement may be an INSERT, UPDATE, or DELETE statement.

> Document Version: 20220601 226

SQL Reference-Practical SQL state Cloud Native Distributed Database
ments PolarDB-X

mysqgl> explain update sbtestl set c='Hello, DRDS' where id > 1000;

| LogicalModifyView (tables="[0000-0031].sbtestl [000-127]", shardCount=128, sgl="UPDATE "sb
testl® SET "¢’ = ? WHERE (" id" > ?2)") |
| HitCache:false

2 rows in set (0.03 sec)

mysql> explain delete from sbtestl where id > 1000;

| LogicalModifyView (tables="[0000-0031].sbtestl [000-127]", shardCount=128, sgl="DELETE FRO
M “sbtestl® WHERE (id® > 2)") |
| HitCache:false

2 rows in set (0.03 sec)

The query plan of the LogicalModifyView operator is similar to that of the LogicalView operator,
including the delivered physical table shards, the number of table shards, and an SQL template.
Similarly, PlanCache is enabled, thus the SQL statement is parameterized and constants in the SQL
template are replaced with question marks (2).

PhyTableOperation

PhyT ableOperation: performs an operation on a physical table shard. This operator is used only in
INSERT INTO... VALUES

227 > Document Version: 20220601

Cloud Native Distributed Database SQL Reference-Practical SQL state
PolarDB-X ments

mysgl> explain insert into sbtestl values(1, 1, '1', '1"),(2, 2, '2', '2');

| PhyTableOperation (tables="SYSBENCH CORONADB 1526954857179TGMMSYSBENCH CORONADB VGOC 0000
RDS. [sbtestl 001]", sgl="INSERT INTO ? ('id’, 'k, 'c¢’, 'pad’) VALUES(?, 2, 2, ?)", params=
"“sbtestl 001°,1,1,1,1") |
| PhyTableOperation (tables="SYSBENCH CORONADB 1526954857179TGMMSYSBENCH CORONADB VGOC_ 0000
RDS. [sbtestl 002]", sgl="INSERT INTO ? ('id’, 'k, 'c¢’, 'pad’) VALUES(?, 2, 2, ?)", params=
"“sbtestl 002°,2,2,2,2") |

\
\
| HitCache:false
\

4 rows in set (0.00 sec)

In this example, the INSERT statement is executed to insert two rows of data, with each row of data

corresponding to one PhyT ableOperation operator. The PhyT ableOperation operator consists of the

following parts of information:

e tables: the name of a physical table. Only one physical table name is specified.

e sql: the SQLtemplate. Table names and constants in the SQL template are all parameterized and
replaced with question marks (2) and the corresponding parameters are listed in the params
parameter.

e params: the actual parameters corresponding to the question marks (?) in the SQL template,
including table names and constants.

Other information
HitCache

PolarDB-X 1.0 enables PlanCache by default. Hit Cache is used to informyou about whether the query
hits PlanCache. In the following example, HitCache is set to false for the first run and true forthe
second run.

> Document Version: 20220601 228

SQL Reference-Practical SQL state Cloud Native Distributed Database
ments PolarDB-X

mysqgl> explain select * From sbtestl where id > 1000;

| UnionAll (concurrent=true)
| LogicalView (tables="[0000-0031].sbtestl [000-127]", shardCount=128, sql="SELECT * FROM

“sbtestl® WHERE (“id> > ?)") |
| HitCache:false

3 rows in set (0.01 sec)

mysqgl> explain select * From sbtestl where id > 1000;

| UnionAll (concurrent=true)
| LogicalView (tables="[0000-0031] .sbtestl [000-127]", shardCount=128, sql="SELECT * FROM

“sbtestl® WHERE ("id™ > ?)") |

| HitCache:true

3 rows in set (0.00 sec)

229 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference:- Error codes
PolarDB-X

16.Error codes

T his topic describes the common error codes that may be returned in PolarDB-X 1.0 and how to
troubleshoot the errors.

TDDL-4006 ERR_TABLE_NOT_EXIST

The error code is returned because the specified data table does not exist.

Example:

ERR-CODE: [TDDL-4006] [ERR TABLE NOT EXIST] Table '*****' doesn't exist.

This error code indicates that the data table does not exist in PolarDB-X 1.0 or PolarDB-X 1.0 has failed
to load the metadata of the data table due to unknown reasons.

If this erroris returned, Submit a ticket.

TDDL-4007 ERR_CANNOT_FETCH_TABLE_META

The error code is returned because PolarDB-X 1.0 has failed to load the metadata of a datatable.

Example:

ERR-CODE: [TDDL-4007] [ERR CANNOT FETCH TABLE META] Table '*****' metadata

cannot be fetched because Table '*****x *x*x4x! doesn't exist.

This error code indicates that PolarDB-X 1.0 has failed to query the metadata of the data table. This
error may occur due to one of the following reasons:

e The datatable is not created.
e The datatable in the database shard is manually deleted or renamed.

e PolarDB-X 1.0 cannot connect to the backend ApsaraDB RDS for MySQL instances.

If this erroris returned, check whether the specified data table exists and confirmwhether the status of
all backend ApsaraDB RDS for MySQL instances of PolarDB-X 1.0 is normal.

If the data table is manually deleted or renamed, you can use the data restoration feature of ApsaraDB
RDS for MySQL to restore the data. If the error persists, Submit a ticket.

TDDL-4100 ERR_ATOM_NOT_AVALILABLE

The error code is returned because a backend ApsaraDB RDS for MySQL instance of PolarDB-X 1.0 is
unavailable.

Example:

ERR-CODE: [TDDL-4100] [ERR ATOM NOT AVALILABLE] Atom : ***** jsNotAvailable

If PolarDB-X 1.0 detects that the status of an ApsaraDB RDS for MySQL instance on the backend is
abnormal, PolarDB-X 1.0 temporarily blocks access to the instance and returns the TDDL-4100 error. If
this error is returned, check whether the status of all backend ApsaraDB RDS for MySQL instances of
PolarDB-X 1.0 is abnormal. If an abnormal ApsaraDB RDS for MySQL instance is detected, recover the
related instance.

> Document Version: 20220601 230

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:-Error codes
PolarDB-X

Afterthe ApsaraDB RDS for MySQL instance is recovered, PolarDB-X 1.0 automatically changes the state
of the instance and allows applications to access the instance.

TDDL-4101
ERR_ATOM_GET_CONNECTION_FAILED_UNKNOWN_REASON

The error code is returned because PolarDB-X 1.0 has failed to connect to a backend ApsaraDB RDS for
MySQL instance due to unknown reasons.

Example:

ERR-CODE: [TDDL-4101] [ERR ATOM GET CONNECTION FAILED UNKNOWN REASON] Get
connection for db '"*****!' from pool failed. AppName:***** = Eny:**x***x,
UnitName:null. Message from pool: wait millis 5000, active 0, maxActive 5.

You should look for the following logs which contains the real reason.

When PolarDB-X 1.0 processes requests, PolarDB-X 1.0 asynchronously establishes connections to the
backend ApsaraDB RDS for MySQL instances. If PolarDB-X fails to connect to a backend ApsarabDB RDS
for MySQL instance within a period of time and no error causes are returned for the asynchronous task,
PolarDB-X 1.0 returns the TDDL-4101 error to the application.

In most cases, this error is returned because the status of the backend ApsaraDB RDS for MySQL
instance is abnormal. If this error persists after the backend ApsaraDB RDS for MySQL instance is
recovered, Submit a ticket.

TDDL-4102 ERR_ATOM_GET_CONNECTION_FAILED_KNOWN_REASON

The error code is returned because PolarDB-X 1.0 has failed to connect to a backend ApsaraDB RDS for
MySQL instance due to known reasons.

Example:

ERR-CODE : [TDDL—4102][ERR_ATOM_GET_CONNECTION_FAILED_KNOWN_REASON] Get
connection for db '*****' failed because wait millis 5000, active 0,

maxActive 5

This error code is returned if an error occurs when PolarDB-X 1.0 connects to a backend ApsaraDB RDS
for MySQL instance. The error causes are included inthe ErRrR-cobE message.

PolarDB-X 1.0 may fail to connect to a backend ApsaraDB RDS for MySQL instance due to one of the
following reasons:

e The number of connections to the backend ApsaraDB RDS for MySQL instance has reached the upper
limit.

e The connectionto the backend ApsaraDB RDS for MySQL instance has timed out.

e The connectionto the backend ApsaraDB RDS for MySQL instance is rejected.

If this error persists after you troubleshoot the issues on the backend ApsaraDB RDS for MySQL instance,
Submit a ticket.

TDDL-4103 ERR_ATOM_CONNECTION_POOL_FULL

The error code is returned because the connection pool of the backend ApsarabDB RDS for MySQL
instances of PolarDB-X 1.0 is full.

231 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:- Error codes
PolarDB-X

Example:

ERR-CODE : [TDDL—4103][ERR_ATOM_CONNECTION_POOL_FULL] Pool of DB '"*****! jg
full. Message from pool: wait millis 5000, active 5, maxActive 5.

AppName: ***** Eny:***** UnitName:null.

This error code indicates that the backend connection pool of PolarDB-X 1.0 is full. The TDDL-4103 error
may be returned due to one of the following reasons:

e The execution of SQL statements that are sent from an application is slow, and the operation is
performed over a connection for a long period of time. As a result, the number of available
connections is insufficient.

e An application does not close the connections to a database. This causes connection leaks.

e A large number of cross-database queries are performed in parallel. This operation is performed over
a large number of connections. The cross-database queries include the queries for aggregation and
statistical analysis and the queries for data in databases that are not sharded.

To resolve this error, we recommend that you use the following methods:

e Use frameworks such as Spring JDBC and MyBatis to connect to databases.

e Optimize SQL queries based on the performance analysis reports and suggestions of database
administrators.

e Use the read/write splitting feature of PolarDB-X 1.0 to forward cross-database queries to read-only
nodes.

e Upgrade the specifications of your ApsaraDB RDS for MySQL instances to improve the backend
processing performance.

e Submit a ticket to change the maximum number of backend connections for your PolarDB-X 1.0
instance.

TDDL-4104 ERR_ATOM_CREATE_CONNECTION_TOO_SLOW

The error code is returned because the connection to a backend ApsaraDB RDS for MySQL instance of a
PolarDB-X 1.0 instance has timed out.

Example:

ERR-CODE : [TDDL—4104][ERR_ATOM_CREATE_CONNECTION_TOO_SLOW] Get connection
for db '"*****' from pool timeout. AppName:***** Eny:***** {UnjitName:null.

Message from pool: wait millis 5000, active 3, maxActive 5.

When PolarDB-X 1.0 connects to a backend ApsaraDB RDS for MySQL instance in an asynchronously
manner, the connection times out if a large number of connection requests are sent in a short period of
time or it takes a long time to establish a connection to the backend ApsaraDB RDS for MySQL instance.

In most cases, this error occurs due to the heavy workloads on the backend ApsaraDB RDS for MySQL
instance. To resolve this error, we recommend that you use the read/write splitting feature of PolarDB-
X 1.0 or upgrade the specifications of the ApsaraDB RDS for MySQL instance.

If this error persists after you troubleshoot the issues on the backend ApsaraDB RDS for MySQL instance,
Submit a ticket.

If this error occurs because a large number of connection requests are sent in a short period of time,
Submit a ticket to change the minimum number of connections for your PolarDB-X 1.0 instance.

> Document Version: 20220601 232

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:-Error codes
PolarDB-X

TDDL-4105 ERR_ATOM_ACCESS_DENIED

The error code is returned because the connection request that PolarDB-X 1.0 sent to a backend
ApsaraDB RDS for MySQL instance is rejected.

Example:

ERR-CODE: [TDDL-4105] [ERR_ ATOM ACCESS DENIED] DB '*****! Access denied for
user 'xAFxAT@UkxAxXT - AppName:***** Env:*****, UnitName:null. Please

contact DBA to check.

This error code indicates that the access request that includes a username and a password from
PolarDB-X 1.0 to the ApsaraDB RDS for MySQL instance is rejected.

If the username or password that is automatically created by PolarDB-X 1.0 is changed on the backend
ApsaraDB RDS for MySQL instance, PolarDB-X 1.0 returns the TDDL-4105 error for the access request. To
resolve the error, Submit a ticket to rectify the username or the password of your PolarDB-X 1.0 instance.

PolarDB-X 1.0 also returns the TDDL-4105 error if the backend ApsaraDB RDS for MySQL instance expires
orif an overdue payment occurs in your account. In this case, renew the instance at your earliest
opportunity.

TDDL-4106 ERR_ATOM_DB_DOWN

The error code is returned because PolarDB-X 1.0 has failed to connect to a backend ApsaraDB RDS for
MySQL instance.

Example:

ERR-CODE: [TDDL-4106] [ERR ATOM DB DOWN] DB '*****!' cannot be connected.
AppName: ***** = Eny:***** UnitName:null. It seems a very real possibility
that this DB IS DOWN. Please contact DBA to check.

This error code indicates that the connection request from PolarDB-X 1.0 to the backend ApsaraDB RDS
for MySQL instance has timed out or no response is returned for the connection request. In most cases,
this error occurs because a fault occurs in the backend ApsaraDB RDS for MySQL instance. To resolve the
error, Submit a ticket.

TDDL-4108 ERR_VARIABLE_CAN_NOT_SET_TO_NULL_FOR_NOW
The error code is returned because the value of a variable cannot be set to NULL

Example:

ERR-CODE: [TDDL-4108] [ERR VARIABLE CAN NOT SET TO NULL FOR NOW] System

variable ***** can''t set to null for now;

You cannot executethe ser statement to set the value of some MySQL variablesto w~urn . If the
value of such a variable is set to NULL, PolarDB-X 1.0 returns the TDDL-4108 error.

If this error occurs, check the value of the variable and rectify the value based on the official
documentation of MySQL. For more information, see Server System Variables.

TDDL-4200 ERR_GROUP_NOT_AVALILABLE

The error code is returned because a PolarDB-X 1.0 database shard is unavailable.

233 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html

Cloud Native Distributed Database

SQL Reference:- Error codes
PolarDB-X

Example:

ERR-CODE: [TDDL-4200] [ERR GROUP_NOT AVALILABLE] The TDDL Group ***** is
running in fail-fast status, caused by this SQL:***** which threw a fatal

exception as *****,

if the backend ApsaraDB RDS for MySQL instance in which the database shard resides cannot be
accessed and no other instances are available for the database shard, PolarDB-X 1.0 sets the status of
the database shardto fail-fast and returnsthe TDDL-4200 error.

In most cases, this error occurs because the backend ApsaraDB RDS for MySQL instance f ails.
Troubleshoot the failure based on the errorinformation. After the ApsarabDB RDS for MySQL instance is
recovered, PolarDB-X 1.0 automatically changes the state of the instance from fail-fast

If this error persists after you resolve the fault in the backend ApsaraDB RDS for MySQL instance, Submit
a ticket.

TDDL-4201 ERR_GROUP_NO_ATOM_AVALILABLE

The error code is returned because no ApsaraDB RDS for MySQL instances are available for a PolarDB-X
1.0 database shard.

Example:

ERR-CODE: [TDDL-4201] [ERR GROUP NO ATOM AVALILABLE] All weights of DBs in

Group '*****' i5 (. Weights is: ***x*,

When all ApsaraDB RDS for MySQL instances in which a database shard resides are unavailable or the
database shard isinthe fail-fast state, PolarDB-X 1.0 returns the TDDL-4201 error.

In most cases, this error occurs because a fault occurs in the backend ApsarabDB RDS for MySQL
instances. Check the status of all backend ApsaraDB RDS for MySQL instances and resolve the fault. If
the error persists, Submit a ticket.

TDDL-4202 ERR_SQL_QUERY_TIMEOUT

The error code is returned because a query in PolarDB-X 1.0 has timed out.

Example:

ERR-CODE: [TDDL-4202] [ERR SQL QUERY TIMEOUT] Slow query leads to a timeout
exception, please contact DBA to check slow sqgl. SocketTimout:*** ms,

Atom:***** = Group:*****, AppName:***** Env:*****x UnitName:null.

This error code indicates that the execution duration of the SQL statement on the backend ApsaraDB
RDS for MySQL instances exceeds the value of the socketTimeout parameterthat you specified for
your PolarDB-X 1.0 instance. The default value of the socketTimeout parameteris 900 seconds for your
PolarDB-X 1.0 instance.

We recommend that you optimize the SQL statement and create suitable indexes on the backend
ApsaraDB RDS for MySQL instances to improve the SQL query performance.

If the error persists after the SQL statement is optimized, use the following PolarDB-X 1.0 hint syntax to
specify a temporary timeout period:

> Document Version: 20220601 234

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:-Error codes
PolarDB-X

/*TDDL:SOCKET TIMEOUT=900000*/ SELECT * FROM dual;

Specify the value of the socker TIMEOUT parameterin milliseconds.
For more information about PolarDB-X 1.0 hints, see Specify a custom time-out period for an SQL statement.

To permanently change the timeout period for PolarDB-X 1.0, Submit a ticket.

TDDL-4203 ERR_SQL_QUERY_MERGE_TIMEOUT

The error code is returned because a distributed query has timed out.

Example:

ERR-CODE: [TDDL-4203] [ERR SQL QUERY MERGE TIMEOUT] Slow sql query leads to
a timeout exception during merging results, please optimize the slow sqgl.

The the default timeout is *** ms. DB ig ***x*%*

When you query distributed data in PolarDB-X 1.0, the default timeout period is 900 seconds.

This error code indicates that the system has scanned the data in multiple database shards to execute
the SQL statement and the execution duration is longer than 900 seconds. To optimize the SQL
statement, performthe following steps:

e Include a shard key in the WHERE clause to specify a database shard on which you want to execute
the SQL statement.

e Checkwhether a suitable index can be created on the backend ApsaraDB RDS for MySQL instances.
Indexes can improve the query performance of a database shard.

e Eliminate time-consuming operations in the distributed query, such as cross-database JOIN queries
and queries that are performed based on data resorting. This helps reduce the number of resources
that are consumed during data merge operations.

If the error persists after the SQL statement is optimized, use the following hint syntax to specify a
temporary timeout period for PolarDB-X 1.0:

/*TDDL:SOCKET TIMEOUT=900000*/ SELECT * FROM dual;

Specify the value of the sockeT TiMEoUT parameterin milliseconds.
For more information about PolarDB-X 1.0 hints, see Specify a custom time-out period for an SQL statement.

If this error persists, Submit a ticket.

TDDL-4400 ERR_SEQUENCE
The error code is returned because a sequence has failed to be processed.

Example:

ERR-CODE: [TDDL-4400] [ERR SEQUENCE] Sequence : All dataSource faild to get

value!

This error code indicates that PolarDB-X 1.0 has failed to process the sequence. The error message is
provided after sequence :

235 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/100641.htm#multiTask821
https://workorder-intl.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/100641.htm#multiTask821
https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:- Error codes
PolarDB-X

In most cases, this error occurs because a fault occurs in the backend ApsarabDB RDS for MySQL
instances. As a result, data tables that are related to the sequence cannot be accessed. We
recommend that you check the status of all backend ApsaraDB RDS for MySQL instances. If this error
persists after you resolve the fault in the backend ApsaraDB RDS for MySQL instances, Submit a ticket.

TDDL-4401 ERR_MISS_SEQUENCE

The error code is returned because the specified sequence does not exist.

Example:

ERR-CODE: [TDDL-4401] [ERR MISS SEQUENCE] Sequence '*****' is not found

This error code indicates that the sequence that you specified in the statement does not exist. We
recommend that you execute the sHow SEQUENCES statement to query the name of each sequence
that you created in PolarDB-X 1.0 and specify a valid sequence name.

If the sequence that you want to use does not exist, you can use the following CREATE SEQUENCE
syntax to create the sequence:

CREATE SEQUENCE <sequence name> [START WITH <numeric value>]
[INCREMENT BY <numeric value>] [MAXVALUE <numeric value>]
[CYCLE | NOCYCLE]~

If the sequence that you specified exists and the TDDL-4401 error persists, Submit a ticket.

For more information about sequences, see Sequence.

TDDL-4403 ERR_MISS_SEQUENCE_TABLE_ON_DEFAULT_DB

The error code is returned because the data table that corresponds to a sequence does not exist.

Example:

ERR-CODE : [TDDL—4403][ERR_MISS_SEQUENCE_TABLE_ON_DEFAULT_DB] Sequence table
is not in default db.

This error code indicates that the data table named sequence Or sequence opt cannot be found
in the backend database. To troubleshoot the error, Submit a ticket.

TDDL-4404 ERR_SEQUENCE_TABLE_META

The error code is returned because the schema of the data table that corresponds to a sequence is
invalid.

Example:

ERR-CODE: [TDDL-4404] [ERR SEQUENCE TABLE META] the meta of sequence table

is error, some columns missed

This error code indicates that specific fields are missing in the data table that corresponds to the
sequence. This datatable canbe the sequence Or sequence opt table.To troubleshoot the error,
Submit a ticket.

> Document Version: 20220601 236

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/71261.htm#multiTask4064
https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:-Error codes
PolarDB-X

TDDL-4405 ERR_INIT_SEQUENCE_FROM_DB

The error code is returned because a sequence has failed to be initialized.

Example:

ERR-CODE: [TDDL-4405] [ERR INIT SEQUENCE FROM DB] init sequence manager

error: *xx*k

This error code indicates that the system has failed to initialize the sequence that you want to use. The
error message is provided after init sequence manager error:

We recommend that you check the status of all backend ApsaraDB RDS for MySQL instances. If this error
persists after you resolve the faults in the backend ApsaraDB RDS for MySQL instances, Submit a ticket.

TDDL-4407 ERR_OTHER_WHEN_BUILD_SEQUENCE

The error code is returned because the data table that corresponds to a sequence cannot be accessed.

Example:

ERR-CODE: [TDDL-4407] [ERR OTHER WHEN BUILD SEQUENCE] error when build

sequence: *****

This error code is returned if an error occurs when you access a data table that corresponds to the
sequence, such asthe sequence Or sequence opt table. The error message is provided after

error when build sequence:

We recommend that you check the status of all backend ApsaraDB RDS for MySQL instances. If this error
persists after you resolve the faults in the backend ApsaraDB RDS for MySQL instances, Submit a ticket.

DDL-4408 ERR_SEQUENCE_NEXT_VALUE

The error code is returned because the system has failed to obtain the values in a sequence.

Example:

ERR-CODE: [TDDL-4408] [ERR SEQUENCE NEXT VALUE] error when get sequence's

next value, sequence is: ***** error: **x*x

This error code is returned if an error occurs when you obtain the values of a sequence by using a
PolarDB-X 1.0 auto-increment primary key orthe <sequence name>.NEXTVAL Syntax. The cause of error
is provided after error:

In most cases, this error occurs because a fault occurs in the backend ApsarabDB RDS for MySQL
instances. We recommend that you check the status of and access workloads on the backend ApsaraDB
RDS for MySQL instances. If this error persists after you resolve the fault in the backend ApsaraDB RDS
for MySQL instances, Submit a ticket.

TDDL-4500 ERR_PARSER

The error code is returned because the SQL statement has failed to be parsed.

Example:

ERR-CODE: [TDDL-4500] [ERR PARSER] not support statement: '****x*!

237 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:- Error codes
PolarDB-X

PolarDB-X 1.0 supports the SQL syntax that complies with the SQL-92 standard and the extended
syntax and functions that are supported by MySQL. Check whether the SQL statement that you
executed complies with the standard SQL syntax and MySQL specifications that are supported by
PolarDB-X 1.0.

For more information about the standard SQL syntax, see Standard SQL synt ax.
For more information about SQL statements that are compatible with PolarDB-X 1.0, see SQL limits.
For more information about the SQL syntax in MySQL 5.6, see SQL syntax in MySQL 5.6.

If this error persists after you rectify the SQL statement, Submit a ticket.

TDDL-4501 ERR_OPTIMIZER

The error code is returned because the optimizer has failed to convert an SQL statement.

Example:

ERR-CODE: [TDDL-4501] [ERR OPTIMIZER] optimize error by: Unknown column

THhxkx%1 in 'order clause'

The optimizer of PolarDB-X 1.0 can convert an SQL statement to an internal syntax tree. If a logic error
occurs in an SQL statement, the optimizer fails to convert the SQL statement. In this case, the TDDL-
4501 error is returned.

We recommend that you check and modify the SQL statement based on the cause of error. The cause
of erroris provided after optimize error by: .If thiserror persists after you modify the SQL
statement, Submit a ticket.

TDDL-4502 ERR_OPTIMIZER_MISS_ORDER_FUNCTION_IN_SELECT

The error code is returned because the serect clause does not contain the columns that are
returned by the function specified inthe orpeEr By clause.

Example:

ERR-CODE: [TDDL-4502] [ERR OPTIMIZER MISS ORDER FUNCTION IN SELECT] Syntax

Error: orderBy/GroupBy Column ***** is not existed in select clause’

In PolarDB-X 1.0, if the orpER BY clause contains a function that returns columns, such as RAND(), the
returned columns must also be specified inthe serLect clause. If the SELECT clause does not contain
the returned columns, the TDDL-4502 error is returned.

We recommend that you include the corresponding columns inthe serect clause.

TDDL-4504 ERR_OPTIMIZER_SELF_CROSS_JOIN

The error code is returned because an SQL statement does not meet the conditions that are required to
perform a SELF JOIN query on a table.

Example:

ERR-CODE: [TDDL-4504] [ERR OPTIMIZER SELF CROSS JOIN] self cross join case,
add shard column filter on right table

> Document Version: 20220601 238

https://www.w3schools.com/sql/
https://www.alibabacloud.com/help/doc-detail/71252.htm#multiTask1408
https://dev.mysql.com/doc/refman/5.6/en/sql-syntax.html
https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:-Error codes
PolarDB-X

When PolarDB-X 1.0 performs a SELF JOIN query on a table, the TDDL-4504 error is returned if the
wHERE clause includes only the shard key of the left table orthe right table.

We recommend that you include the shard keys of the left table and the right table inthe wrERE
clause inthe SQL statement.

TDDL-4506 ERR_MODIFY_SHARD_COLUMN

The error code is returned because shard keys cannot be updated.

Example:

ERR-CODE: [TDDL-4506] [ERR MODIFY SHARD COLUMN] Column '*****!' jis a sharding
key of table '***x*' which is forbidden to be modified.

PolarDB-X 1.0 forbids you to change the value of a shard key by using the UPDATE statement. Update
operations may change the shard where data resides. Therefore, PolarDB-X 1.0 cannot ensure data
consistency and the atomicity of operations.

We recommend that you execute the DELETE and INSERT Statementsthat have the same effect as
the uppateE statement to change the value of a shard key.

TDDL-4508 ERR_OPTIMIZER_NOT_ALLOWED_SORT_MERGE_JOIN

The error code is returned because the sort merge join operation cannot be performed.

Example:

ERR-CODE: [TDDL-4508] [ERR OPTIMIZER NOT ALLOWED SORT MERGE JOIN] sort merge

join is not allowed when missing equivalent filter

If the data tables on which you want to perform a join operation by executing an SQL statement are
stored in different ApsaraDB RDS for MySQL instances, PolarDB-X 1.0 usesthe sort-merge join
algorithm. T his algorithm can be used only if you specify the same join conditions for the left table and
the right table in the SQL statement. If the join conditions that you specify for the left table are
different fromthe join conditions that you specify for the right table, the TDDL-4508 error is returned.

We recommend that you include the equivalent JOIN conditionsinthe Join or wHERe clause inthe
SQL statement.

TDDL-4509 ERR_OPTIMIZER_ERROR_HINT

The error code is returned because the hint syntax is invalid.

Example:

ERR-CODE: [TDDL-4509] [ERR OPTIMIZER ERROR HINT] Hint Syntax Error:

unexpected operation: *****x,

This error code indicates that the syntax of the hint that you include in the SQL statement cannot be
parsed by PolarDB-X 1.0. For more information about the hint syntax, see Overview.

TDDL-4510 ERR_CONTAINS_NO_SHARDING_KEY

The error code is returned because a shard key is not specified in an SQL statement.

239 > Document Version: 20220601

https://www.alibabacloud.com/help/doc-detail/71270.htm#multiTask2614

Cloud Native Distributed Database

SQL Reference:- Error codes
PolarDB-X

Example:

ERR-CODE : [TDDL—4510][ERRﬁCONTAINSiNoisHARDINGﬁKEY} Your SQL contains NO
SHARDING KEY '*****!' for table '"*****x' which is not allowed in DEFAULT.

If the full table scan feature is not enabled for a PolarDB-X 1.0 table shard, you must include the shard
keyinthe wuERE clause to access the table. If the WHERE clause does not contain the shard key, the

TDDL-4510 error is returned.

When PolarDB-X 1.0 creates a table, the full table scan feature is enabled by default. If the full table
scan feature is manually disabled, make sure that the shard key of the table is specified in each SQL
statement that scans the data in the table.

TDDL-4511 ERR_INSERT_CONTAINS_NO_SHARDING_KEY
The error code is returned because a shard key is not specified inthe 1nseErT statement.
Example:

ERR-CODE: [TDDL-4511] [ERR INSERT CONTAINS NO SHARDING KEY] Your INSERT SQL
contains NO SHARDING KEY '****x! for table '****x',

In PolarDB-X 1.0, if you want to execute the INSERT statement to insert the data of a sharded table,
you must specify the shard key of the table in the INSERT statement unless the shard key is an auto-
increment primary key. If the INSERT statement does not contain the shard key, the TDDL-4511 error is
returned.

If this error occurs, we recommend that you include the shard key inthe 1nserT statement.

TDDL-4515 ERR_CONNECTION_CHARSET_NOT_MATCH

The error code is returned because the specified character set is not supported.

Example:

ERR-CODE: [TDDL-4515] [ERR _CONNECTION CHARSET NOT MATCH] Caused by MySQL's
character set connection doesn't match your input charset. Partition DDL can
only take ASCII or chinese column name. If you want use chinese table or
column name, Make sure MySQL connection's charset support chinese character.

Use "set names xxx" to set correct charset.

PolarDB-X 1.0 supports Chinese characters for table names and field names. The

character set connection parameter specifies the character set that is used by a PolarDB-X 1.0
database to connect to a client. When you execute an SQL statement that contains Chinese characters,
the TDDL-4515 error is returned if the character_set_connection parameter is set to a character set that
does not support Chinese characters, suchas 1atinl

You can executethe SHOW VARIABLES LIKE 'character set connection' Statement to querythe
character set that is used by a PolarDB-X 1.0 database to connect to a MySQL client. You can execute
the seT NaMES statement to change the character set. If you use Java Database Connectivity (JDBC)

to connect to a PolarDB-X 1.0 database, configure the characterEncoding parameter.

TDDL-4516 ERR_TRUNCATED_DOUBLE_VALUE_OVERFLOW

> Document Version: 20220601 240

Cloud Native Distributed Database

SQL Reference:-Error codes
PolarDB-X

The error code is returned because an overflow has occurred when the system converts a floating-
point numberto aninteger.

Example:

ERR-CODE: [TDDL-4516] [ERR TRUNCATED DOUBLE VALUE OVERFLOW] Truncated

incorrect DOUBLE value '*****' over column[*****]'s value range.

This error code indicates that the result is out of the valid range of integers when PolarDB-X 1.0
converts the floating-point number to an integer. We recommend that you check the data types of the
specified columns and the input parameters in the SQL statement.

TDDL-4517 ERR_MODIFY_SYSTEM_TABLE

The error code is returned because systemtables cannot be modified.

Example:

ERR-CODE : [TDDL—4517][ERRﬁMODIFYisYSTEMiTABLE] Table '*****' ig5 PolarDB-XSYSTEM
TABLE, which is forbidden to be modified.

PolarDB-X 1.0 provides built-in systemtables. If you execute an SQL statement to modify the data of a
systemtable, the TDDL-4517 error is returned.

The following systemtables cannot be modified: sequence , sequence opt , txc undo log ,and
_ DRDS_SYSTEM LOCK _ .Make sure that the names of systemtables are not used when you create
tables that store business data or when you design a database.

TDDL-4518 ERR_VALIDATE
The error code is returned because the metadata verification has f ailed.

Example:

ERR-CODE: [TDDL-4518] [ERR VALIDATE] Object 'optestl' not found

When a PolarDB-X 1.0 compute node receives an SQL statement, the compute node verifies the SQL
statement based on existing metadata. This error code indicates that the table or column information
that you want to query does not meet the requirements of metadata.

TDDL-4600 ERR_FUNCTION
The error code is returned because an error has occurred for a function call.

Example:

ERR-CODE: [TDDL-4600] [ERR _FUNCTION] function compute error by Incorrect

parameter count in the call to native function '**x*x!

This error code indicates that the SQL statement uses invalid syntax or contains invalid parameters to
call the function. We recommend that you check whether the number and data type of parameters
that you use to call the function in the SQL statement are valid.

TDDL-4600 ERR_FUNCTION

241 > Document Version: 20220601

Cloud Native Distributed Database

SQL Reference:- Error codes
PolarDB-X

The error code is returned because an error has occurred for a function call.

Example:

ERR-CODE: [TDDL-4600] [ERR FUNCTION] function compute error by Incorrect

parameter count in the call to native function '**x*x!

This error code indicates that the SQL statement uses invalid syntax or contains invalid parameters to
call the function. We recommend that you check whether the number and data type of parameters
that you use to call the function in the SQL statement are valid.

TDDL-4601 ERR_EXECUTOR

The error code is returned because an error has occurred when the system executes the SQL statement.

Example:

ERR-CODE: [TDDL-4601] [ERR EXECUTOR] only one column is supported in
distinct aggregate

This error code is returned if an unexpected error occurs when PolarDB-X 1.0 executes an SQL
statement. In most cases, the error occurs because the status of a backend ApsaraDB RDS for MySQL
instance is abnormal. We recommend that you check the status of all backend ApsaraDB RDS for MySQL
instances. If the error persists after you resolve the faults in the backend ApsaraDB RDS for MySQL
instances, submit a ticket.

TDDL-4602 ERR_CONVERTOR

The error code is returned because the system has failed to convert a data type.

Example:

ERR-CODE: [TDDL-4602] [ERR CONVERTOR] convertor error by Unsupported convert:

[*****]

This error code indicates that the data type cannot be converted when PolarDB-X 1.0 executes the SQL
statement. Check whether the data that is used in the SQL statement requires implicit data type
conversion. We recommend that you specify data of the same type for comparison and computing.

TDDL-4603 ERR_ACCROSS_DB_TRANSACTION

The error code is returned because a cross-database transaction has failed.
Example:
ERR-CODE: [TDDL-4603] [ERR ACCROSS DB TRANSACTION] Transaction accross db is

not supported in current transaction policy, transaction node is: {0}, but

this sgl execute on: *****x,

PolarDB-X 1.0 supports only single-database transactions. All SQL statements for single-database
transactions must be forwarded to the same ApsaraDB RDS for MySQL database shard for execution
based on the specified forwarding rules. Otherwise, the TDDL-4603 error is returned.

TDDL-4604 ERR_CONCURRENT_TRANSACTION

> Document Version: 20220601 242

https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:-Error codes
PolarDB-X

The error code is returned because a nested transaction has failed.

Example:

ERR-CODE: [TDDL-4604] [ERR CONCURRENT TRANSACTION] Concurrent query is not

supported on transaction group, transaction group is: {0}.

PolarDB-X 1.0 does not support nested transactions. If you attempt to start more than two
transactions at the same time over the same database connection, the TDDL-4604 error is returned.

We recommend that you do not use nested transactions when you develop applications. You can
abstract transactions into a transaction framework at the application layer. This way, no nested
transactions are generated.

TDDL-4606 ERR_QUERY_C

The error code is returned because the execution of an SQL statement is canceled.

Example:

ERR-CODE: [TDDL-4606] [ERR QUERY CANCLED] Getting connection is not allowed

when query has been cancled, group is *****

Whenthe k1L statement is executed to cancelthe execution of an SQL statement, PolarDB-X 1.0

returns the TDDL-4606 error for the SQL statement. If this error frequently occurs, check whether the
KILL statement is executed on a client or a program.

TDDL-4607 ERR_INSERT_WHEN_UPDATE

The error code is returned because an error has occurred when PolarDB-X 1.0 executes the UPDATE
statement by executing the DELETE and INSERT Statements.

Example:

ERR-CODE: [TDDL-4607] [ERR INSERT WHEN UPDATE] Insert new values error,

table is: *****, old Values: ***** new Values: ****x*

Afterthe shard key update feature is enabled, PolarDB-X 1.0 can replace the uppaTe statement that
updates the shard key withthe DELETE and INSERT Statements. If the execution fails, the TDDL-4607
error is returned.

In most cases, this error occurs because a fault occurs in the backend ApsaraDB RDS for MySQL
instances. We recommend that you check the status of all backend ApsaraDB RDS for MySQL instances.
If the error persists after you resolve the faults in the backend ApsaraDB RDS for MySQL instances,
Submit a ticket.

TDDL-4610 ERR_CONNECTION_CLOSED

The error code is returned because a connection is closed.

Example:

ERR-CODE: [TDDL-4610] [ERR CONNECTION CLOSED] connection has been closed

243 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:- Error codes
PolarDB-X

After an SQL statement in a transaction fails to be executed orthe x1rnL statement is executed to
cancel the execution of the SQL statement in the transaction, PolarDB-X 1.0 returns the TDDL-4610
error if you execute other SQL statements over the same database connection.

We recommend that you close the connection that executes the SQL statement and establish a new
database connection.

TDDL-1305 ERR_UNKNOWN_SAVEPOINT
The error code is returned because the specified savepoint does not exist.

Example:

ERR-CODE: [TDDL-1305] [ERR UNKNOWN SAVEPOINT] SAVEPOINT ***** does not exist

When you execute the ROLLBACK TO SAVEPOINT OF RELEASE SAVEPOINT statement in PolarDB-X 1.0,
the TDDL-1305 error is returned if the specified savepoint does not exist.

We recommend that you check whether the savepoint that you specified inthe saveroINT

statement is valid.

TDDL-1094 ERR_UNKNOWN_THREAD_ID

The error code is returned because the session ID that is specified inthe xI1LL statement does not
exist.

Example:

ERR-CODE: [TDDL-1094] [ERR UNKNOWN THREAD ID] Unknown thread id: *****

Whenyou executethe &1 statement in PolarDB-X 1.0 to terminate an SQL statement that is being
executed, the TDDL-1094 error is returned if the specified session ID does not exist or the SQL
statement is already terminated.

We recommend that you execute the sHow ProcEssLIST statement to query the session ID that

corresponds to the SQL statement that you want to terminate and specify the queried session ID in the
KILL Statement.

TDDL-4612 ERR_CHECK_SQL_PRIV

The error code is returned because an SQL statement cannot be executed due to insufficient
permissions.

Example:

ERR-CODE: [TDDL-4612] [ERR CHECK SQL PRIV] check user ***** on db ***** sql

privileges failed.

PolarDB-X 1.0 provides a systemthat allows you to grant permissions to accounts. This systemis similar
to the account and permission system in MySQL. Only the accounts that are granted the required
permissions can be used to execute the SQL statement. If the account that you use is not granted the
required permissions, PolarDB-X 1.0 returns the TDDL-4612 error.

> Document Version: 20220601 244

Cloud Native Distributed Database

SQL Reference:-Error codes
PolarDB-X

We recommend that you check the permissions that the account is granted on the PolarDB-X 1.0
database. If the account is not granted the required permissions, grant the permissions in the PolarDB-X
1.0 console.

TDDL-4613 ERR_INSERT_SELECT

The error code is returned because an error has occurred when PolarDB-X 1.0 executesthe INSERT ...
SELECT Statement.

Example:

ERR-CODE: [TDDL-4613] [ERR INSERT SELECT] insert error, table is: ***xx,

values: ***x**

PolarDB-X 1.0 allows you to split the 1nserT ... seLEcT statement that is executed across

databases into the SELECT and INSERT statements and batch execute the statements. If the execution
fails, the TDDL-4613 error is returned.

In most cases, this error occurs because a fault occurs in the backend ApsaraDB RDS for MySQL
instances. We recommend that you check the status of all backend ApsaraDB RDS for MySQL instances.
If the error persists after you resolve the faults in the backend ApsaraDB RDS for MySQL instances,
Submit a ticket.

TDDL-4614 ERR_EXECUTE_ON_MYSQL

The error code is returned because an error has occurred when PolarDB-X 1.0 executes the SQL
statement on a backend ApsaraDB RDS for MySQL instance.

Example:

ERR-CODE: [TDDL-4614] [ERR EXECUTE ON MYSQL] Error occurs when execute on GROUP '*****!': Dup
licate entry '*****!' for key 'PRIMARY'

This error code is returned if an error occurs when PolarDB-X 1.0 executes an SQL statement on a
backend ApsaraDB RDS for MySQL instance. The end part of the returned response contains the error
message that is returned fromthe backend ApsarabDB RDS for MySQL instance. The following messages
are sample error messages that are returned from a backend ApsarabDB RDS for MySQL instance:

® Duplicate entry '*****' for key 'PRIMARY' indicatesthat a primary key conflict has occurred
when the systemwrites data to the data table in the ApsaraDB RDS for MySQL instance.

® The table '*****' jgs full indicatesthat the storage of the temporary table that is used by
ApsaraDB RDS for MySQL is full. You must resize the temporary table or optimize the SQL statement.

® Deadlock found when trying to get lock; indicatesthat a dead lock has occurred inthe
ApsaraDB RDS for MySQL instance. In most cases, dead locks are caused because transaction conflicts
occur when the systemwrites data.

We recommend that you troubleshoot the error based on the error messages that are returned from
the ApsaraDB RDS for MySQL instance. For more information about the error messages that are related
to SQL statements, see MySQL 5.6 documentation.

If this error persists after you troubleshoot the issues in your application or backend ApsaraDB RDS for
MySQL instance, Submit a ticket.

TDDL-4615 ERR_CROSS_JOIN_SIZE_PROTECTION

245 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://dev.mysql.com/doc/refman/5.6/en/error-handling.html
https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:- Error codes
PolarDB-X

The error code is returned because the number of rows that are returned for a distributed JOIN query
exceeds the upper limit.

Example:

ERR-CODE: [TDDL-4615] [ERR CROSS JOIN SIZE PROTECTION] across join table size protection, ch

eck your sgl or enlarge the limination size .

When PolarDB-X 1.0 runs a distributed JOIN query in nested loops, a large number of memory resources

are used if large amounts of data is returned fromthe right table. This affects the stability of PolarDB-
X 1.0 in a negative manner. In PolarDB-X 1.0, the maximum number of rows that can be returned froma
right table is 5,000. If this limit is exceeded, PolarDB-X 1.0 returns the TDDL-4615 error.

We recommend that you optimize the SQL statement to prevent large amounts of data from being
returned fromthe right table, or use a better algorithm such as the sort-merge join algorithmto
performdistributed JOIN operations in PolarDB-X 1.0.

If you need to change this limit for a specific SQL statement, we recommend that you follow these
rules:

e We recommend that you do not change this limit if the size of a single record exceeds 100 KB.

e You can change this limit if the size of a single record is smaller than or equal to 100 KB. We
recommend that you do not specify a large value to avoid memory exhaustion.

e [f the size of a single record is 100 KB, 500 MB (100 KB x 5,000) of memory resources are required to
perform a distributed JOIN query. If this SQL statement is executed over multiple connections, memory
resources are prone to be exhausted. For example, if this SQL statement is executed over five
connections at the same time, 2.5 GB (500 MB x 5) of memory resources are required.

e To change this limit for an SQL statement, add a hint before the SQL statement. For example, specify
/*!TDDL:MAX ROW RETURN FROM RIGHT INDEX NESTED LOOP=5100*/SQL to change the limit to 5,100.

e To globally change this limit, Submit a ticket.

TDDL-4616 ERR_UNKNOWN_DATABASE
The error code is returned because the specified database name is invalid.

Example:

ERR-CODE: [TDDL-4616] [ERR UNKNOWN DATABASE] Unknown database '****x*!

PolarDB-X 1.0 allows you to specify a database name in a DDL statement. If the database name that
you specify is not the same as the database name provided by PolarDB-X 1.0, the TDDL-4616 error is
returned.

We recommend that you change the database name in the DDL statement to ensure that the database
name that you specify is the same as the database name provided by PolarDB-X 1.0.

TDDL-4617 ERR_SUBQUERY_LIMIT_PROTECTION

The error code is returned because the number of returned rows for a subquery exceeds the upper limit.

Example:

ERR-CODE: [TDDL-4617] [ERR SUBQUERY LIMIT PROTECTION] The number of rows returned by the sub

query exceeds the maximum number of 20000.

> Document Version: 20220601 246

https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:-Error codes
PolarDB-X

When PolarDB-X 1.0 executes an SQL statement that contains a subquery, a large number of memory
resources are used if large amounts of data is returned for the subquery. This affects the stability of
PolarDB-X 1.0 in a negative manner. In PolarDB-X 1.0, the maximum number of rows that can be returned
for a subquery is 20,000. If this limit is exceeded, PolarDB-X 1.0 returns the TDDL-4617 error.

We recommend that you optimize the subquery in the SQL statement to prevent large amounts of data
from being returned. You can also rewrite the subquery into a JOIN query so that PolarDB-X 1.0 uses a
more suitable algorithm such as the sort-merge join algorithmto performJOIN operations.

If you need to change this limit, Submit a ticket.

TDDL-4800 ERR_SET_TXCID
The error code is returned because the system has failed to execute the seT Txc 1D statement.

Example:

ERR-CODE: [TDDL-4800] [ERR SET TXCID] set txc_id failed: *****

TDDL-4801 ERR_TXCID_NULL

This error code is returned because NULL is returned whenthe seLECT 1AST TxC ID sStatement is
executed.

Example:

ERR-CODE: [TDDL-4801] [ERR TXCID NULL] txc xid is null: ***x**

TDDL-4802 ERR_SELECT_LAST_TXCID

The error code is returned because the system has failed to execute the SELECT LAST TxC ID
statement.

Example:

ERR-CODE: [TDDL-4802] [ERR SELECT LAST TXCID] select last txc xid failed: **x*

TDDL-4994 ERR_FLOW_CONTROL
The error code is returned because request throttling is triggered.

Example:

ERR-CODE: [TDDL-4994] [ERR FLOW CONTROL] [*****] flow control by *****

This error code indicates that the number of SQL requests processed by PolarDB-X 1.0 has reached the
upper limit and the current request is rejected.

We recommend that you check whether the peak value of the number of SQL requests is as expected. If
this error persists when the number of SQL requests decreases to be lower than the upper limit, Submit a
ticket.

TDDL-4998 ERR_NOT_SUPPORT

The error code is returned because the feature is not supported.

247 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:- Error codes
PolarDB-X

Example:

ERR-CODE: [TDDL-4998] [ERR NOT SUPPORT] ***** not support yet!

This error code indicates that the SQL syntax or the feature that you use is not supported by PolarDB-X
1.0.

If the SQL syntax or the feature is required by your business, Submit a ticket.

TDDL-5001 ERR_TRANS

The error code is returned because a common transaction error has occurred.

Example:

ERR-CODE: [TDDL-5001] [ERR TRANS] Too many lines updated in statement.

Resolve the error based on the error message. Too many lines updated in statement indicates that
the number of rows that you want to update by executing the UPDATE statement exceeds the upper
limit of 1,000. We recommend that you checkthe wuERE clause inthe UPDATE statement. If you need
to update a large amount of data in a transaction, you can use the /*TDDL:UNDO L.OG LIMIT=
{number}*/ hint that is provided by PolarDB-X 1.0 to change the upper limit.

Deferred execution is only supported in Flexible or XA Transaction indicatesthat the deferred
execution feature is available only for flexible or XA transactions. Before you use /*TDDL:DEFER*/ tO
enable deferred execution, execute the SET drds transaction policy = *** statement to change
the transaction policy of your PolarDB-X 1.0 instance.

For information about other error messages, see Submit a ticket.

TDDL-5002 ERR_TRANS_UNSUPPORTED

The error code is returned because the syntax or the feature used in the transaction is not supported.

Example:

ERR-CODE: [TDDL-5002] [ERR TRANS UNSUPPORTED] Table without primary keys is not
supported.

This error code indicates that this feature is not supported for PolarDB-X 1.0 transactions. If you need
to use this feature, Submit a ticket.

TDDL-5003 ERR_TRANS_LOG

The error code is returned because transaction logs cannot be accessed.

Example:

ERR-CODE: [TDDL-5003] [ERR TRANS LOG] Failed to update transaction state: *****
When PolarDB-X 1.0 performs a distributed transaction, PolarDB-X 1.0 accesses the transaction logs in

the backend ApsaraDB RDS for MySQL instances. T his helps ensure the atomicity of the distributed
transaction. If PolarDB-X 1.0 fails to read or write transaction logs, the TDDL-5003 error is returned.

> Document Version: 20220601 248

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database

SQL Reference:-Error codes
PolarDB-X

In most cases, this error occurs because a fault occurs in the backend ApsarabDB RDS for MySQL
instances. We recommend that you check the status of and access workloads on the backend ApsaraDB
RDS for MySQL instances of your PolarDB-X 1.0 instance. If this error persists after you resolve the fault
in the backend ApsaraDB RDS for MySQL instances, Submit a ticket.

TDDL-5004 ERR_TRANS_NOT_FOUND

The error code is returned because the specified transaction ID does not exist.

Example:

ERR-CODE: [TDDL-5008] [ERR TRANS TERMINATED] Current transaction was killed

or timeout. You may need to set a longer timeout value.

This error code indicates that the specified transaction is terminated by the KILL statement or the
execution has timed out. The timeout period of a transaction is specified by the
drds_transaction_timeout parameter.

If this erroris returned due to a transaction timeout, we recommend that you execute the SET
drds_transaction_timeout = *** statement to change the timeout period for the transaction. Specify
the value of the drds_transaction_timeout parameter in milliseconds.

TDDL-5006 ERR_TRANS_COMMIT

The error code is returned because PolarDB-X 1.0 has failed to commit a transaction.

Example:

ERR-CODE: [TDDL-5006] [ERR TRANS COMMIT] Failed to commit primary group *****:
*****, TRANSilD = kkkk*k

If an error occurs when PolarDB-X 1.0 commits a transaction, the transaction is automatically rolled
back. TRANS_ID indicates the ID of the transaction.

In most cases, this error occurs because a fault occurs in the backend ApsaraDB RDS for MySQL
instances. We recommend that you check the status of and access workloads on the backend ApsaraDB
RDS for MySQL instances of your PolarDB-X 1.0 instance. If this error persists after you resolve the fault
in the backend ApsaraDB RDS for MySQL instances, Submit a ticket.

TDDL-5007 ERR_TRANS_PARAM
The error code is returned because the specified transaction parameter is invalid.

Example:

ERR-CODE: [TDDL-5007] [ERR_TRANS PARAM] Illegal timeout value: *****

This error code indicates that you specified an invalid value for the transaction parameter in the
statement. Forexample, inthe SET drds transaction timeout = **x statement,the
drds_transaction_timeout parameter is set to a negative number.

TDDL-5008 ERR_TRANS_TERMINATED

The error code is returned because a transaction is terminated by the KILL statement or due to a
timeout.

249 > Document Version: 20220601

https://workorder-intl.console.aliyun.com/
https://workorder-intl.console.aliyun.com/

Cloud Native Distributed Database SQL Reference- Error codes
PolarDB-X

Example:

ERR-CODE: [TDDL-5008] [ERR TRANS TERMINATED] Current transaction was killed

or timeout. You may need to set a longer timeout value.

This error code indicates that the specified transaction is terminated by the KILL statement or the
execution has timed out. The timeout period of a transaction is specified by the
drds transaction timeout parameter.

If this erroris returned due to a transaction timeout, we recommend that you execute the ser

drds transaction timeout = *** statement to change the timeout period forthe transaction.
Specify the value of the drds_transaction_timeout parameter in milliseconds.

> Document Version: 20220601 250

	1.SQL limits
	2.Instructions for sharding function
	2.1. Overview
	2.2. HASH
	2.3. STR_HASH
	2.4. UNI_HASH
	2.5. RANGE_HASH
	2.6. RIGHT_SHIFT
	2.7. MM
	2.8. DD
	2.9. WEEK
	2.10. MMDD
	2.11. YYYYDD
	2.12. YYYYMM
	2.13. YYYYWEEK

	3.Manage DDL tasks
	3.1. Overview
	3.2. Job management statements
	3.3. Control parameters for DDL execution engine
	3.4. Considerations and limits
	3.5. Best practices

	4.DDL
	4.1. CREATE TABLE
	4.2. DROP TABLE
	4.3. ALTER TABLE
	4.4. TRUNCATE TABLE
	4.5. RENAME TABLE
	4.6. CREATE INDEX
	4.7. DROP INDEX
	4.8. CREATE VIEW
	4.9. DROP VIEW
	4.10. DDL FAQ

	5.DML
	5.1. SELECT
	5.2. Subquery
	5.3. INSERT
	5.4. REPLACE
	5.5. UPDATE
	5.6. DELETE
	5.7. Limits of global secondary indexes on DML

	6.SHOW
	6.1. SHOW HELP
	6.2. Rule and topology query statements
	6.3. Slow SQL queries
	6.4. Statistics queries
	6.5. SHOW PROCESSLIST
	6.6. SHOW GLOBAL INDEX
	6.7. SHOW INDEX
	6.8. SHOW METADATA LOCK

	7.DAL
	7.1. Manage accounts and permissions
	7.2. CHECK TABLE
	7.3. CHECK GLOBAL INDEX
	7.4. KILL
	7.5. USE

	8.Sequence
	8.1. Overview
	8.2. Limits
	8.3. Explicit sequences
	8.4. Implicit sequences

	9.Outline
	9.1. Usage notes
	9.2. Error codes

	10.Prepare SQL
	10.1. Introduction to the prepared statement protocol

	11.Hint
	11.1. Overview
	11.2. Read/write splitting
	11.3. Specify a custom time-out period for an SQL statement
	11.4. Specify database shards where an SQL statement is to be executed
	11.5. Scan all or some of the table shards in all or some of the database shards
	11.6. Automatic protection against high-risk SQL statements
	11.7. INDEX HINT

	12.Functions
	12.1. Functions
	12.2. Date and time functions
	12.3. String functions
	12.4. Conversion functions
	12.5. Aggregate functions
	12.6. Mathematical functions
	12.7. Comparison functions
	12.8. Bit functions
	12.9. Flow control functions
	12.10. Information functions
	12.11. Encryption functions and compression functions
	12.12. Window functions
	12.13. Other functions
	12.14. GROUPING SETS, ROLLUP, and CUBE extensions

	13.Operator
	13.1. Logical operators
	13.2. Arithmetic operators
	13.3. Comparison operators
	13.4. Bitwise operators
	13.5. Assignment operators
	13.6. Operator precedence

	14.Data types
	14.1. Data types
	14.2. Numeric data types
	14.3. String data types
	14.4. Collation types
	14.5. Date and time data types

	15.Practical SQL statements
	15.1. TRACE
	15.2. Cross-schema queries
	15.3. Multiple statements
	15.4. EXPLAIN and execution plans

	16.Error codes

