
Alibaba Cloud

物联网边缘计算
Best Practices

Document Version: 20211228

Alibaba Cloud

物联网边缘计算
Best Practices

Document Version: 20211228

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

物联网边缘计算 Best Pract ices·Legal disclaimer

> Document Version: 20211228 I

Document conventions
St yle Descript ion Example

 Danger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:

Resetting will result in the loss of user
configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ings > Net work > Set net work
t ype .

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

物联网边缘计算 Best Pract ices·Document convent io
ns

> Document Version: 20211228 I

Table of Contents
1.Connect a Modbus slave device to an edge instance over Modbus TCP …

2.Develop a driver with the Connector architecture

3.Connect an OPC UA sub-device to a gateway

05

14

23

物联网边缘计算 Best Pract ices·Table of Cont ent s

> Document Version: 20211228 I

Modbus is a communication protocol based on the master/slave model. The master device requests
data from slave devices. The Modbus driver of a gateway serves as the master device, and devices that
connect to the gateway through the Modbus driver serve as slave devices. After the master device
sends a query message to a slave device, the slave device sends a response message.

Preparations
1. A Ubuntu 16.04 x86_64 system is prepared to run a gateway.

2. A Windows host is prepared to run a Modbus slave simulator.

3. Download a Modbus slave simulator from the URL of Modbus tools and install the simulator on the
Windows host.

4. Check the firewall sett ings of the Windows host and make sure that access to the Modbus slave
device is allows through port 502. If the access is denied, disable the firewall or change firewall
sett ings to allow access to the port.

5. Create an edge instance and enable a gateway. For more information, see Build an environment.

Step 1: Assign a Modbus driver to the edge instance
1. Log on to the Link IoT Edge console.

2. In the left-side navigation pane, click Edge Inst ances , and click View next to the required edge
instance.

3. Assign the required Modbus driver to the edge instance based on the CPU of the related gateway.
For more information, see Modbus drivers.

4. On the Instance Details page of the edge instance, click the name of the assigned driver. Then, click
Driver Conf igurat ions in the Devices sect ion.

5. In the Driver Configurations panel, click Add Channel. In the Add Channel panel, set the required
parameters to add a channel to the Modbus driver.

For more information about the parameters, see Modbus driver configurations.

1.Connect a Modbus slave device to
an edge instance over Modbus TCP

物联网边缘计算
Best Pract ices·Connect a Modbus sl
ave device t o an edge inst ance ove

r Modbus TCP

> Document Version: 20211228 5

https://www.modbustools.com/download.html
https://www.alibabacloud.com/help/doc-detail/102728.htm#concept-b45-2nn-lgb
https://iot.console.aliyun.com/le/instance/list
https://www.alibabacloud.com/help/doc-detail/88580.htm#task-1495784/section-5e1-v82-mb3
https://www.alibabacloud.com/help/doc-detail/88580.htm#task-1495784/section-vi5-uar-7mu

Step 2: Assign a sub-device to the Modbus driver
1. In the Devices sect ion, click Assign Sub-device. In the Assign Sub-device panel, assign a sub-

device to the edge instance.

You can select an exist ing Modbus device or create a sub-device. To create a sub-device, proceed
with the following steps.

Not e If you want to select an exist ing Modbus device, the product to which the device
belongs must be connected to a gateway by using the Modbus protocol. For more
information, see Create a product.

2. In the Assign Sub-device panel, click Add Sub-device.

Best Pract ices·Connect a Modbus sl
ave device t o an edge inst ance ove
r Modbus TCP

物联网边缘计算

6 > Document Version: 20211228

https://www.alibabacloud.com/help/doc-detail/73728.htm#task-lxd-pnl-vdb

3. In the Add Device dialog box, click Creat e Product and create a product to which the new
Modbus device belongs.

4. In the Creat e Product dialog box, set the parameters as required and click OK.

Parameter descript ion

Parameter Description

物联网边缘计算
Best Pract ices·Connect a Modbus sl
ave device t o an edge inst ance ove

r Modbus TCP

> Document Version: 20211228 7

Product Name

The name of the product. The product name must be unique within the
current Alibaba Cloud account. The name must be 4 to 30 characters in
length and can contain letters, digits, underscores (_), hyphens (-), at signs
(@), and parentheses ().

Gateway Connection
Protocol

The communications protocol. You must set this parameter to Modbus.

Authentication Mode
The authentication method. Select an authentication method that is suitable
for your devices. For more information, see Authenticate devices.

Product Description The description of the product. This parameter is optional.

Parameter Description

5. In the Add Device dialog box, the new product is automatically specified in the drop-down list of
the Product sect ion. Click Configure to add a custom feature to the product. For more information,
see Add a TSL feature.

Best Pract ices·Connect a Modbus sl
ave device t o an edge inst ance ove
r Modbus TCP

物联网边缘计算

8 > Document Version: 20211228

https://www.alibabacloud.com/help/doc-detail/42649.htm#concept-fqy-pjl-vdb
https://www.alibabacloud.com/help/doc-detail/88241.htm#task-qhm-d3j-w2b

6. In the Add Self -def ined Feat ure dialog box, click Propert ies and set the required parameters.
Then, click Add Ext ended Inf ormat ion .

In the Add Extended Information dialog box, set the required parameters to specify the data
points of the Modbus sub-device.

物联网边缘计算
Best Pract ices·Connect a Modbus sl
ave device t o an edge inst ance ove

r Modbus TCP

> Document Version: 20211228 9

Set the Register Address parameter based on the data points of the simulated Modbus slave
device, as shown in the following figure. In this example, three attributes named aaa, bbb, and ccc
are created. These attributes correspond to the data points 0, 1, and 2 of the Modbus slave
device.

Best Pract ices·Connect a Modbus sl
ave device t o an edge inst ance ove
r Modbus TCP

物联网边缘计算

10 > Document Version: 20211228

7. Go to the Add Device dialog of the Inst ance Det ails page in the Link IoT Edge console. Then,
add a Modbus device.

物联网边缘计算
Best Pract ices·Connect a Modbus sl
ave device t o an edge inst ance ove

r Modbus TCP

> Document Version: 20211228 11

https://iot.console.aliyun.com/le/instance/list

Step 3: Configure and deploy the edge instance
1. Assign the new Modbus device to the edge instance.

2. After the device is assigned to the edge instance, click Device Conf igurat ions in the Act ions
column of the device. Then, use a channel to associate the device with the Modbus driver.

Parameters

Parameter Description

Associated Channel
Select the channel that you have added in the Step 1: Assign a Modbus driver
to the edge instance section.

Best Pract ices·Connect a Modbus sl
ave device t o an edge inst ance ove
r Modbus TCP

物联网边缘计算

12 > Document Version: 20211228

Device Station Number
To view the value, check the ID of the Modbus slave device in Step 6 of the
Step 2: Assign a sub-device to the Modbus driver section. In this example,
the value of this parameter is 1.

Parameter Description

3. On the Inst ance Det ails page, click Deploy in the upper-right corner of the page to deploy the
edge instance.

4. Log on to the IoT Platform console. In the left-side navigation pane, choose Devices > Devices.
On the Devices page, click View next to the required Modbus product.

On the Device Det ails page, choose T SL Dat a > St at us . On the Status tab, view the propert ies
of the Modbus product.

物联网边缘计算
Best Pract ices·Connect a Modbus sl
ave device t o an edge inst ance ove

r Modbus TCP

> Document Version: 20211228 13

https://www.alibabacloud.com/help/doc-detail/101055.htm#concept-z5s-gkc-ggb/section-vp0-c2k-2sy
http://iot.console.aliyun.com/

This topic describes how to develop a driver with the Connector architecture, which is clear and flexible.
For your convenience, we recommend that you use the Connector architecture to develop drivers.

Currently, the Connector architecture is only applicable to device SDKs developed in Node.js and
Python.

Overview
The following figure shows the Connector architecture.

A driver with the Connector architecture consists of the following classes:

ThingAccessClient

The ThingAccessClient class is encapsulated in a device SDK and provides mult iple methods for sub-
devices to send data to and receive data from Link IoT Edge. The ThingAccessClient class can call
callback functions of the ThingAccessClientCallbacks class. When receiving a request with the pointer
of a callback function specified, the ThingAccessClient class obtains required data from Link IoT Edge
and then calls the callback function. In the Connector architecture, callback functions of the
ThingAccessClientCallbacks class are implemented in the Connector class.

Connector

The Connector class is the core of the Connector architecture. It provides the connect method for
connecting sub-devices to Link IoT Edge and the disconnect method for disconnecting sub-devices
from Link IoT Edge. In addit ion, the Connector class supports interfaces encapsulated by the Thing
class for sub-devices to connect to Link IoT Edge. The Connector class implements callback functions
of the ThingAccessClientCallbacks class. When construct ing a ThingAccessClient object, the
Connector class specifies the pointer of a callback function and transmits the pointer to the
ThingAccessClient class. When receiving required data from Link IoT Edge, the ThingAccessClient class
calls the callback function.

Thing

2.Develop a driver with the
Connector architecture

Best Pract ices·Develop a driver wit
h t he Connect or archit ect ure

物联网边缘计算

14 > Document Version: 20211228

The Thing class directly interacts with sub-devices. It encapsulates interfaces of physical sub-devices
for the Connector class to call, and provides object-oriented API operations for sub-devices to call.
When the driver connects to a specific sub-device, the Thing class refers to the abstract class of the
sub-device, for example, the Light class of a light.

Entry

The Entry class is the main entry point of a driver. It obtains the driver configuration, init ializes the
Thing and Connector classes, and then calls the connect method to connect a sub-device to Link IoT
Edge. The Entry class can also call the disconnect method to disconnect a sub-device from Link IoT
Edge.

The Connector class connects the abstract class of a sub-device and that of Link IoT Edge by
combining the classes, hence the name. In this example, the abstract class of a sub-device and that of
Link IoT Edge are Thing and ThingAccessClient, respectively.

The following figure shows a Unified Modeling Language (UML) class diagram.

Procedure
This sect ion describes how to use a Node.js SDK to develop a driver with the Connector architecture. For
more information about how to use a Python SDK to develop a driver, see Link IoT Edge Thing Access
SDK for Python.

Light

To develop a driver for a simulated light, follow these steps:

1. Define an abstract class for the simulated light that can be turned on or off by changing the value
of the isOn property to true or false.

The sample code is as follows:

物联网边缘计算 Best Pract ices·Develop a driver wit
h t he Connect or archit ect ure

> Document Version: 20211228 15

https://github.com/aliyun/linkedge-thing-access-sdk-python/tree/master

/**
 * Define an abstract class for the simulated light that can be turned on or off by cha
nging the value of the
 * <code>isOn</code> property.
 */
class Light {
 constructor() {
 this._isOn = true;
 }
 get isOn() {
 return this._isOn;
 }
 set isOn(value) {
 return this._isOn = value;
 }

2. Define the Connector class. The Connector class provides the following features:

Receives the configuration and an abstract object of the simulated light and constructs a
ThingAccessClient object for interact ing with Link IoT Edge.

Implements three callback functions of the ThingAccessClientCallbacks class and uses the
callback functions to call interfaces encapsulated by the Light class.

Provides the connect and disconnect methods. The connect method can connect the simulated
light to Link IoT Edge and the disconnect method can disconnect the simulated light from Link
IoT Edge.

The sample code is as follows:

/**
 * Construct a class to combine ThingAccessClient and the abstract class of the simulat
ed light that connects
 * to Link IoT Edge.
 */
class Connector {
 constructor(config, light) {
 this.config = config;
 this.light = light;
 this._client = new ThingAccessClient(config, {
 setProperties: this._setProperties.bind(this),
 getProperties: this._getProperties.bind(this),
 callService: this._callService.bind(this),
 });
 }
 /**
 * Connect to Link IoT Edge and publish properties to it.
 */
 connect() {
 registerAndOnlineWithBackOffRetry(this._client, 1)
 .then(() => {
 return new Promise(() => {
 // Publish properties to Link IoT Edge.
 const properties = { 'LightSwitch': this.light.isOn ? 1 : 0 };
 this._client.reportProperties(properties);
 });
 })

Best Pract ices·Develop a driver wit
h t he Connect or archit ect ure

物联网边缘计算

16 > Document Version: 20211228

 })
 .catch(err => {
 console.log(err);
 return this._client.cleanup();
 })
 .catch(err => {
 console.log(err);
 });
 }
 /**
 * Disconnect from Link IoT Edge and stop publishing properties to it.
 */
 disconnect() {
 this._client.cleanup()
 .catch(err => {
 console.log(err);
 });
 }
 _setProperties(properties) {
 console.log('Set properties %s to thing %s-%s', JSON.stringify(properties),
 this.config.productKey, this.config.deviceName);
 if ('LightSwitch' in properties) {
 var value = properties['LightSwitch'];
 var isOn = value === 1;
 if (this.light.isOn !== isOn) {
 // Report property changes to Link IoT Edge.
 this.light.isOn = isOn;
 if (this._client) {
 properties = {'LightSwitch': value};
 console.log(`Report properties: ${JSON.stringify(properties)}`);
 this._client.reportProperties(properties);
 }
 }
 return {
 code: RESULT_SUCCESS,
 message: 'success',
 };
 }
 return {
 code: RESULT_FAILURE,
 message: 'The requested properties does not exist.',
 };
 }
 _getProperties(keys) {
 console.log('Get properties %s from thing %s-%s', JSON.stringify(keys),
 this.config.productKey, this.config.deviceName);
 if (keys.includes('LightSwitch')) {
 return {
 code: RESULT_SUCCESS,
 message: 'success',
 params: {
 'LightSwitch': this.light.isOn ? 1 : 0,
 }
 };
 }

物联网边缘计算 Best Pract ices·Develop a driver wit
h t he Connect or archit ect ure

> Document Version: 20211228 17

 }
 return {
 code: RESULT_FAILURE,
 message: 'The requested properties does not exist.',
 }
 }
 _callService(name, args) {
 console.log('Call service %s with %s on thing %s-%s', JSON.stringify(name),
 JSON.stringify(args), this.config.productKey, this.config.deviceName);
 return {
 code: RESULT_FAILURE,
 message: 'The requested service does not exist.',
 };
 }
}

3. Obtain the driver configuration and init ialize the Connector class.

Call the getConfig operation to obtain the driver configuration.

Call the getThingInfos operation to obtain the information about and configuration of the
simulated light.

Init ialize the Connector class.

Call the connect method to connect the simulated light to Link IoT Edge.

The sample code is as follows:

// Obtain the configuration that is automatically generated when the simulated light is
bound to this driver. getConfig()
 .then((config) => {
 // Obtain the simulated light information, for example, the product key and device
 // name of the simulated light, from config.
 const thingInfos = config.getThingInfos();
 thingInfos.forEach((thingInfo) => {
 const light = new Light();
 // The value format of the ThingInfo parameter is supported by config of Connecto
r. Pass the ThingInfo parameter directly.
 const connector = new Connector(thingInfo, light);
 connector.connect();
 });
 });

Light Sensor

To develop a driver for a simulated light sensor, follow these steps:

1. Define an abstract class for the simulated light sensor that automatically runs when a listener
listens to it and stops running when the listener is cleaned.

The sample code is as follows:

/**
 * Define an abstract class for the simulated light sensor that starts to publish illum
inance between 100
 * and 600 with 100 delta changes when a listener listens to it.
 */
class LightSensor {
 constructor() {

Best Pract ices·Develop a driver wit
h t he Connect or archit ect ure

物联网边缘计算

18 > Document Version: 20211228

 constructor() {
 this._illuminance = 200;
 this._delta = 100;
 }
 get illuminance() {
 return this._illuminance;
 }
 // Start to work.
 start() {
 if (this._clearInterval) {
 this._clearInterval();
 }
 console.log('Starting light sensor...');
 const timeout = setInterval(() => {
 // Update illuminance and delta.
 let delta = this._delta;
 let illuminance = this._illuminance;
 if (illuminance >= 600 || illuminance <= 100) {
 delta = -delta;
 }
 illuminance += delta;
 this._delta = delta;
 this._illuminance = illuminance;
 if (this._listener) {
 this._listener({
 properties: {
 illuminance,
 }
 });
 }
 }, 2000);
 this._clearInterval = () => {
 clearInterval(timeout);
 this._clearInterval = undefined;
 };
 return this._clearInterval;
 }
 stop() {
 console.log('Stopping light sensor ...');
 if (this._clearInterval) {
 this._clearInterval();
 }
 }
 listen(callback) {
 if (callback) {
 this._listener = callback;
 // Start to work when a listener listens to it.
 this.start();
 } else {
 this._listener = undefined;
 this.stop();
 }
 }
}

物联网边缘计算 Best Pract ices·Develop a driver wit
h t he Connect or archit ect ure

> Document Version: 20211228 19

2. Define the Connector class. The Connector class provides the following features:

Receives the configuration and an abstract object of the simulated light sensor and constructs a
ThingAccessClient object for interact ing with Link IoT Edge.

Implements three callback functions of the ThingAccessClientCallbacks class and uses the
callback functions to call interfaces encapsulated by the LightSensor class.

Provides the connect and disconnect methods. The connect method can connect the simulated
light sensor to Link IoT Edge and the disconnect method can disconnect the simulated light
sensor from Link IoT Edge.

The sample code is as follows:

/**
 * Construct a class to combine ThingAccessClient and the abstract class of the simulat
ed light sensor that connects to Link IoT Edge. */
class Connector {
 constructor(config, lightSensor) {
 this.config = config;
 this.lightSensor = lightSensor;
 this._client = new ThingAccessClient(config, {
 setProperties: this._setProperties.bind(this),
 getProperties: this._getProperties.bind(this),
 callService: this._callService.bind(this),
 });
 }
 /**
 * Connect to Link IoT Edge and publish properties to it. */
 connect() {
 registerAndOnlineWithBackOffRetry(this._client, 1)
 .then(() => {
 return new Promise(() => {
 // Run, listen to the simulated light sensor, and report property data change
s of the sensor to Link IoT Edge.
 this.lightSensor.listen((data) => {
 const properties = {'MeasuredIlluminance': data.properties.illuminance};
 console.log(`Report properties: ${JSON.stringify(properties)}`);
 this._client.reportProperties(properties);
 });
 });
 })
 .catch(err => {
 console.log(err);
 return this._client.cleanup();
 })
 .catch(err => {
 console.log(err);
 });
 }
 /**
 * Disconnect from Link IoT Edge.
 */
 disconnect() {
 // Clean the listener.
 this.lightSensor.listen(undefined);
 this._client.cleanup()

Best Pract ices·Develop a driver wit
h t he Connect or archit ect ure

物联网边缘计算

20 > Document Version: 20211228

 this._client.cleanup()
 .catch(err => {
 console.log(err);
 });
 }
 _setProperties(properties) {
 console.log('Set properties %s to thing %s-%s', JSON.stringify(properties),
 this.config.productKey, this.config.deviceName);
 return {
 code: RESULT_FAILURE,
 message: 'The property is read-only.',
 };
 }
 _getProperties(keys) {
 console.log('Get properties %s from thing %s-%s', JSON.stringify(keys),
 this.config.productKey, this.config.deviceName);
 if (keys.includes('MeasuredIlluminance')) {
 return {
 code: RESULT_SUCCESS,
 message: 'success',
 params: {
 'MeasuredIlluminance': this.lightSensor.illuminance,
 }
 };
 }
 return {
 code: RESULT_FAILURE,
 message: 'The requested properties does not exist.',
 }
 }
 _callService(name, args) {
 console.log('Call service %s with %s on thing %s-%s', JSON.stringify(name),
 JSON.stringify(args), this.config.productKey, this.config.deviceName);
 return {
 code: RESULT_FAILURE,
 message: 'The requested service does not exist.',
 };
 }
}

3. Obtain the driver configuration and init ialize the Connector class.

Call the getConfig operation to obtain the driver configuration.

Call the getThingInfos operation to obtain the information about and configuration of the
simulated light sensor.

Init ialize the Connector class.

Call the connect method to connect the simulated light sensor to Link IoT Edge.

The sample code is as follows:

物联网边缘计算 Best Pract ices·Develop a driver wit
h t he Connect or archit ect ure

> Document Version: 20211228 21

// Obtain the configuration that is automatically generated when the simulated light se
nsor is bound to this driver. getConfig()
 .then((config) => {
 // Obtain the information about the simulated light sensor, for example, the produc
t key and device // name of the simulated light sensor, from config. const thingI
nfos = config.getThingInfos();
 thingInfos.forEach((thingInfo) => {
 const lightSensor = new LightSensor();
 // The value format of the ThingInfo parameter is supported by config of Connecto
r. Pass the ThingInfo parameter directly. const connector = new Connector(thingInf
o, lightSensor);
 connector.connect();
 });
 });

Best Pract ices·Develop a driver wit
h t he Connect or archit ect ure

物联网边缘计算

22 > Document Version: 20211228

This topic describes how to connect an OPC Unified Architecture (OPC UA) sub-device to a gateway and
enable the sub-device to interact with IoT Platform.

Prerequisites
A Docker runtime environment is built for Link IoT Edge Pro.

An edge instance is created and the gateway assigned to the edge instance is brought online. For
more information, see Link IoT Edge Pro.

Step 1: Build an OPC UA Server
The following table describes the environment requirements for an OPC UA Server.

Item Version Installation command

Python 3.5.2 or later None

PIP 9.0.1 or later None

OPC UA 0.98.3 or later pip inst all opcua= = 0.98.3

To build an OPC UA Server to simulate an LED light that is named demo_led and has the temperature
property and high_temperature event, follow these steps:

1. Run the following command to download the package of the OPC UA Server:

wget http://iotedge-web.oss-cn-shanghai.aliyuncs.com/public/driverSample/opcua_simulati
on_server.tar.gz

2. Run the following commands to start the OPC UA Server:

tar -zxvf opcua_simulation_server.tar.gz
cd opcua_simulation_server && ./opcua_simulation_server.sh

Step 2: Install an OPC UA client
Before connecting the simulated LED light to a gateway through an OPC UA driver, you must configure
the simulated LED light. When configuring the simulated LED light, you must use an OPC UA client to
obtain the information about the simulated LED light from the OPC UA Server. The obtained information
is required when you create a product and configure the driver in the IoT Platform console.

In this example, UaExpert is used as an OPC UA client.

1. Download and install UaExpert.

2. Start UaExpert.

3.Connect an OPC UA sub-device to
a gateway

物联网边缘计算 Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

> Document Version: 20211228 23

https://www.alibabacloud.com/help/doc-detail/102728.htm#concept-b45-2nn-lgb
https://www.alibabacloud.com/help/doc-detail/104444.htm#concept-ehr-fjy-ngb
https://www.unified-automation.com/products/development-tools/uaexpert.html

3. Click + in the toolbar.

4. In the Add Server dialog box that appears, click the Advanced tab and set Endpoint Url to the
URL of the OPC UA Server. In the URL, specify the IP address and port number of the host where the
OPC UA Server resides in the Host IP address:Port number format.

Not e For example, if the default port number of the OPC UA Server is 4840 and the IP
address is 192.168.1.1, set the Endpoint Url parameter to the following value:

opc.tcp://192.168.1.1:4840

Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

物联网边缘计算

24 > Document Version: 20211228

5. Click OK. The information about the simulated LED light appears.

Step 3: Add the simulated LED light as an OPC UA sub-device

物联网边缘计算 Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

> Document Version: 20211228 25

1. Create an OPC UA product. For more information, see Create a product.

The following table describes some required parameters.

Parameter Description

Node Type Select Gat eway sub-device .

Gateway Connection
Protocol

Select OPC UA.

2. Add custom features for the product. For more information, see Add a TSL feature.

Add a property

a. Set required parameters for the property, as shown in the following figure.

Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

物联网边缘计算

26 > Document Version: 20211228

https://www.alibabacloud.com/help/doc-detail/73728.htm#task-lxd-pnl-vdb
https://www.alibabacloud.com/help/doc-detail/88241.htm#task-qhm-d3j-w2b

物联网边缘计算 Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

> Document Version: 20211228 27

b. Click Add Ext ended Inf ormat ion . In the Add Ext ended Inf ormat ion dialog box that
appears, set Node Name.

To obtain the value of Node Name, find the simulated LED light named demo_led in
UaExpert and click temperature under demo_led. Check the value of DisplayName in the
At t ribut es sect ion on the right and use it as the value of Node Name.

Add a service

Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

物联网边缘计算

28 > Document Version: 20211228

a. Set required parameters for the service, as shown in the following figure.

物联网边缘计算 Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

> Document Version: 20211228 29

b. Click Add Paramet er under Input Parameters to add a parameter for the service.

Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

物联网边缘计算

30 > Document Version: 20211228

c. Click Add Ext ended Inf ormat ion . In the Add Ext ended Inf ormat ion dialog box that
appears, set Node Name.

To obtain the value of Node Name, find the simulated LED light named demo_led in
UaExpert and click led_method under demo_led. Check the value of DisplayName in the
At t ribut es sect ion on the right and use it as the value of Node Name.

Add an event

物联网边缘计算 Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

> Document Version: 20211228 31

a. Set required parameters for the event, as shown in the following figure.

Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

物联网边缘计算

32 > Document Version: 20211228

b. Click Add Paramet er under Output Parameters to add a parameter for the event.

物联网边缘计算 Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

> Document Version: 20211228 33

c. Click Add Ext ended Inf ormat ion . In the Add Ext ended Inf ormat ion dialog box that
appears, set Node Name.

To obtain the value of Node Name, find the high_temperature event of the simulated LED
light in UaExpert and click the event name. Check the value of DisplayName in the
At t ribut es sect ion on the right and use it as the value of Node Name.

3. Add the simulated LED light as a sub-device to the OPC UA product. For more information, see
Create a device.

Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

物联网边缘计算

34 > Document Version: 20211228

https://www.alibabacloud.com/help/doc-detail/73729.htm#task-yk1-rnl-vdb

Step 4: Configure the edge instance
1. On the homepage of the IoT Platform console, choose Link IoT Edge > Edge Inst ances in the

left-side navigation pane. On the Edge Inst ances page, find the target edge instance and click
View in the Act ions column.

2. On the Inst ance Det ails page that appears, click the Devices & Drivers tab and then click Assign
Driver. In the Assign Driver dialog box that appears, select Of f icial Drivers , f ind the driver named
OPCUA, and then click Assign in the Act ions column.

3. Go back to the Devices & Drivers tab, click OPCUA in the All Drivers sect ion on the left , and then
click Driver Conf igurat ions next to Devices on the right. In the Driver Conf igurat ions dialog
box that appears, click Add Channel. In the Add Channel dialog box that appears, set channel
parameters and click OK.

物联网边缘计算 Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

> Document Version: 20211228 35

Descript ion of channel parameters

Parameter Description Example

Channel Name The name of the OPC UA channel. opcua_server

Channel Address The URL of the OPC UA Server. opc.tcp://192.168.1.1:4840

Username
The username for connecting to the
OPC UA Server.

demo

Password
The password for connecting to the
OPC UA Server.

abc123

Timeout Period
for Method Calls

The timeout period of a request for
calling the OPC UA Server.

10

4. On the Devices & Drivers tab, click OPCUA in the All Drivers sect ion on the left and click Assign
Sub-device under Devices. In the Assign Sub-device dialog box that appears, f ind the
simulated LED light and click Assign in the Act ions column.

Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

物联网边缘计算

36 > Document Version: 20211228

5. Go back to the Devices & Drivers tab, f ind the simulated LED light you assigned, and then click
Device Conf igurat ions in the Act ions column. The Device Conf igurat ions dialog box appears.

Descript ion of parameters in the Device Configurations dialog box

Parameter Description

Associate Channel Select the channel you added.

Node Path

Set this parameter to the absolute path of the simulated LED light on the
OPC UA Server. The path starts with Objects.

In this example, the absolute path is Objects/demo_led.

6. On the Inst ance Det ails page of the edge instance, click Deploy in the upper-right corner to
deploy the edge instance.

7. On the Inst ance Det ails page, click the Devices & Drivers tab. Click OPCUA in the All Drivers

物联网边缘计算 Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

> Document Version: 20211228 37

sect ion on the left , f ind the simulated LED light on the right, and then check whether the value of
Device Status is Online.

Best Pract ices·Connect an OPC UA
sub-device t o a gat eway

物联网边缘计算

38 > Document Version: 20211228

	1.Connect a Modbus slave device to an edge instance over Modbus TCP
	2.Develop a driver with the Connector architecture
	3.Connect an OPC UA sub-device to a gateway

