
Alibaba Cloud

ApsaraDB for HBase
HBase Ganos Spatio Temporal

Engine

Document Version: 20200902

Alibaba Cloud

ApsaraDB for HBase
HBase Ganos Spatio Temporal

Engine

Document Version: 20200902

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and condit ions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be
deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba
Cloud-authorized channels, and use this document for your own legal business act ivit ies only. T he
content of this document is considered confident ial informat ion of Alibaba Cloud. You shall
st rict ly abide by the confident iality obligat ions. No part of this document shall be disclosed or
provided to any third party for use without the prior writ ten consent of Alibaba Cloud.

2. No part of this document shall be excerpted, t ranslated, reproduced, t ransmit ted, or
disseminated by any organizat ion, company or individual in any form or by any means without the
prior writ ten consent of Alibaba Cloud.

3. T he content of this document may be changed because of product version upgrade, adjustment,
or other reasons. Alibaba Cloud reserves the right to modify the content of this document
without not ice and an updated version of this document will be released through Alibaba Cloud-
authorized channels from t ime to t ime. You should pay at tent ion to the version changes of this
document as they occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. T his document serves only as a reference guide for your use of Alibaba Cloud products and
services. Alibaba Cloud provides this document based on the "status quo", "being defect ive", and
"exist ing funct ions" of its products and services. Alibaba Cloud makes every effort to provide
relevant operat ional guidance based on exist ing technologies. However, Alibaba Cloud hereby
makes a clear statement that it in no way guarantees the accuracy, integrity, applicability, and
reliability of the content of this document, either explicit ly or implicit ly. Alibaba Cloud shall not
take legal responsibility for any errors or lost profits incurred by any organizat ion, company, or
individual arising from download, use, or t rust in this document. Alibaba Cloud shall not , under
any circumstances, take responsibility for any indirect , consequent ial, punit ive, cont ingent ,
special, or punit ive damages, including lost profits arising from the use or t rust in this document
(even if Alibaba Cloud has been not ified of the possibility of such a loss).

5. By law, all the contents in Alibaba Cloud documents, including but not limited to pictures,
architecture design, page layout , and text descript ion, are intellectual property of Alibaba Cloud
and/or its affiliates. T his intellectual property includes, but is not limited to, t rademark rights,
patent rights, copyrights, and t rade secrets. No part of this document shall be used, modified,
reproduced, publicly t ransmit ted, changed, disseminated, dist ributed, or published without the
prior writ ten consent of Alibaba Cloud and/or its affiliates. T he names owned by Alibaba Cloud
shall not be used, published, or reproduced for market ing, advert ising, promot ion, or other
purposes without the prior writ ten consent of Alibaba Cloud. T he names owned by Alibaba Cloud
include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combinat ion, as well as the auxiliary
signs and patterns of the preceding brands, or anything similar to the company names, t rade
names, t rademarks, product or service names, domain names, patterns, logos, marks, signs, or
special descript ions that third part ies ident ify as Alibaba Cloud and/or its affiliates.

6. Please direct ly contact Alibaba Cloud for any errors of this document.

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Legal disclaimer

> Document Version:20200902 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that
the user must understand.

 Notice:

If the weight is set to 0, the server
no longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set network
type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Document convent ions

> Document Version:20200902 I

Table of Contents
1.HBase Ganos introduction

2.Activate HBase Ganos

3.FAQ

4.Spatio-temporal geometries

4.1. Terms

4.2. Quick start

4.3. Create an index table

4.4. Create a spatio-temporal object

4.5. Insert spatio-temporal objects

4.6. Query spatio-temporal objects

4.7. Delete spatio-temporal objects

4.8. Data analytics integrated with Spark

4.9. Ganos Spark functions

5.SDK for Java

5.1. Build a development environment

5.2. Quick start

5.3. Connect to HBase Ganos

5.4. Create an index table

5.5. Import data

5.6. Query data

5.7. Instructions to SDK for Java

6.RESTful API

6.1. GeoJson format description

6.2. Register a DataStore

6.3. Create/delete indexes

6.4. PUT data

06

07

08

10

10

11

17

18

20

21

24

25

31

42

42

43

48

49

51

53

57

58

58

59

60

61

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · T able of Contents

> Document Version:20200902 I

6.5. Delete data

6.6. Queries in HBase Ganos

6.7. RESTful API sample code for Python

7.Spatio-temporal raster

7.1. Terms

7.2. Import raster data to ApsaraDB for HBase

7.3. Publish raster data as a service

62

62

66

67

67

75

86

HBase Ganos Spat io T emporal Engine · T able of Contents ApsaraDB for HBase

II > Document Version:20200902

1.HBase Ganos introduction

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · HBase Ganos introduct ion

> Document Version:20200902 6

http://desktop.arcgis.com/zh-cn/arcmap/10.3/manage-data/using-sql-with-gdbs/st-geometryn.htm

HBase Ganos is a component of ApsaraDB for HBase. It is free of charge. Only ApsaraDB for
HBase is charged. After you purchase ApsaraDB for HBase, you can activate HBase Ganos in the
ApsaraDB for HBase console.

How to activate HBase Ganos

2.Activate HBase Ganos

HBase Ganos Spat io T emporal Engine · Act ivate HBase Ganos ApsaraDB for HBase

7 > Document Version:20200902

Can I use HBase Ganos to store and retrieve geo-fencing data?

Geo-fencing data is "Plane" data in GeoJSON standard data format. Geo-fencing data in HBase
Ganos is stored and retrieved in the same way as "Point" and "Line" data.

{

"features": [

{

"geometry": {

"coordinates": [

[0,0],

[0,1],

[1,1],

[1,0],

[0,0]

],

"type": "Polygon"

},

"id": "polygon_feature",

"properties": {

"name": "shanghai"

},

"type": "Feature"

}

],

"type": "FeatureCollection"

}

How can I create an ID?

If you use IDs as indexes, you must ensure that all the IDs are unique. We recommend that you
create IDs in the format of biz_id + timestamp.

What date format do I choose to create temporal indexes?

Temporal data in HBase Ganos is stored in the properties attribute. Temporal data is saved in
timestamp format. A timestamp accurate to milliseconds is a 13-digit integer, for example,
1542628013000. A string type date is stored in the following format: 2018/11/19 19:46:53. If the
date contains time zone information, it is stored in the following format: 2018/11/19T19:46:53Z.
As shown in the following example, the dtg field in the properties attribute is a date type field.
The name of the field can be customized. You can specify the date=properties.dtg parameter to
create indexes on dates. date is the key of the parameter. properties.dtg is a date field in
GeoJSON.

3.FAQ

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · FAQ

> Document Version:20200902 8

{

"type": "Feature",

"geometry": {

"type": "Point",

"coordinates": [125.6, 10.1]

},

"properties": {

"name": "Dinagat Islands",

"dtg": 1536041936000,

"id": "1"

}

}

What are the possible reasons that cause slow temporal data queries?

Verify that indexes are created on the temporal data. GeoMesa is required if you want to
create indexes on temporal data.
Verify that the date format of the query conditions is the same as that of the temporal data to
be queried. Date type fields are stored in timestamp format (integer type, for example,
1542628013000). If the query conditions are of the string type, for example, 2018/11/19
19:46:53, the temporal indexes become invalid.

How can I update data? In HBase, when the same {row, column} is queried, only data of the
latest version is returned. Therefore, data updating is equivalent to data overwriting. Example:
insert rows 1:a,b,c and 1:a1,b1 in sequence. Only 1:a1,b1 is stored. Insert rows 1:a,b,c and
1:a1,b1,c1,d,e,f in sequence. Only 1:a1,b1,c1,d,e,f is stored.

How can I perform elevation queries?

Spatio-temporal indexes are two-dimensional, including spatial coordinates and temporal
coordinates. Therefore, you cannot use spatio-temporal indexes to perform elevation queries.
You can store elevation information in attributes and create indexes on the elevation
information.

What are the considerations when I call the RESTful API to create a DataStore?

When you call the RESTful API to create a DataStore, you must specify the HBase catalog
endpoint and ZooKeeper endpoint. These two parameters determine the location where the
data is stored. Unlike data sources in other databases, a DataStore in this topic is the name of a
configuration. You can use this name to find the HBase catalog and ZooKeeper service. If the
HBase catalog and ZooKeeper service use different endpoints, we recommend that you create
different DataStores for them. Otherwise, we recommend that you use the DataStore for both of
them.

Why does the system return the same result when I query an index with the same name in two
different DataStores? A DataStore is an alias. The endpoints of the HBase catalog and
ZooKeeper service determine the DataStore that you query. If two different DataStores are
using the same HBase catalog and ZooKeeper endpoints, the indexes with the same name in
the two DataStores refer to the same index. As a result, the system returns the same query
result.

HBase Ganos Spat io T emporal Engine · FAQ ApsaraDB for HBase

9 > Document Version:20200902

This topic introduces terms about HBase Ganos.

Spatio-temporal geometries
Spatio-temporal geometries in HBase Ganos include the following:

Objects of spatio-temporal geometries
Vector data, such as the Point, Line, and Plane features.
Spatial data (spatial trajectory data) consists of vector data and temporal attributes.

Operations related to objects of spatio-temporal geometries, such as spatial relation
verification.

Spatio-temporal indexes
HBase Ganos supports high-performance data queries, which is based on spatio-temporal
indexes. Spatio-temporal indexes are stored as rowkeys in HBase Ganos. For more information,
see Create an index table.

Spatio-temporal relations
A spatio-temporal relation describes the locations of two geometries in time and space in
relation to each other. Typical spatio-temporal relations include INTERSECT, DISJOINT, OVERLAP,
and CONTAIN. A geofence usually refers to the relations of the geofences of an area to an object
(Point, Line, or Plane). If the object lies inside the geofences, the area contains the object. If the
object lies outside the geofences, the area and object are disjoint. HBase Ganos uses Common
Query Language (CQL) to define spatio-temporal relations. For more information, see Create an
index table.

OGC
OGC is short for Open Geospatial Consortium. It is an international voluntary consensus
standards organization. It has created a set of standards for data models and related
operations. Geographic information system (GIS) vendors develop geographic information
systems based on these standards to ensure that their systems can interact with spatial
databases.

GeoTools
The SDK of HBase Ganos is based on GeoTools. GeoTools is a library that provides tools for
processing geospatial data. It complies with OGC standards, and can interact with OGC standard
data models and interfaces. Many geographic information systems are developed based on
GeoTools. For more information, visit https://geotools.org/.

Geometries
A geometry in OGC is defined as a spatial object, such as a point, a line, or a plane. A geometry
only contains location information of a spatial object. It does not contain any attribute
information. GeoTools provides tools for you to build geometries when you use HBase Ganos.

4.Spatio-temporal geometries
4.1. Terms

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 10

https://www.alibabacloud.com/help/doc-detail/129909.htm#topic1381
https://geotools.org/

SimpleFeatures
Simple features. A SimpleFeature contains geometries and other attributes. A trajectory point is
a SimpleFeature. The SimpleFeature contains the location information of the trajectory point,
temporal information, and other attributes. The temporal information is also a part of the
attribute information.

CQL & ECQL
Common Query Language (CQL) is a language defined by OGC to support geospatial data
queries. Extended Common Query Language (ECQL) is an extension of CQL and is more powerful
than CQL. In most cases, ECQL is used to define filters by using SQL-like where clauses based on
the well-known text representation. For more information, see Query spatio-temporal objects. CQL
described in this user guide refers to ECQL.

WKT
Well-known text (WKT) is a text markup language defined by OGC to describe spatial objects.
For example, a point can be represented by using POINT(0,0). WKT is commonly used in query
statements and is much easier to read. CQL and ECQL also use WKT to describe spatial objects.
For more information about WKT, visit http://www.opengeospatial.org/standards/wkt-crs.

WKB
Well-known binary (WKB) is a language defined by OGC to mark up geometries by using byte
arrays. WKB data is smaller than WKT data. You can use WKT for data transmission. GeoTools
provides a tool for you to transform data between WKB and WKT.

After you activate HBase Ganos, you can call the Ganos API to start your development work. For
more information about how to activate HBase Ganos, see .

Sample code
1. Download the sample code

ganos-sample

After you download the sample code, modify the dependencies in the pom.xml file as needed.
For more information, see the Dependencies section.

2. Sample code descriptions

2.1. trajectory-sample module

This module uses automatic identification system (AIS) data as the sample data to demonstrate
how to import and query trajectory data.

Main: the input of the demo.

Writer: writes data into HBase Ganos. The entire procedure includes these steps: connect to
HBase Ganos, create a schema (spatio-temporal index table), read sample data, and write
sample data to the spatio-temporal index table.

Reader: a common query interface. Examples are provided for attribute queries (equal-value
queries, prefix queries, and suffix queries), spatial data queries, and spatio-temporal data
queries.

4.2. Quick start

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

11 > Document Version:20200902

https://www.alibabacloud.com/help/doc-detail/129912.htm#topic4208
http://www.opengeospatial.org/standards/wkt-crs
https://tst-ganos-bj-public.oss-cn-beijing.aliyuncs.com/hbase/sample/ganos-sample-2.2.1-2.5.0.jar

2.2. spark-sample module

This module uses automatic identification system (AIS) data as the sample data to demonstrate
how to import and query trajectory data based on Spark.

Writer: writes data into HBase Ganos. The entire procedure includes these steps: connect to
HBase Ganos, create a schema (spatio-temporal index table), read sample data, and write
sample data to the spatio-temporal index table.
SparkDemo: demonstrates how to read data from HBase Ganos, transform the data to Spark
DataFrames, and query spatio-temporal data based on SparkSQL.

Dependencies
You can choose between the GeoMesa and Ganos clients. The Ganos client supports more
features.

GeoMesa client
HBase Ganos is compatible with the open source GeoMesa client. You can directly integrate the
GeoMesa client without using Ganos features.

Notice The GeoMesa client currently only supports Ganos based on HBase 1.x.

The configuration is as follows:

<properties>

<! --Note: Enter the version of the HBase client -->

<alihbase.version>1.3.1</alihbase.version>

</properties>

<dependency>

<groupId>org.locationtech.geomesa</groupId>

<artifactId>geomesa-hbase-datastore_2.11</artifactId>

<version>2.2.1</version>

<exclusions>

<exclusion>

<groupId>com.google.protobuf</groupId>

<artifactId>protobuf-java</artifactId>

</exclusion>

</exclusions>

</dependency>

<! -- alihbase as a dependency -->

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-client</artifactId>

<version>${alihbase.version}</version>

<exclusions>

<exclusion>

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 12

<exclusion>

<artifactId>com.google.guava</artifactId>

<groupId>guava</groupId>

</exclusion>

</exclusions>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-server</artifactId>

<version>${alihbase.version}</version>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-common</artifactId>

<version>${alihbase.version}</version>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-protocol</artifactId>

<version>${alihbase.version}</version>

</dependency>

Ganos client
Ganos client based on HBase 1.x

Notice The dependency of the current Ganos client version has not been released to
the maven library. You must manually download and integrate the dependency. Click ganos-
hbase-distributed-runtime_2.11-2.2.1-2.1.0.jar to download the dependency, and configure
the settings as follows:

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

13 > Document Version:20200902

https://tst-ganos-bj-public.oss-cn-beijing.aliyuncs.com/hbase/runtime/2.1.x/ganos-hbase-distributed-runtime_2.11-2.2.1-2.1.0.jar

<properties>

<! -- Note: Enter the version of the HBase client -->

<alihbase.version>1.3.1</alihbase.version>

</properties>

<dependency>

<groupId>com.aliyun.tst.ganos</groupId>

<artifactId>ganos-geomesa-hbase15</artifactId>

<version>2.0.0</version>

<scope>system</scope>

<systemPath>/ganos-jar-path</systemPath>

</dependency>

<! -- alihbase as a dependency -->

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-client</artifactId>

<version>${alihbase.version}</version>

<exclusions>

<exclusion>

<artifactId>com.google.guava</artifactId>

<groupId>guava</groupId>

</exclusion>

</exclusions>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-server</artifactId>

<version>${alihbase.version}</version>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-common</artifactId>

<version>${alihbase.version}</version>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-protocol</artifactId>

<version>${alihbase.version}</version>

</dependency>

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 14

Ganos client based on HBase 2.x

Notice The dependency of the current Ganos client version has not been released to
the maven library. You must manually download and integrate the dependency. Click ganos-
hbase-distributed-runtime_2.11-2.2.1-2.5.0.jar to download the dependency, and configure
the settings as follows:

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

15 > Document Version:20200902

https://tst-ganos-bj-public.oss-cn-beijing.aliyuncs.com/hbase/runtime/2.5.x/ganos-hbase-distributed-runtime_2.11-2.2.1-2.5.0.jar

<properties>

<! -- Note: Enter the version of the HBase client -->

<alihbase.version>2.0.0</alihbase.version>

</properties>

<dependency>

<groupId>com.aliyun.tst.ganos</groupId>

<artifactId>ganos-geomesa-hbase20</artifactId>

<version>2.5.0</version>

<scope>system</scope>

<systemPath>/ganos-jar-path</systemPath>

</dependency>

<! -- alihbase as a dependency-->

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-client</artifactId>

<version>${alihbase.version}</version>

<exclusions>

<exclusion>

<artifactId>com.google.guava</artifactId>

<groupId>guava</groupId>

</exclusion>

</exclusions>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-server</artifactId>

<version>${alihbase.version}</version>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-common</artifactId>

<version>${alihbase.version}</version>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-protocol</artifactId>

<version>${alihbase.version}</version>

</dependency>

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 16

Ganos is developed with multiple built-in spatial indexes. Users only need to input spatial data
at the frontend, and then specify the index to be created. They do not need to worry about how
HBase key-value pairs are designed and built.

Before you import data, you must define the schema of the index table.

Index types
Ganos supports four types of indexes to meet the requirements of different scenarios. You can
choose to create all of the supported types of indexes or only some of them. In a scenario that
only involves surrounding object queries, you only need to create Z2 indexes.

ID indexes

ID indexes are applicable to scenarios where feature IDs (FIDs) of spatial objects are used to
query data. FIDs must be unique.

Z2/XZ2 indexes

Z2 and XZ2 indexes are suitable for spatial data queries, such as geofence queries and
surrounding object queries. Z2 indexes are created on "Point" objects and XZ2 indexes are
created on "Line" and "Plane" objects.

Z3/XZ3 indexes

Z3 and XZ3 indexes are suitable for spatial-temporal data queries, for example, historical
trajectory queries within a specified spatial range or temporal range. Z3 indexes are created on
"point" objects and XZ3 indexes are created on "line" and "plane" objects.

XYZ indexes

XYZ indexes are three-dimensional indexes including longitude, latitude, and elevation
information. Currently, XYZ indexes are created on "Point" objects.

Attribute indexes

Attribute indexes are suitable for attribute queries.

Create an index
Follow these steps to create an index:

1. Use SimpleFeatureType to define a spatio-temporal schema.

i. Specify the name of the schema. You can consider it the name of an index table.

ii. Specify the content of the schema, which includes the definitions of attributes,
geometries, and dates.

iii. You can also customize the following information:

a. Specify the compression algorithm.

b. Specify whether to use the tiny well-known binary (TWKB) format.

c. Create an index on a specified column.

2. Create geometries based on the defined spatio-temporal schema.

Note: You can reference the Write class in the sample code of the Quick start topic. The
preceding settings are all wrapped in this class.

4.3. Create an index table

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

17 > Document Version:20200902

Example
As described in the preceding section, you can use different types of indexes in Ganos or use
only a specific type of indexes. In a scenario that only involves surrounding object queries, you
only need to create Z2 indexes. We recommend that you use all types of indexes to improve the
overall performance of data queries. However, this consumes storage space. You can also
choose index types based on the actual scenario to save storage space. Ganos is developed
with built-in Hints. Hints are used to specify indexes when you define a SimpleFeatureType. The
syntax is as follows:

//sft specifies a SimpleFeatureType instance.

sft.getUserData().put("geomesa.indices.enabled", "{index_name}:{col1}:{col2}:...,{index_name}:{col}");

Assign one of the following constants to index_name: id, attr, z2, z3, xz2, xz3, and xyz.
col specifies the columns defined in SimpleFeatureType.
You can create one or more indexes, and separate them with commas (,).
If you want to add multiple columns to an index, separate the index name and column names
with colons (:).

In the following example, two types of indexes are created: z3 and attr. A z3 index is created on
the start and dtg columns, and another z3 index is created on the end and dtg columns. An attr
index is created on the name and dtg columns.

sft.getUserData().put("geomesa.indices.enabled", "z3:start:dtg,z3:end:dtg,attr:name:dtg");

In the trajectory scenario, a spatio-temporal object is considered as a trajectory point, which
contains the spatial location, time, and other attributes. In the HBase Ganos SDK, a spatio-
temporal object is mapped to a SimpleFeature object. After you define the schema of an index
table, you can create a SimpleFeature object.

Create a SimpleFeature object
Each SimpleFeature contains an ID, Geometry, time information and other attributes. In the Quick
start topic, the GanosClient class is encapsulated in the sample code to help you create indexes
and trajectory points. We recommend that you use the sample code to simplify coding. If you use
the native GeoTools API, you can create a SimpleFeature object by using the
SimpleFeatureBuilder class, as shown in the following sample code:

SimpleFeatureType sft = ;

SimpleFeatureBuilder sfBuilder = new SimpleFeatureBuilder(sft);

builder.set("attribute name", attribute value);

...

builder.set("geom", Geometry); // Create a spatial object. Keep the default format of the geom attribu

te name.

SimpleFeature feature = builder.buildFeature(object_id + "_" + date.getTime());

4.4. Create a spatio-temporal object

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 18

Create a Geometry object
When you create a SimpleFeature object, you need to create a geometry object, as shown in the
preceding sample code. The Geometry is contained in the SimpleFeature object. The Geometry
stores the spatial information of features. These features include Point, Line, and Plane
features, which can be considered as trajectory points in the trajectory scenario. The GeoTools
API provides the GeometryFactory class to help you create Geometry objects. You can create
Geometry objects in the following ways:

Create a Geometry object by using a Coordinate object.

This object represents a coordinate point. We recommend that you set the Geometry object in
this way.

Create a Geometry object by using Well-known text (WKT).

WKT is a text markup language that is used to specify spatial objects. For example, the string
"POINT (1 1)" specifies a Point feature with coordinates 1, 1. The string "LINESTRING(0 2, 2 0, 8 6)"
specifies a Line feature that is composed of three coordinates. The string "POLYGON((20 10, 30 0,
40 10, 30 20, 20 10))" specifies a Plane feature, and the first coordinate and last coordinate of
which are the same and form a circle. For more information, visit
https://en.wikipedia.org/wiki/Well-known_text.

Point feature

You can create Point features in the following ways:

Create a Point feature by using a Coordinate object.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory();

Coordinate coord = new Coordinate(1, 1);

Point point = geometryFactory.createPoint(coord);

Create a Point feature by using WKT.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory();

WKTReader reader = new WKTReader(geometryFactory);

Point point = (Point) reader.read("POINT (1 1)");

Line feature

You can create Line features in the following ways:

Create a Line feature by using a Coordinate object.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory();

Coordinate[] coords =

new Coordinate[] {new Coordinate(0, 2), new Coordinate(2, 0), new Coordinate(8, 6) };

LineString line = geometryFactory.createLineString(coordinates);

Create a Line feature by using WKT.

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

19 > Document Version:20200902

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory();

WKTReader reader = new WKTReader(geometryFactory);

LineString line = (LineString) reader.read("LINESTRING(0 2, 2 0, 8 6)");

Plane feature

You can create Plane features in the following ways:

Create a Plane feature by using a Coordinate object.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory();

Coordinate[] coords =

new Coordinate[] {new Coordinate(4, 0), new Coordinate(2, 2),

new Coordinate(4, 4), new Coordinate(6, 2), new Coordinate(4, 0) };

LinearRing ring = geometryFactory.createLinearRing(coords);

LinearRing holes[] = null; // use LinearRing[] to represent holes

Polygon polygon = geometryFactory.createPolygon(ring, holes);

Create a Plane feature by using WKT.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory(null);

WKTReader reader = new WKTReader(geometryFactory);

Polygon polygon = (Polygon) reader.read("POLYGON((20 10, 30 0, 40 10, 30 20, 20 10))");

Configure other attributes
You can set other custom information by using the UserData column of the SimpleFeature. For
example, HBase Ganos provides many built-in hints, as shown in the following section:

Disable an index. For more information, see the Create an index and Disable an index topics.
Use a custom FeatureID that saves the storage space.

SimpleFeature feature =...

feature.getUserData().put(Hints.USE_PROVIDED_FID, java.lang.Boolean.TRUE);

Spatio-temporal objects are created after an index table is created. You can then call the writer
to insert data to HBase Ganos.

Insert a single SimpleFeature
HBase Ganos uses the SimpleFeatureWriter in the GeoTools API to insert a single SimpleFeature.
The SimpleFeatureWriter supports inserting transactions. You can use the
getFeatureWriterAppend method of DataStore to get a FeatureWriter.

4.5. Insert spatio-temporal objects

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 20

SimpleFeatureType sft = ;

SimpleFeatureWriter writer=(SimpleFeatureWriter)ds.getFeatureWriterAppend(sft.getTypeName(), Tr

ansaction.AUTO_COMMIT);

SimpleFeature toWrite=writer.next();

toWrite.setAttributes(feature.getAttributes());

toWrite.getUserData().putAll(feature.getUserData());

writer.write();

writer.close();

Insert multiple SimpleFeatures
HBase Ganos allows you to insert multiple SimpleFeatures at a time by using the
SimpleFeatureStore class in the GeoTools API.

List<SimpleFeature> features=...

SimpleFeatureStore featureStore = (SimpleFeatureStore) ds.getFeatureSource(sft.getTypeName());

List<FeatureId> featureIds = featureStore.addFeatures(new ListFeatureCollection(sft,features));

For more information, see the sample code in the Quick start topic.

Each Ganos query is encapsulated in a Query object of GeoTools. Query conditions in a Query are
constructed by using Common Query Language (CQL) statements. The Query object also
supports other features. For example, you can use it to return a specified attribute column or
sort the order of a specified attribute. Data is returned as a SimpleFeatureCollection. You can
use an iterator to scan all SimpleFeatures and then parse the requested data. The following
sections describe how to query spatio-temporal objects. For more information, see the
GanosClient class of the sample code in the Quick start topic.

Construct query conditions
Query conditions are the Common Query Language (CQL) representation of filters. CQL is similar
to the WHERE clause in SQL. You can use query conditions to filter data.

Spatial queries
Spatial queries support the following predicates. "Expression" in the following table
represents a geometry in the WKT representation, which can be a point, line, or plane. |
Syntax | Description | | --- | --- | | INTERSECTS(Expression , Expression) | Indicates whether two
geometries are intersected.For example, it can indicate whether two roads are intersected. | |
DISJOINT(Expression , Expression) | Indicates whether two geometries are disjoint. | |
CONTAINS(Expression , Expression) | Indicates whether the first geometry contains the second
geometry. | | WITHIN(Expression , Expression) | It is the contrary of the CONTAINS predicate. It
indicates whether the first geometry is within the second geometry. | | TOUCHES(Expression ,
Expression) | Indicates whether two geometries are touched. If they are touched, they have at
least one touch point. | | CROSSES(Expression , Expression) | Indicates whether two geometries
cross each other. The two geometries cross each other if only a part of them are in common. | |

4.6. Query spatio-temporal objects

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

21 > Document Version:20200902

BBOX (Expression , Xmin , Ymin , Xmax , Ymax [, CRS]) | Indicates whether the geometry
[Expression] is intersected by the quadrilateral plane [Xmin,Ymin,Xmax,Ymax].

A coordinate reference system (CRS) is a string that contains spatial reference system (SRS)
code. For example, 'EPSG:1234'. By default, the CRS of the queried graph is used. |

Example 1: Query all geometries, such as restaurants, vessels, and vehicles within the spatial
range (120E, 30N, 130E, 40N):

DataStore ds = DataStoreFinder.getDataStore(params);

SimpleFeatureType schema=...

String stFilter = "bbox(geom, 120,30,130,40)"

Query query = new Query(schema, ECQL.toFilter(stFilter));

SimpleFeatureCollection features=ds.getFeatureSource(schema).getFeatures(query);

Example 2: Query all vehicles within a radius of 5 kilometers.

First construct a geometry (plane) within a radius of 5 kilometers, for example, (46.9 48.9,
47.1 48.9, 47.1 49.1, 46.9 49.1, 46.9 48.9).
Use the CONTAINS predicate to retrieve all objects.

String stFilter = "contains('POLYGON ((46.9 48.9, 47.1 48.9, 47.1 49.1, 46.9 49.1, 46.9 48.9))', geom)

Query query = new Query(schema, ECQL.toFilter(stFilter));

Spatio-temporal queries
Spatio-temporal queries are also widely used in different scenarios. For example, you may want
to query the trajectories of all vehicles within the range of (20E, 30N, 130E, 40N) in the last two
hours. Temporal queries in HBase Ganos support the following predicates. "Expression" in the
following table specifies the name of the date column. "Time" specifies the date string in UTC
format.

Syntax Description

Expression BEFORE Time Indicates any date earlier than "Time".

Expression BEFORE OR DURING Time Period Indicates any date earlier than "Time Period" or
within "Time Period".

Expression DURING Time Period Indicates any date within "Time Period".

Expression DURING OR AFTER Time Period Indicates any date within "Time Period" or later
than "Time Period".

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 22

Expression AFTER Time Indicates any date later than "Time".

Syntax Description

HBase Ganos allows you to use the following syntax to specify a time period:

Syntax Description

Time / Time A time period defined by the beginning time and
end time.

Duration / Time A time period earlier than "Time".

Time / Duration A time period later than "Time".

Example: If you want to query all vehicle trajectories located within (120E, 30N, 130E, 40N)
from 2014-01-01T11:45:00 to 2014-01-01T12:15:00, you must use a combination of spatial
queries and temporal queries:

String stFilter = "bbox(geom, 120,30,130,40) AND dtg DURING 2014-01-01T11:45:00.000Z/2014-01-01T12:

15:00.000Z";

Query query = new Query(schema, ECQL.toFilter(stFilter));

SimpleFeatureCollection features=ds.getFeatureSource(schema).getFeatures(query);

Attribute queries
Supported comparison operators are =, <>, >, >=, <, and <=. If you want to select a city with a
population greater than 15 million, set the query condition to PERSONS>15000000. PERSONS
represents the population field.
BETWEEN is used to specify a specific range, for example, PERSONS BETWEEN 1000000 AND
3000000.
The comparison operators support string values. You can specify a string value on the right
side of the equal sign (=). For example, CITY_NAME='Beijing' specifies the Beijing city. You can
also use the LIKE operator. For example, CITY_NAME LIKE 'N%' specifies cities whose names
start with the letter "N".
You can compare two attributes. For example, MALE > FEMALE specifies cities where the
population of males is greater than females.
Supported arithmetic operators are +, -, *, and /. For example, UNEMPLOY/(EMPLOYED +
UNEMPLOY) > 0.07 specifies all cities with an unemployment rate greater than 7%.
You can use the IN operator to specify attributes whose values are within the specified range.
For example, use ID IN ('cities.1', 'cities.12') or CITY_NAME IN ('Beijing', 'Shanghai', 'Guangzhou')
to query cities whose names contain the specified values.
You can use any filter functions in GeoServer. For example, you can use
strToLowerCase(CITY_NAME) like '%m%' to query cities whose names contain the letter "M" or
"m".
You can use the geometric filter bounding box (BBOX). For example, use BBOX(the_geom, -90,

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

23 > Document Version:20200902

40, -60, 45) to query cities whose geographic coordinates are within the spatial rage of (-90,
40, -60, 45).

String filter = " name = 'bob'"

val q = new Query(sft.getTypeName, ECQL.toFilter(filter))

SimpleFeatureCollection features=ds.getFeatureSource(schema).getFeatures(query);

In the preceding example, the values in the name column are filtered.

Specify the names of the returned columns
You can configure the parameters of the Query object to specify the columns to be returned.
Example:

String[] returnFields=... //The names of the returned columns.

Query query = new Query(schema, ECQL.toFilter(ecqlPredicate));

query.setPropertyNames(returnFields);

SimpleFeatureCollection features=ds.getFeatureSource(schema).getFeatures(query);

Specify a sorting method
You can configure the parameters of the SortBy object to specify the columns to be sorted.
Example:

String sortField=... //Specify the names of the columns to be sorted.

FilterFactory2 ff = CommonFactoryFinder.getFilterFactory2();

SortBy[] sort = new SortBy[]{ff.sort(sortField, order)};

query.setSortBy(sort);

SimpleFeatureCollection features=ds.getFeatureSource(schema).getFeatures(query);

In most cases, SimpleFeatures are continuously "appended" to a database. For example, vehicle
trajectory data is written into a database every few seconds. You may want to delete a
SimpleFeature in some scenarios. Example:

4.7. Delete spatio-temporal objects

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 24

In an Extract-Transform-Load (ETL) processing system, the system may need to mask and
aggregate data by deleting sensitive or unused data before it imports the data into
databases.
The system may also need to delete the data that contains errors.

HBase Ganos allows you to delete a SimpleFeature by specifying the FID of the SimpleFeature.
Note: An FID is a unique identifier of a SimpleFeature.

Example
The following example shows how to use the GeoTools interface to delete a SimpleFeature with
a specified FID. For more information, see the sample code in the Quick start topic.

The input parameter simpleFeatureId specifies the ID of the SimpleFeature to which the data
is written. We recommend that you use a user-readable and unique ID, for example,
objectId+timeStamp. This makes it easy for you to construct an FID when you want to delete a
SimpleFeature.
Build a FeatureWriter, and specify the FID of the target SimpleFeature. You can set the
transaction type to AUTO_COMMIT.
Use the remove function of the FeatureWriter to delete the SimpleFeature.
Close the FeatureWriter

public void removeById(String schema,String simpleFeatureId) throws Exception{

FilterFactory2 ff = CommonFactoryFinder.getFilterFactory2();

FeatureWriter<SimpleFeatureType, SimpleFeature> writer =

ds.getFeatureWriter(schema, ff.id(ff.featureId(simpleFeatureId)), Transaction.AUTO_COMMIT);

while (writer.hasNext()) {

writer.next();

writer.remove();

}

writer.close();

}

Considerations
Currently, you can only delete SimpleFeatures by FID.

You must enable the ID index before you perform this operation. If you fail to delete the
SimpleFeature, check whether the ID index is disabled. For more information, see Create an
index table.

If the code snippet contains the following line, delete it: >
sft.getUserData().put("geomesa.disable.id.index", true);

You can also choose to create the specified ID index as follows:

sft.getUserData().put("geomesa.indices.enabled", "id:object_id");

4.8. Data analytics integrated with Spark

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

25 > Document Version:20200902

This topic describes how to use Ganos Spark to manage and analyze large-scale geographic
data based on the Apache Spark distributed system. Ganos Spark provides a variety of Spark-
based API operations for data loading, analytics and storage. Ganos Spark provides different
levels of data analytics models. The most basic model is GeometryRDD, which is used to convert
between SimpleFeatures in Ganos data and resilient distributed dataset (RDD) models in Spark.
Based on Spark SQL, Ganos Spark also provides a set of user-defined types (UDTs), user-defined
functions (UDFs), and user-defined aggregation functions (UDAFs) to manage spatial data.
These functions allow you to use a structured query language that is similar to SQL for data
query and analytics. The following figure shows the architecture of Ganos Spark:

1. Download the Ganos Spark toolkit
Click Ganos Spark driver to download the Ganos Spark toolkit.

Add dependencies to the pom file in the project directory:

<! -- Ganos Spark -->

<dependency>

<groupId>com.aliyun.ganos</groupId>

<artifactId>ganos-spark-runtime</artifactId>

<version>1.0-SNAPSHOT</version>

<scope>system</scope>

<systemPath>../ganos-spark-runtime-1.0-SNAPSHOT.jar</systemPath>

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 26

https://tst-ganos-bj-public.oss-cn-beijing.aliyuncs.com/hbase/driver_jar/spark/ganos-spark-runtime-1.0-SNAPSHOT.jar

</dependency>

<! -- Spark -->

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-core_${scala.binary.version}</artifactId>

<version>${spark.version}</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-catalyst_${scala.binary.version}</artifactId>

<version>${spark.version}</version>

<exclusions>

<exclusion>

<groupId>org.scala-lang</groupId>

<artifactId>scala-reflect</artifactId>

</exclusion>

</exclusions>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-sql_${scala.binary.version}</artifactId>

<version>${spark.version}</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-yarn_${scala.binary.version}</artifactId>

<version>${spark.version}</version>

</dependency>

<dependency>

<groupId>io.netty</groupId>

<artifactId>netty-all</artifactId>

<version>4.1.18.Final</version>

</dependency>

2. Query data in HBase Ganos by using Ganos Spark
After you configure the runtime environment, you can connect to HBase Ganos to query data by
using the Ganos Spark service, as shown in the following example:

package com.aliyun.ganos

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

27 > Document Version:20200902

import com.aliyun.ganos.spark.GanosSparkKryoRegistrator

import org.apache.log4j.{ Level, Logger}

import org.apache.spark.sql.SparkSession

object GanosSparkDemo {

def main(args: Array[String]): Unit = {

Logger.getLogger("org").setLevel(Level.ERROR)

Logger.getLogger("com").setLevel(Level.ERROR)

// Specify connection parameters of ApsaraDB for HBase. The catalog name is set to POINT.

val params = Map(

"hbase.catalog" -> "POINT",

"hbase.zookeepers" -> "The ZooKeeper address used to connect to ApsaraDB for HBase",

"geotools" -> "true")

// Initialize a SparkSession object.

val sparkSession = SparkSession.builder

.appName("Simple Application")

.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")

.config("spark.sql.crossJoin.enabled", "true")

.config("spark.kryo.registrator", classOf[GanosSparkKryoRegistrator].getName)

.master("local[*]")

.getOrCreate()

// Load the data from automatic identification system (AIS).

val dataFrame = sparkSession.read

.format("ganos")

.options(params)

.option("ganos.feature", "AIS")

.load()

// Query all data.

dataFrame.createOrReplaceTempView("ais")

val r=sparkSession.sql("SELECT * FROM ais")

r.show()

// Query spatio-temporal data.

val r1=sparkSession.sql("SELECT * FROM ais WHERE st_contains(st_makeBBOX(70.00000,11.00000,75.000

00,14.00000), geom)")

r1.show()

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 28

r1.show()

// Write query results to HBase Ganos.

r1.write.format("ganos").options(params).option("ganos.feature", "result").save()

}

}

The following figure shows the output:

For more information about spatial functions supported by Ganos Spark, see Ganos Spark
functions.

3. Use Ganos Spark in Jupyter
Ganos Spark provides the toolkit that allows you to query data and display the result in Jupyter.

Click Leaflet tool to download the Ganos Spark Leaflet toolkit.

Log on to the console and perform the following tasks:

3.1. Install Jupyter.

$ pip install --upgrade jupyter

or

$ pip3 install --upgrade jupyter

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

29 > Document Version:20200902

https://tst-ganos-bj-public.oss-cn-beijing.aliyuncs.com/hbase/driver_jar/spark/gas-spark-jupyter-leaflet-1.0-SNAPSHOT.jar

3.2. Configure the SPARK_HOME environment variable, add a kernel named Ganos Spark Test by
using toree, and then launch Jupyter:

$ jars="ganos-spark-runtime-1.0-SNAPSHOT.jar,ganos-spark-jupyter-leaflet-1.0-SNAPSHOT.jar"

$ jupyter toree install --replace --user --kernel_name "Ganos Spark Test" --spark_home=${SPARK_HOM

E} --spark_opts="--master localhost[*] --jars $jars"

$ jupyter notebook

After the server is started, you can visit http://localhost:8888 and create a Ganos Spark Test
session in the Jupyter console.

3.3. Load HBase Ganos data.

3.3.1. Create a Spark session.

3.3.2. Query data in HBase Ganos by using Spark SQL.

3.3.3. Display data in the Leaflet:

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 30

http://localhost:8888

You can click here to download the complete notebook document for test.

After you construct a SparkSession object, you can call the read method to load DataFrames.
Ganos Spark provides a set of spatio-temporal operators for you to query spatio-temporal data.
Spatio-temporal operators are user-defined functions (UDFs) and can be classified into the
following:

1. Spatial Constructors functions

ST_GeomFromGeoHash

Geometry st_geomFromGeoHash(String geohash, Int prec)

Returns a GeoHash value from a given GeoHash code. The prec argument specifies the precision
of GeoHash.

ST_GeomFromWKT

Geometry st_geomFromWKT(String wkt)

Constructs a Geometry object from the well-known text (WKT) representation.

ST_GeomFromWKB

Geometry st_geomFromWKB(Array[Byte] wkb)

Constructs a Geometry object from the well-known binary (WKB) representation.

4.9. Ganos Spark functions

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

31 > Document Version:20200902

https://tst-ganos-bj-public.oss-cn-beijing.aliyuncs.com/hbase/driver_jar/spark/GASSpark%25E6%25B5%258B%25E8%25AF%2595.ipynb

ST_LineFromText

LineString st_lineFromText(String wkt)

Constructs a LineString object from the WKB representation.

ST_MakeBox2D

Geometry st_makeBox2D(Point lowerLeft, Point upperRight)

Constructs a Box2d object defined by lowerLeft and upperRight.

ST_MakeBBOX

Geometry st_makeBBOX(Double lowerX, Double lowerY, Double upperX, Double upperY)

Constructs a bounding box (BBOX) object defined by the given boundary coordinates.

ST_MakePolygon

Polygon st_makePolygon(LineString shell)

Constructs a Polygon object defined by a given shell. The input shell must be a closed LineString.

ST_MakePoint

Point st_makePoint(Double x, Double y)

Constructs a Point object defined by the given X-coordinate and Y-coordinate.

ST_MakeLine

LineString st_makeLine(Seq[Point] points)

Constructs a LineString object defined by the given Point objects.

ST_MakePointM

Point st_makePointM(Double x, Double y, Double m)

Constructs a Point object defined by the given X-coordinate, Y-coordinate, and M-coordinate.

ST_MLineFromText

MultiLineString st_mLineFromText(String wkt)

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 32

Constructs a MultiLineString object defined by the given WKT representation.

ST_MPointFromText

MultiPoint st_mPointFromText(String wkt)

Constructs a MultiPoint object defined by the given WKT representation.

ST_MPolyFromText

MultiPolygon st_mPolyFromText(String wkt)

Constructs a MultiPolygon object defined by the given WKT representation.

ST_Point

Point st_point(Double x, Double y)

Constructs a Point object defined by the given X-coordinate and Y-coordinate. This function is
similar to ST_MakePoint.

ST_PointFromGeoHash

Point st_pointFromGeoHash(String geohash, Int prec)

Return the Point at the geometric center of the bounding box defined by the GeoHash (base-32
encoded). The prec argument specifies the precision of GeoHash.

ST_PointFromText

Point st_pointFromText(String wkt)

ST_PointFromWKB

Point st_pointFromWKB(Array[Byte] wkb)

Constructs a Point object from the given WKB representation.

ST_Polygon

Polygon st_polygon(LineString shell)

Constructs a Polygon object from a given LineString.

ST_PolygonFromText

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

33 > Document Version:20200902

Polygon st_polygonFromText(String wkt)

Constructs a Polygon object from the given WKT representation.

2. Geometry Accessors functions

ST_Boundary

Geometry st_boundary(Geometry geom)

Returns the boundary of a ST_Geometry.

ST_CoordDim

Int st_coordDim(Geometry geom)

Returns the number of dimensions of the coordinates of a Geometry object. To query the
dimension of a geometry, use the ST_Dimension function.

ST_Dimension

Int st_dimension(Geometry geom)

Returns the inherent number of dimensions of a Geometry object.

ST_Envelope

Geometry st_envelope(Geometry geom)

Returns the BBOX of a ST_Geometry value.

ST_ExteriorRing

LineString st_exteriorRing(Geometry geom)

Returns a LineString representing the exterior ring of a given Polygon geometry.

ST_GeometryN

Int st_geometryN(Geometry geom, Int n)

Returns the Nth geometry within a Geometry object. N is a given value. For example, if you want
to return the second point within a MultiPoint object, set the value of N to 2.

ST_InteriorRingN

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 34

Int st_interiorRingN(Geometry geom, Int n)

Returns a LineString representing the Nth interior ring of a given Polygon geometry.

ST_IsClosed

Boolean st_isClosed(Geometry geom)

Returns a value that indicates whether a LineString is closed. TRUE is returned if a LineString is
closed.

ST_IsCollection

Boolean st_isCollection(Geometry geom)

Returns a value that indicates whether a geometry is a collection.

ST_IsEmpty

Boolean st_isEmpty(Geometry geom)

Returns a value that indicates whether a geometry is empty. This function is used to verify a
ST_Geometry. Value 1 (TRUE) is returned if the geometry is empty and value 0 (FALSE) is returned
if it is not empty.

ST_IsRing

Boolean st_isRing(Geometry geom)

Returns a value that indicates whether a given ST_LineString is a ring. Value 1 is returned if the
ST_LineString is a ring and value 0 is returned if it is not a ring.

ST_IsSimple

Boolean st_isSimple(Geometry geom)

Returns a value that indicates whether a given ST_LineString, ST_MultiPoint, or
ST_MultiLineString is simple.

ST_IsValid

Boolean st_isValid(Geometry geom)

Returns a value that indicates whether a given geometry collection is valid.

ST_NumGeometries

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

35 > Document Version:20200902

Int st_numGeometries(Geometry geom)

Returns the number of geometries of a given type in a geometry collection, such as the number
of ST_MultiPoint, ST_MultiLineString, or ST_MultiPolygon geometries.

ST_NumPoints

Int st_numPoints(Geometry geom)

Returns the number of points in a given ST_LineString.

ST_PointN

Point st_pointN(Geometry geom, Int n)

Returns the Nth point in a given ST_LineString.

ST_X

Float st_X(Geometry geom)

Returns a double-precision digit that indicates the X-coordinate of a point.

ST_Y

Float st_y(Geometry geom)

Returns a double-precision digit that indicates the Y-coordinate of a point.

3. Geometry Cast functions

ST_CastToPoint

Point st_castToPoint(Geometry g)

Casts a Geometry to a Point.

ST_CastToPolygon

Polygon st_castToPolygon(Geometry g)

Casts a Geometry to a Polygon.

ST_CastToLineString

LineString st_castToLineString(Geometry g)

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 36

Casts a Geometry to a LineString.

ST_ByteArray

Array[Byte] st_byteArray(String s)

Casts a String to a Byte Array by using UTF-8 encoding.

4. Geometry Editors functions

ST_Translate

Geometry st_translate(Geometry geom, Double deltaX, Double deltaY)

Returns a new geometry whose coordinates are translated from deltaX and deltaY.

5. Geometry Outputs functions

ST_AsBinary

Array[Byte] st_asBinary(Geometry geom)

Returns the Byte Array representation of a Geometry.

ST_AsGeoJSON

String st_asGeoJSON(Geometry geom)

Returns the GeoJSON representation of a Geometry.

ST_AsLatLonText

String st_asLatLonText(Point p)

Returns the Degrees, Minutes, and Seconds representation of a Point. It assumes that the point
is in a latitude/longitude projection.

ST_AsText

String st_asText(Geometry geom)

Returns the well-known text (WKT) representation of a Geometry.

ST_GeoHash

String st_geoHash(Geometry geom, Int prec)

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

37 > Document Version:20200902

Returns the GeoHash representation of a Geometry. The prec argument specifies the precision.

6. Spatial Relationships functions

ST_Contains

Boolean st_contains(Geometry a, Geometry b)

Returns true if and only if no points of Geometry B lie in the exterior of Geometry A, and at least
one point of the interior of Geometry B lies in the interior of Geometry A.

ST_Covers

Boolean st_covers(Geometry a, Geometry b)

Returns true if no point in Geometry B is outside Geometry A.

ST_Crosses

Boolean st_crosses(Geometry a, Geometry b)

Returns true if Geometry A and Geometry B are partially intersected. This means that the
geometries have some, but not all interior points in common.

ST_Disjoint

Boolean st_disjoint(Geometry a, Geometry b)

Returns true if Geometry A and Geometry B are disjoint. This function is equivalent to NOT
ST_Intersects.

ST_Equals

Boolean st_equals(Geometry a, Geometry b)

Returns true if Geometry A and Geometry B are spatially equal.

ST_Intersects

Boolean st_intersects(Geometry a, Geometry b)

Returns true if Geometry A and Geometry B share any portion of the space (intersected).

ST_Overlaps

Boolean st_overlaps(Geometry a, Geometry b)

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 38

Returns true if Geometry A and Geometry B spatially overlap. This means that they are equal in
size, and the intersection point and the geometries are equal in size.

ST_Touches

Boolean st_touches(Geometry a, Geometry b)

Returns true if Geometry A and Geometry B have at lease one point in common, but they do not
have any interior intersection.

ST_Within

Boolean st_within(Geometry a, Geometry b)

Returns true if Geometry A completely lies in the interior of Geometry B.

ST_Relate

String st_relate(Geometry a, Geometry b)

Returns the DE-9IM matrix pattern that shows the dimension of intersections between the
Interior, Boundary, and Exterior of two geometries.

ST_RelateBool

Boolean st_relateBool(Geometry a, Geometry b, String mask)

Returns true if the mask of the DE-9IM matrix pattern matches that of the DE-9IM matrix pattern
returned by st_relate(a, b).

ST_Area

Double st_area(Geometry g)

Returns the area of a Geometry.

ST_Centroid

Point st_centroid(Geometry g)

Returns the geometric center of a Geometry.

ST_ClosestPoint

Point st_closestPoint(Geometry a, Geometry b)

Returns the point on Geometry A that is closest to Geometry B.

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

39 > Document Version:20200902

ST_Distance

Double st_distance(Geometry a, Geometry b)

Returns the 2-dimensional Cartesian distance between two geometries in projected units, such
as EPSG:4236.

ST_DistanceSphere

Double st_distanceSphere(Geometry a, Geometry b)

Returns the minimum distance between two longitude/latitude geometries. It assumes a
spherical earth.

ST_Length

Double st_length(Geometry geom)

Returns the 2-dimensional length of a Line geometry or the perimeter of a Plane geometry, such
as EPSG:4236. The units are determined by the spatial reference system of the geometry. It
returns 0.0 for other types of geometries, such as Point.

ST_LengthSphere

Double st_lengthSphere(LineString line)

Returns the approximate 2-dimensional length of a LineString. It assumes a spherical earth. The
returned length is measured in meters. The approximation is within 0.3% of st_lengthSpheroid
and this function is more efficient in computation.

7. Geometry Processing functions

ST_antimeridianSafeGeom

Geometry st_antimeridianSafeGeom(Geometry geom)

Attempts to convert the geometry into an equivalent form of "antimeridian-safe" if the
geometry spans the antimeridian. For example, the output geometry is covered by BOX (-180 -
90, 180 90). In some cases, this method may fail, and the input geometry will be returned and
then an error will be logged.

ST_BufferPoint

Geometry st_bufferPoint(Point p, Double buffer)

Returns a geometry covering all points within a given radius of Point p. The radius is measured in
meters.

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries

> Document Version:20200902 40

ST_ConvexHull

Geometry st_convexHull(Geometry geom)

An aggregate function. The convex hull of a geometry represents the minimum convex geometry
that encloses all geometries in the aggregated rows.

HBase Ganos Spat io T emporal Engine · Spat io-temporal geometries ApsaraDB for HBase

41 > Document Version:20200902

The HBase Ganos API interacts with databases based on Ali-Hbase Client and GeoTools. You
must configure the pom.xml file in Maven to import the corresponding packages as follows:

<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<geomesa.version>2.1.0</geomesa.version>

<scala.abi.version>2.11</scala.abi.version>

<gt.version>18.0</gt.version>

<hbase.version>1.1.2</hbase.version>

<zookeeper.version>3.4.9</zookeeper.version>

</properties>

<dependencies>

<dependency>

<groupId>org.locationtech.geomesa</groupId>

<artifactId>geomesa-hbase-datastore_2.11</artifactId>

<version>2.0.2</version>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-client</artifactId>

<version>${hbase.version}</version>

<exclusions>

<exclusion>

<artifactId>com.google.guava</artifactId>

<groupId>guava</groupId>

</exclusion>

</exclusions>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-server</artifactId>

<version>${hbase.version}</version>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

5.SDK for Java
5.1. Build a development environment

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · SDK for Java

> Document Version:20200902 42

<artifactId>alihbase-common</artifactId>

<version>${hbase.version}</version>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-protocol</artifactId>

<version>${hbase.version}</version>

</dependency>

</dependencies>

Launch the command-line tool, switch to the root of the Maven project, and run the following
command to compile the project:

mvn clean install

If you can find the compiled class files and JAR packages in the target directory, the environment
has been successfully built.

This topic is intended to help users quickly build a Ganos development environment for test
purposes by coding. After you read this topic, you will learn how to manage Ganos spatio-
temporal data, including how to connect to a database, create an index, import data, and query
data.

Dependencies:

<dependencies>

<dependency>

<groupId>org.locationtech.geomesa</groupId>

<artifactId>geomesa-hbase-datastore_2.11</artifactId>

<version>${geomesa.version}</version>

<exclusions>

<exclusion>

<groupId>org.apache.hbase</groupId>

<artifactId>hbase-client</artifactId>

</exclusion>

<exclusion>

<groupId>org.apache.hbase</groupId>

<artifactId>hbase-server</artifactId>

</exclusion>

<exclusion>

<groupId>org.apache.hbase</groupId>

<artifactId>hbase-common</artifactId>

5.2. Quick start

HBase Ganos Spat io T emporal Engine · SDK for Java ApsaraDB for HBase

43 > Document Version:20200902

</exclusion>

<exclusion>

<groupId>org.apache.hbase</groupId>

<artifactId>hbase-protocol</artifactId>

</exclusion>

</exclusions>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-client</artifactId>

<version>${hbase.version}</version>

<exclusions>

<exclusion>

<artifactId>com.google.guava</artifactId>

<groupId>guava</groupId>

</exclusion>

</exclusions>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-server</artifactId>

<version>${hbase.version}</version>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-common</artifactId>

<version>${hbase.version}</version>

</dependency>

<dependency>

<groupId>com.aliyun.hbase</groupId>

<artifactId>alihbase-protocol</artifactId>

<version>${hbase.version}</version>

</dependency>

<dependency>

<groupId>com.alibaba</groupId>

<artifactId>fastjson</artifactId>

<version>1.2.49</version>

</dependency>

</dependencies>

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · SDK for Java

> Document Version:20200902 44

</dependencies>

<build>

<plugins>

<plugin>

<inherited>true</inherited>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-compiler-plugin</artifactId>

<configuration>

<source>1.8</source>

<target>1.8</target>

</configuration>

</plugin>

</plugins>

</build>

Sample code and descriptions

package com.aliyun.tst;

import com.vividsolutions.jts.geom.Coordinate;

import com.vividsolutions.jts.geom.GeometryFactory;

import com.vividsolutions.jts.geom.Point;

import org.geotools.data.DataStore;

import org.geotools.data.DataStoreFinder;

import org.geotools.data.Query;

import org.geotools.data.Transaction;

import org.geotools.data.simple.SimpleFeatureCollection;

import org.geotools.data.simple.SimpleFeatureIterator;

import org.geotools.data.simple.SimpleFeatureWriter;

import org.geotools.factory.CommonFactoryFinder;

import org.geotools.factory.Hints;

import org.geotools.feature.simple.SimpleFeatureBuilder;

import org.geotools.filter.text.ecql.ECQL;

import org.geotools.geometry.jts.JTSFactoryFinder;

import org.locationtech.geomesa.utils.geotools.SimpleFeatureTypes;

import org.opengis.feature.Feature;

import org.opengis.feature.simple.SimpleFeature;

import org.opengis.feature.simple.SimpleFeatureType;

import org.opengis.filter.FilterFactory2;

import org.opengis.filter.sort.SortBy;

HBase Ganos Spat io T emporal Engine · SDK for Java ApsaraDB for HBase

45 > Document Version:20200902

import org.opengis.filter.sort.SortBy;

import org.opengis.filter.sort.SortOrder;

import java.io.BufferedReader;

import java.io.FileReader;

import java.text.SimpleDateFormat;

import java.util.*;

public class Demo {

public static final String ZK = "localhost"; //The ZooKeeper endpoint.

public static void main(String args[]){

try{

DataStore ds=null;

SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd' 'HH:mm:ss");

//Configure connection parameters.

Map<String, String> params= new HashMap<>();

params.put("hbase.zookeepers",ZK);

params.put("hbase.catalog","test_catalog");

//Initialize the DataStore.

ds= DataStoreFinder.getDataStore(params);

//Use SimpleFeatureType to define the table schema.

String sft_name="point";

SimpleFeatureType sft=

SimpleFeatureTypes.createType(sft_name, "name:String,dtg:Date,*geom:Point:srid=4326");

//Specify Gzip as the compression algorithm.

sft.getUserData().put("geomesa.table.compression.enabled", "true");

sft.getUserData().put("geomesa.table.compression.type", "gz");

//Create a table.

ds.createSchema(sft);

/*

* Create a GeometryFactory object.

*/

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory();

SimpleFeatureBuilder builder = new SimpleFeatureBuilder(sft);

//Construct spatial data (points).

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · SDK for Java

> Document Version:20200902 46

//Construct spatial data (points).

Point point1 = geometryFactory.createPoint(new Coordinate(120.301,35.086));

Point point2 = geometryFactory.createPoint(new Coordinate(120.301,35.076));

Point point3 = geometryFactory.createPoint(new Coordinate(120.301,35.066));

//Construct SimpleFeatures of points.

List<SimpleFeature> features=new ArrayList<>();

features.add(builder.buildFeature("1", new Object[]{"point1",new Date(),point1}));

features.add(builder.buildFeature("2", new Object[]{"point2",new Date(),point2}));

features.add(builder.buildFeature("3", new Object[]{"point3",new Date(),point3}));

//Import SimpleFeature content.

SimpleFeatureWriter writer=(SimpleFeatureWriter)ds.getFeatureWriterAppend(sft_name, Transaction.

AUTO_COMMIT);

for(SimpleFeature feature:features){

SimpleFeature toWrite=writer.next();

toWrite.setAttributes(feature.getAttributes());

toWrite.getUserData().putAll(feature.getUserData());

writer.write();

}

writer.close();

//Construct spatio-temporal query conditions.

long t1=format.parse("2019-01-19 11:45:00").getTime();

long t2=format.parse("2019-02-21 12:15:00").getTime();

String sortField="dtg";//Specify the sorting field. In this example, the data is sorted by date.

FilterFactory2 ff = CommonFactoryFinder.getFilterFactory2();

SortBy[] sort = new SortBy[]{ff.sort(sortField, SortOrder.DESCENDING)};

//Construct a query object.

Query query = new Query(sft_name, ECQL.toFilter("bbox(geom,120,20,130,40) AND dtg >= "+t1+" AND d

tg <= "+t2));

query.setSortBy(sort);

SimpleFeatureCollection result=ds.getFeatureSource(sft_name).getFeatures(query);

SimpleFeatureIterator iterator=result.features();

//Print the query result.

long sum = 0;

while (iterator.hasNext()) {

HBase Ganos Spat io T emporal Engine · SDK for Java ApsaraDB for HBase

47 > Document Version:20200902

System.out.println(iterator.next());

sum++;

}

System.out.println("Total number of queries:" + sum);

}

catch (Exception e){

e.printStackTrace();

}

}

}

After you successfully run the preceding script, the three "Point" SimpleFeatures are printed.
The query result is as follows:

result

The HBase Ganos API interacts with databases based on GeoTools interfaces. In GeoTools,
DataStores are used to access and store data. A DataStore class is defined in the format of
DataAccess<SimpleFeatureType,SimpleFeature>. SimpleFeature specifies a vector feature
model managed by GeoTools. Each point, line, or polygon is considered a SimpleFeature. The
schema of a SimpleFeature is defined by SimpleFeatureType.

For more information about the definition of the DataStore interface and how to use DataStores,
see the official GeoTools documentation:
http://docs.geotools.org/latest/userguide/library/api/datastore.html.

The HBase DataStore parameters are as follows. Parameters marked with asterisks (*) are
required parameters.

Parameter Data type Description

hbase.catalog * String The name of the GeoMesa
catalog.

hbase.zookeepers* String
The ZooKeeper endpoint.
Multiple ZooKeeper endpoints
are separated with commas (,).

geomesa.query.timeout String The validity period of each
query.

5.3. Connect to HBase Ganos

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · SDK for Java

> Document Version:20200902 48

geomesa.query.threads Integer The number of threads used to
process each query.

Parameter Data type Description

You can call the getDataStore method of DataStoreFinder to access a DataStore. Example:

//Configure connection parameters.

Map<String, String> params= new HashMap<>();

params.put("hbase.zookeepers","localhost");

params.put("hbase.catalog","catalog_name");

//Create a DataStore.

DataStore ds=DataStoreFactory.getDataStore(params);

You can then use the created HBase DataStore instance to interact with HBase Ganos. HBase
DataStores are a subclass of DataStores.

The HBase Ganos API uses index tables to store and query data. You can call the createSchema
(SimpleFeatureType) method of DataStore to create an index. The SimpleFeatureType class is
used to define the schema of the SimpleFeature structure in Ganos, and it consists of a set of
common properties. HBase Ganos supports all standard GeoTools property types and also
extends some other property types. You can use the SimpleFeatureTypes class provided by
Geomesa to create a SimpleFeatureTypes object in HBase Ganos:

import org.locationtech.geomesa.utils.interop.SimpleFeatureTypes;

SimpleFeatureTypes.createType("sft_name", "dtg:Date,*geom:Point:srid=4326,name1:type1,name2,ty

pe2,...,nameN,typeN");

In the preceding example, a SimpleFeatureType class named sft_name has been created. This
SimpleFeatureType class contains a Data column named dtg, a spatial column of the Point type
named geom (coordinate reference system 4326), and several property fields including name1
and name2.

The following table lists the data types supported by HBase Ganos.

HBase Ganos type Java data type Support creating indexes

String java.lang.String Yes

Integer java.lang.Integer Yes

Double java.lang.Double Yes

Long java.lang.Long Yes

5.4. Create an index table

HBase Ganos Spat io T emporal Engine · SDK for Java ApsaraDB for HBase

49 > Document Version:20200902

Float java.lang.Float Yes

Boolean java.lang.Boolean Yes

UUID java.util.UUID Yes

Date java.util.Date Yes

Timestamp java.sql.Timestamp Yes

Point org.locationtech.jts.geom.Point Yes

LineString org.locationtech.jts.geom.LineS
tring Yes

Polygon org.locationtech.jts.geom.Polyg
on Yes

MultiPoint org.locationtech.jts.geom.Multi
Point Yes

MultiLineString org.locationtech.jts.geom.Multi
LineString Yes

MultiPolygon org.locationtech.jts.geom.Multi
Polygon Yes

GeometryCollection org.locationtech.jts.geom.Geom
etryCollection Yes

Geometry org.locationtech.jts.geom.Geom
etry Yes

List[A] java.util.List Yes

Map[A,B] java.util.Map<A, B> No

Bytes byte[] No

HBase Ganos type Java data type Support creating indexes

Notes: 1. The geom property is required. You can create only one index on each spatial column
at a time. The indexed column is applied to primary spatio-temporal index systems such as Z2,
Z3, XZ2, and XZ3. 2. A column of the Date type can be used as a primary spatio-temporal index
or a common property index.

2. Specify index parameters
When you create an index, you can set static properties of SimpleFeatureType to specify a set of
required parameters.

Create indexes on specified property columns. HBase Ganos allows you to create indexes on
common property columns, which can improve the query efficiency without specified spatio-
temporal parameters. For example, you can run the following command to create indexes on
the name column:

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · SDK for Java

> Document Version:20200902 50

SimpleFeatureType sft = ...

sft.getDescriptor("name").getUserData().put("index", "true");

You can specify the compression option in UserData options of SimpleFeatureType class. The
supported compression types are snappy, lzo, gz, bzip2, lz4, and zstd.

SimpleFeatureType sft =;

sft.getUserData().put("geomesa.table.compression.enabled", "true");

sft.getUserData().put("geomesa.table.compression.type", "snappy");

HBase Ganos uses the SimpleFeature class to specify spatial features. Each SimpleFeature class
contains an ID, a Geometry object, and other properties. The GeoTools API provides the
SimpleFeatureBuilder class to help users create SimpleFeature objects.

Build a SimpleFeature class

SimpleFeatureType sft = ;

SimpleFeatureBuilder sfBuilder = new SimpleFeatureBuilder(sft);

builder.set("property name", property value);

...

builder.set("geom", Geometry);

SimpleFeature feature = builder.buildFeature(object_id + "_" + date.getTime());

Note: When you create a SimpleFeature class, HBase Ganos generates a 128-bit UUID as the
default Feature ID. To save storage space, you can run the following command to define your
own Feature ID:

SimpleFeature feature =...

feature.getUserData().put(Hints.USE_PROVIDED_FID, java.lang.Boolean.TRUE);

Create a Geometry object
Each SimpleFeature contains a Geometry object, which indicates the spatial object of a feature.
The following figure shows the Entity Relationship Diagram (ER) of various Geometry spatial
objects. For more information, visit
http://docs.geotools.org/stable/userguide/library/jts/geometry.html.

The GeoTools API provides the GeometryFactory class to help you create Geometry objects. You
can create Geometry objects in the following ways:

The Point feature. Method 1: Create a Geometry object by using a Coordinate object.

5.5. Import data

HBase Ganos Spat io T emporal Engine · SDK for Java ApsaraDB for HBase

51 > Document Version:20200902

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory();

Coordinate coord = new Coordinate(1, 1);

Point point = geometryFactory.createPoint(coord);

Method 2: Create a Geometry object by using the Well-known text (WKT). The WKT is a text
markup language that is used to specify vector spatial objects, spatial referencing systems, and
the transformation between spatial reference systems. For more information, visit
https://en.wikipedia.org/wiki/Well-known_text.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory();

WKTReader reader = new WKTReader(geometryFactory);

Point point = (Point) reader.read("POINT (1 1)");

The LineString feature. Method 1: Create a Geometry object by using a Coordinate object.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory();

Coordinate[] coords =

new Coordinate[] {new Coordinate(0, 2), new Coordinate(2, 0), new Coordinate(8, 6) };

LineString line = geometryFactory.createLineString(coordinates);

Method 2: Create a Geometry object by using the WKT.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory();

WKTReader reader = new WKTReader(geometryFactory);

LineString line = (LineString) reader.read("LINESTRING(0 2, 2 0, 8 6)");

The Polygon feature. Method 1: Create a Geometry object by using a Coordinate object.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory();

Coordinate[] coords =

new Coordinate[] {new Coordinate(4, 0), new Coordinate(2, 2),

new Coordinate(4, 4), new Coordinate(6, 2), new Coordinate(4, 0) };

LinearRing ring = geometryFactory.createLinearRing(coords);

LinearRing holes[] = null; // use LinearRing[] to represent holes

Polygon polygon = geometryFactory.createPolygon(ring, holes);

Method 2: Create a Geometry object by using the WKT.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory(null);

WKTReader reader = new WKTReader(geometryFactory);

Polygon polygon = (Polygon) reader.read("POLYGON((20 10, 30 0, 40 10, 30 20, 20 10))");

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · SDK for Java

> Document Version:20200902 52

2. Write data in the database
HBase Ganos writes data by using the SimpleFeatureWriter class in the GeoTools API.
SimpleFeatureWriter supports transactions and can be built by calling the
getFeatureWriterAppend method of DataStore.

Insert a single SimpleFeature structure:

SimpleFeatureType sft = ;

SimpleFeatureWriter writer=(SimpleFeatureWriter)ds.getFeatureWriterAppend(sft.getTypeName(), Tr

ansaction.AUTO_COMMIT);

SimpleFeature toWrite=writer.next();

toWrite.setAttributes(feature.getAttributes());

toWrite.getUserData().putAll(feature.getUserData());

writer.write();

writer.close();

Insert multiple SimpleFeature structures:

HBase Ganos allows you to insert multiple SimpleFeature structures at a time. You can use the
SimpleFeatureStore class of the GeoTools API to implement this operation:

List<SimpleFeature> features=...

SimpleFeatureStore featureStore = (SimpleFeatureStore) ds.getFeatureSource(sft.getTypeName());

List<FeatureId> featureIds = featureStore.addFeatures(new ListFeatureCollection(sft,features));

To use the HBase Ganos API to perform spatio-temporal queries, you must first create an
org.geotools.data.Query object. Then, specify the filter conditions, returned columns, and
sorting parameters, and use DataStore to submit queries to your HBase Ganos cluster. The result
is returned as a SimpleFeature collection.

You can use Common Query Language (CQL) statements to specify conditions in the Query
object. CQL is a query language provided by Open Geospatial Consortium (OGC) for the
Catalogue Web Services specification. Compared with XML-based coding languages, CQL is
encoded in text syntax that we are more familiar with and provides better readability and
adaptability.

1.Common Query Language
You can use Common Query Language (CQL) statements to specify conditions in the Query
object. CQL is a query language provided by Open Geospatial Consortium (OGC) for the
Catalogue Web Services specification. Compared with XML-based coding languages, CQL is
encoded in text syntax that we are more familiar with and provides better readability and
adaptability.

The comparison operators include: equals (=), not-equal-to (<>), greater-than (>), greater-
than-or-equal-to (≥), less-than (<), and less-than-or-equal-to (≤). To query a city with a
population greater than 15 million, you can use the PERSONS > 15000000 condition. The

5.6. Query data

HBase Ganos Spat io T emporal Engine · SDK for Java ApsaraDB for HBase

53 > Document Version:20200902

PERSONS column specifies the population size.
The BETWEEN operator is used to specify a range. For example, PERSONS BETWEEN 1000000
AND 3000000.
The comparison operators support values of the STRING type. You can specify a STRING value
on the right side of the equal sign (=) operator. For example, use the CITY_NAME = 'Beijing'
statement to query the city whose name is Beijing. You can also use the LIKE operator, which
is used in the same way as the LIKE operator in SQL. For example, use the CITY_NAME LIKE 'N%'
statement to query all cities whose names start with the letter N.
Compare two properties. For example, use MALE > FEMALE to query a city where the number of
male residents is greater than female residents.
Arithmetic operators include: plus (+), minus (-), multiply (*), and divide (/). For example, you
can use the UNEMPLOY / (EMPLOYED + UNEMPLOY) > 0.07 condition to query all cities whose
unemployment rate is greater than 7%.
You can use the IN operator to specify properties whose values are within the specified range.
The IN operator is used in the same way as the IN operator in SQL. For example, specify the ID
IN ('cities.1', 'cities.12') condition, or use the CITY_NAME IN ('Beijing', 'Shanghai', 'Guangzhou')
statement to query cities whose names are within the specified values.
You can use all filter functions in Geoserver. For example, use the strToLowerCase
(CITY_NAME) like '%m%' statement to convert the city names to all lowercase and then query
all cities whose names contain the letter m. In this example, the letter M is not case-sensitive.

Use the bounding box (BBOX) for the geometric filter. For example, execute the BBOX
(the_geom, -90, 40, -60, 45) statement to select cities whose geographic coordinates are
within the spatial range of (-90, 40, -60, 45). For more information about CQL, visit ECQL
Reference.

2. Query spatial relationships
The following table lists the predicates defined in CQL that are used to query spatial
relationships:

Syntax Description

INTERSECTS(Expression , Expression) Evaluates whether two spatial features
intersect.

DISJOINT(Expression , Expression) Evaluates whether two spatial features are
disjoint.

CONTAINS(Expression , Expression) Evaluates whether the first feature topologically
contains the second feature.

WITHIN(Expression , Expression) Evaluates whether the first feature is
topologically contained in the second feature.

TOUCHES(Expression , Expression) Evaluates whether two features touch. Features
touch if they have at least one point in common.

CROSSES(Expression , Expression)
Evaluates whether two spatial features cross.
Features cross if they have some but not all
interior points in common.

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · SDK for Java

> Document Version:20200902 54

https://docs.geoserver.org/latest/en/user/filter/ecql_reference.html

EQUALS(Expression , Expression) Evaluates whether two spatial features are
topologically equal.

BBOX (Expression , Number , Number , Number ,
Number [, CRS])

Tests whether a spatial feature intersects a
bounding box specified by its minimum and
maximum X and Y values. The optional CRS is a
string that contains an SRS code. Example:
'EPSG:1234'. The default value is the CRS of the
queried layer.

Syntax Description

For example, to obtain all features located in the spatial range (120E, 30N, 130E, 40N), run the
following command:

DataStore ds = DataStoreFinder.getDataStore(params);

SimpleFeatureType schema=...

String stFilter = "bbox(geom, 120,30,130,40)"

Query query = new Query(schema, ECQL.toFilter(stFilter));

SimpleFeatureCollection features=ds.getFeatureSource(schema).getFeatures(query);

Or to obtain all elements in the polygon built by (46.9 48.9, 47.1 48.9, 47.1 49.1, 46.9 49.1, 46.9
48.9), run the following command:

String stFilter = "contains('POLYGON ((46.9 48.9, 47.1 48.9, 47.1 49.1, 46.9 49.1, 46.9 48.9))', geom)

Query query = new Query(schema, ECQL.toFilter(stFilter));

3. Spatio-temporal queries
The following table lists the temporal predicates supported by HBase Ganos.

Syntax Description

Expression BEFORE Time Evaluates whether a time value is before a point
in time.

Expression BEFORE OR DURING Time Period Evaluates whether a time value is before or
within a time period.

Expression DURING Time Period Evaluates whether a time value is within a time
period.

Expression DURING OR AFTER Time Period Evaluates whether a time value is within or after
a time period.

Expression AFTER Time Evaluates whether a time value is after a point
in time.

The following table lists the formats of time period supported by HBase Ganos.

HBase Ganos Spat io T emporal Engine · SDK for Java ApsaraDB for HBase

55 > Document Version:20200902

Syntax Description

Time / Time Specifies the period defined by a beginning time
and end time.

Duration / Time Specifies the period before a given time.

Time / Duration Specifies the period after a given time.

Note: HBase Ganos does not support queries that contain only time conditions. You must
perform spatio-temporal queries.

For example, if you want to query all features located in (120E, 30N, 130E, 40N), with the time
between 2014-01-01T11:45:00 and 2014-01-01T12:15:00, run the following command:

String stFilter = "bbox(geom, 120,30,130,40) AND dtg DURING 2014-01-01T11:45:00.000Z/2014-01-01T12:

15:00.000Z";

Query query = new Query(schema, ECQL.toFilter(stFilter));

SimpleFeatureCollection features=ds.getFeatureSource(schema).getFeatures(query);

4. Property queries
After you create an index on a property column, you can run the following command to perform
a property query on this column.

String filter = " name = 'bob'"

val q = new Query(sft.getTypeName, ECQL.toFilter(filter))

SimpleFeatureCollection features=ds.getFeatureSource(schema).getFeatures(query);

In the preceding example, the value of the name column is limited.

5. Specify returned columns
You can specify parameters of the Query object to specify columns to be returned. For example:

String[] returnFields=... // Specify columns to be returned.

Query query = new Query(schema, ECQL.toFilter(ecqlPredicate));

query.setPropertyNames(returnFields);

SimpleFeatureCollection features=ds.getFeatureSource(schema).getFeatures(query);

6. Specify the sorting order
You can create a SortBy object to specify columns to be returned. For example:

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · SDK for Java

> Document Version:20200902 56

String sortField=... // Specify columns for sorting.

FilterFactory2 ff = CommonFactoryFinder.getFilterFactory2();

SortBy[] sort = new SortBy[]{ff.sort(sortField, order)};

query.setSortBy(sort);

SimpleFeatureCollection features=ds.getFeatureSource(schema).getFeatures(query);

SDK for Java allows you to access HBase Ganos based on the GeoTools API. For more information,
contact Alibaba Cloud for technical support.

5.7. Instructions to SDK for Java

HBase Ganos Spat io T emporal Engine · SDK for Java ApsaraDB for HBase

57 > Document Version:20200902

The REST API of HBase Ganos uses the GeoJson format to describe spatio-temporal data. For
more information, see GEOJSON RFC.

The following sample code shows the spatio-temporal Point data, which can be considered as a
track point:

{

"type": "Feature",

"geometry": {

"type": "Point",

"coordinates": [125.6, 10.1]

},

"properties": {

"name": "Dinagat Islands",

"dtg": 1536041936000,

"id": "1"

}

}

The data consists of three parts:

Time data: The data is stored as properties information in properties.dtg. In this example, the
time data is a timestamp in milliseconds, which is a 13-digit integer.
Spatial data: The geometry.type parameter indicates that the spatial data is a Point data,
and the geometry.coordinates indicates the latitude and longitude coordinates of the Point.
Other properties: Other properties are stored in properties, such as properties.name and
properties.id, which indicate the property information of the Point.

GeoJson libraries
You can use common GeoJson libraries to generate GeoJson strings.

The GeoJson library geojson-jackson for Java. For more information, visit
https://github.com/opendatalab-de/geojson-jackson. Run the following command to use the
library.

FeatureCollection featureCollection = new FeatureCollection();

featureCollection.add(new Feature());

String json= new ObjectMapper().writeValueAsString(featureCollection);

The GeoJson library geojson-jackson for Python.

6.RESTful API
6.1. GeoJson format description

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · REST ful API

> Document Version:20200902 58

https://tools.ietf.org/html/rfc7946

Run the following command to include the geojson package.

pip install geojson

Run the following command to use the library.

point_feature = Feature(id="1",geometry=Point((1.6432, -19.123)),properties={"id":"1","dtg":1536041936

000,"name": "Dinagat Islands"})

polygon_feature = Feature(id="my_feature2",geometry=Polygon([(0,0),(0,1),(1,1),(1,0),(0,0)]),propertie

s={"id":"2","dtg":1536041936000,"name": "Dinagat Islands"})

feature_collection = FeatureCollection([point_feature,polygon_feature])

1. Register a DataStore

The DataStore (DS) class in the HBase Ganos RESTful API records the parameters required to
connect to the backend storage. These parameters includes the Catalog Name mapped to
ApsaraDB for HBase, and the ZooKeeper address used to connect to ApsaraDB for HBase. DS is
used as aliases of the configurations. The following section shows how to register a DS in HBase
Ganos:

URL /ds/:alias

Method POST

URL parameters
alias=[alphanumeric] specifies the alias of the
DS, which is used as the unique identifier of a DS
object.

Data parameters

The "hbase.catalog: HBase Catalog Name"
parameter specifies the catalog name, which you
can also customize. The "hbase.zookeepers:
zookeeper" parameter specifies the ZooKeeper
address that is used to connect to ApsaraDB for
HBase.

Success response Code: 200; Content: empty.

Error response Code: 400; Content: empty.

Example: Register the data source named my_ds in the catalog_name directory of ApsaraDB for
HBase.

6.2. Register a DataStore

HBase Ganos Spat io T emporal Engine · REST ful API ApsaraDB for HBase

59 > Document Version:20200902

curl \

'localhost:8080/geoserver/geomesa/geojson/ds/my_ds' \

-d hbase.catalog=catalog_name

-d hbase.zookeepers=localhost

After you register the DS, run the following command to view all registered DSs:

curl 'localhost:8080/geoserver/geomesa/geojson/ds'

After DS is registered, you can create index tables. Index tables correspond to HBase tables.
HBase Ganos automatically creates different index tables based on data types in the GeoJson
format. These index tables include property index tables and spatio-temporal index tables. The
following table lists the syntax to create indexes:

URL /index/:alias/:index

Method POST

URL parameters

alias=[alphanumeric] specifies the name of DS.
index=[alphanumeric] specifies the name of the
index table, which is used as the unique
identifier of the index.

Data parameters

points=[Boolean] specifies whether it is a point
layer. HBase Ganos optimizes point data
storage. date=[alpha numeric] specifies the
JSONPath of the time attribute and can be null
(no time index is created); id=[alpha numeric] to
specify the JSONPath of the feature id; attr=
[alpha numeric] to specify the JSONPath of the
secondary index attribute, which can be null (no
attribute indexes are created); compression=
[alpha numeric] specifies the compression
option. Valid values: gz, lzo, snappy. Empty (data
is not compressed)

Success response Code: 201. Content: empty.

Error response Code: 400, which indicates that some required
parameters are not specified. Content: empty.

Example 1: Create an index named my_index in the DS named my_ds and specify the
properties.id column as the id index.

curl \ 'localhost:8080/geoserver/geomesa/geojson/index/my_ds/my_index'\

-d id=properties.id

6.3. Create/delete indexes

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · REST ful API

> Document Version:20200902 60

Note that this statement does not create indexes for date, attr. When there are the time or
other properties in the query statement, the query will trigger a full table scan.

Example 2: Create an index named my_index in my_ds, set the storage type to Point, set the
JSONPath of ID to properties.id, set the date to properties.dtg, create a secondary index on the
name column, and compress the data.

Curl \

'localhost:8080/geoserver/geomesa/geojson/index/my_ds/my_index

-d id=properties.id

-d points=true

-d date=properties.dtg

-d attr=properties.name

-d compression=gz

After you create an index, you can import data into the index table.

URL /index/:ds/:index/features

Method POST

URL parameters
alias=[alphanumeric] specifies the name of the
newly created DS. index=[alphanumeric]
specifies the name of the newly created index.

Data parameters The Feature collection in the GeoJSON format.

Success response Code: 200. Content: Add a list of Feature IDs.

Error response Code: 400, which indicates that some required
parameters are not specified. Content: empty.

Example: Import data into the index table in my_ds. Write the Feature information in the GeoJson
format to the features.json file, and import the file to HBase Ganos.

6.4. PUT data

HBase Ganos Spat io T emporal Engine · REST ful API ApsaraDB for HBase

61 > Document Version:20200902

echo '{"type":"FeatureCollection","features":[' \

'{"type":"Feature","geometry":{"type":"Point",' \

'"coordinates":[32,10]},"properties":{"id":"1","name":"n1"}},' \

'{"type":"Feature","geometry":{"type":"Point",' \

'"coordinates":[34,10]},"properties":{"id":"2","name":"n2"}}]}' \

> features.json

curl \

'localhost:8080/geoserver/geomesa/geojson/index/my_ds/my_index/features'\

-H 'Content-type: application/json' \

-d @features.json

If the operation is successful, the system returns the ID list of the newly input data: [1,2].

You can delete features by specifying feature IDs in the following way:

URL /index/:alias/:index/features/:ids

Method DELETE

URL parameters

alias=[alphanumeric] specifies the name of the
newly created DS. index=[alphanumeric]
specifies the name of the newly created index.
id=[alphanumeric] specifies IDs of features that
are to be deleted. Separate multiple feature IDs
with commas (,).

Success response Code: 200. Content: empty.

Error response Code: 400, which indicates that some required
parameters are not specified. Content: empty.

Example: Delete the features whose IDs are 1 and 2 from the my_index index on my_ds.

curl \

'localhost:8080/geoserver/geomesa/geojson/index/my_ds/my_index/features/1,2' -X DELETE

HBase Ganos supports various queries such as the attribute query, ID query, and spatio-
temporal range query. You can query data in the following ways:

URL /index/:ds/:index/features

6.5. Delete data

6.6. Queries in HBase Ganos

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · REST ful API

> Document Version:20200902 62

Method GET

URL parameters
Required: alias=[alpha numeric] ds name index=
[alpha numeric] index name optional: query
condition indicated by q=[alpha numeric] JSON

Success response Code: 200. Content: The Feature collection in the
GeoJSON format.

Error response Code: 400, which indicates that
some required parameters are not specified.
Content: empty.

curl\

'localhost:8080/geoserver/geomesa/geojson/index/:alias/:index/features' \ --get --data-urlencode 'q

=query conditions in JSON format'

The following table lists the predicates supported by HBase Ganos for attribute queries.

$lt Less than

$lte Less than or equal to

$gt Greater than

$gte Greater than or equal to

The following sections list several ways to query data:

1. Attribute queries. HBase Ganos attribute queries are performed by using predicates:

Example 1: Query features by using the id=0 condition.

curl \

'localhost:8080/geoserver/geomesa/geojson/index/my_ds/my_index/features'\

--get --data-urlencode

'q={

"properties.id":"0"

}'

Example 2: Query features by using the name=n1 condition.

curl \

'localhost:8080/geoserver/geomesa/geojson/index/my_ds/my_index/features'\

--get --data-urlencode

'q={"properties.name":"n1"}'

HBase Ganos Spat io T emporal Engine · REST ful API ApsaraDB for HBase

63 > Document Version:20200902

Example 3: Query features by using the age<30 condition.

curl \

'localhost:8080/geoserver/geomesa/geojson/index/my_ds/my_index/features'\

--get --data-urlencode

'q={"properties.age":{"$lt":30}}'

2. Spatial queries

Example 1: Query features by using the bounding box (BBOX).

q={

"geometry": {

{

"$bbox" : [-180, -90, 180, 90]

}

}

Example 2: Query features by using the INTERSECTS predicate.

q={

"geometry": {

"$intersects" : {

"geometry": {

"type": "Point",

"coordinates" : [30, 10]

}

}

}

}

Example 3: Query features by using the WITHIN predicate.

q={

"geometry": {

"$within" : { "$geometry" : {

"type": "Polygon"

"coordinates": [[[0,0], [3,6], [6,1], [0,0]]]

}}

}

}

Example 4: Query features by using the CONTAINS predicate.

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · REST ful API

> Document Version:20200902 64

q={

"geometry": {

"$contains" : {

"geometry": {

"type": "Point",

"coordinates" : [30, 10]

}

}

}

}

3. Time queries

Example 1: Use the $during predicates to specify a time period.

curl \

'localhost:8080/geoserver/geomesa/geojson/index/my_ds/my_index/features'\

--get --data-urlencode

'q={"dtg":{"$during":"2018-01-02T08:00:00Z/2018-03-02T10:00:00Z"}}'

Example 2: Use the $lt(), $gt, $lte, and $gte predicates to specify a time period.

curl \ 'localhost:8080/geoserver/geomesa/geojson/index/my_ds/my_index'\

--get --data-urlencode

'q={"dtg":{"$lt" : "2013-01-02 00:00:00"}}'

4. Combination queries

AND: specify the a = 5 and b = 6 condition in the statement.

{ "a" : 5, "b" : 6 }

OR: specify the a = 5 or a = 6 condition in the statement.

{ "$or" : [{ "a" : 5 }, { "b" : 6 }] }

Example 1: Perform a spatio-temporal query together with an attribute query:

HBase Ganos Spat io T emporal Engine · REST ful API ApsaraDB for HBase

65 > Document Version:20200902

curl /

'localhost:8080/geoserver/geomesa/geojson/index/my_ds/my_index/features'\

--get --data-urlencode

'q={

"geometry":{"$bbox":[116.3383,39.8291,116.3384,39.8292]},

"properties.taxi_num":"1131",

"properties.dtg":{"$gt" : "2008-02-08T08:00:00.000+0000"},

"properties.dtg":{"$lt" : "2008-02-08T12:21:16.000+0000"}

}'

Click here to download the RESTful API sample code for Python.

6.7. RESTful API sample code for Python

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · REST ful API

> Document Version:20200902 66

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/101143/cn_zh/1545826921992/ganos_rest_python.py

Spatio-temporal raster data
A raster is a grid that is formed by a matrix of cells (or pixels) that are organized into rows and
columns. Each cell contains attribute values that represent the information for the area within
the cell. These values are also known as raster data. Raster data can be classified into two
types: the thematic data and image data.

Thematic data: The value of each cell represents a measurement or a classification to
describe information, such as the pollutant concentration, rainfall, land ownership types, or
vegetation types.
Image data: Image data is also called remote sensing image. It refers to a film or photo taken
by using ground remote sensing, aerial remote sensing, or aerospace remote sensing
technologies to record the electromagnetic wave size of various ground objects. For example,
aerial images and remote sensing satellite images.

A raster is also called a spatio-temporal raster because raster data contains both spatial and
temporal attributes. The spatio-temporal raster also emphasizes the temporal characteristics of
raster data, such as the raster data that manages time series.

Ganos Raster
HBase Ganos provides Ganos Raster, which provides a spatio-temporal data engine and toolset
to manage and process raster data. It allows users to use ApsaraDB for HBase to store, index,
query, analyze, and transmit raster data and related metadata. Raster data is stored in
ApsaraDB for HBase as tiles or blocks. A primary key is assigned to each tile. You can perform
spatial and temporal queries based on the primary key. Ganos Raster also supports the
integration and analytics of raster data from multiple sources, such as remote sensing,
photogrammetry, and thematic maps, and supports data service release features such as the
Tile Map Service (TMS) and Web Map Tile Service (WMTS). Ganos Raster can be used in the fields
such as location-based services, geographic image archiving, environmental monitoring and
assessment, geological engineering and exploration, natural resource management, national
defense, emergency response, telecommunications, transportation, urban planning, and
homeland security.

Ganos Raster data model

Terms
The Ganos Raster data model consists of the following features:

Image: Specifies a remote sensing image, for example, a Tagged Image File Format (TIFF) file.
Catalog: Specifies a data catalog, which is similar to a database. The Catalog is a logical
definition. It consists of all layers and a metadata table in an ApsaraDB for HBase database.
Each layer is stored in a table. The metadata of each layer is stored in a row of the metadata
table.
Cover or Coverage: A dataset that consists of multiple rasters, which is the same as a mosaic
dataset.

7.Spatio-temporal raster
7.1. Terms

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

67 > Document Version:20200902

Layer: A 2D raster data layer that consists of multiple tiles. Each tile has a row number and a
column number.
Tile or Block: The data blocks. Each data block is a collection of pixels. A tile is the basic unit
for storing raster data in a database. Each tile contains several cells. Each tile can be 256 × 256
pixels or 512 × 512 pixels.
Cell or Pixel: A pixel in the tile. It supports various data types, such as byte, short, integer, and
double.
Key: The key value, which is the unique identifier of a tile. Valid values: SpatialKey,
SpaceTimeKey, and TimeKey.
Pyramid: The raster pyramid. Raster pyramids are used to speed up the display of raster data.
Each pyramid has different levels of raster datasets. Each level corresponds to a layer. Level 0
refers to the raw raster dataset.
Metadata: The metadata of a raster, such as the spatial range, projection types, and pixel
types. The metadata of the remote sensing platform is excluded.
Layout Definition or Layout: Defines chunking mode for tiles in a layer, the geographical range
represented by each pixel, and the mapping relationship between a key and an actual
coordinate system.
Layout Scheme: A layout scheme consists of zoom numbers of all layers in a pyramid and the
corresponding layout definitions.

The file representation of raster data and the logical model stored in the database are shown in
the following figure:

Band and layer

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal raster

> Document Version:20200902 68

Ganos Raster uses a simple and efficient raster data model to manage the thematic data and
remote sensing image data. An image consists of several bands that can be represented as a 2D
raster layer. Each pixel of a band is represented as a cell. Note: To simplify the storage and
management of data, make sure that all cells in each band are of the same data type and have
the same projection parameters. However, different bands of an image can be heterogeneous.
Each image has corresponding metadata, such as the extent, data types, projection information,
and row/column numbers. Raster data is stored as layers in databases. Each layer is stored and
managed as a tile in Ganos Raster. Tiles can be classified into two types: single-band tiles and
multi-band tiles. Each multi-band tile contains multiple tiles.

As shown in the preceding figure, the band and layer have three types of relationships:

One band corresponds to one layer: For single-band raster data such as the output of the
model and remote sensing image analytics results, each pixel includes only one value. If a
pyramid model is not built, each band corresponds to a layer.
Multiple bands form a layer: If a layer of the remote sensing image is composed of RGB, the
layer can be represented by the multi-band tile. In this case, the R, G, and B bands form a
layer.
A band includes multiple layers: If you have created a pyramid model for the raster data, each
band contains multiple magnification levels. Each magnification level corresponds to a layer.

Raster pyramids

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

69 > Document Version:20200902

You can build pyramids for raster data to improve the efficiency of data consumption. Pyramids
are a downsampled version of the original raster dataset. Each pyramid can contain many
downsampled layers. Each successive layer of the pyramid is downsampled at a scale of 2:1. The
following figure shows an example of four levels of pyramids created for a raster dataset:

Pyramids can speed up the display of the raster data by retrieving only the data at a specified
resolution. The resolution depends on the display requirement. When you draw an entire
dataset, you can use pyramids to quickly display tiles of lower resolutions. As you zoom in,
levels with higher resolutions are drawn. However, the performance remains unchanged. The
database automatically chooses the most appropriate pyramid level based on your display
scale. You only need to build pyramids once for each raster dataset. The pyramids are accessed
each time you view the raster dataset. It takes more time to build a set of pyramids on a larger
raster dataset. However, this saves you more time in the future.

Cover dataset
All images generated by the same sensor, such as Landsat ETM+, form a spatial coverage (or
cover). The coverage provides efficient data filtering and sorting capabilities, supports spatial
and temporal queries, and allows you to retrieve petabytes of raster data through the interface.
The cover dataset is used to manage a set of raster datasets (images) that are stored in the
form of catalogs and displayed as mosaic images. The cover dataset splices multiple images
together to form a virtual dataset, which is called ImageMosaic. The cover dataset supports
advanced raster query features and processing functions, and can be used as a data source to
provide image services. The following figures show the extent, raw data, and mosaicked
dataset of a cover dataset.

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal raster

> Document Version:20200902 70

The cover dataset in Ganos Raster consists of the following parts:

The footprint of the raster data extent.
The generation time of the raster data.
The storage location of a tile of the raster data.

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

71 > Document Version:20200902

Layout scheme of Ganos Raster
The layout definition and layout scheme are used to define the data chunking mode of each
layer. If you specify the extent and cell size (the actual spatial range defined by a cell), the
layout scheme can provide a zoom and the layout definition of each level. Ganos Raster
supports two modes for data chunking: zoom and local. In zoom mode, data within the globe is
chunked and encoded according to the TMS standard. The tile in the upper-left corner is defined
as the starting point (0,0). The coordinates increase from left to right and top to bottom. All
types of raster data are chunked into tiles based on spatio-temporal grids, which makes it easy
for the accumulable analytics and multivariate data fusion. By following the TMS standard, tiles
chunked by this mode can be directly published to TMS for display. For example, you can use the
OpenLayers component. However, the disadvantage of this mode is that the speed of data
chunking is slow. The following figure shows tiles in the zoom mode:

In addition to the zoom mode, Ganos Raster also provides a mode based on the local coordinate
system of the image: local. In local mode, the upper-left corner of the extent is defined as the
starting point (0,0). Then the data is chunked into tiles of 256 × 256 pixels until these tiles
completely cover the image area. The remaining pixels are filled with NoData values. The
benefit of this mode is that Layer 0 uses resolution of the raw data, which retains the original
metadata. The local mode speeds up the data chunking, and helps you update the image easily
and perform efficient queries. However, the disadvantage is that different raster data do not
have a unified mode for data chunking, which makes it difficult for the accumulable analytics. By
default, Ganos Raster uses the local mode to chunk data and create pyramids.

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal raster

> Document Version:20200902 72

Coordinate system
Ganos Raster supports coordinate systems defined by the Open Geospatial Consortium (OGC)
Coordinate Reference System (CRS) standard. Users can define coordinate systems used by
raster data based on European Petroleum Survey Group (EPSG) parameters. The following EPSG
coordinate reference systems are often used in Ganos Raster: (1) EPSG:4326: The WGS84
projection coordinate system, which displays the latitude and longitude dimension. It is one of
the most popular coordinate systems. (2) EPSG:3857:

The Pseudo-Mercator projection coordinate system, which is also called Web Mercator
coordinate system. Mainstream Web mapping applications such as Google Maps all use this
coordinate system.

For more information about EPSG parameters, visit https://epsg.io/.

Primary key and indexes
When the raster data is chunked into tiles, you need to define how they are organized so that
you can create indexes on them. Tiles are stored in ApsaraDB for HBase in the form of key-value
pairs. The key of each tile consists of attributes such as the layer name, level, SpaceTimeKey,
row number, and column number. HBase Ganos Raster provides two key models:

SpatialKey: The spatial primary key.
SpatialKey uses the Space Filling Curve (SFC) to encode and index tiles. Ganos Raster supports
the following three types of spatial indexes:

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

73 > Document Version:20200902

![image.png]
![image.png]

![image.png]

Z-Order curve Hilbert curve Master-Row curve

SpaceTimeKey: The spatio-temporal primary key
SpaceTimeKey is a three-dimensional SFC, which adds a time dimension based on SpatialKey.

Use an ETL tool to import raster data

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal raster

> Document Version:20200902 74

Ganos Raster provides an Extract Transformation Load (ETL) tool to help you migrate data. The
ETL tool allows you to migrate raster data in Object Storage Service (OSS) or Hadoop Distributed
File System (HDFS) to ApsaraDB for HBase. Before you run an ETL task, you must modify the
configuration file to specify parameters used during the ETL process. For more information, see:
Import raster data to ApsaraDB for HBase. When the ETL task is running, the raster data in OSS or
HDFS is loaded into Spark for image splicing, chunking, and re-projecting to generate a set of
tiles. These tiles generate key-value pairs in the format of <Key,Value> based on the defined
LayoutScheme and write them into ApsaraDB for HBase. The following figure shows the detailed
process.

1. Preparation
Before you use the Ganos Raster Extract Transformation Load (ETL) tool to import data to the
database, you must complete the following tasks:

1.1 Configure a Spark cluster
ETL uses a Spark cluster as the running environment to perform loading, re-projecting, splicing,
generating tiles, and importing of the raster data. Step 1: Create a Spark cluster. For more
information, visit https://help.aliyun.com/document_detail/93900.html?
spm=a2c4g.11186623.6.585.70482e22jbAKMJ.

7.2. Import raster data to ApsaraDB for
HBase

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

75 > Document Version:20200902

https://help.aliyun.com/document_detail/129942.html?spm=a2c4g.11186623.6.734.71153d6exgeLe5
https://help.aliyun.com/document_detail/93900.html?spm=a2c4g.11186623.6.585.70482e22jbAKMJ

Step 2: Click here to download the ETL toolkit. Create the lib and job directories on the Cluster
page in the Spark console. Then, save the downloaded ganos-raster-etl-1.0-SNAPSHOT.jar file
to the lib directory.

1.2 Upload the raw raster data to OSS
ETL loads data based on the Object Storage Service (OSS) file path specified by users.

2. Import raster data to the database

2.1 Create a cover dataset
Before you import data to the database, you can select whether to create a cover dataset to
support the image mosaic. Run the following commands to create a cover dataset:

curl '[address]:[port]/geoserver/geomesa/geojson/raster/cover/:cid/?

The cid parameter specifies the name of the cover dataset to be created. After you create the
cover dataset, run the following command to retrieve a list of all covers:

curl '[address]:[port]/geoserver/geomesa/geojson/raster/cover

Use the DELETE method to specify the cover object to be deleted:

curl '[address]:[port]/geoserver/geomesa/geojson/raster/cover/:cid -X DELETE

You can also use the granules method to retrieve the information about all layers in the cover:

curl '[address]:[port]/geoserver/geomesa/geojson/raster/cover/granules/:cid

2.2 Write a script to import data
Before you import raster data to the database, you must create an ETL configuration file. The
configuration file consists of four parts: basic configurations, input parameters, output
parameters, and backend parameters. The following sample code shows a simple configuration
file:

{

"spark":{

"spark_id":"[your spark_id]",

"spark_oss":"[the path of OSS files]",

"spark_jar":[the path of the Ganos Raster JAR file]",

"spark_httpfs":"http://[your spark_id]-master2-001.spark.rds.aliyuncs.com:14000",

"livy_server":"http://[your spark_id]-master1-001.spark.rds.aliyuncs.com:8998",

"driver-memory":"8G",

"driver-cores":4,

"num-executors":4,

"executor-memory":"4G",

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal raster

> Document Version:20200902 76

https://tst-ganos-bj-public.oss-cn-beijing.aliyuncs.com/hbase/driver_jar/spark/ganos-raster-etl-1.0-SNAPSHOT.jar

"executor-cores":4,

"cover":"[the name of the cover dataset]",

},

"input":{

"format": "multiband-geotiff",

"name": "[the name of the layer]",

"cache": "NONE",

"backend": {

"type": "oss",

"path":"[the path of OSS files]"

}

},

"output":{

"backend": {

"type": "hbase",

"profile":"hbase",

"path": "[the name of the table that is used to store tiles of the layer]"

},

"reprojectMethod": "buffered",

"pyramid": true,

"tileSize": 256,

"keyIndexMethod": {

"type": "zorder"

},

"resampleMethod": "nearest-neighbor",

"layoutScheme": "zoomed",

"crs": "EPSG:3857"

"attributeTable":"[the name of the metadata table of Ganos Raster tiles]"

},

"backend":{

"backend-profiles": [{

"name":"hbase",

"type":"hbase",

"master":"master",

"hbase-name":"hbase",

"zookeepers":"[the ZooKeeper address used to connect to HBase]"

}

]

}

}

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

77 > Document Version:20200902

The following sections show parameters in the configuration file:

Spark basic configuration attributes
The basic configuration attributes define some system environment variables that are used by
Spark ETL jobs, as shown in the following table:

Attribute Description

livy_server The Livy server address provided by the Spark
cluster.

spark_httpfs The path of auxiliary files to be uploaded.

spark_id The ID of the Spark instance.

spark_jar The path of the Ganos Raster JAR file.

spark_oss The OSS path provided by Spark, where store
various resources.

driver-memory
The amount of memory allocated to each driver
node. This parameter is one of the Spark runtime
parameters.

driver-cores
The number of cores allocated to each driver
node. This parameter is one the of Spark runtime
parameters.

num-executors The number of executors. This parameter is one
of the Spark runtime parameters.

executor-memory
The amount of memory allocated to each
executor node. This parameter is one of the
Spark runtime parameters.

executor-cores
The number of cores allocated to each executor
node. This parameter is one of the Spark runtime
parameters.

cover The name of a cover dataset.

Note: The preceding Spark runtime parameters must be set based on the size and number of
specified files.

Input parameters
Input parameters are used to define attributes of the data source, as shown in the following
table:

Attribute Description

format Specifies the type of the remote sensing raster
data. Valid values: geotiff and multiband-geotiff.

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal raster

> Document Version:20200902 78

name The name of a layer.

path

The path of the raw file in OSS. It can be the
path of a single file or a directory. If you set this
parameter to a directory, all files in the directory
are mosaicked and then stored in the database
as a layer.

Attribute Description

format: The data conversion format.

geotiff The single-band raster data, which is read in Tile
Resilient Distributed Dataset (RDD) mode.

multiband-geotiff The multi-band raster data, which is read in
MultibandTile RDD mode.

Output parameters
Output parameters are used to define specific attributes of the output data, as shown in the
following table:

Attribute Description

path The path of the stored tile.

reprojectMethod The re-projection method. Valid values: per-tile
and buffered.

resampleMethod
The resampling method. Valid values: nearest-
neighbor, bilinear, cubic-convolution, cubic-
spline, and average.

layoutScheme The organized mode of the tile. Valid values:
zoomed and local.

crs The Coordinate Reference System (CRS)
information about the projection.

attributeTable The name of the metadata table of Ganos Raster
tiles.

Parameters description: reprojectMethod: The re-projection method

per-tile

Indicates that values of adjacent tiles are not
considered when ETL re-projects a single tile.
The re-projection is fast, but it cannot reach the
same effect as the buffered method.

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

79 > Document Version:20200902

buffered

Indicates that values of adjacent tiles are
considered when ETL re-projects a single tile.
Compared with the per-tile method, the re-
projection is slow because a large amount of
data needs to be exchanged. However, this
method can help you achieve the best result.

per-tile

Indicates that values of adjacent tiles are not
considered when ETL re-projects a single tile.
The re-projection is fast, but it cannot reach the
same effect as the buffered method.

resampleMethod: The resampling method

nearest-neighbor Indicates the nearest resampling method.

bilinear Indicates the bilinear resampling method.

cubic-convolution Indicates the cubic convolution resampling
method.

cubic-spline Indicates the cubic spline resampling method.

average Indicates the average value resampling method.

layoutScheme: The organized modes of tiles

zoomed

In zoomed mode, you can perform data chunking
within the globe based on the TMS standard,
create pyramids, and use the Web Mercator
projection method.

local

In local mode, you can perform data chunking
according to the data extent and coordinate
system. The upper-left corner of the extent is
defined as the starting point (0,0).

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal raster

> Document Version:20200902 80

The following figures show the comparison of these two modes:

Note: In zoomed mode, the world scope from CRS is required to build TMS pyramids. The system
may need to input resampling of rasters to match the resolution of TMS levels.

Backend parameters
Backend parameters define how tiles are stored in the database, as shown in the following
table:

Attribute Description

zookeepers The ZooKeeper address used to connect to
HBase.

2.3 Submit a job
After you set runtime parameters in the JSON format, you can use the RESTful API to submit the
job to the server. The following command shows the request URL:

curl '[address]:[port]/geoserver/geomesa/geojson/raster/etl

The parameters are listed in the following table:

URL raster/etl

Request body A set of parameters in the GeoJSON format.

Success response Code: 200. Content: the ID of the started Spark
job.

Error response Code: 400, which indicates that some required
parameters are not specified. Content: empty.

Example 1: Use the JSON file created in the preceding step to start the Spark ETL job.

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

81 > Document Version:20200902

echo '{

"livy_server":"http://[your spark_id]-master1-001.spark.rds.aliyuncs.com:8998",

"httpfs":"http://[your spark_id]-master2-001.spark.rds.aliyuncs.com:14000",

"spark_id":"[your spark_id]",

"spark_oss":"[the path of OSS files]",

"input":{

"format": "temporal-geotiff",

}

.....

}'

> params.json

curl localhost:20180/geoserver/geomesa/geojson/raster/etl

-H 'Content-type: application/json' \

-d @params.json

If the job is started successfully, the server returns the ID of the ETL job started by Spark, as
shown in the following sample code:

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal raster

> Document Version:20200902 82

{

"job_id": 131,

"resource_id": "ccaf0607-7009-4ed2-a9c9-a1b8f5b2b03b",

"params": {

"output": {

"path": "[the table name of the tile]",

"resampleMethod": "average",

"layoutScheme": "zoomed",

"temporalResolution": 3600000,

"crs": "ESRI:4326",

"reprojectMethod": "per-tile"

},

"input": {

"path": "oss://ganos-test/MTSAT",

"timeTag": "TIFFTAG_DATETIME",

"timeFormat": "yyyy-MM-dd HH:mm:ss",

"format": "temporal-geotiff",

"name": "[the name of the layer]"

},

"spark_id": "[your spark_id]",

"livy_server": "http://[your spark_id]-master1-001.spark.rds.aliyuncs.com:8998",

"httpfs": "http://[your spark_id]-master2-001.spark.rds.aliyuncs.com:14000",

"driver-memory": "8G",

"num-executors": 4,

"spark_oss": "[the path of OSS files]",

"backend": {

"zookeepers": "[the ZooKeeper address used to connect to HBase]"

},

"driver-cores": 4,

"executor-cores": 4,

"executor-memory": "6G"

},

"status": "STARTING"

}

2.4 Query jobs
After you start a job, you can run the following command to query the running ETL jobs:

curl '[address]:[port]/geoserver/geomesa/geojson/raster/etl/jobs

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

83 > Document Version:20200902

The parameters are listed in the following table:

URL raster/etl /jobs

Success response Code: 200. Content: The IDs of all jobs started by
Spark.

Error response Code: 400.

Example 1:

curl localhost:20180/geoserver/geomesa/geojson/raster/etl/jobs

Returned content:

{

"jobs": {

"from": 0,

"total": 1,

"sessions": [

{

"id": 131,

"state": "success",

"appId": "application_1556160980419_0137",

"appInfo": {

"driverLogUrl": "https://[your spark_id]-nginx-master1-001.spark.rds.aliyuncs.com/spark-master3-1/n

ode/containerlogs/container_1556160980419_0137_01_000001/livy",

"sparkUiUrl": "https://[your spark_id]-nginx-master1-001.spark.rds.aliyuncs.com/proxy/application_15

56160980419_0137/"

},

"log": [

"\t tracking URL: http://[your spark_id]-master1-1:9088/proxy/application_1556160980419_0137/",

"\t user: livy",

"19/06/02 15:53:25 INFO ShutdownHookManager: Shutdown hook called",

......

]

}

]

}

}

2.5 Query the state of a job

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal raster

> Document Version:20200902 84

curl '[address]:[port]/geoserver/geomesa/geojson/raster/etl/status/:jobid

The parameters are listed in the following table:

URL raster/etl /jobs

URL parameters jobid: The ID of the ETL job.

Success response Code: 200. Content: The state of the job with the
specified ID.

Error response Code: 400.

Example 1:

curl localhost:20180/geoserver/geomesa/geojson/raster/etl/status/123

Returned content:

{

"job_id": 131,

"job_info": {

"id": 131,

"state": "success",

"appId": "application_1556160980419_0137",

"appInfo": {

"driverLogUrl": "https://[your spark_id]-nginx-master1-001.spark.rds.aliyuncs.com/spark-master3-1/n

ode/containerlogs/container_1556160980419_0137_01_000001/livy",

"sparkUiUrl": "https://[your spark_id]-nginx-master1-001.spark.rds.aliyuncs.com/proxy/application_15

56160980419_0137/"

},

"log": [

"\t tracking URL: http://spark-master1-1:9088/proxy/application_1556160980419_0137/",

"\t user: livy",

"19/06/02 15:53:25 INFO ShutdownHookManager: Shutdown hook called",

.......

]

},

"status": "SUCCESS"

}

2.6 Access the Livy server to view jobs

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

85 > Document Version:20200902

You can access the Spark Livy service to view completed and running ETL jobs, as shown in the
following figure:

Overview
Ganos Raster provides the GeoServer plug-in. The plug-in allows Ganos Raster to publish raster
data stored in ApsaraDB for HBase as services such as Web Map Service (WMS) and Web Map Tile
Service (WMTS), which comply with the Open Geospatial Consortium (OGC) standard. This
published service consists of two plug-ins: ganos-raster-image and ganos-raster-cover. The
ganos-raster-image plug-in is used to publish a layer as a WMS service. The ganos-raster-cover
plug-in supports mosaic datasets and is used to publish multiple layers as WMS services. You can
select one of them as needed.

How to publish a service:

7.3. Publish raster data as a service

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal raster

> Document Version:20200902 86

The following example shows how to use the Shuttle Radar Topography Mission (SRTM) data to
publish a Ganos Raster layer as a WMS service. Assume that you have created a layer named
srtm_china in HBase Ganos. Click here to download the ganos-raster-image-21.1.jar file, and
store it in the %GEOSERVER_HOME%/WEB-INF/lib directory of the HBase Ganos instance. Then,
log on to the GeoServer console, and choose Stores > Add new Store:

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

87 > Document Version:20200902

https://tst-ganos-bj-public.oss-cn-beijing.aliyuncs.com/hbase/driver_jar/spark/ganos-raster-image-20.3.jar

On the New data source page, you can see the HBase Ganos Raster dataset in the Raster Data
Sources section.

Click the HBase Ganos Raster hyperlink to configure parameters.

In the configuration file, you must specify the ZooKeeper (ZK) data source and layer name of
HBase Ganos, as shown in the following example:

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal raster

> Document Version:20200902 88

<? xml version="1.0" encoding="UTF-8"? >

<ImageMosaicJDBCConfig>

<config version="1.0">

<coverageName name="srtm_china" />

<coordsys name="EPSG:4326" />

<zkAddress value="[the ZooKeeper address used to connect to your HBase instance]" />

<! -- interpolation 1 = nearest neighbour, 2 = bipolar, 3 = bicubic -->

<scaleop interpolation="1" />

</config>

</ImageMosaicJDBCConfig>

The coverageName parameter specifies the layer name in Ganos Raster to be published. The
coordsys parameter specifies the projection information. The zkAddress parameter specifies the
ZooKeeper address required to connect to the HBase Ganos database.

Click Save and you can find a list of layers on the New Layer page of the data source. Then, you
can click Publish to publish the layer as a WMS service:

After you publish the layer, click Layer Preview in the left-side navigation pane, find the newly
published layer, and click OpenLayers link in the Common Formats column:

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

89 > Document Version:20200902

You can see a rendering of the WMS request for publishing raster data. By default, the render is
displayed in a grayscale because you have not configured the Styled Layer Descriptor (SLD) file.

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal raster

> Document Version:20200902 90

To achieve a better display, you need to configure a SLD in GeoServer, and set colors in layers
based on the elevation data:

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

91 > Document Version:20200902

<? xml version="1.0" encoding="UTF-8"? >

<StyledLayerDescriptor version="1.0.0" xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.

opengis.net/ogc"

xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc

e"

xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerD

escriptor.xsd">

<NamedLayer>

<Name>gtopo</Name>

<UserStyle>

<Name>SRTM</Name>

<Title>Simple SRTM style</Title>

<Abstract>Classic elevation color progression</Abstract>

<FeatureTypeStyle>

<Rule>

<RasterSymbolizer>

<Opacity>1.0</Opacity>

<ColorMap>

<ColorMapEntry color="#2a2e7f" quantity="0" label="values" />

<ColorMapEntry color="#3d5aa9" quantity="500"/>

<ColorMapEntry color="#4698d3" quantity="1000" label="values" />

<ColorMapEntry color="#39c6f0" quantity="1500" label="values" />

<ColorMapEntry color="#76c9b3" quantity="2000" label="values" />

<ColorMapEntry color="#a8d050" quantity="2500" label="values" />

<ColorMapEntry color="#f6eb14" quantity="3000" label="values" />

<ColorMapEntry color="#fcb017" quantity="3500" label="values" />

<ColorMapEntry color="#f16022" quantity="4000" label="values" />

<ColorMapEntry color="#ee2c24" quantity="6000" label="values" />

<ColorMapEntry color="#7d1416" quantity="9000" label="values" />

</ColorMap>

</RasterSymbolizer>

</Rule>

</FeatureTypeStyle>

</UserStyle>

</NamedLayer>

</StyledLayerDescriptor>

ApsaraDB for HBase HBase Ganos Spat io T emporal Engine · Spat io-temporal raster

> Document Version:20200902 92

The new image is shown in the following figure:

HBase Ganos Spat io T emporal Engine · Spat io-temporal raster ApsaraDB for HBase

93 > Document Version:20200902

	1.HBase Ganos introduction
	2.Activate HBase Ganos
	3.FAQ
	4.Spatio-temporal geometries
	4.1. Terms
	4.2. Quick start
	4.3. Create an index table
	4.4. Create a spatio-temporal object
	4.5. Insert spatio-temporal objects
	4.6. Query spatio-temporal objects
	4.7. Delete spatio-temporal objects
	4.8. Data analytics integrated with Spark
	4.9. Ganos Spark functions

	5.SDK for Java
	5.1. Build a development environment
	5.2. Quick start
	5.3. Connect to HBase Ganos
	5.4. Create an index table
	5.5. Import data
	5.6. Query data
	5.7. Instructions to SDK for Java

	6.RESTful API
	6.1. GeoJson format description
	6.2. Register a DataStore
	6.3. Create/delete indexes
	6.4. PUT data
	6.5. Delete data
	6.6. Queries in HBase Ganos
	6.7. RESTful API sample code for Python

	7.Spatio-temporal raster
	7.1. Terms
	7.2. Import raster data to ApsaraDB for HBase
	7.3. Publish raster data as a service

