
Alibaba Cloud

Tablestore
Function Introduction

Document Version: 20220711

Alibaba Cloud

Tablestore
Function Introduction

Document Version: 20220711

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

Tablest ore Funct ion Int roduct ion·Legal disclaim
er

> Document Version: 20220711 I

Document conventions
St yle Descript ion Example

 Danger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:

Resetting will result in the loss of user
configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ings > Net work > Set net work
t ype .

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

Tablest ore Funct ion Int roduct ion·Document con
vent ions

> Document Version: 20220711 I

Table of Contents
1.Overview

2.Features and regions

3.Wide Column model

3.1. Overview

3.2. Primary keys and attributes

3.3. Data versions and TTL

3.4. Naming conventions and data types

3.5. Basic operations on data

3.5.1. Single-row operations

3.5.2. Multi-row operations

3.6. Auto-increment of primary key columns

3.7. Conditional update

3.8. Local transactions

3.9. Atomic counters

3.10. Configure a filter

4.Timeline model

4.1. Overview

4.2. Quick start

4.3. Basic operations

4.3.1. Overview

4.3.2. Initialization

4.3.3. Meta management

4.3.4. Timeline management

4.3.5. Queue management

5.TimeSeries model

5.1. Overview

10

12

14

14

15

16

18

19

19

27

33

35

39

44

46

51

51

52

52

52

52

54

55

56

60

60

Tablest ore Funct ion Int roduct ion·Table of Cont
ent s

> Document Version: 20220711 I

5.2. Create an instance for the TimeSeries model

5.3. Quick start

5.3.1. Use the Tablestore console

5.3.2. Use the Tablestore CLI

5.4. Use Tablestore SDKs

5.5. Use SQL to query time series data

6.Search Index

6.1. Overview

6.2. Features

6.3. Data type mappings

6.4. Quick start

6.4.1. Use the Tablestore console

6.4.2. Use the Tablestore CLI

6.5. Use Tablestore SDKs

6.6. Basic features

6.6.1. Create search indexes

6.6.2. TTL of search indexes

6.6.3. Query the description of a search index

6.6.4. ARRAY and Nested field types

6.6.5. List search indexes

6.6.6. Delete search indexes

6.6.7. Sorting and pagination

6.6.8. Tokenization

6.6.9. Match all query

6.6.10. Match query

6.6.11. Match phrase query

6.6.12. Term query

6.6.13. Terms query

63

63

63

68

75

82

90

90

94

97

99

99

102

104

107

107

114

118

119

122

122

123

126

129

131

134

137

138

Funct ion Int roduct ion·Table of Cont
ent s

Tablest ore

II > Document Version: 20220711

6.6.14. Prefix query

6.6.15. Range query

6.6.16. Wildcard query

6.6.17. Boolean query

6.6.18. Nested query

6.6.19. Geo-distance query

6.6.20. Geo-bounding box query

6.6.21. Geo-polygon query

6.6.22. Exists query

6.6.23. Collapse (distinct)

6.6.24. Aggregation

6.6.25. Parallel scan

6.7. Advanced features

6.7.1. Virtual columns

6.7.2. Dynamically modify schemas

6.7.3. Fuzzy query

7.Secondary index

7.1. Overview

7.2. Scenarios

7.3. Operations

7.4. Use SDK

7.4.1. Global secondary index

7.4.2. Local secondary index

7.5. Appendix

8.SQL query

8.1. Overview

8.2. SQL features

8.3. Data type mappings

140

142

144

146

152

155

157

159

161

162

165

186

195

195

199

204

208

208

211

223

224

224

231

237

239

239

241

242

Tablest ore Funct ion Int roduct ion·Table of Cont
ent s

> Document Version: 20220711 III

8.4. Use the Tablestore console

8.5. Use Tablestore SDKs

8.6. Use JDBC

8.6.1. Use JDBC to access Tablestore

8.6.2. Use Hibernate to use the JDBC driver for Tablestore

8.6.3. Use MyBatis to use the JDBC driver for Tablestore

8.7. Use the Tablestore driver for Go to access Tablestore

8.8. DDL statements

8.8.1. Create mapping tables for tables

8.8.2. Create mapping tables for search indexes

8.8.3. Delete mapping tables

8.8.4. Query the information about a table

8.9. DQL statements

8.9.1. Query data

8.9.2. Aggregate functions

8.9.3. Full-text search

8.10. Database administration statements

8.10.1. Query the index information about a table

8.10.2. List table names

8.11. Query optimization

8.11.1. Index selection policy

8.11.2. Computing pushdown

8.12. Appendix

8.12.1. SQL operators

8.12.2. Reserved words and keywords

9.Tunnel service

9.1. Overview

9.2. Features

243

245

247

247

254

260

265

269

269

273

276

277

277

277

280

281

284

284

284

285

285

287

289

289

291

295

295

295

Funct ion Int roduct ion·Table of Cont
ent s

Tablest ore

IV > Document Version: 20220711

9.3. Tunnel clients

9.4. Quick start

9.5. SDK usage

9.6. Troubleshooting

9.7. Incremental synchronization performance white paper

10.Data Delivery

10.1. Overview

10.2. Quick start

10.3. Use SDKs

10.4. Data lake-based computing and analysis

10.4.1. Use EMR

11.Data visualization

11.1. Data visualization tools

11.2. Connect Tablestore to Grafana

11.3. Connect Tablestore to DataV

12.Backup and restoration

12.1. Overview

12.2. Back up Tablestore data

12.3. Restore Tablestore data

13.Limits

13.1. General limits

13.2. Secondary index limits

13.3. Search index limits

13.4. SQL limits

13.5. Limits on the TimeSeries model

14.HBase

14.1. Tablestore HBase Client

14.2. Features of Tablestore HBase Client

295

298
301

308

310

320

320

321

326

331

331

334

334

334

340

348

348

348

349

350

350

352

353

357

358

360

360

361

Tablest ore Funct ion Int roduct ion·Table of Cont
ent s

> Document Version: 20220711 V

14.3. Differences between Tablestore and HBase

14.4. Migrate data from HBase to Tablestore

14.5. Make Tablestore HBase Client compatible with HBase versions earlier than 1.0 …

14.6. Quick start

15.Authorization management

15.1. RAM and STS

15.2. Configure user permissions

15.3. AliyunServiceRoleForOTSDataDelivery role

15.4. Custom permissions

366

370

373

374

379

379

381

385

386

Funct ion Int roduct ion·Table of Cont
ent s

Tablest ore

VI > Document Version: 20220711

Tablestore is a mult i-model service that is developed by Alibaba Cloud. Tablestore can store a large
amount of structured data and supports fast query and analysis. The distributed storage and powerful
index-based search engine allow Tablestore to store petabytes of data while transactions per second
(TPS) of tens of millions and a latency within milliseconds are ensured.

Terms
Before you use Tablestore, you must understand the terms described in the following table.

Term Description

Instance
An entity that uses and manages Tablestore. Tablestore implements access
control and resource metering for applications at the instance level.

Read/write throughput
The read/write throughput is measured by read/write capacity units (CUs), which
is the smallest billing unit for read and write operations.

Region A region is a physical data center of Alibaba Cloud.

Endpoint
Each Tablestore instance has an endpoint. An endpoint must be specified before
operations can be performed on tables or data in Tablestore.

Models
Tablestore provides mult iple models that you can select and apply to your business. The following
table describes the models of Tablestore.

Model Description

Wide Column model

The Wide Column model is applicable to various scenarios such as metadata and
big data. This model supports multiple features such as data versions, t ime to
live (TTL), auto-increment of primary key columns, conditional updates, atomic
counters, and filters.

T imeline model

The T imeline model is a data model that is suitable for scenarios such as instant
messaging (IM) and feed streams. This model can also meet requirements of
message data scenarios, such as message order preservation, storage of large
numbers of messages, and real-time synchronization. This model also supports
full-text search and Boolean query.

Features
The following table describes the features provided by Tablestore.

Feature Description

Auto-increment of
primary key columns

After you set a primary key column (non-partit ion key) to an auto-increment
column, you do not need to enter values in this column when you write data in a
row. Instead, Tablestore automatically generates primary key column values.
The automatically generated values are unique within the rows that share the
same partit ion key. These values increase sequentially.

1.Overview

Tablest ore Funct ion Int roduct ion·Overview

> Document Version: 20220711 10

https://www.alibabacloud.com/help/doc-detail/52664.htm#concept-hz2-btj-bfb
https://www.alibabacloud.com/help/doc-detail/27284.htm#concept-e5y-nmj-bfb
https://www.alibabacloud.com/help/doc-detail/27285.htm#concept-dpr-lmj-bfb
https://www.alibabacloud.com/help/doc-detail/52671.htm#concept-bsx-btj-bfb
https://www.alibabacloud.com/help/doc-detail/89879.htm#concept-89879-zh
https://www.alibabacloud.com/help/doc-detail/89885.htm#concept-89885-zh
https://www.alibabacloud.com/help/doc-detail/47745.htm#concept-47745-zh

Conditional update
If you use conditional update, data in the table can be updated only when the
conditions are met. If the conditions are not met, the update fails.

Atomic counters
Columns are used as an atomic counter. The atomic counter provides real-time
statistics for some online applications, such as calculating the real-time page
views (PVs) of a post.

Configure a filter
Filters can be used to sort results on the server side. Only results that match the
filter conditions are returned. The feature effectively reduces the volume of
transferred data and shortens the response time.

Search index
Based on inverted index and column-oriented storage, search index solves the
complex query problem in big data scenarios.

Secondary index Tablestore allows you to create a secondary index on an attribute column.

Tunnel Service

Tunnel Service provides tunnels that are used to export and consume distributed
data in full, incremental, and differential modes in real t ime. After tunnels are
created, you can consume historical and incremental data exported from a
specified table.

HBase support
Tablestore HBase Client can be used to access Tablestore by using Java
applications built on open source HBase APIs.

Feature Description

Funct ion Int roduct ion·Overview Tablest ore

11 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/35194.htm#concept-35194-zh
https://www.alibabacloud.com/help/doc-detail/90949.htm#concept-d45-tlc-dfb
https://www.alibabacloud.com/help/doc-detail/35193.htm#concept-35193-zh
https://www.alibabacloud.com/help/doc-detail/91974.htm#concept-gmr-nyf-ffb
https://www.alibabacloud.com/help/doc-detail/91947.htm#concept-ogb-g2b-ffb
https://www.alibabacloud.com/help/doc-detail/102489.htm#concept-gmh-hs3-kgb
https://www.alibabacloud.com/help/doc-detail/50126.htm#concept-50126-zh

This topic describes the features that are in invitat ional preview and the features that are supported
only in specific regions.

Features in invitational preview and supported regions
The local transaction feature is in invitat ional preview and are supported in all regions. You must submit
a t icket to enable this feature.

Features supported in specific regions
The search index, Tunnel Service, TimeSeries model, SQL query, and data delivery features are
supported only in specific regions. The following table describes the features that are supported only
in specific regions.

Not e In the following table, a t ick (√) indicates that the feature is supported in this region,
and a cross (×) indicates that the feature is not supported in this region.

Region Search index Tunnel Service
T imeSeries
model

SQL query Data delivery

China
(Hangzhou)

√ √ √ √ √

China East 1
Finance

√ √ × × ×

China
(Shanghai)

√ √ √ √ √

China East 2
Finance

× √ × × ×

China
(Qingdao)

× × × × ×

China (Beijing) √ √ × √ √

China
(Zhangjiakou)

√ √ × √ √

China (Hohhot) × × × × ×

China
(Shenzhen)

√ √ √ √ ×

China
(Chengdu)

× × × × ×

China (Hong
Kong)

√ √ × × ×

2.Features and regions

Tablest ore Funct ion Int roduct ion·Feat ures and r
egions

> Document Version: 20220711 12

https://workorder-intl.console.aliyun.com/#/ticket/createInd

Singapore √ √ × √ ×

Australia
(Sydney)

√ √ × × ×

Malaysia
(Kuala
Lumpur)

× × × × ×

Indonesia
(Jakarta)

√ √ × × ×

Japan (Tokyo) √ √ × × ×

Germany
(Frankfurt)

√ √ √ √ ×

UK (London) √ √ × × ×

US (Silicon
Valley)

√ √ × × ×

US (Virginia) √ √ × × ×

India (Mumbai) √ √ × × ×

UAE (Dubai) × × × × ×

Philippines
(Manila)

√ √ × × ×

Region Search index Tunnel Service
T imeSeries
model

SQL query Data delivery

Funct ion Int roduct ion·Feat ures and r
egions

Tablest ore

13 > Document Version: 20220711

Tablestore is a mult i-model service developed by Alibaba Cloud. Tablestore can store a large amount
of structured data. Wide Column is one of the models used in Tablestore. This topic describes the
components of the Wide Column model and the differences between the Wide Column model and
relat ional model.

Components

The preceding figure shows the components of the Wide Column mode. The following table lists the
components of the Wide Column model.

Components Description

Primary key
Primary keys uniquely identify each row in tables. A primary key consists of one
to four primary key columns.

Partit ion key
The first primary key column is called the partit ion key. Tablestore partit ions
data in a table based on partit ion keys. Rows that share the same partit ion key
values are distributed to the same partit ion for load balancing.

Attribute column

All columns except for the primary key columns in a row are called attributed
columns. Each attribute column can contain values of different versions.
Tablestore does not impose limits on the number of attribute columns that can
be contained in each row.

Version
Each value in an attribute column has a unique version number. The version
number uses a t imestamp based on which to define t ime to live (TTL).

Data type
Tablestore supports the following data types: STRING, BINARY, DOUBLE,
INTEGER, and BOOLEAN.

TTL
You can configure TTL for each table. If you set TTL to one month for a table,
Tablestore deletes data that is stored in the table from the previous month.

3.Wide Column model
3.1. Overview

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 14

Max versions

You can set the maximum number of versions for the value in each attribute
column of one table. Max versions can be used to control the number of
versions for the value in each attribute column. When the actual number of
versions in an attribute column exceeds the max versions value, Tablestore
asynchronously deletes earlier versions.

Components Description

Compare the Wide Column model with the relational model
The following table lists the differences between the Wide Column model and relat ional model.

Model Feature

Wide Column model
Three-dimensional structure (row, column, and time), schema-free data, wide
row, max versions, and TTL.

Relational model Two-dimensional structure (row and column) and traditional schema.

In Tablestore, tables, rows, primary keys, and attributes are the core components. A table is a collect ion
of rows. Each row consists of a primary key and attribute. The first primary key column is called the
part it ion key.

Primary keys
Primary keys uniquely identify each row in tables. A primary key consists of one to four primary key
columns. When you create a table, you must specify primary key columns, including the name, data
type, and sequence of the primary key columns.

Tablestore indexes data of a table based on the primary key columns of the table.

Partit ion keys
The first primary key column is called the part it ion key. Tablestore distributes each row of data to the
corresponding part it ions based on the range of the part it ion key values for load balancing. Rows that
share the same part it ion key values belong to the same part it ion. A part it ion may store rows that have
mult iple part it ion key values. Tablestore splits and merges part it ions based on specified rules.

Not e Part it ion keys are the basic unit to part it ion data. Data that shares the same part it ion
key value cannot be split . To prevent part it ions from being too large to split , we recommend that
the total size of all rows that share the same part it ion key value is at most 10 GB.

Attributes
A row consists of mult iple attribute columns. Tablestore does not impose limits on the number of
attribute columns that can be contained in each row. Each row can contain a different number of
attribute columns. The value in an attribute column of a row can be null. The values in an attribute
column of mult iple rows can be of different data types.

3.2. Primary keys and attributes

Funct ion Int roduct ion·Wide Column
model

Tablest ore

15 > Document Version: 20220711

Attribute columns support the version feature. Mult iple versions of a value in an attribute column can
be retained for queries and use. You can configure t ime to live (TTL) for values in attribute columns. For
more information, see Max versions and TTL.

You can use data versions and t ime to live (TTL) to manage data in an efficient manner and minimize
storage usage and storage costs.

Version number
When you update a value in an attribute column, a new version is generated for the value. The version
value uses a t imestamp as the version number.

When you write data to an attribute column, you can specify a version number. If you do not specify a
version number, Tablestore automatically generates a version number. Version numbers are t imestamps
in milliseconds. When you compare version numbers with TTL values or when you calculate the values of
max version offset, you must divide the version numbers by 1000.

By default , the version number that is generated by Tablestore is the number of milliseconds that
have elapsed since January 1, 1970, 00:00:00 UTC.

If you specify a version number, make sure that the version number of the attribute column is a 64-bit
t imestamp that is accurate to milliseconds and within the valid version range.

You can use version numbers to implement the following features:

TTL

You can specify the TTL of attribute column values in a data table based on version numbers. When
data of a specific version in an attribute column is retained for a period of t ime that exceeds the TTL
value, Tablestore automatically deletes the data of the specific version.

For example, the version number of the data in an attribute column is 1468944000000, which is
equivalent to 00:00:00 UTC on July 20, 2016. If you set the value of TTL to 86400 seconds (one day),
the data of this version expires at 00:00:00 UTC on July 21, 2016. Tablestore automatically deletes
the data after the data expires.

Maximum number of versions or range of version numbers that you want Tablestore to read from
each attribute column

When Tablestore reads a row of data, you can specify the maximum number of versions or the range
of version numbers that you want Tablestore to read from each attribute column.

Max versions
Max versions specifies the maximum number of versions that can be retained for the data in an attribute
column. If the number of versions of data in attribute columns exceeds the value of this parameter, the
system deletes the data of earlier versions.

When you create a data table, the default value 1 is used if you do not specify a value for max versions.
You can also specify a max versions value for data in attribute columns. After you create a data table,
you can call the UpdateTable operation to modify the max versions value for the data table.

If the number of versions exceeds the max versions value that you specify, the data of earlier versions
becomes invalid and you cannot read the data even if the data has not been deleted by Tablestore.

When you decrease the value of max versions, Tablestore asynchronously deletes data of earlier
versions if the number of data versions exceeds the most recent value of max versions.

3.3. Data versions and TTL

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 16

https://www.alibabacloud.com/help/doc-detail/89939.htm#concept-z5t-jmj-bfb

When you increase the value of max versions, you can read the data of specific versions if Tablestore
has not deleted the data of the versions and the versions are within the most recent valid version
range.

TTL
TTL specifies the validity period of data in the Tablestore data table in seconds. When data of a
specific version in an attribute column is retained for a period of t ime that exceeds the TTL value,
Tablestore automatically deletes the data of the specific version from the attribute column. If data in
all attribute columns of a row is retained for a period of t ime that exceeds the TTL value, Tablestore
automatically deletes the row.

For example, you set the TTL of the data in a data table to 86400 seconds (one day). At 00:00:00 UTC
on July 21, 2016, data whose version number is smaller than 1468944000000 expires. This version number
is equivalent to 00:00:00 UTC on July 20, 2016 after the version number is divided by 1000 to convert
into seconds. Tablestore automatically deletes the expired data.

When you create a data table, the default value -1 is used if you do not specify a value for TTL. The
value of -1 indicates that data in the data table never expires. You can also specify a TTL value. After
you create a data table, you can call the UpdateTable operation to modify the TTL value for the data
in the data table.

If data is retained for a period of t ime that exceeds the TTL value, the data becomes invalid and you
cannot read the data even if the data has not been deleted by Tablestore.

When you decrease the TTL value, Tablestore asynchronously deletes the data that is retained for a
period of t ime that exceeds the most recent TTL value.

When you increase the TTL value, you can read the data of specific versions if Tablestore has not
deleted the data and data of the versions is retained for a period of t ime that is within the most
recent TTL value.

Max version offset
If the difference between the current t ime and the version t imestamp that you specify exceeds the TTL
value that you specified for the data table, the written data immediately expires. To resolve this issue,
Tablestore allows you to configure the max version offset feature.

Max version offset specifies the maximum difference between the current system t ime and the
specified version number in seconds. The value of max version offset is a posit ive integer that can be
greater than the number of seconds that have elapsed since 00:00:00 UTC on January 1, 1970.

When you write data to an attribute column, Tablestore checks the version number of the data. The
valid version range of data in an attribute column is calculated by using the following formula: Valid
version range = [max{Dat a writ t en t ime - Max version of f set , Dat a writ t en t ime - T T L value},
Dat a writ t en t ime + Max version of f set) . You can write data to the attribute column only if the
version number of the data (converted into seconds by dividing by 1000) is within the valid version
range.

For example, you set the max version offset of the data in each attribute column of a data table to
86400 seconds (one day). At 00:00:00 UTC on July 21, 2016, only the data whose version range is
between 1468944000000 (00:00:00 UTC on July 20, 2016) and 1469116800000 (00:00:00 UTC on July 22,
2016) can be written. If you attempt to write a row of data in which the version number of data in an
attribute column is 1468943999000 (23:59:59 UTC on July 19, 2016), the row fails to be written.

Funct ion Int roduct ion·Wide Column
model

Tablest ore

17 > Document Version: 20220711

When you create a data table, the default value 86400 is used if you do not specify a value for max
version offset. You can also specify a max version offset value for the data in the data table. After you
create a data table, you can call the UpdateTable operation to modify the max version offset value for
the data in the data table.

This topic describes the naming conventions for tables and columns, as well as the data types
supported by primary key columns and attribute columns.

Naming conventions
The following table describes the naming conventions for tables and columns.

Item Description

Structure
A name can contain uppercase letters (A to Z), lowercase letters (a to z), digits
(0 to 9), and underscores (_).

First character
A name must start with an uppercase letter (A to Z), a lowercase letter (a to z),
or an underscore (_).

Case sensit ivity A name is case-sensit ive.

Length A name can be 1 to 255 characters in length.

Uniqueness
A table name must be unique in the same instance.

Table names can be the same in different instances.

Data types
Data types supported by primary key columns include STRING, INTEGER, and BINARY. Data types
supported by attribute columns include STRING, INTEGER, DOUBLE, BOOLEAN, and BINARY.

Data types supported by primary key columns

Data type Definit ion Size limit

String
Data is UTF-8 encoded. Empty
strings are allowed.

Up to 1 KB

Integer
Data is 64-bit integers. Auto-
increment columns are
supported.

8 Bytes

Binary
Data is of the BINARY type.
Empty values are allowed.

Up to 1 KB in length

Data types supported by attribute columns

3.4. Naming conventions and data
types

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 18

Data type Definit ion Size limit

String
Data is UTF-8 encoded. Empty
strings are allowed.

For more information, see
General limits.

Integer Data is 64-bit integers. 8 Bytes

Double
Data is 64-bit and of the DOUBLE
type.

8 Bytes

Boolean
Data is of the BOOLEAN type.
The value can be True or False.

1 Byte

Binary
Data is of the BINARY type.
Empty values are allowed.

For more information, see
General limits.

Tablestore provides the following single-row operations: PutRow, GetRow, UpdateRow, and
DeleteRow.

Not e Rows are the basic units of tables. Rows consist of primary keys and attributes. A
primary key is required for each row. Rows within a table contain primary key columns of the same
names and same data types. Attributes are optional for each row. Rows within a table can contain
different attributes. For more information, see Overview.

API operations
Single-row operations include PutRow, GetRow, UpdateRow, and DeleteRow. The following table
describes these operations.

API operation Description

GetRow Reads a row.

PutRow
Inserts a row into a table. If the row exists, data in the row is deleted and new
data is inserted.

UpdateRow

Updates a row. You can add attribute columns to or delete attribute columns
from a row. You can also update the values of attribute columns in a row.

If the row does not exist, a new row is added. However, if an UpdateRow
operation only specifies columns to delete from a row and the row does not
exist, no row is inserted into the table.

DeleteRow
Deletes a row.

If the row that you want to delete does not exist, the table remains unchanged.

3.5. Basic operations on data
3.5.1. Single-row operations

Funct ion Int roduct ion·Wide Column
model

Tablest ore

19 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/91524.htm#concept-plt-cpl-2fb
https://www.alibabacloud.com/help/doc-detail/91524.htm#concept-plt-cpl-2fb
https://www.alibabacloud.com/help/doc-detail/89879.htm#concept-89879-zh
https://www.alibabacloud.com/help/doc-detail/27305.htm#reference-oty-2q3-bfb
https://www.alibabacloud.com/help/doc-detail/27306.htm#reference1838
https://www.alibabacloud.com/help/doc-detail/27307.htm#reference2046
https://www.alibabacloud.com/help/doc-detail/27308.htm#reference1493

Use Tablestore SDKs
You can use the following Tablestore SDKs to perform single-row operations:

Tablestore SDK for Java: Single-row operations

Tablestore SDK for Go: Single-row operations

Tablestore SDK for Python: Single-row operations

Tablestore SDK for Node.js: Single-row operations

Tablestore SDK for .NET: Single-row operations

Tablestore SDK for PHP: Single-row operations

PutRow
You can call this operation to insert a row. If the row exists, the PutRow operation deletes all versions
of data in all columns from the exist ing row and then inserts a new row.

CU consumption
The number of read and write capacity units (CUs) consumed by a PutRow operation is calculated
based on the following rules:

The number of consumed write CUs is rounded up from the calculat ion results of the following
formula: [(Size of the data in all the primary key columns of the row + Size of the data in the inserted
attribute columns)/4 KB].

If the value of the condit ion field is not IGNORE, the PutRow operation consumes read CUs. The
number of consumed read CUs is rounded up from the calculat ion results of the following formula:
Number of consumed read CUs = Size of the data in all primary key columns of the row/4 KB.

If row existence condit ions are not met, the operation fails and one write CU and one read CU are
consumed.

Operation result description
Responses vary based on whether an operation succeeds.

If an operation succeeds, Tablestore returns the number of CUs consumed by the operation.

Not e Write operations consume read CUs based on the condit ions that you specify.

By specifying the condit ion field in the write request of a single row, you can specify whether to
perform row existence check before the write operation. The following table describes valid values
of the condit ion field.

condition Description

IGNORE No row existence check is performed.

EXPECT_EXIST

The row is expected to exist.

If the row exists, the operation succeeds.

If the row does not exist, the operation fails.

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 20

https://www.alibabacloud.com/help/doc-detail/43013.htm#concept-43013-zh
https://www.alibabacloud.com/help/doc-detail/52261.htm#reference4373
https://www.alibabacloud.com/help/doc-detail/31731.htm#reference7829
https://www.alibabacloud.com/help/doc-detail/56354.htm#concept-56354-zh
https://www.alibabacloud.com/help/doc-detail/31700.htm#reference11065
https://www.alibabacloud.com/help/doc-detail/31759.htm#concept-31759-zh

EXPECT_NOT_EXIST

The row is not expected to exist.

If the row does not exist, the operation succeeds.

If the row exists, the operation fails.

Not e If you set condition to EXPECT_NOT_EXIST in a DeleteRow or
UpdateRow operation, the operation is invalid because rows that do not
exist cannot be deleted or updated. To update a row that does not exist,
you can use the PutRow operation.

condition Description

If errors occur, for example, a parameter fails to be checked, excessive data exists in a row, or a row
existence check fails, Tablestore returns the specific error codes.

Parameters

Parameter Description

tableName The name of the data table.

primaryKey

The primary key of the row.

Not e

The number and types of the primary key columns that you specify
must be the same as the actual number and types of primary key
columns in the data table.

If a primary key column is an auto-increment primary key column,
you need to only set the value of the auto-increment primary key
column to a placeholder. For more information, see Auto-increment
of primary key columns.

condition

The condition that you can configure to perform the PutRow operation. You can
configure a row existence condition or a condition based on column values. For
more information, see Conditional update.

Not e

RowExistenceExpectation.IGNORE indicates that new data is inserted
into a row regardless of whether the specified row exists or not. If
the specified row exists, the existing data is overwritten.

RowExistenceExpectation.EXPECT_EXIST indicates that new data is
inserted only when the specified row exists. The existing data is
overwritten.

RowExistenceExpectation.EXPECT_NOT_EXIST indicates that data is
inserted only when the specified row does not exist.

Funct ion Int roduct ion·Wide Column
model

Tablest ore

21 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/47745.htm#concept-47745-zh
https://www.alibabacloud.com/help/doc-detail/35194.htm#concept-35194-zh

column

The attribute column of the row.

An attribute column is specified by parameters in the following sequence: the
attribute column name, attribute column value (ColumnValue), attribute
column value type (ColumnType, which is optional), and timestamp (optional).

You can set ColumnType to ColumnType.INTEGER, ColumnType.STRING,
ColumnType.BINARY, ColumnType.BOOLEAN, or ColumnType.DOUBLE, which
separately indicates INTEGER, STRING (a UTF-8 encoded string), BINARY,
BOOLEAN, or DOUBLE. If you want to set the column value type to BINARY, you
must set ColumnType to ColumnType.BINARY. If you want to use other types
of column values, the setting of ColumnType is optional.

The timestamp is the data version number. For more information, see Data
versions and TTL.

You can specify a data version number or use the data version number
generated by Tablestore. If you do not specify this parameter, the data
version number generated by Tablestore is used.

The version number generated by Tablestore is calculated based on the
number of milliseconds that have elapsed since 00:00:00 UTC on January 1,
1970.

If you specify the version number, make sure that the version number is a
64-bit t imestamp accurate to milliseconds within the valid version range.

Parameter Description

Examples

GetRow
You can call this operation to read a row.

CU consumption
The GetRow operation does not consume write CUs. The number of consumed read CUs is rounded up
from the calculat ion result of the following formula: Number of consumed read CUs = [(Size of the
data in all the primary key columns of the row + Size of the data in the attribute columns that are
actually read)/4 KB]. If the specified row does not exist , one read CU is consumed by the operation.

Operation result description
One of the following results of the read request may be returned:

If the row exists, the primary key columns and attribute columns of the row are returned.

If the row does not exist , no row is returned and no error is reported.

Parameters

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 22

https://www.alibabacloud.com/help/doc-detail/89939.htm#concept-z5t-jmj-bfb

Parameter Description

tableName The name of the data table.

primaryKey

The primary key of the row.

Not e The number and types of the primary key columns that you
specify must be the same as the actual number and types of primary key
columns in the data table.

columnsToGet

The columns that you want to read. You can specify the names of primary key
columns or attribute columns.

If you do not specify a column name, all data in the row is returned.

Not e

By default, Tablestore returns the data from all columns of the row
when you query a row. You can use the columnsToGet parameter to
return specific columns. For example, if col0 and col1 are added to
columnsToGet, only the values of the col0 and col1 columns are
returned.

If you configure columnsToGet and filter at the same time,
Tablestore first queries the columns specified by columnsToGet,
and then returns rows that meet the filter conditions.

maxVersions

The maximum number of data versions that you want to read.

Not e You must configure at least one of the following parameters:
maxVersions and timeRange.

If only maxVersions is specified, data of up to the maximum number
of versions is returned from the latest to the earliest.

If only t imeRange is specified, all data whose versions are within the
specified time range or data of the specified versions is returned.

If both maxVersions and timeRange are specified, data of up to the
maximum number of versions within the t ime range is returned from
the latest to the earliest.

Funct ion Int roduct ion·Wide Column
model

Tablest ore

23 > Document Version: 20220711

t imeRange

The range of versions or specific versions that you want to read. For more
information, see T imeRange.

Not e You must configure at least one of the following parameters:
maxVersions and timeRange.

If only maxVersions is specified, data of up to the maximum number
of versions is returned from the latest to the earliest.

If only t imeRange is specified, all data whose versions are within the
specified time range or data of the specified versions is returned.

If both maxVersions and timeRange are specified, data of up to the
maximum number of versions within the t ime range is returned from
the latest to the earliest.

To query data within a range, you must configure start and end. start
indicates the start t imestamp. end indicates the end timestamp. The specified
range is a left-closed and right-open interval.

To query data of a specific version, you must configure t imestamp.
timestamp indicates a specified timestamp.

You need to only configure one of t imestamp and [start, end).

The timestamp value ranges from 0 to Long.MAX_VALUE. Unit: milliseconds.

filter

The filter used to filter the query results on the server side. Only rows that meet
the filter conditions are returned. For more information, see Configure a filter.

Not e If you configure columnsToGet and filter at the same time,
Tablestore first queries the columns specified by columnsToGet, and then
returns rows that meet the filter conditions.

Parameter Description

Examples

UpdateRow
You can call this operation to update the data of a specified row. You can add attribute columns to or
delete attribute columns from a row, delete a specified version of data from an attribute column, or
update the exist ing data in an attribute column. If the row does not exist , a new row is added.

Not e If an UpdateRow operation only specifies columns to delete from a row and the row
does not exist , no row is inserted into the table.

CU consumption

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 24

https://www.alibabacloud.com/help/doc-detail/50585.htm#reference456
https://www.alibabacloud.com/help/doc-detail/35193.htm#concept-35193-zh

The number of read and write capacity units (CUs) consumed by a UpdateRow operation is calculated
based on the following rules:

The number of consumed write CUs is rounded up from the calculat ion results of the following
formula: [(Size of the data in all the primary key columns of the row + Size of the data in the
updated attribute columns)/4 KB].

If the UpdateRow request contains delet ion instruct ions on specified attribute columns, the length
of the name of each attribute column to delete is calculated as the column size.

If the value of the condit ion field is not IGNORE, the UpdateRow operation consumes read CUs. The
number of consumed read CUs is rounded up from the calculat ion results of the following formula:
Number of consumed read CUs = Size of the data in all primary key columns of the row/4 KB.

If row existence condit ions are not met, the operation fails and one write CU and one read CU are
consumed.

Parameters

Parameter Description

tableName The name of the data table.

primaryKey

The primary key of the row.

Not e The number and types of the primary key columns that you
specify must be the same as the actual number and types of primary key
columns in the data table.

condition
The condition that you can configure to perform the UpdateRow operation. You
can configure a row existence condition or a condition based on column values.
For more information, see Conditional update.

Funct ion Int roduct ion·Wide Column
model

Tablest ore

25 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/35194.htm#concept-35194-zh

column

The attribute column you want to update.

An attribute column is specified by parameters in the following sequence: the
attribute column name, attribute column value, attribute column value type
(optional), and timestamp (optional).

A t imestamp is the data version number. You can specify a data version
number or use the data version number generated by Tablestore. By default,
if you do not specify this parameter, the data version number generated by
Tablestore is used. For more information, see Data versions and TTL.

The version number generated by Tablestore is calculated based on the
number of milliseconds that have elapsed since 00:00:00 UTC on January 1,
1970.

If you specify the version number, make sure that the version number is a
64-bit t imestamp accurate to milliseconds within the valid version range.

To delete a specified version of data from an attribute column, you need to
only set the attribute column name and timestamp.

The timestamp is a 64-bit integer that indicates a specified version of data.
Unit: milliseconds.

To delete an attribute column, you need to only set the attribute column
name.

Not e A row exists even if all attribute columns in the row are
deleted. To delete a row, use the DeleteRow operation.

Parameter Description

Examples

DeleteRow
You can call this operation to delete a row. If the row to delete does not exist , the table remains
unchanged.

CU consumption
The number of read and write CUs consumed by a DeleteRow operation is calculated based on the
following rules:

The number of consumed write CUs is rounded up from the calculat ion result of the following
formula: Number of consumed write CUs = Size of the data in all primary key columns of the row/4
KB.

If the value of the condit ion field is not IGNORE, the DeleteRow operation consumes read CUs. The
number of consumed read CUs is rounded up from the calculat ion results of the following formula:
Number of consumed read CUs = Size of the data in all primary key columns of the row/4 KB.

If row existence condit ions are not met, the operation fails and one write CU is consumed.

Parameters

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 26

https://www.alibabacloud.com/help/doc-detail/89939.htm#concept-z5t-jmj-bfb

Parameter Description

tableName The name of the data table.

primaryKey

The primary key of the row.

Not e The number and types of the primary key columns that you
specify must be the same as the actual number and types of primary key
columns in the data table.

condition
The condition that you can configure to perform the DeleteRow operation. You
can configure a row existence condition or a condition based on column values.
For more information, see Conditional update.

Examples

Tablestore provides mult i-row operations such as BatchWriteRow, BatchGetRow, and GetRange.

Not e Rows are the basic units of tables. Rows consist of primary keys and attributes. A
primary key is required for each row. Rows within a table contain primary key columns of the same
names and same data types. Attributes are optional for each row. Rows within a table can contain
different attributes. For more information, see Overview.

API operations
Mult i-row operations include BatchWriteRow, BatchGetRow, and GetRange. The following table
describes the operations.

API operation Description

BatchGetRow Reads multiple rows of data from one or more tables.

BatchWriteRow Inserts rows into, deletes rows from, or updates rows in one or more tables.

GetRange Queries data whose primary key is within a specified range.

Use Tablestore SDKs
You can use the following Tablestore SDKs to perform mult i-row operations:

Tablestore SDK for Java: Mult i-row operations

Tablestore SDK for Go: Mult i-row operations

Tablestore SDK for Python: Mult i-row operations

Tablestore SDK for Node.js: Mult i-row operations

Tablestore SDK for .NET: Mult i-row operations

3.5.2. Multi-row operations

Funct ion Int roduct ion·Wide Column
model

Tablest ore

27 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/35194.htm#concept-35194-zh
https://www.alibabacloud.com/help/doc-detail/89879.htm#concept-89879-zh
https://www.alibabacloud.com/help/doc-detail/27310.htm#reference1686
https://www.alibabacloud.com/help/doc-detail/27311.htm#reference1996
https://www.alibabacloud.com/help/doc-detail/27309.htm#reference3923
https://www.alibabacloud.com/help/doc-detail/43017.htm#concept-43017-zh
https://www.alibabacloud.com/help/doc-detail/52265.htm#reference4482
https://www.alibabacloud.com/help/doc-detail/31733.htm#reference9948
https://www.alibabacloud.com/help/doc-detail/56355.htm#reference4298
https://www.alibabacloud.com/help/doc-detail/31701.htm#reference7826

Tablestore SDK for PHP: Mult i-row operations

BatchWriteRow
You can call this operation to write mult iple rows to one or more tables in a request. The
BatchWriteRow operation is a set of PutRow, UpdateRow, or DeleteRow operations. When you call the
BatchWriteRow operation, the process of construct ing the PutRow, UpdateRow, or DeleteRow
operations is the same as the process of construct ing the PutRow, UpdateRow, or DeleteRow
operation when you call the PutRow, UpdateRow, or DeleteRow operation. BatchWriteRow supports
condit ional updates.

If you call the BatchWriteRow operation, each PutRow, UpdateRow, or DeleteRow operation is
separately performed. The response to each PutRow, UpdateRow, or DeleteRow operation is
separately returned.

When you call the BatchWriteRow operation to write mult iple rows at a t ime, some rows may fail to be
written. If this happens, Tablestore does not return exceptions, but return BatchWriteRowResponse in
which the indexes and error messages of the failed rows are included. Therefore, when you call the
BatchWriteRow operation, you must check the return values. You can use the isAllSucceed method of
BatchWriteRowResponse to check whether all rows are writ ten. If you do not check the return values,
you may ignore the rows that fail to be written.

If the server detects that invalid parameters exist in some operations, the BatchWriteRow operation
may return an exception about parameter errors before the first operation in the request is performed.

Parameters
For more information, see Single-row operations.

Examples

BatchGetRow
You can call this operation to read mult iple rows from one or more tables in a request. The
BatchGetRow operation is a set of GetRow operations. When you call the BatchGetRow operation, the
process of construct ing the GetRow operations is the same as the process of construct ing the GetRow
operation when you call the GetRow operation.

Note that the BatchGetRow operation uses the same parameter configurations for all rows. For
example, if ColumnsToGet is set to [colA], only the value of the colA column is read from all rows.

If you call the BatchGetRow operation, each GetRow operation is separately performed and the
response to each GetRow operation is separately returned.

When you call the BatchGetRow operation to read mult iple rows at a t ime, some rows may fail to be
read. If this happens, Tablestore does not return exceptions, but return BatchGetRowResponse in which
error messages of the failed rows are included. Therefore, when you call the BatchGetRow operation,
you must check the return values. You can use the isAllSucceed method of BatchGetRowResponse to
check whether all rows are read or use the getFailedRows method of BatchGetRowResponse to obtain
the information about failed rows.

Parameters
For more information, see Single-row operations.

Examples

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 28

https://www.alibabacloud.com/help/doc-detail/31760.htm#concept-31760-zh
https://www.alibabacloud.com/help/doc-detail/188058.htm#concept-1963020
https://www.alibabacloud.com/help/doc-detail/188058.htm#concept-1963020

GetRange
You can call this operation to read data whose primary key is within a specified range. The primary key
range is a left-closed and right-open interval.

The GetRange operation allows you to read data whose primary key is within a specified range in a
forward or backward direct ion. You can also specify the number of rows to read. If the range is large
and the number of scanned rows or the volume of scanned data exceeds the upper limit , the scan
stops, and the rows that are read and information about the primary key of the next row are returned.
You can init iate a request to start from where the last operation left off and read the remaining rows
based on information about the primary key of the next row returned by the previous operation.

Not e In Tablestore tables, all rows are sorted by primary key. The primary key of a table
sequentially consists of all primary key columns. Therefore, do not assume that the rows are sorted
based on a specific primary key column.

Usage notes
GetRange follows the leftmost matching principle. Tablestore compares values in sequence from the
first primary key column to the last primary key column to read data whose primary key is within a
specified range. For example, the primary key of a data table consists of the following primary key
columns: PK1, PK2, and PK3. When data is read, Tablestore first determines whether the PK1 value of a
row is within the range that is specified for the first primary key column. If the PK1 value of a row is
within the range, Tablestore stops determining whether the values of other primary key columns of the
row are within the ranges that are specified for each primary key column and returns the row. If the PK1
value of a row is not within the range, Tablestore continues to determine whether the values of other
primary key columns of the row are within the ranges that are specified for each primary key column in
the same manner as PK1. For more information about range query principles, see Detailed explanation
of GetRange.

If one of the following condit ions is met, the GetRange operation may stop and return data:

The amount of scanned data reaches 4 MB.

The number of scanned rows reaches 5,000.

The number of returned rows reaches the limit .

The read throughput is insufficient to read the next row of data because all reserved read
throughput is consumed.

CU consumption
The number of read CUs consumed by a GetRange operation is calculated from the start point of the
range to the start point of the next row that is unread. The number of read CUs that are consumed for
the GetRange operation is rounded up from the calculat ion result of the following formula: Number of
consumed read CUs = (Size of the data in all primary key columns of the rows that meet the query
condit ions + Size of the data in the attribute columns that are read)/4 KB. For example, if 10 rows that
meet the query condit ions are read and the sum of the size of the data in all primary key columns of the
rows and the size of the data in the attribute columns that are read is 330 bytes, the number of
consumed read CUs is rounded up from the calculat ion result of the following formula: Number of
consumed read CUs = (3.3 KB/4 KB). In this case, the GetRange operation consumes one read CU.

Parameters

Funct ion Int roduct ion·Wide Column
model

Tablest ore

29 > Document Version: 20220711

https://developer.aliyun.com/article/742095?spm=a2c6h.14164896.0.0.7d7c5b4fXmyQyd

Parameter Description

tableName The name of the data table.

direction

The order in which you want to sort the rows in the response.

If you set this parameter to FORWARD, the value of the
inclusiveStartPrimaryKey parameter must be smaller than the value
of the exclusiveEndPrimaryKey parameter, and the rows in the
response are sorted in ascending order of primary key values.

If you set of this parameter to BACKWARD, the value of the
inclusiveStartPrimaryKey parameter must be greater than the value
of the exclusiveEndPrimaryKey parameter, and the rows in the
response are sorted in descending order of primary key values.

For example, if you set the direction parameter to FORWARD for a table
that contains two primary keys A and B and the value of A is smaller
than the value of B, the rows whose primary key values are greater
than or equal to the value of A but smaller than the value of B are
returned in ascending order from A to B. If you set the direction
parameter to BACKWARD, the rows whose primary key values are
smaller than or equal to the value of B and greater than the value of A
are returned in descending order from B to A.

inclusiveStartPrimaryKey The start and end primary keys of the range to read. The start and end
primary keys must be valid primary keys or virtual points that consist of
the INF_MIN and INF_MAX type data. The number of columns for each
virtual point must be the same as the number of columns of each
primary key.

INF_MIN indicates an infinitely small value. All values of other types are
greater than the INF_MIN type value. INF_MAX indicates an infinitely
great value. All values of other types are smaller than the INF_MAX
type value.

inclusiveStartPrimaryKey indicates the start primary key. If the row
that contains the start primary key exists, the row of data is
returned.

exclusiveEndPrimaryKey indicates the end primary key. No matter
whether the row that contains the end primary key exists, the row of
data is not returned.

The rows in the data table are sorted in ascending order based on the
primary key values. The range to read is a left-closed and right-open
interval. If data is read in the forward direction, the rows whose
primary keys are greater than or equal to the start primary key but
smaller than the end primary key are returned.

exclusiveEndPrimaryKey

limit

The maximum number of rows that you want to return. The value of
this parameter must be greater than 0.

An operation stops after the maximum number of rows that you want
to return in the forward or backward direction is reached, even if some
rows within the specified range are not returned. You can use the value
of nextStartPrimaryKey returned in the response to read remaining data
in the next request.

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 30

columnsToGet

The columns that you want to return. You can specify the names of
primary key columns or attribute columns.

If you do not specify a column name, all data in the row is returned.

Not e

By default, Tablestore returns the data from all columns
of the row when you query a row. You can use the
columnsToGet parameter to return specific columns. For
example, if col0 and col1 are added to columnsToGet, only
the values of the col0 and col1 columns are returned.

If a row is within the specified range to be read based on
the primary key value but does not contain the specified
columns to return, the response excludes the row.

If you configure columnsToGet and filter at the same time,
Tablestore first queries the columns specified by
columnsToGet, and then returns rows that meet the filter
conditions.

maxVersions

The maximum number of data versions that you want to read.

Not e You must configure at least one of the following
parameters: maxVersions and timeRange.

If only maxVersions is specified, data of up to the
maximum number of versions is returned from the latest
to the earliest.

If only t imeRange is specified, all data whose versions are
within the specified time range or data of the specified
versions is returned.

If both maxVersions and timeRange are specified, data of
up to the maximum number of versions within the t ime
range is returned from the latest to the earliest.

Parameter Description

Funct ion Int roduct ion·Wide Column
model

Tablest ore

31 > Document Version: 20220711

t imeRange

The range of versions or specific versions that you want to read. For
more information, see T imeRange.

Not e You must configure at least one of the following
parameters: maxVersions and timeRange.

If only maxVersions is specified, data of up to the
maximum number of versions is returned from the latest
to the earliest.

If only t imeRange is specified, all data whose versions are
within the specified time range or data of the specified
versions is returned.

If both maxVersions and timeRange are specified, data of
up to the maximum number of versions within the t ime
range is returned from the latest to the earliest.

To query data within a range, you must configure start and end.
start indicates the start t imestamp. end indicates the end
timestamp. The specified range is a left-closed and right-open
interval, which includes the start value and excludes the end value.

To query data of a specific version, you must configure t imestamp.
timestamp indicates a specified timestamp.

You need to only configure one of t imestamp and [start, end).

The timestamp value ranges from 0 to Long.MAX_VALUE. Unit:
milliseconds.

filter

The filter used to filter the query results on the server side. Only rows
that meet the filter conditions are returned. For more information, see
Configure a filter.

Not e If you configure columnsToGet and filter at the same
time, Tablestore first queries the columns specified by
columnsToGet, and then returns rows that meet the filter
conditions.

nextStartPrimaryKey

The start primary key of the next read request. The value of
nextStartPrimaryKey can be used to determine whether all data is read.

If the value of nextStartPrimaryKey is not empty in the response, the
nextStartPrimaryKey value can be used as the value of the start
primary key for the next GetRange operation.

If the value of nextStartPrimaryKey is empty in the response, all data
within the range is returned.

Parameter Description

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 32

https://www.alibabacloud.com/help/doc-detail/50585.htm#reference456
https://www.alibabacloud.com/help/doc-detail/35193.htm#concept-35193-zh

Examples

This topic describes how to use an auto-increment primary key column. You cannot set a part it ion key
to an auto-increment column. If you write data to a table that contains an auto-increment primary key
column, you do not need to specify a specific value for the auto-increment primary key column because
Tablestore generates a value for the auto-increment primary key column. The value generated for the
auto-increment primary key column is unique, and all values in auto-increment primary key columns
increase sequentially within a part it ion that shares the same part it ion key value.

Features
The auto-increment function of the primary key column has the following features:

The values of auto-increment primary key columns are unique and increase sequentially but not
always continuously within a part it ion that shares the same part it ion key value.

The value of an auto-increment primary key column is 64-bit signed long integer.

You can create an auto-increment primary key column for a table. An instance can include tables that
contain and tables that do not contain auto-increment primary key columns.

Not e The auto-increment function of the primary key column does not affect the rule of
condit ional update. For more information about condit ional update, see Condit ional update.

Limits
The auto-increment function of the primary key column has the following limits:

You can create at most one auto-increment primary key column for a table. You cannot set a
part it ion key to an auto-increment column.

You can create an auto-increment primary key column only when you create a table. You cannot
create an auto-increment primary key column for an exist ing table.

An auto-increment primary key column can only be an integer column. The generated value for an
auto-increment primary key column is 64-bit signed long integer.

You can not set an attribute column to an auto-increment primary key column.

API operations
The following table describes the API operations for the auto-increment function of the primary key
column.

API operation Description

3.6. Auto-increment of primary key
columns

Funct ion Int roduct ion·Wide Column
model

Tablest ore

33 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/35194.htm#concept-35194-zh

CreateTable

When you create a table, you cannot set the partit ion key to be an
auto-increment primary key column. If you set the partit ion key to be
an auto-increment primary key column, values in the column cannot be
automatically generated.

UpdateTable
After a table is created, you cannot use the UpdateTable operation to
change a primary key column to an auto-increment primary key column.

PutRow When you write data to a table, you do not need to specify a specific
value for the auto-increment primary key column. Tablestore generates
a value for the auto-increment primary key column.

You can set ReturnType to RT_PK to obtain values of all primary key
columns and use the values in GetRow to query data.

UpdateRow

BatchWriteRow

GetRow You must use values of all primary key columns when you use GetRow.
To obtain values of all primary key columns, you can set ReturnType to
RT_PK in PutRow, UpdateRow, or BatchWriteRow.BatchGetRow

API operation Description

Examples
The use of the auto-increment function of the primary key column involves the CreateTable, PutRow,
UpdateRow, and BatchWriteRow operations.

1. Create a table

To create an auto-increment primary key column when you create a table, you must set the
attribute of the primary key column to AUTO_INCREMENT.

private static void createTable(SyncClient client) {
 TableMeta tableMeta = new TableMeta(“table_name”);
 // Create the first primary key column, which is also the partition key.
 tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema("PK_1", PrimaryKeyType.STRIN
G));
 // Create the second primary key column, and set it to an auto-increment column
. The type is set to INTEGER, and the attribute is set to AUTO_INCREMENT.
 tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema("PK_2", PrimaryKeyType.INTEG
ER, PrimaryKeyOption.AUTO_INCREMENT));
 int timeToLive = -1; // Specify that data never expires.
 int maxVersions = 1; // Specify that only one version of data is saved.
 TableOptions tableOptions = new TableOptions(timeToLive, maxVersions);
 CreateTableRequest request = new CreateTableRequest(tableMeta, tableOptions);
 client.createTable(request);
 }

2. Write data

When you write data to a table, you do not need to specify a specific value for the auto-increment
primary key column. Instead, you need only to set the value in the auto-increment primary key
column to AUTO_INCREMENT.

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 34

 private static void putRow(SyncClient client, String receive_id) {
 // Create the primary key.
 PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder
();
 // Set the value in the first primary key column to the first four digits of md
5(receive_id).
 primaryKeyBuilder.addPrimaryKeyColumn("PK_1", PrimaryKeyValue.fromString("Hangz
hou");
 // Set the value in the second primary key column to AUTO_INCREMENT. The second
primary key column is an auto-increment primary key column, and you do not need to spec
ify a specific value for it. Tablestore generates a value for the auto-increment primar
y key column.
 primaryKeyBuilder.addPrimaryKeyColumn("PK_2", PrimaryKeyValue.AUTO_INCREMENT);
 PrimaryKey primaryKey = primaryKeyBuilder.build();
 RowPutChange rowPutChange = new RowPutChange("table_name", primaryKey);
 // Set ReturnType to RT_PK to include the primary key column values in the retu
rned result. By default, no primary key column values are returned if ReturnType is not
set.
 rowPutChange.setReturnType(ReturnType.RT_PK);
 // Add attribute columns.
 rowPutChange.addColumn(new Column("content", ColumnValue.fromString(content)));
 // Write data to the table.
 PutRowResponse response = client.putRow(new PutRowRequest(rowPutChange));
 // Display the returned primary key value.
 Row returnRow = response.getRow();
 if (returnRow != null) {
 System.out.println("PrimaryKey:" + returnRow.getPrimaryKey().toString());
 }
 // Display the consumed capacity units (CUs).
 CapacityUnit cu = response.getConsumedCapacity().getCapacityUnit();
 System.out.println("Read CapacityUnit:" + cu.getReadCapacityUnit());
 System.out.println("Write CapacityUnit:" + cu.getWriteCapacityUnit());
 }

Usage
You can use the following Tablestore SDKs to implement the auto-increment function of the primary
key column:

Tablestore SDK for Java: Configure an auto-increment primary key column

Tablestore SDK for Go: Configure an auto-increment primary key column

Tablestore SDK for Python: Configure an auto-increment primary key column

Tablestore SDK for Node.js: Configure an auto-increment primary key column

Tablestore SDK for .NET: Configure an auto-increment primary key column

Tablestore SDK for PHP: Configure an auto-increment primary key column

Billing methods
The implementation of the auto-increment function of the primary key column does not affect the
current billing rules. Values of returned primary key columns do not consume addit ional read CUs.

3.7. Conditional update

Funct ion Int roduct ion·Wide Column
model

Tablest ore

35 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/47731.htm#concept-47731-zh
https://www.alibabacloud.com/help/doc-detail/145054.htm#concept-2347563
https://www.alibabacloud.com/help/doc-detail/145108.htm#concept-2347545
https://www.alibabacloud.com/help/doc-detail/144710.htm#concept-2346506
https://www.alibabacloud.com/help/doc-detail/144711.htm#concept-2346477
https://www.alibabacloud.com/help/doc-detail/84535.htm#concept-84535-zh

If you use condit ional update, data in the table can be updated only when the condit ions are met. If
the condit ions are not met, the update fails.

Scenarios
Condit ional update applies to scenarios where high-concurrency applications are updated.

In these scenarios, old_value may be updated by other clients. If you use condit ional update, the
current value is updated to new_value only when the current value is equal to old_value.

Not e In scenarios where concurrency is high, such as web page counting or games, data
updates may fail if you use condit ional update. In these cases, you can retry the data update.

 // Obtain the current value.
 old_value = Read();
 // Perform calculations on the current value, such as add 1 to the current value.
 new_value = func(old_value);
 // Use the new value to update the current value.
 Update(new_value);

Operations
Condit ional update supports relat ional operator-based operations including =, !, =, >, >=, <, and <= and
logical operations including NOT, AND, and OR. You can use a combination of up to 10 condit ions in an
update operation. You can use condit ional update in the PutRow, UpdateRow, DeleteRow, and
BatchWriteRow operations.

Condit ional update can be used to implement optimist ic locking. When you update a row, the value of
the specified column is obtained. For example, Column A has a value of 1. Obtain the value in Column A
and set a condit ion that t he value of Column A is 1 . Update t he value of Column A t o 2 . If the
row is updated by another client, the update fails.

Column-based judgment condit ions include column-based condit ions and the row existence condit ion.

Column-based
judgment condition

Description

Column-based
condition

Column-based conditions support SingleColumnValueCondition and
CompositeColumnValueCondition, which are used to perform the condition-
based judgment based on the values of one or more columns. Column-based
conditions are similar to the conditions used by Tablestore filters.

Row existence condition

When you modify a table, Tablestore first checks the row existence condition. If
the row existence condition is not met, the modification fails and an error is
reported.

The row existence condition is classified into the following types:

IGNORE

EXPECT_EXIST

EXPECT_NOT_EXIST

For more information, see Row existence condition-based update rules.

3.7. Conditional update
Tablest ore Funct ion Int roduct ion·Wide Column

model

> Document Version: 20220711 36

https://www.alibabacloud.com/help/doc-detail/27306.htm#reference1838
https://www.alibabacloud.com/help/doc-detail/27307.htm#reference2046
https://www.alibabacloud.com/help/doc-detail/27308.htm#reference1493
https://www.alibabacloud.com/help/doc-detail/27311.htm#reference1996
https://www.alibabacloud.com/help/doc-detail/27325.htm#reference427

Row existence condit ion-based update rules

Not e BatchWriteRow is a set of mult iple PutRow, UpdateRow, and DeleteRow operations.
When you manage data in the table by using the BatchWriteRow operation, see the update rules of
the corresponding operation based on the operation type.

Operation IGNORE EXPECT_EXIST EXPECT_NOT_EXIST

PutRow: The row exists. Succeed Succeed Fail

PutRow: The row does
not exist.

Succeed Fail Succeed

UpdateRow: The row
exists.

Succeed Succeed Fail

UpdateRow: The row
does not exist.

Succeed Fail Succeed

DeleteRow: The row
exists.

Succeed Succeed Fail

DeleteRow: The row
does not exist.

Succeed Fail Succeed

Use Tablestore SDKs
You can use the following Tablestore SDKs to implement condit ional update:

Tablestore SDK for Java: Condit ional update

Tablestore SDK for Go: Condit ional update

Tablestore SDK for Python: Condit ional update

Tablestore SDK for Node.js: Condit ional update

Tablestore SDK for .NET: Condit ional update

Tablestore SDK for PHP: Condit ional update

Examples
The following code provides examples on how to use column-based judgment condit ions and
implement optimist ic locking:

Construct a SinglleColumnValueCondit ion.

 // Set the condition: Col0==0.
 SingleColumnValueCondition singleColumnValueCondition = new SingleColumnValueCondition("
Col0",
 SingleColumnValueCondition.CompareOperator.EQUAL, ColumnValue.fromLong(0));
 // If Col0 does not exist, the condition is not met.
 singleColumnValueCondition.setPassIfMissing(false);
 // Specify that only the latest version is used for comparison.
 singleColumnValueCondition.setLatestVersionsOnly(true);

Funct ion Int roduct ion·Wide Column
model

Tablest ore

37 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/27311.htm#reference1996
https://www.alibabacloud.com/help/doc-detail/27306.htm#reference1838
https://www.alibabacloud.com/help/doc-detail/27306.htm#reference1838
https://www.alibabacloud.com/help/doc-detail/27307.htm#reference2046
https://www.alibabacloud.com/help/doc-detail/27307.htm#reference2046
https://www.alibabacloud.com/help/doc-detail/27308.htm#reference1493
https://www.alibabacloud.com/help/doc-detail/27308.htm#reference1493
https://www.alibabacloud.com/help/doc-detail/43026.htm#concept-43026-zh
https://www.alibabacloud.com/help/doc-detail/145496.htm#concept-2351051
https://www.alibabacloud.com/help/doc-detail/145461.htm#concept-2350403
https://www.alibabacloud.com/help/doc-detail/145462.htm#concept-2350512
https://www.alibabacloud.com/help/doc-detail/145495.htm#concept-2351056
https://www.alibabacloud.com/help/doc-detail/84767.htm#concept-84767-zh

Construct a CompositeColumnValueCondit ion.

 // Set condition composite1 to (Col0 == 0) AND (Col1 > 100).
 CompositeColumnValueCondition composite1 = new CompositeColumnValueCondition(CompositeCo
lumnValueCondition.LogicOperator.AND);
 SingleColumnValueCondition single1 = new SingleColumnValueCondition("Col0",
 SingleColumnValueCondition.CompareOperator.EQUAL, ColumnValue.fromLong(0));
 SingleColumnValueCondition single2 = new SingleColumnValueCondition("Col1",
 SingleColumnValueCondition.CompareOperator.GREATER_THAN, ColumnValue.fromLong(10
0));
 composite1.addCondition(single1);
 composite1.addCondition(single2);
 // Set condition composite2 to ((Col0 == 0) AND (Col1 > 100)) OR (Col2 <= 10).
 CompositeColumnValueCondition composite2 = new CompositeColumnValueCondition(CompositeCo
lumnValueCondition.LogicOperator.OR);
 SingleColumnValueCondition single3 = new SingleColumnValueCondition("Col2",
 SingleColumnValueCondition.CompareOperator.LESS_EQUAL, ColumnValue.fromLong(10))
;
 composite2.addCondition(composite1);
 composite2.addCondition(single3);

The following code provides an example on how to implement optimist ic locking by increasing the
value of a column:

 private static void updateRowWithCondition(SyncClient client, String pkValue) {
 // Construct the primary key.
 PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
 primaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME, PrimaryKeyValue.fromString(p
kValue));
 PrimaryKey primaryKey = primaryKeyBuilder.build();
 // Read a row of data.
 SingleRowQueryCriteria criteria = new SingleRowQueryCriteria(TABLE_NAME, primaryKey)
;
 criteria.setMaxVersions(1);
 GetRowResponse getRowResponse = client.getRow(new GetRowRequest(criteria));
 Row row = getRowResponse.getRow();
 long col0Value = row.getLatestColumn("Col0").getValue().asLong();
 // Configure conditional update to increase the value of Col0 by 1.
 RowUpdateChange rowUpdateChange = new RowUpdateChange(TABLE_NAME, primaryKey);
 Condition condition = new Condition(RowExistenceExpectation.EXPECT_EXIST);
 ColumnCondition columnCondition = new SingleColumnValueCondition("Col0", SingleColum
nValueCondition.CompareOperator.EQUAL, ColumnValue.fromLong(col0Value));
 condition.setColumnCondition(columnCondition);
 rowUpdateChange.setCondition(condition);
 rowUpdateChange.put(new Column("Col0", ColumnValue.fromLong(col0Value + 1)));
 try {
 client.updateRow(new UpdateRowRequest(rowUpdateChange));
 } catch (TableStoreException ex) {
 System.out.println(ex.toString());
 }
 }

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 38

Billing methods
The calculat ion of capacity units (CUs) is not affected if the data is writ ten or updated. However, if the
condit ional update fails, a write CU and a read CU are consumed.

This topic describes how to use the local transaction feature. You can create a local transaction based
on a specified part it ion key value. After you read or write data within a local transaction, you can
commit or abort the local transaction. Pessimist ic locking is used to control concurrent operations within
a local transaction.

The local transaction feature is available for invitat ional preview. By default , this feature is disabled. To
use the local transaction feature, submit a t icket to apply for invitat ional preview.

The local transaction feature allows you to perform atomic operations to read or write one or more
rows.

Scenarios
Read and write operations (simple scenarios)

You can use the following methods to perform read, modify, and write (RMW) operations. Different
methods have different limits.

Condit ional update: processes only one request that involves a single row at a t ime. It cannot be
used to process requests that involve data across rows or requests for mult iple write operations.
For more information, see Condit ional update.

Atomic counter: processes only one request that involves a single row at a t ime, and supports only
the increment of column values. For more information, see Atomic counters.

You can create a local transaction to perform an RMW operation on data within the range specified
based on a part it ion key value.

i. Use StartLocalTransaction to create a local transaction based on a specified part it ion key value
and obtain the ID of the local transaction.

ii. Use GetRow or GetRange to read data. The transaction ID must be included in the request.

iii. Modify data on the client.

iv. Use PutRow, UpdateRow, DeleteRow, or BatchWriteRow to write back the modified data. The
transaction ID must be included in the request.

v. Use CommitTransaction to commit the transaction.

Email (complex scenarios)

You can create a local transaction to perform atomic operations on emails of the same user.

To use the local transaction feature, include a data table and two index tables in a physical table.
The following table describes the primary key columns of the data table and index tables.

The Type column is used to identify the rows of the data table and the rows of index tables. The
IndexField column stores the $Folder field for the Folder index table, and the $SendTime field for the
SendTime index table. The IndexField column is empty for the data table.

3.8. Local transactions

Funct ion Int roduct ion·Wide Column
model

Tablest ore

39 > Document Version: 20220711

https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://www.alibabacloud.com/help/doc-detail/35194.htm#concept-35194-zh
https://www.alibabacloud.com/help/doc-detail/90949.htm#concept-d45-tlc-dfb

Table UserID Type IndexField MailID

Data table User ID "Main" "N/A" Email ID

Folder table User ID "Folder" $Folder Email ID

SendTime table User ID "SendTime" $SendTime Email ID

You can use a local transaction to perform the following operations:

Perform the following steps to list the last 100 emails sent by a user:

a. Use the user ID to create a local transaction and obtain the transaction ID.

b. Include the transaction ID in the request when you call GetRange to query 100 emails from the
SendTime table.

c. Include the transaction ID in the request when you call BatchGetRow to query the detailed
information of the 100 emails from the data table.

d. Use CommitTransaction to commit the local transaction or use AbortTransaction to abort the
local transaction.

The commit and abort operations have the same effect because no writes are performed in
this transaction.

Perform the following steps to transfer all emails from a folder to another folder:

a. Use the user ID to create a local transaction and obtain the transaction ID.

b. Include the transaction ID in the request when you call GetRange to query mult iple emails from
the Folder table.

c. Include the transaction ID in the request when you call BatchWriteRow to perform write
operations on the Folder table.

The write operation is performed on two rows each t ime when an email is transferred.
Specifically, a row that indicates the original folder is deleted from the Folder table and a row
that indicates the new folder is added to the Folder table.

d. Use CommitTransaction to commit the transaction.

Perform the following steps to count the numbers of read emails and unread emails in a folder.
This method is not the most efficient solut ion.

a. Use the user ID to create a local transaction and obtain the transaction ID.

b. Include the transaction ID in the request when you call GetRange to query mult iple emails from
the Folder table.

c. Include the transaction ID in the request when you call BatchGetRow to query the read status
of each email from the data table.

d. Use CommitTransaction to commit the local transaction or use AbortTransaction to abort the
local transaction.

The commit and abort operations have the same effect because no write operations are
performed in this transaction.

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 40

In this scenario, you can add more index tables to accelerate common operations. The local
transaction feature ensures the consistency between the status of the data table and index tables,
which simplifies development. For example, when you count the number of emails, many emails are
read, which results in high overheads. To reduce overheads and accelerate queries, you can use a new
index table to store the numbers of read emails and unread emails.

Limits
The validity period of a local transaction is up to 60 seconds.

If a transaction is not committed or aborted within 60 seconds, the Tablestore server determines that
the transaction t imes out and aborts the transaction.

A transaction may be created on the Tablestore server even if a t imeout error is returned. In this case,
you can resend a transaction creation request after the created transaction t imes out.

If a local transaction is not committed, it may become invalid. In this case, retry the operation within
this transaction.

Tablestore imposes the following limits on read and write operations on data within a local
transaction:

The transaction ID cannot be used to access data beyond the range specified based on the
part it ion key value that is used to create the transaction.

The part it ion key values of all write requests in the same transaction must be the same as the
part it ion key value used to create the transaction. This limit does not apply to read requests.

A local transaction can be used only by one request at a t ime. When the transaction is in use, other
operations that use the transaction ID fail.

The maximum interval for read and write operations on data within a transaction is 60 seconds.

If a transaction is not read or writ ten for more than 60 seconds, the Tablestore server determines
that the transaction t imes out and aborts the transaction.

Up to 4 MB of data can be written to each transaction. The volume of data written to each
transaction is calculated in the same way as a regular write request.

If you do not specify a version number for a cell, the Tablestore server assigns a version number to
the cell in the usual way when the cell is writ ten to the transaction (rather than when the
transaction is committed).

If a BatchWriteRow request includes a transaction ID, all rows in the request can be written only to
the table that matches the transaction ID.

When you use a transaction, the data within the range specified based on the corresponding
part it ion key value is locked. If a request that is sent to write data within the local transaction does
not contain the transaction ID, the request fails. Data within the transaction is unlocked when the
transaction is committed or aborted, or when the transaction t imes out.

A transaction remains valid even if a read or write request with the transaction ID is rejected. You
can resend the request in the same manner as a regular request or you can abort the transaction.

Operations
The following table describes the operations that can be performed on local transactions.

Operation Description

StartLocalTransaction Creates a local transaction.

Funct ion Int roduct ion·Wide Column
model

Tablest ore

41 > Document Version: 20220711

CommitTransaction Commits a local transaction.

AbortTransaction Aborts a local transaction.

GetRow

Read and write data within a local transaction. For more information, see Single-
row operations and Multi-row operations.

Not e Data within a local transaction is within a range specified based
on a partit ion key value. For more information about partit ion keys, see
Primary keys and attributes.

PutRow

UpdateRow

DeleteRow

BatchWriteRow

GetRange

Operation Description

Use Tablestore SDKs
You can use the following Tablestore SDKs to implement local transactions:

Tablestore SDK for Java: Local transactions

Tablestore SDK for Go: Local transactions

Tablestore SDK for Python: Local transactions

Tablestore SDK for Node.js: Local transactions

Tablestore SDK for PHP: Local transactions

Parameters

Parameter Description

TableName The name of the data table.

PrimaryKey

The primary key of the data table.

You must specify a partit ion key value when you create a local transaction.

You must specify all primary key columns when you read and write data in a
local transaction.

TransactionId

The local transaction ID that identifies the local transaction.

You must specify a transaction ID when you read and write data within the local
transaction.

Examples
1. Call the startLocalTransaction method of AsyncClient or SyncClient to create a local transaction

based on a specified part it ion key value and obtain the ID of the created local transaction.

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 42

https://www.alibabacloud.com/help/doc-detail/188058.htm#concept-1963020
https://www.alibabacloud.com/help/doc-detail/188059.htm#concept-1961904
https://www.alibabacloud.com/help/doc-detail/52626.htm#concept-52626-zh
https://www.alibabacloud.com/help/doc-detail/146197.htm#concept-2356866
https://www.alibabacloud.com/help/doc-detail/174172.htm#concept-2498322
https://www.alibabacloud.com/help/doc-detail/146196.htm#concept-2356921
https://www.alibabacloud.com/help/doc-detail/172551.htm#concept-2494488
https://www.alibabacloud.com/help/doc-detail/120983.htm#concept-422975

PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn("pk1", PrimaryKeyValue.fromString("txnKey"));
PrimaryKey primaryKey = primaryKeyBuilder.build();
StartLocalTransactionRequest request = new StartLocalTransactionRequest(tableName, prim
aryKey);
String txnId = client.startLocalTransaction(request).getTransactionID();

2. Read and write data within a local transaction.

You must specify the transaction ID to read and write data within the local transaction. The read
and write operations are similar to regular operations.

Write a row to the local transaction.

PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn("pk1", PrimaryKeyValue.fromString("txnKey"));
primaryKeyBuilder.addPrimaryKeyColumn("pk2", PrimaryKeyValue.fromLong("userId"));
PrimaryKey primaryKey = primaryKeyBuilder.build();
RowPutChange rowPutChange = new RowPutChange(tableName, primaryKey);
rowPutChange.addColumn(new Column("Col", ColumnValue.fromLong(columnValue)));
PutRowRequest request = new PutRowRequest(rowPutChange);
request.setTransactionId(txnId);
client.putRow(request);

Read the row from the local transaction.

PrimaryKeyBuilder primaryKeyBuilder;
primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
primaryKeyBuilder.addPrimaryKeyColumn("pk1", PrimaryKeyValue.fromString("txnKey"));
primaryKeyBuilder.addPrimaryKeyColumn("pk2", PrimaryKeyValue.fromLong("userId"));
PrimaryKey primaryKey = primaryKeyBuilder.build();
SingleRowQueryCriteria criteria = new SingleRowQueryCriteria(tableName, primaryKey);
criteria.setMaxVersions(1); // Specify that the latest version of data is read.
GetRowRequest request = new GetRowRequest(criteria);
request.setTransactionId(txnId);
GetRowResponse getRowResponse = client.getRow(request);

3. Commit or abort a local transaction.

Commit a local transaction so that all data modificat ions within the local transaction take effect.

CommitTransactionRequest commitRequest = new CommitTransactionRequest(txnId);
client.commitTransaction(commitRequest);

Abort a local transaction so that all data modificat ions within the local transaction do not take
effect.

AbortTransactionRequest abortRequest = new AbortTransactionRequest(txnId);
client.abortTransaction(abortRequest);

Billing
Each StartLocalTransaction, CommitTransaction, and AbortTransaction operation consumes one
write capacity unit (CU).

Requests sent to read or write data in local transactions are billed in the same way as regular read
and write requests. For more information, see Billing overview.

Funct ion Int roduct ion·Wide Column
model

Tablest ore

43 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/27291.htm#concept-w4k-2tj-bfb

Error codes

Error code Description

OTSRowOperationConfli
ct

The error message returned because the specified partit ion key value is used by
an existing local transaction.

OTSSessionNotExist
The error message returned because the transaction that has the specified
transaction ID does not exist, or the specified transaction is invalid or t imed out.

OTSSessionBusy
The error message returned because the last request on the transaction is
incomplete.

OTSOutOfTransactionDa
taSizeLimit

The error message returned because the amount of data within a transaction
exceeds the maximum volume.

OTSDataOutOfRange
The error message returned because data operation is beyond the range
specified by the partit ion key value used to create the transaction.

Atomic counters allow you to implement an atomic counter on a column. This feature provides stat ist ic
data for online applications such as the number of page views (PVs) on various topics.

Atomic counters reduce the write performance overhead caused by forced consistency. When you send
a request to the server to perform read, modify, and write (RMW) operations, the server performs the
operations on a row by locking the row. To ensure data consistency, you can update atomic counters
on a database server to improve write performance.

Scenarios
You can use an atomic counter to keep track of a row in real t ime.

Assume that you create a table to store metadata of pictures. Each row in the table has a user ID. A
column of the row is used to store metadata of pictures. Another column of the row is used as an
atomic counter to count the number of pictures whose metadata is stored in the row.

When you use UpdateRow to add metadata of a picture to a row, the atomic counter is increased by
one.

When you use UpdateRow to delete metadata of a picture from a row, the atomic counter is
decreased by one.

You can use GetRow to read the value of the atomic counter to check the number of pictures whose
metadata is stored in the row.

This function ensures database consistency. When you add metadata of a picture to a row, the atomic
counter value of the row is increased by one instead of decreased by one.

Not e An error may occur when an atomic counter encounters network t imeouts or system
failures. In this case, you can retry the operation. However, the atomic counter may be updated
twice, which results in a smaller or greater value of the atomic counter. In this case, we recommend
that you use Condit ional update to precisely update the value of a column.

Limits

3.9. Atomic counters

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 44

https://www.alibabacloud.com/help/doc-detail/35194.htm#concept-35194-zh

You can implement atomic counters only on INTEGER columns.

By default , if a column that is specified as an atomic counter does not exist , the value of the column
is 0 before you write data. If a column that is specified as an atomic counter is not an INTEGER
column, an OTSParameterInvalid error occurs.

You can update an atomic counter by using a posit ive or negative number, but you must avoid an
integer overflow. If an integer overflow occurs, an OTSParameterInvalid error is returned.

By default , the value of an atomic counter is not returned in the response to an update row request.
You can specify that the increased value of an atomic counter is returned.

You cannot specify a column as an atomic counter and update the column in a single request. If
Attribute Column A is set to an atomic counter, you cannot perform other operations such as
overwrite and delete operations on the attribute column A.

You can perform mult iple update operations on the same row by using a BatchWriteRow request.
However, if you perform an atomic counter operation on a row, you can perform only one update
operation on the row in a BatchWriteRow request.

Only the value of the latest version of an atomic counter is increased. You cannot increase the value
of a specified version of an atomic counter. After you update a row, a new version of data is inserted
to the atomic counter in the row.

API operations
The following table describes the operations added to the rowUpdateChange class to perform atomic
counters.

API operation Description

RowUpdateChange increment(Column column)
Increments or decreases the value in a column by a
number.

void addReturnColumn(String columnName)
Specifies the name of the atomic counter to return
its value.

void setReturnType(ReturnType returnType)
Specifies a data type to return the value of an
atomic counter.

Usage
You can use the following Tablestore SDKs to implement atomic counters:

Tablestore SDK for Java: Atomic counters

Tablestore SDK for Go: Atomic counters

Tablestore SDK for Python: Atomic counters

Tablestore SDK for Node.js: Atomic counters

Tablestore SDK for .NET SDK: Atomic counters

Parameters

Parameter Description

tableName The name of the table.

Funct ion Int roduct ion·Wide Column
model

Tablest ore

45 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/147215.htm#concept-2367034
https://www.alibabacloud.com/help/doc-detail/147217.htm#concept-2367078
https://www.alibabacloud.com/help/doc-detail/147220.htm#concept-2367066
https://www.alibabacloud.com/help/doc-detail/147223.htm#concept-2367087
https://www.alibabacloud.com/help/doc-detail/147224.htm#concept-2367102

columnName
The name of the column you set to an atomic counter. You can specify
only INTEGER columns as atomic counters.

value The value you increase to or decrease from the atomic counter value.

returnType
If you set this parameter to ReturnType.RT_AFTER_MODIFY, the value of
the atomic counter is returned.

Parameter Description

Examples
The following code provides an example on how to use rowUpdateChange to increase the value of an
atomic counter and return the increased value:

private static void incrementByUpdateRowApi(SyncClient client) {
 // Specify the primary key.
 PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
 primaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME, PrimaryKeyValue.fromString(
"pk0"));
 PrimaryKey primaryKey = primaryKeyBuilder.build();
 // Specify the table.
 RowUpdateChange rowUpdateChange = new RowUpdateChange(TABLE_NAME, primaryKey);
 // Set the price column as an atomic counter and increase the value of the atomic c
ounter by 10. You cannot specify the timestamp.
 rowUpdateChange.increment(new Column("price", ColumnValue.fromLong(10)));
 // Set the data type of the value to return to ReturnType.RT_AFTER_MODIFY and retur
n the value of the atomic counter.
 rowUpdateChange.addReturnColumn("price");
 rowUpdateChange.setReturnType(ReturnType.RT_AFTER_MODIFY);
 // Initiate a request to update the row.
 UpdateRowResponse response = client.updateRow(new UpdateRowRequest(rowUpdateChange)
);
 // Display the updated values.
 Row row = response.getRow();
 System.out.println(row);
 }

Billing methods
The implementation of atomic counters does not affect the exist ing billing methods.

Tablestore filters results on the server before returning the rows that match the filter condit ions. This
feature reduces the volume of data transferred and shortens the response t ime because only matched
rows are returned.

Scenarios
Directly filter results

3.10. Configure a filter

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 46

An Internet of things (IoT)-based smart electric meter writes voltage, current, usage, and other
information to a Tablestore table every 15 seconds. You want to query abnormal voltage data and
other related data for daily analysis to determine whether to inspect cables.

You can use GetRange to read the monitoring data generated by the electric meter and filter the
data (5,760 records) to obtain the 10 records that are collected when the voltage is unstable.

If you use a filter, only the 10 records that need to be analyzed are returned. A filter reduces the
volume of returned data and removes the need for preliminary data processing. This reduces
development costs.

Filter results after regular expression matching and data conversion

When data is stored in a custom format such as JSON string and you want to query a subfield value,
you can use regular expressions to match and then convert the value into the data type you require.
Then, you can use a filter to obtain the required data.

For example, the data stored in a column is in the format of {cluster_name:name 1,lastupdatetime:
12345} . If you need to filter and query the value of row lastupdatetime>12345, you can use the
regular expression lastupdatetime:([0-9]+)} to match the data of the subfield in the column,
use the CAST function to convert the matching results into a numeric type, and then compare the
numeric data to the matched results. This way, you can obtain the required data row.

Limits
Filters support relat ional operator-based operations (=, !=, >, >=, <, and <=) and logical operations
(NOT, AND, and OR). You can use a combination of up to 10 filter condit ions for a filter.

The reference columns that are used by a filter must be included in the read data. If the specified
columns from which data is read do not include reference columns, the filter cannot query the values
of reference columns.

When you use the GetRange operation, up to 5,000 rows or 4 MB of data can be scanned at a t ime.

If no data matches the filter condit ions in the range of the scan, the returned rows are empty.
However, NextStartPrimaryKey may not be empty. If NextStartPrimaryKey is not empty, use this value
to continue scanning until the return value of NextStartPrimaryKey is empty.

Operations
Filters can be used for the GetRow, BatchGetRow, and GetRange operations. You can use filters by calling
the GetRow, BatchGetRow, and GetRange operations, which does not change the native semantics or
limits of these operations. For more information, see Single-row operations and Multi-row operations.

The available filters are SingleColumnValueFilter, SingleColumnValueRegexFilter, and
CompositeColumnValueFilter, which filter a row based on the column values of one or more reference
columns.

SingleColumnValueFilter determines whether to filter a row based on the value of a reference
column.

SingleColumnValueFilter uses the PassIfMissing parameter to determine whether the filter condit ions
are met if the reference column does not exist . You can specify an act ion when the reference column
does not exist .

SingleColumnValueRegexFilter uses regular expressions to match column values of the String type
and extract matching substrings. Then, this f ilter converts the data type of the extracted substrings
to String, Integer, or Double and filters the values after conversion.

Funct ion Int roduct ion·Wide Column
model

Tablest ore

47 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/27305.htm#reference-oty-2q3-bfb
https://www.alibabacloud.com/help/doc-detail/27310.htm#reference1686
https://www.alibabacloud.com/help/doc-detail/27309.htm#reference3923
https://www.alibabacloud.com/help/doc-detail/188058.htm#concept-1963020
https://www.alibabacloud.com/help/doc-detail/188059.htm#concept-1961904
https://www.alibabacloud.com/help/doc-detail/50651.htm#reference836
https://www.alibabacloud.com/help/doc-detail/50651.htm#reference836

Not ice Only Tablestore SDK for Java supports the SingleColumnValueRegexFilter f ilter.

CompositeColumnValueFilter determines whether to filter a row based on a logical combination of
the check results for the values of mult iple reference columns.

Use Tablestore SDKs
You can use the following Tablestore SDKs to implement filters:

Tablestore SDK for Java: Filter

Tablestore SDK for Go: Filter

Tablestore SDK for Python: Filter

Tablestore SDK for Node.js: Filter

Tablestore SDK for .NET: Filter

Tablestore SDK for PHP: Filter

Parameters

Parameter Description

ColumnName The name of the reference column used by a filter.

ColumnValue The value of the reference column used by a filter.

CompareOperator

The relational operator used by a filter.

Relational operators include EQUAL (=), NOT_EQUAL (!=),GREATER_THAN (>),
GREATER_EQUAL (>=), LESS_THAN (<), and LESS_EQUAL (<=).

LogicOperator
The logical operator used by a filter.

Logical operators include NOT, AND, and OR.

PassIfMissing

Specifies whether to return a row when a reference column does not exist in the
row. Valid values:

true: If the reference column does not exist in a row, the row is returned. This
is the default value.

false: If the reference column does not exist in a row, the row is not returned.

LatestVersionsOnly

Specifies whether to use only the latest versions of data in a reference column
for comparison when the reference column contains data of multiple versions.
The value of this parameter is of the Bool type. The default value is true. If the
default value is used, the latest versions of data are used for comparison when
a reference column contains data of multiple versions.

If the value of LatestVersionsOnly is set to false, all versions of data in a
reference column are used for comparison. If one version of data in the
reference column meets the filter conditions, the row is returned.

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 48

https://www.alibabacloud.com/help/doc-detail/50648.htm#reference427
https://www.alibabacloud.com/help/doc-detail/43029.htm#concept-43029-zh
https://www.alibabacloud.com/help/doc-detail/148289.htm#concept-2375620
https://www.alibabacloud.com/help/doc-detail/148290.htm#concept-2375618
https://www.alibabacloud.com/help/doc-detail/148287.htm#concept-2375622
https://www.alibabacloud.com/help/doc-detail/148288.htm#concept-2375621
https://www.alibabacloud.com/help/doc-detail/84766.htm#concept-84766-zh

Regex

A regular expression used to match subfield values. The regular expression must
meet the following conditions:

A regular expression can be up to 256 bytes in length.

The syntax of regular expressions in Perl is supported.

Single-byte regular expressions are supported.

Regular expression matching in Chinese is not supported.

Full matching mode and partial matching mode of regular expressions are
supported.

In partial matching mode, regular expressions are separated by a pair of
parentheses ().

If the full matching mode is used, the first matching result is returned. If
particle matching mode is used, the first submatch is returned. For example, if
the column value is 1aaa51bbb5 and the regular expression is 1[a-z]+5, the
return value is 1aaa5. If the regular expression is 1([a-z]+)5, the return value is
aaa.

VariantType
The data type of the subfield value after conversion when you use a regular
expression to match the subfield value. Valid values: VT_INTEGER (integer),
VT_STRING (string type), and VT_DOUBLE (double-precision floating-point type).

Parameter Description

Examples
Construct SingleColumnValueFilter.

 // // Configure a filter to return a row when the value of Col0 is 0
 SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter("Col0",
 SingleColumnValueFilter.CompareOperator.EQUAL, ColumnValue.fromLong(0));
 // If Col0 does not exist, the row is not returned.
 singleColumnValueFilter.setPassIfMissing(false);
 // Only the latest version of data in the column is used for comparison.
 singleColumnValueFilter.setLatestVersionsOnly(true);

Construct SingleColumnValueRegexFilter.

 // Construct a rule to extract regular expressions.
 RegexRule regexRule = new RegexRule("t1:([0-9]+),", VariantType.Type.VT_INTEGER);
 // Set a filter to implement cast<int>(regex(col1) >0.
 // The SingleColumnValueRegexFilter constructing is in the format of column name, regula
r rule, comparison character, comparison value.
 SingleColumnValueRegexFilter filter = new SingleColumnValueRegexFilter("Col1",
 regexRule,SingleColumnValueFilter.CompareOperator.GREATER_THAN, ColumnValue.fromLong
(0));
 // If Col0 does not exist, the row is not returned.
 filter.setPassIfMissing(false);

Construct CompositeColumnValueFilter.

Funct ion Int roduct ion·Wide Column
model

Tablest ore

49 > Document Version: 20220711

 // Set the composite1 condition to (Col0 == 0) AND (Col1 > 100).
 CompositeColumnValueFilter composite1 = new CompositeColumnValueFilter(CompositeColumnV
alueFilter.LogicOperator.AND);
 SingleColumnValueFilter single1 = new SingleColumnValueFilter("Col0",
 SingleColumnValueFilter.CompareOperator.EQUAL, ColumnValue.fromLong(0));
 SingleColumnValueFilter single2 = new SingleColumnValueFilter("Col1",
 SingleColumnValueFilter.CompareOperator.GREATER_THAN, ColumnValue.fromLong(100)
);
 composite1.addFilter(single1);
 composite1.addFilter(single2);
 // Set the composite2 condition to ((Col0 == 0) AND (Col1 > 100)) OR (Col2 <= 10).
 CompositeColumnValueFilter composite2 = new CompositeColumnValueFilter(CompositeColumnV
alueFilter.LogicOperator.OR);
 SingleColumnValueFilter single3 = new SingleColumnValueFilter("Col2",
 SingleColumnValueFilter.CompareOperator.LESS_EQUAL, ColumnValue.fromLong(10));
 composite2.addFilter(composite1);
 composite2.addFilter(single3);

Billing
The implementation of f ilters does not affect exist ing billing rules.

Although filters reduce the volume of returned data, the disk I/O usage remain unchanged because
filtering is performed on the server side before data is returned. Therefore, the same number of read
CUs are consumed regardless of whether the filters are used or not. For example, when you use
GetRange to read 100 records (200 KB) of data and then filter these records to obtain 10 records (20
KB), 50 read CUs are consumed.

Tablest ore Funct ion Int roduct ion·Wide Column
model

> Document Version: 20220711 50

The Timeline model is designed for message data. This model can meet the specific requirements of
message data, such as message order preservation, storage of large numbers of messages, and real-
t ime synchronization. The Timeline model also supports tokenization and BoolQuery. The model is
suitable for message scenarios such as instant messaging (IM) and Feed streams.

Architecture
The Timeline model provides clear core modules in a simple design. You can easily use the Timeline
model to implement your services in different methods as required. The architecture of the model
includes the following components:

Store: a unit used to store Timeline data. A store is similar to a table in database services.

Identifier: an identifier used to identify Timeline data.

Meta: the metadata used to describe Timeline data. The metadata is stored in a free-schema
structure and can contain any column.

Queue: stores the messages in a Timeline. A Timeline can include one or mult iple queues.

SequenceId: the serial number of a message body in the Queue. The SequenceId values must be
incremental and unique. The Timeline model generates SequenceId values by using an auto-
increment column. You can also specify SequenceId value manually.

Message: the message body in the Timeline. The message is stored in a free-schema structure and
can contain any column.

Index: includes Meta Index and Message Index. You can customize indexes for any columns in Meta or
Message to provide BoolQuery.

Functions
The Timeline model supports the following features:

Management of Meta data and messages, including basic data operations such as create, read,
update, and delete.

BoolQuery and tokenization for Meta data and messages.

Two configuration methods for SequenceId values: auto-increment column and manual sett ing.

Timeline Identifier that contains mult iple columns.

Compatibility with the Timeline model V1.x. The TimelineMessageForV1 examples of the Timeline
model can be used to read messages from and write messages to the Timeline model V1.x.

If you use Tablestore SDK for Java 4.12.1 or later (in which the Timeline model is integrated), add the
following dependency to use the Timeline model:

<dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>tablestore</artifactId>
 <version>4.12.1</version>
</dependency>

4.Timeline model
4.1. Overview

Funct ion Int roduct ion·Timeline mod
el

Tablest ore

51 > Document Version: 20220711

If you use Tablestore SDK for Java earlier than 4.12.1, add the following dependency to use the Timeline
model:

<dependency>
 <groupId>com.aliyun.openservices.tablestore</groupId>
 <artifactId>Timeline</artifactId>
 <version>2.0.0</version>
</dependency>

This topic describes how to get started with the Timeline model by using sample code.

Procedure
1. Log on to the Tablestore console. Create a Tablestore instance. For more information, see Create

instances.

2. Download and install Tablestore SDK for Java. For more information, see Install Tablestore SDK for
Java.

3. Use an endpoint and configure an AccessKey pair to init ialize an OTSClient instance. For more
information, see Init ialization.

4. Download the sample code to get started with the Timeline model.

The Timeline model is a data model designed for messaging applications. This model has many
specialized features such as message order preservation, storage of large numbers of messages, and
real-t ime synchronization to effect ively implement messaging functions. The model also supports full-
text search and bool query. The model is also suitable for instant messaging (IM) and feed stream
scenarios. The Timeline model Java SDK includes the following operations:

Init ializat ion

Meta management

Timeline management

Queue management

This topic describes how to init ialize the Timeline model.

Init ialize TimelineStoreFactory
Use SyncClient as a parameter to init ialize TimelineStoreFactory and create a Store to manage Meta
data and Timeline data. The retry operation required after an error occurs depends on the retry policy
of SyncClient. You can set SyncClient for the retry. If you have any special requirements, you can call the
RetryStrategy operation to customize the retry policy.

4.2. Quick start

4.3. Basic operations
4.3.1. Overview

4.3.2. Initialization

Tablest ore Funct ion Int roduct ion·Timeline mod
el

> Document Version: 20220711 52

https://www.alibabacloud.com/help/doc-detail/55211.htm#task472
https://www.alibabacloud.com/help/doc-detail/43007.htm#concept-43007-zh
https://www.alibabacloud.com/help/doc-detail/43009.htm#concept-43009-zh
https://github.com/aliyun/tablestore-timeline/blob/master/src/test/java/examples/v2/TimelineV2.java
https://www.alibabacloud.com/help/doc-detail/118372.htm#concept-263744
https://www.alibabacloud.com/help/doc-detail/118373.htm#concept-263745
https://www.alibabacloud.com/help/doc-detail/118374.htm#concept-263746
https://www.alibabacloud.com/help/doc-detail/118375.htm#concept-263747

/**
 * Configure the retry policy.
 * Code: configuration.setRetryStrategy(new DefaultRetryStrategy());
 * */
ClientConfiguration configuration = new ClientConfiguration();
SyncClient client = new SyncClient(
 "http://instanceName.cn-shanghai.ots.aliyuncs.com",
 "accessKeyId",
 "accessKeySecret",
 "instanceName", configuration);
TimelineStoreFactory serviceFactory = new TimelineStoreFactoryImpl(client);

Init ialize TimelineMetaStore
Create a schema for a Meta table. The schema includes parameters such as Identifier and MetaIndex.
Create and obtain a Store to manage Meta data by using TimelineStoreFactory. You must specify the
following parameters: Meta table name, index name, primary key field, and index type.

TimelineIdentifierSchema idSchema = new TimelineIdentifierSchema.Builder()
 .addStringField("timeline_id").build();
IndexSchema metaIndex = new IndexSchema();
metaIndex.addFieldSchema(//Set the index field and index type.
 new FieldSchema("group_name", FieldType.TEXT).setIndex(true).setAnalyzer(FieldSchem
a.Analyzer.MaxWord),
 new FieldSchema("create_time", FieldType.Long).setIndex(true)
);
TimelineMetaSchema metaSchema = new TimelineMetaSchema("groupMeta", idSchema)
 .withIndex("metaIndex", metaIndex); //Set the index.
TimelineMetaStore timelineMetaStore = serviceFactory.createMetaStore(metaSchema);

Create a table

Create a table based on the parameters in metaSchema. If an index is configured in metaSchema, the
index is created after the table is created.

timelineMetaStore.prepareTables();

Delete a table

If a table contains an index, the index is deleted before the table.

timelineMetaStore.dropAllTables();

Init ialize TimelineStore
Create a schema for a Timeline table. The schema includes parameters such as Identifier and
TimelineIndex. Create and obtain a Store to manage Timeline data by using TimelineStoreFactory. You
must specify the following parameters: Timeline table name, index name, primary key field, and index
type.

The BatchStore operation improves the concurrency performance on the basis of
DefaultTableStoreWriter of Tablestore. You can set the number of concurrent threads in the thread
pool.

Funct ion Int roduct ion·Timeline mod
el

Tablest ore

53 > Document Version: 20220711

TimelineIdentifierSchema idSchema = new TimelineIdentifierSchema.Builder()
 .addStringField("timeline_id").build();
IndexSchema timelineIndex = new IndexSchema();
timelineIndex.setFieldSchemas(Arrays.asList(//Configure the index field and index type.
 new FieldSchema("text", FieldType.TEXT).setIndex(true).setAnalyzer(FieldSchema.Anal
yzer.MaxWord),
 new FieldSchema("receivers", FieldType.KEYWORD).setIndex(true).setIsArray(true)
));
TimelineSchema timelineSchema = new TimelineSchema("timeline", idSchema)
 .autoGenerateSeqId() //Specify the auto-increment column as the method to generate
the SequenceId value.
 .setCallbackExecuteThreads(5) //Set the number of initial threads of DefaultTableSt
oreWriter to 5.
 .withIndex("metaIndex", timelineIndex); //Set the index.
TimelineStore timelineStore = serviceFactory.createTimelineStore(timelineSchema);

Create a table

Create a table based on the parameters in TimelineSchema. If an index is configured in
TimelineSchema, the index is created after the table is created.

timelineStore.prepareTables();

Delete a table

If a table contains an index, the index is deleted before the table.

timelineStore.dropAllTables();

You can call operations such as Insert, Delete, Update, Read, and Search to manage Meta data.

The Search operation works on the basis of the Search Index feature. Only the MetaStore that has
IndexSchema configured supports the Search operation. An index can be of the LONG, DOUBLE,
BOOLEAN, KEYWORD, or GEO_POINT type. The index attributes include Index, Store, and Array, and have
the same descript ions as those of the Search Index feature. For more information, see Overview.

Insert
The TimelineIdentifier value is used to uniquely identify Timeline data. Tablestore overwrites repeated
TimelineIdentifier values.

TimelineIdentifier identifier = new TimelineIdentifier.Builder()
 .addField("timeline_id", "group")
 .build();
TimelineMeta meta = new TimelineMeta(identifier)
 .setField("filedName", "fieldValue");
timelineMetaStore.insert(meta);

Read
You can call this operation to read TimelineMeta data in one row based on the TimelineIdentifier value.

4.3.3. Meta management

Tablest ore Funct ion Int roduct ion·Timeline mod
el

> Document Version: 20220711 54

https://www.alibabacloud.com/help/doc-detail/117453.htm#concept-226919

TimelineIdentifier identifier = new TimelineIdentifier.Builder()
 .addField("timeline_id", "group")
 .build();
timelineMetaStore.read(identifier);

Update
You can call this operation to update the Meta attribute that corresponds to the specified
TimelineIdentifier value.

TimelineIdentifier identifier = new TimelineIdentifier.Builder()
 .addField("timeline_id", "group")
 .build();
TimelineMeta meta = new TimelineMeta(identifier)
 .setField("filedName", "new value");
timelineMetaStore.update(meta);

Delete
You can call this operation to delete the TimelineMeta data in one row based on the TimelineIdentifier
value.

TimelineIdentifier identifier = new TimelineIdentifier.Builder()
 .addField("timeline_id", "group")
 .build();
timelineMetaStore.delete(identifier);

Search
You can call this operation to specify two search parameters: SearchParameter and SearchQuery. This
operation returns Iterator<TimelineMeta>. You can iterate all result sets by using the iterator.

/**
 * Search meta by SearchParameter.
 * */
SearchParameter parameter = new SearchParameter(
 field("fieldName").equals("fieldValue")
);
timelineMetaStore.search(parameter);
/**
 * Search meta by SearchQuery.
 * */
TermQuery query = new TermQuery();
query.setFieldName("fieldName");
query.setTerm(ColumnValue.fromString("fieldValue"));
SearchQuery searchQuery = new SearchQuery().setQuery(query);
timelineMetaStore.search(searchQuery);

You can call the operations for fuzzy query and Boolean query to manage Timeline data.

4.3.4. Timeline management

Funct ion Int roduct ion·Timeline mod
el

Tablest ore

55 > Document Version: 20220711

The query operations work on the basis of the Search Index feature. Only the TimelineStore that has
IndexSchema configured supports the query operations. An index can be of the LONG, DOUBLE,
BOOLEAN, KEYWORD, GEO_POINT, or TEXT type. The index attributes include Index, Store, Array, and
Analyzer, and have the same descript ions as those of the Search Index feature. For more information,
see Overview.

Search
You can call this operation to use Boolean query. This query requires the field for a fuzzy match. You
need to set the index type of the field to TEXT, and specify the tokenizer.

/**
 * Search timeline by SearchParameter.
 * */
SearchParameter searchParameter = new SearchParameter(
 field("text").equals("fieldValue")
);
timelineStore.search(searchParameter);
/**
 * Search timeline by SearchQuery.
 * */
TermQuery query = new TermQuery();
query.setFieldName("text");
query.setTerm(ColumnValue.fromString("fieldValue"));
SearchQuery searchQuery = new SearchQuery().setQuery(query).setLimit(10);
timelineStore.search(searchQuery);

Flush
The BatchStore operation works on the basis of the DefaultTableStoreWriter class in Tablestore SDKs.
You can call the Flush operation to trigger the process of sending undelivered messages in the Buffer
to Tablestore and wait until Tablestore stores all these messages.

/**
 * Flush messages in buffer, and wait until all messages are stored.
 * */
timelineStore.flush();

This topic describes how to manage queues when you use the Timeline model.

Obtain a Queue instance
A Queue is an abstract of a message queue. A Queue corresponds to all messages of an identifier of a
TimelineStore. You can call the required operation of TimelineStore to create a Queue instance.

TimelineIdentifier identifier = new TimelineIdentifier.Builder()
 .addField("timeline_id", "group_1")
 .build();
// The Queue corresponds to an identifier of a TimelineStore.
TimelineQueue timelineQueue = timelineStore.createTimelineQueue(identifier);

4.3.5. Queue management

Tablest ore Funct ion Int roduct ion·Timeline mod
el

> Document Version: 20220711 56

https://www.alibabacloud.com/help/doc-detail/117453.htm#concept-226919

The Queue instance manages a message queue that corresponds to an identifier of a TimelineStore.
This instance provides operations such as Store, StoreAsync, BatchStore, Delete, Update, UpdateAsync,
Get, and Scan.

Store
You can call this operation to synchronously store messages. To use this operation, you can set
SequenceId manually or by using an auto-increment column.

timelineQueue.store(message);//Generate the SequenceId value by using an auto-increment col
umn.
timelineQueue.store(sequenceId, message);//Manually set the SequenceId value.

StoreAsync
You can call this operation to asynchronously store messages. You can customize callbacks to process
successful or failed storage. This operation returns Future<TimelineEntry>.

TimelineCallback callback = new TimelineCallback() {
 @Override
 public void onCompleted(TimelineIdentifier i, TimelineMessage m, TimelineEntry t) {
 // do something when succeed.
 }
 @Override
 public void onFailed(TimelineIdentifier i, TimelineMessage m, Exception e) {
 // do something when failed.
 }
};
timelineQueue.storeAsync(message, callback);//Generate the SequenceId value by using an aut
o-increment column.
timelineQueue.storeAsync(sequenceId, message, callback);//Manually set the SequenceId value
.

BatchStore
You can call this operation to store mult iple messages in the callback and non-callback ways. You can
customize callbacks to process successful or failed storage.

timelineQueue.batchStore(message);//Generate the SequenceId value by using an auto-incremen
t column.
timelineQueue.batchStore(sequenceId, message);//Manually set the SequenceId value.
timelineQueue.batchStore(message, callback);//Generate the SequenceId value by using an aut
o-increment column.
timelineQueue.batchStore(sequenceId, message, callback);//Manually set the SequenceId value
.

Get
You can call this operation to read a single row based on the SequenceId value. If no messages exist , no
error occurs and the system returns an empty string.

timelineQueue.get(sequenceId);

Funct ion Int roduct ion·Timeline mod
el

Tablest ore

57 > Document Version: 20220711

GetLatestTimelineEntry
You can call this operation to read the latest message. If no messages exist , no error occurs and the
system returns an empty string.

timelineQueue.getLatestTimelineEntry();

GetLatestSequenceId
You can call this operation to obtain the SequenceId value of the latest message. If no messages exist ,
no error occurs and the system returns 0.

timelineQueue.getLatestSequenceId();

Update
You can call this operation to synchronously update a message based on the SequenceId value.

TimelineMessage message = new TimelineMessage().setField("text", "Timeline is fine.");
//update message with new field
message.setField("text", "new value");
timelineQueue.update(sequenceId, message);

UpdateAsync
You can call this operation to asynchronously update a message based on the SequenceId value. You
can customize callbacks to process a successful or failed update. This operation returns
Future<TimelineEntry>.

TimelineMessage oldMessage = new TimelineMessage().setField("text", "Timeline is fine.") ;
TimelineCallback callback = new TimelineCallback() {
 @Override
 public void onCompleted(TimelineIdentifier i, TimelineMessage m, TimelineEntry t) {
 // do something when succeed.
 }
 @Override
 public void onFailed(TimelineIdentifier i, TimelineMessage m, Exception e) {
 // do something when failed.
 }
};
TimelineMessage newMessage = oldMessage;
newMessage.setField("text", "new value");
timelineQueue.updateAsync(sequenceId, newMessage, callback);

Delete
You can call this operation to delete one row based on the SequenceId value.

timelineQueue.delete(sequenceId);

Scan

Tablest ore Funct ion Int roduct ion·Timeline mod
el

> Document Version: 20220711 58

You can call this operation to read messages in a single Queue in order forwards or backwards based on
the Scan parameter. This operation returns Iterator<TimelineEntry>. You can iterate all result sets by
using the iterator.

ScanParameter scanParameter = new ScanParameter().scanBackward(Long.MAX_VALUE, 0);
timelineQueue.scan(scanParameter);

Funct ion Int roduct ion·Timeline mod
el

Tablest ore

59 > Document Version: 20220711

You can use the TimeSeries model to store, query, and analyze t ime series.

Public preview
The TimeSeries model is in public preview in the China (Shanghai), China (Hangzhou), Germany
(Frankfurt), and China (Shenzhen) regions. During the public preview, you can use the TimeSeries model
free of charge. To get started with the TimeSeries model, you can log on to the Tablestore console
and click Create Public Preview Instance for TimeSeries Model to create a public preview instance for the
TimeSeries model. For more information, see Create an instance for the T imeSeries model.

After you create a public preview instance for the TimeSeries model, you can use the Tablestore
console, CLI, or SDKs to get started with the TimeSeries model. For more information, see Use the
Tablestore console, Use the Tablestore CLI, and Use the SDK.

Background information
Tablestore is a mult i-model data storage service that is developed by Alibaba Cloud. Tablestore can
store large amounts of structured data and supports a variety of data models, including the TimeSeries
model.

The TimeSeries model is designed based on the characterist ics of t ime series data. This model is suitable
for scenarios such as IoT device monitoring and can be used to store the data collected by devices and
the monitoring data of machines. The TimeSeries model provides the following benefits:

Provides a unified-common modeling method for t ime series data, which eliminates the need to
predefine table schemas.

Allows metadata indexes to be automatically created for t ime series and supports t ime series
retrieval based on composite condit ions.

Supports queries and aggregation by using SQL.

Supports automatic scale-out of service capabilit ies, high-concurrency writes and queries, and low-
cost storage of petabytes of data.

Terms

Term Description

Time series data

T ime series data consists of multiple t ime series. Each time series is a
set of data points that are arranged in chronological order. In addition,
some metadata is needed to identify a t ime series. Therefore, t ime
series data consists of metadata and data.

Metadata: records the identifiers and properties of all t ime series.

Data: records the data points of all t ime series. The data points
include the t ime when the data points are generated and the
corresponding data values.

5.TimeSeries model
5.1. Overview

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 60

https://www.alibabacloud.com/help/doc-detail/353216.htm#task-2143346
https://www.alibabacloud.com/help/doc-detail/341862.htm#concept-2123375
https://www.alibabacloud.com/help/doc-detail/353218.htm#concept-2143628
https://www.alibabacloud.com/help/doc-detail/341861.htm#concept-2123385

T ime series metadata
Time series metadata contains the identifier and properties of a t ime
series. The identifier is used to uniquely identify a t ime series. The
properties can be modified and can be used for t ime series retrieval.

T ime series identifier
A time series identifier is used to uniquely identify a t ime series. In the
T imeSeries model of Tablestore, a t ime series identifier consists of the
following three parts: metric name, data source, and tag.

Metric name
The name of a physical quantity or metric for data in a t ime series, such
as cpu or net, which indicates that the CPU usage or network usage is
recorded in the t ime series.

Data source
The identifier of the data source for the t ime series. This parameter
can be empty.

Tag
The tag of the t ime series. You can customize multiple key-value pairs
of the string type.

Property

Properties are part of t ime series metadata and can be used to record
some modifiable property information of a t ime series. However, the
properties cannot be used as the identifier of a t ime series and cannot
be used to uniquely identify a t ime series. The properties of a t ime
series are multiple key-value pairs of the string type, which are similar
to tags in the format. You can specify or update the properties of a
time series to retrieve the t ime series by using the properties.

Data in a t ime series

A data point in a t ime series consists of the t ime when the data is
generated and the corresponding data value. If only one value is
generated at each moment in a t ime series, the single-value model is
used. If multiple values are generated at each moment in a t ime series,
the multi-value model is used.

The T imeSeries model of Tablestore uses the multi-value model. You
can specify multiple data values at one point in t ime. Each value
corresponds to a column in the t ime series table, including the column
name and column value. Column values support the following data
types: Boolean, integer, floating-point, string, and binary.

Term Description

Data model
In the TimeSeries model of Tablestore, a two-dimensional t ime series table is used to store t ime series
data.

Each row represents the data at a point in t ime in a t ime series. The t ime series identifier and t imestamp
are the primary key columns of the row, and the data points of the t ime series under the t imestamp are
the data columns of the row. A row can contain mult iple data columns. You do not need to predefine
the schemas of the primary key columns and data columns. You only need to specify the names of the
specific data columns when you write data to the t ime series table.

A t ime series table can store t ime series data of different metric types. In the following figure, the t ime
series table stores data of the following two metric types: temperature and humidity.

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

61 > Document Version: 20220711

In the figure, the measurement, data source, and tags parameters form a t ime series identifier. You can
use an API operation to update the propert ies in the metadata of a t ime series. The propert ies can be
used to retrieve the t ime series.

After data is writ ten to a t ime series table, the system automatically extracts the metadata of the t ime
series and automatically creates a metadata index. You can retrieve a t ime series based on the
combination of the metric name, data source, and tags.

Features
Create and manage t ime series tables

You can use the Tablestore console, SDKs, or CLI to query all t ime series tables in an instance, create a
t ime series table, query the configurations of a t ime series table, update the configurations of a t ime
series table, and delete a t ime series table.

When you create a t ime series table or update the configurations of a t ime series table, you can
specify the t ime to live (TTL) for the data in the t ime series table. After the TTL value is specified, the
system automatically checks the difference between the current t ime and the t imestamp of the t ime
series data. If the difference exceeds the TTL value, the system automatically deletes the expired
data.

Read and write t ime series data

You can use the Tablestore console, SDKs, or CLI to write mult iple rows of t ime series data to a t ime
series table at the same t ime. After data is writ ten to the t ime series table, you can specify a t ime
series identifier to query the data in the t ime series within the specified t ime range.

Retrieve t ime series

You can use the Tablestore console, SDKs, or CLI to retrieve t ime series in a t ime series table. You can
use a composite condit ion that consists of mult iple condit ions to retrieve t ime series. For example,
you can retrieve all t ime series in which the metric name is cpu, the tags contain a tag whose name is
region and value is hangzhou, and the propert ies contain a property whose name is status and value
is online. After the t ime series are retrieved, you can call an API operation to further query the data in
the t ime series.

Implement SQL query and analyt ics

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 62

Time series tables support queries by using SQL. In SQL, you can specify the metadata condit ion to
filter t ime series and aggregate data based on the aggregation operations in different dimensions.
For example, you can query the average value of the sample data from a batch of devices and
aggregate second-level data into minute-level data.

In addit ion, you can query only the metadata of t ime series in SQL. This way, you can manage the
metadata of t ime series by using SQL.

Limits
For more information, see Limits on the T imeSeries model.

After you create an instance for the TimeSeries model, you can use the Tablestore console, CLI, or SDKs
to get started with the TimeSeries model.

Procedure
1. Log on to the Tablestore console.

2. On the Overview page, click Creat e Inst ance f or T imeSeries Model .

3. In the Creat e Inst ance f or T imeSeries Model dialog box, select a region and specify Instance
Name and Instance Descript ion based on your business requirements.

Not ice Each Alibaba Cloud account can create up to 10 instances. The name of an
instance must be unique within the region in which the instance resides.

4. Click OK.

What's next
Get started with the TimeSeries model by using the Tablestore console. For more information, see
Use the Tablestore console.

Get started with the TimeSeries model by using the Tablestore CLI. For more information, see Use the
Tablestore CLI.

Get started with the TimeSeries model by using Tablestore SDKs. For more information, see Use
Tablestore SDKs.

After you create a t ime series table in the console, you can write t ime series data to the t ime series
table, and retrieve t ime series and query t ime series data in the t ime series table.

Prerequisites
A public preview instance for the TimeSeries model is created. For more information, see Create an
instance for the T imeSeries model.

5.2. Create an instance for the
TimeSeries model

5.3. Quick start
5.3.1. Use the Tablestore console

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

63 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/341852.htm#concept-2123387
https://otsnext.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/341862.htm#concept-2123375
https://www.alibabacloud.com/help/doc-detail/353218.htm#concept-2143628
https://www.alibabacloud.com/help/doc-detail/341861.htm#concept-2123385
https://www.alibabacloud.com/help/doc-detail/353216.htm#task-2143346

Step 1: Create a t ime series table
Create a t ime series table in the Tablestore console.

1. Log on to the Tablestore console.

2. On the Overview page, click the name of the instance in which you want to create a t ime series
table or click Manage Inst ance in the Act ions column that corresponds to the instance.

3. On the Inst ance Det ails tab, click the T ime Series T ables tab.

4. On the T ime Series T ables tab, click Creat e T ime Series T able .

Not e You can also click Generat e Demo wit h One Click to create a test table with
sample data for a quick start . When you create a t ime series table, the system performs some
init ializat ion operations. Therefore, you need to wait for dozens of seconds until the t ime
series are displayed.

5. In the Creat e T ime Series T able dialog box, specify Name and T ime t o Live as described in the
following table.

Parameter Description

Name

The name of the t ime series table, which is used to identify the t ime
series table in an instance.

The name must be 1 to 128 characters in length and can contain
letters, digits, and underscores (_). The name must start with a
letter or an underscore (_).

The name of a t ime series table cannot be the same as the name of
an existing data table.

T ime to Live

The retention period of the data in the t ime series table. Unit:
seconds. If the system detects that the difference between the
current t ime and the time column that is passed to the table
exceeds the specified TTL value, the system automatically deletes
the expired data.

Not ice In the t ime series table, the system determines
the time when the data is generated based on the t ime column
that is passed to the table, not the t ime when the data is
written to the table.

The value of this parameter must be -1 or a value that is greater
than or equal to 86400 seconds (one day).

6. Click OK.

After the t ime series table is created, you can view the t ime series table on the T ime Series

T ables tab. If the t ime series table is not displayed in the list of t ime series tables, click the

icon to refresh the list of t ime series tables.

Step 2: Write t ime series data

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 64

https://otsnext.console.aliyun.com/

Write t ime series data to the t ime series table in the Tablestore console. Time series data consists of
metadata and data. If you do not create metadata before you write the t ime series data, the system
automatically extracts the metadata from the written data.

1. On the T ime Series T ables tab, click the name of the t ime series table and then click the Query
Dat a tab or click Manage Dat a in the Act ions column that corresponds to the t ime series table.

2. (Optional) Create a t ime series.

i. On the Query Dat a tab, click Add T imeline .

ii. In the Add T imeline dialog box, configure the metadata of the t ime series.

The following table describes the parameters that you can configure to add a t ime series.

Parameter Description

Metric Name
The name of a physical quantity or metric for the data in the
time series, such as cpu or net, which specifies that the CPU
usage or network usage is recorded in the t ime series.

Data Source
The identifier of the data source for the t ime series. This
parameter can be empty.

Tag
The tag of the t ime series. You can customize multiple key-value
pairs of the string type.

Property
The property column of the t ime series, which is used to record
some property information of the t ime series.

iii. Click OK.

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

65 > Document Version: 20220711

3. Insert data.

i. Click Insert Dat a .

ii. In the Insert Dat a dialog box, specify Time and Attribute Column.

iii. Click OK.

Step 3: Retrieve t ime series
Retrieves all the t ime series that meet the specified condit ions.

1. On the Query Dat a tab, click Query Dat a in the upper-right corner.

2. In the Query Dat a dialog box, specify Metric Name and Data Source, and click Add in the Tag,
Property, and Updated At sect ions to add condit ions.

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 66

The following figure shows an example on how to query the t ime series in which the metric name is
cpu and the tags contain os=Ubuntu16.10.

3. Click OK.

The t ime series that meet the condit ions are displayed on the Query Dat a tab.

Step 4: Query t ime series data
Query the data in a t ime series within a specific t ime range.

1. On the Query Dat a tab, click Query Dat a in the Act ions column that corresponds to the t ime
series whose data you want to query.

2. Select Time Range or Microsecond Timestamp from the drop-down list of Search Method, specify
the t ime, and click Search.

The data that meets the condit ions is displayed on the Query Dat a tab. The query results can be
displayed in a list or f igure.

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

67 > Document Version: 20220711

The following figure shows an example of the query results in a list .

The following figure shows an example of the query results in a figure.

Not e Different colors in the figure represent different data columns. If you move the
pointer over the data trend line, the values of the corresponding data columns are displayed.
You can also select or clear specific data columns to display the required data columns.

After you use the Tablestore CLI to create a t ime series table, you can run the CLI commands to write
t ime series data to the t ime series table, and retrieve t ime series and query t ime series data in the t ime
series table. You can also use SQL statements to retrieve t ime series and query t ime series data in the
time series table.

Prerequisites
A public preview instance for the TimeSeries model is created. For more information, see Create an
instance for the TimeSeries model.

The Tablestore CLI is downloaded. For more information, see Download the Tablestore CLI.

The instance is started and configured. For more information, see Start the Tablestore CLI and

5.3.2. Use the Tablestore CLI

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 68

https://www.alibabacloud.com/help/doc-detail/353216.htm#task-2143346
https://www.alibabacloud.com/help/doc-detail/342819.htm#concept-2128430
https://www.alibabacloud.com/help/doc-detail/342820.htm#concept-2128552

configure access information.

An AccessKey pair is obtained. For more information, see Obtain an AccessKey pair.

Sample scenario
The following example shows how to use the TimeSeries model in the Internet of vehicles (IoV)
scenario. In this example, a t ime series table named car_data is used. The table records the states of
vehicles and contains the measurement, data source, tags, t imestamp, and fields columns. The
following figure shows the schema of the car_data t ime series table.

Operations on a t ime series table
1. Run the creat e command to create a t ime series table named car_data.

create -m timeseries -t car_data

2. Run the use --ts command to select the car_data t ime series table.

use --ts -t car_data

3. Import t ime series data by using one of the following methods:

Write a single row of t ime series data

Run the putts command to write a single row of t ime series data. In the following example, a row
of t ime series data is writ ten to the car_data t ime series table.

putts --k '["car_data","car_0000010", ["brand=brand0","id=car_0000010","model=em3"]]'
--field '[{"c":"duration","v":121,"isint":true},{"c":"mileage","v":6480,"isint":true}
,{"c":"power","v":69,"isint":true},{"c":"speed","v":24,"isint":true},{"c":"temperatur
e","v":13,"isint":true}]' --time 1636460000000000

Import mult iple rows of t ime series data at the same t ime

Download the sample data and run the import_t imeseries command to batch import the t ime
series data. The sample data contains a total of 5 million rows of t ime series data. You can
include the -l parameter in the command to specify the number of rows of t ime series data that
you want to import. You can import up to 10 million rows of t ime series data free of charge.

In the following example, 50,000 rows of t ime series data are imported. In the command,
yourFilePath specifies the path where the sample data package is decompressed. Example: D:\
\timeseries_demo_data_5000000 .

import_timeseries -i yourFilePath -l 50000

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

69 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/175967.htm#task-354412
https://static-aliyun-doc.oss-cn-hangzhou.aliyuncs.com/file-manage-files/zh-CN/20220527/qjol/timeseries_demo_data_5000000.zip

Sample output:

Current speed is: 11000 rows/s. Total succeed count 11000, failed count 0.
Current speed is: 13000 rows/s. Total succeed count 24000, failed count 0.
Current speed is: 16400 rows/s. Total succeed count 40400, failed count 0.
Import finished, total count is 50000, failed 0 rows.

4. Run the qtm command to query t ime series. In the following example, all t ime series are queried and
10 t ime series are returned.

qtm -l 10

Sample output:

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 70

+-------------+-------------+---+----------
--+------------------+
| measurement | data_source | tags | attribute
s | update_time |
+-------------+-------------+---+----------
--+------------------+
| car_data | car_0000005 | ["brand=brand0","id=car_0000005","model=m0"] | null
| 1637722788684102 |
+-------------+-------------+---+----------
--+------------------+
| car_data | car_0000009 | ["brand=brand2","id=car_0000009","model=em3"] | null
| 1637722790158982 |
+-------------+-------------+---+----------
--+------------------+
| car_data | car_0000000 | ["brand=brand0","id=car_0000000","model=m3"] | null
| 1637722787172818 |
+-------------+-------------+---+----------
--+------------------+
| car_data | car_0000008 | ["brand=brand0","id=car_0000008","model=m3"] | null
| 1637722789832880 |
+-------------+-------------+---+----------
--+------------------+
| car_data | car_0000002 | ["brand=brand1","id=car_0000002","model=nm1"] | null
| 1637722787915852 |
+-------------+-------------+---+----------
--+------------------+
| car_data | car_0000006 | ["brand=brand2","id=car_0000006","model=em2"] | null
| 1637722789006974 |
+-------------+-------------+---+----------
--+------------------+
| car_data | car_0000001 | ["brand=brand2","id=car_0000001","model=em2"] | null
| 1637722787260034 |
+-------------+-------------+---+----------
--+------------------+
| car_data | car_0000004 | ["brand=brand0","id=car_0000004","model=m2"] | null
| 1637722788529313 |
+-------------+-------------+---+----------
--+------------------+
| car_data | car_0000003 | ["brand=brand1","id=car_0000003","model=nm0"] | null
| 1637722788288273 |
+-------------+-------------+---+----------
--+------------------+
| car_data | car_0000007 | ["brand=brand2","id=car_0000007","model=em2"] | null
| 1637722789315575 |
+-------------+-------------+---+----------
--+------------------+

5. Run the getts command to query the first f ive t ime points in a t ime series.

getts --k '["car_data","car_0000006", ["brand=brand2","id=car_0000006","model=em2"]]' -
l 5

Sample output:

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

71 > Document Version: 20220711

+-------------+-------------+---+----------
--------+----------+---------+-------+-------+-------------+
| measurement | data_source | tags | timestamp
| duration | mileage | power | speed | temperature |
+-------------+-------------+---+----------
--------+----------+---------+-------+-------+-------------+
| car_data | car_0000006 | ["brand=brand2","id=car_0000006","model=em2"] | 163656000
0000000 | 190 | 1770 | 33 | 54 | 29 |
+-------------+-------------+---+----------
--------+----------+---------+-------+-------+-------------+
| car_data | car_0000006 | ["brand=brand2","id=car_0000006","model=em2"] | 163656001
0000000 | 554 | 6670 | 42 | 24 | 12 |
+-------------+-------------+---+----------
--------+----------+---------+-------+-------+-------------+
| car_data | car_0000006 | ["brand=brand2","id=car_0000006","model=em2"] | 163656002
0000000 | 564 | 9750 | 14 | 75 | 22 |
+-------------+-------------+---+----------
--------+----------+---------+-------+-------+-------------+
| car_data | car_0000006 | ["brand=brand2","id=car_0000006","model=em2"] | 163656003
0000000 | 176 | 7950 | 90 | 24 | 22 |
+-------------+-------------+---+----------
--------+----------+---------+-------+-------+-------------+
| car_data | car_0000006 | ["brand=brand2","id=car_0000006","model=em2"] | 163656004
0000000 | 441 | 6280 | 30 | 38 | 31 |
+-------------+-------------+---+----------
--------+----------+---------+-------+-------+-------------+

Use SQL to query t ime series data
After you create a t ime series table in Tablestore, the system automatically creates two SQL mapping
tables for the t ime series table: t ime series data table and t ime series metadata table.

Time series data table: uses the same name as the t ime series table. You can query t ime series data in
the t ime series data table. The name of the t ime series data table for the car_data t ime series table is
 car_data .

Time series metadata table: uses a name that concatenates the ::meta string after the name of
the t ime series table. You can query t ime series metadata in the t ime series metadata table. The
name of the t ime series metadata table for the car_data t ime series table is car_data::meta .

1. Run the sql command to enter the SQL mode.

sql

2. Retrieve t ime series.

Example 1: Query the vehicles whose brand is brand0 and model is m3, and specify that only the
first 10 query results are returned.

SELECT * FROM `car_data::meta` WHERE _m_name = "car_data" AND tag_value_at(_tags,"bra
nd") = "brand0" AND tag_value_at(_tags,"model") = "m3" LIMIT 10;

Sample output:

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 72

+----------+--------------+--+-----------
--+-------------------+
| _m_name | _data_source | _tags | _attribute
s | _meta_update_time |
+----------+--------------+--+-----------
--+-------------------+
| car_data | car_0000000 | ["brand=brand0","id=car_0000000","model=m3"] | null
| 1637722787172818 |
+----------+--------------+--+-----------
--+-------------------+
| car_data | car_0000008 | ["brand=brand0","id=car_0000008","model=m3"] | null
| 1637722789832880 |
+----------+--------------+--+-----------
--+-------------------+

Example 2: Query the total number of vehicles whose brand is brand2.

SELECT count(*) FROM `car_data::meta` WHERE tag_value_at(_tags,"brand") = "brand2";

Sample output:

+----------+
| count(*) |
+----------+
| 4 |
+----------+

3. Query t ime series data.

Example 1: Query the vehicles whose metric name is car_data and data source is car_0000175,
and specify that only the first 10 data points of the power data column are returned.

SELECT _time, _field_name, _long_value as value FROM `car_data` WHERE _m_name = "car_
data" AND _data_source = "car_0000001" AND _field_name = "power" LIMIT 10;

Sample output:

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

73 > Document Version: 20220711

+------------------+-------------+-------+
| _time | _field_name | value |
+------------------+-------------+-------+
| 1636560000000000 | power | 68 |
+------------------+-------------+-------+
| 1636560010000000 | power | 41 |
+------------------+-------------+-------+
| 1636560020000000 | power | 69 |
+------------------+-------------+-------+
| 1636560030000000 | power | 95 |
+------------------+-------------+-------+
| 1636560040000000 | power | 27 |
+------------------+-------------+-------+
| 1636560050000000 | power | 26 |
+------------------+-------------+-------+
| 1636560060000000 | power | 98 |
+------------------+-------------+-------+
| 1636560070000000 | power | 82 |
+------------------+-------------+-------+
| 1636560080000000 | power | 24 |
+------------------+-------------+-------+
| 1636560090000000 | power | 2 |
+------------------+-------------+-------+

Example 2: Query the maximum speed of vehicles whose metric name is car_data and data
source is car_000002.

SELECT max(_long_value) as speed FROM `car_data` WHERE _m_name = "car_data" AND _data
_source = "car_0000002" AND _field_name = "speed";

Sample output:

+-------+
| speed |
+-------+
| 100 |
+-------+

Example 3: Aggregate the temperature data of vehicles whose metric name is car_data and
data source is car_0000001 based on a t ime window of 60s to calculate the lowest temperature
per minute.

SELECT _time DIV 60000000 * 60 as time_sec, min(_long_value) as temperature FROM `car
_data` WHERE _data_source = "car_0000001" AND _field_name = "temperature" GROUP BY ti
me_sec ORDER BY time_sec ASC LIMIT 10;

Sample output:

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 74

+------------+-------------+
| time_sec | temperature |
+------------+-------------+
| 1636560000 | 11 |
+------------+-------------+
| 1636560060 | 10 |
+------------+-------------+
| 1636560120 | 11 |
+------------+-------------+
| 1636560180 | 10 |
+------------+-------------+
| 1636560240 | 11 |
+------------+-------------+
| 1636560300 | 12 |
+------------+-------------+
| 1636560360 | 14 |
+------------+-------------+
| 1636560420 | 10 |
+------------+-------------+
| 1636560480 | 15 |
+------------+-------------+
| 1636560540 | 11 |
+------------+-------------+

4. Exit the SQL mode

exit;

5. Exit the Tablestore CLI.

exit

After you use a Tablestore SDK to create a t ime series table, you can write t ime series data to the t ime
series table, and retrieve t ime series and query t ime series data in the t ime series table.

Operations

Operation Description

CreateT imeseriesTable Creates a t ime series table.

ListT imeseriesTable Queries the t ime series tables in the current instance.

DescribeTimeseriesTable Queries the information about a t ime series table.

UpdateT imeseriesTable Updates the configurations of a t ime series table.

DeleteT imeseriesTable Deletes a t ime series table.

PutT imeseriesData Writes t ime series data.

5.4. Use Tablestore SDKs

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

75 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/341789.htm#reference-2124547
https://www.alibabacloud.com/help/doc-detail/341790.htm#reference-2124555
https://www.alibabacloud.com/help/doc-detail/341791.htm#reference-2124556
https://www.alibabacloud.com/help/doc-detail/341792.htm#reference-2124563
https://www.alibabacloud.com/help/doc-detail/341793.htm#reference-2124577
https://www.alibabacloud.com/help/doc-detail/341794.htm#reference-2124612

GetT imeseriesData Queries the data in a t ime series.

QueryT imeseriesMeta Retrieves the metadata of a t ime series.

UpdateT imeseriesMeta Updates the metadata of a t ime series.

DeleteT imeseriesMeta Deletes the metadata of a t ime series.

Operation Description

Tablestore SDKs
You can use the following Tablestore SDKs to get started with the TimeSeries model:

Java SDK

Go SDK

Create a t ime series table
You can call the CreateTimeseriesTable operation to create a t ime series table. When you call the
CreateTimeseriesTable operation to create a t ime series table, you must specify the configurations of
the table.

Parameters

The schema information (t imeseriesTableMeta) about a t ime series table includes the name
(t imeseriesTableName) and configurations (t imeseriesTableOptions) of the table. The following table
describes the parameters.

Parameter Description

timeseriesTableName The name of the t ime series table.

timeseriesTableOptions

The configurations of the t ime series table. The configurations
include the following content:

timeToLive: the retention period of the data in the t ime series table.
Unit: seconds. If you want the data in the t ime series table to never
expire, set this parameter to -1. You can call the
UpdateT imeseriesTable operation to change the value of this
parameter.

Examples

Create a t ime series table named test_t imeseries_table in which the data never expires.

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 76

https://www.alibabacloud.com/help/doc-detail/341795.htm#reference-2124728
https://www.alibabacloud.com/help/doc-detail/341796.htm#reference-2124847
https://www.alibabacloud.com/help/doc-detail/341797.htm#reference-2124943
https://www.alibabacloud.com/help/doc-detail/391215.htm#reference-2170860
https://www.alibabacloud.com/help/doc-detail/341811.htm#concept-2126674
https://www.alibabacloud.com/help/doc-detail/341831.htm#concept-2126674

private static void createTimeseriesTable(TimeseriesClient client) {
 String tableName = "test_timeseries_table";
 TimeseriesTableMeta timeseriesTableMeta = new TimeseriesTableMeta(tableName);
 int timeToLive = -1;
 timeseriesTableMeta.setTimeseriesTableOptions(new TimeseriesTableOptions(timeToLive))
;
 CreateTimeseriesTableRequest request = new CreateTimeseriesTableRequest(timeseriesTab
leMeta);
 client.createTimeseriesTable(request);
}

Write t ime series data
You can call the PutTimeseriesData operation to write mult iple rows of t ime series data at a t ime.

Parameters

A row of t ime series data (t imeseriesRow) includes the t ime series identifier (t imeseriesKey) and t ime
series data. The t ime series data includes data points (fields) and the t ime (t imeInUs) of the data
points. The following table describes the parameters.

Parameter Description

timeseriesKey

The identifier of the t ime series. The identifier includes the following
content:

measurementName: the measurement name of the t ime series.

dataSource: the data source of the t ime series. You can leave this
parameter empty.

tags: the tags of the t ime series. The tags are multiple key-value
pairs of the STRING type.

timeInUs The time of the data point. Unit: microseconds.

fields
The data points, which can be multiple pairs of names (FieldKey) and
data values (FieldValue).

Examples

Write mult iple rows of t ime series data to the t ime series table named test_t imeseries_table at a
t ime.

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

77 > Document Version: 20220711

private static void putTimeseriesData(TimeseriesClient client) {
 List<TimeseriesRow> rows = new ArrayList<TimeseriesRow>();
 for (int i = 0; i < 10; i++) {
 Map<String, String> tags = new HashMap<String, String>();
 tags.put("region", "hangzhou");
 tags.put("os", "Ubuntu16.04");
 // Use the measurement name, data source, and tags of a time series to construct
the identifier of the time series.
 TimeseriesKey timeseriesKey = new TimeseriesKey("cpu", "host_" + i, tags);
 // Specify the timeseriesKey and timeInUs parameters to create a row of time seri
es data.
 TimeseriesRow row = new TimeseriesRow(timeseriesKey, System.currentTimeMillis() *
1000 + i);
 // Add data values (fields).
 row.addField("cpu_usage", ColumnValue.fromDouble(10.0));
 row.addField("cpu_sys", ColumnValue.fromDouble(5.0));
 rows.add(row);
 }
 String tableName = "test_timeseries_table";
 PutTimeseriesDataRequest putTimeseriesDataRequest = new PutTimeseriesDataRequest(tabl
eName);
 putTimeseriesDataRequest.setRows(rows);
 // Write multiple rows of time series data at a time.
 PutTimeseriesDataResponse putTimeseriesDataResponse = client.putTimeseriesData(putTim
eseriesDataRequest);
 // Check whether all data is written to the time series table.
 if (!putTimeseriesDataResponse.isAllSuccess()) {
 for (PutTimeseriesDataResponse.FailedRowResult failedRowResult : putTimeseriesDat
aResponse.getFailedRows()) {
 System.out.println(failedRowResult.getIndex());
 System.out.println(failedRowResult.getError());
 }
 }
}

Retrieve t ime series
Parameters

The metaQueryCondit ion parameter specifies the condit ions for a t ime series retrieval. The condit ions
include compositeMetaQueryCondit ion, measurementMetaQueryCondit ion,
dataSourceMetaQueryCondit ion, tagMetaQueryCondit ion, attributeMetaQueryCondit ion, and
updateTimeMetaQueryCondit ion. The following table describes the parameters.

Parameter Description

compositeMetaQueryCondition

The composite condition that includes the following content:

operator: the logical operator. Valid values: AND, OR, and NOT.

subConditions: the subconditions that can be combined by using
operators for complex queries.

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 78

measurementMetaQueryConditio
n

The measurement name condition that includes the following
content:

operator: the relational operator or the prefix match condition.
Valid values for the relational operator: =, !=, >, >=, <, and <=.

value: the measurement name of the t ime series that you want to
retrieve. Type: STRING.

dataSourceMetaQueryCondition

The data source condition that includes the following content:

operator: the relational operator or the prefix match condition.
Valid values for the relational operator: =, !=, >, >=, <, and <=.

value: the data source of the t ime series that you want to retrieve.
Type: STRING.

tagMetaQueryCondition

The tag condition that includes the following content:

operator: the relational operator or the prefix match condition.
Valid values for the relational operator: =, !=, >, >=, <, and <=.

value: the tag of the t ime series that you want to retrieve. Type:
STRING.

attributeMetaQueryCondition

The attribute condition for the metadata of the t ime series. The
attribute condition includes the following content:

operator: the relational operator or the prefix match condition.
Valid values for the relational operator: =, !=, >, >=, <, and <=.

attributeName: the name of the attribute. Type: STRING.

value: the value of the attribute. Type: STRING.

updateT imeMetaQueryCondition

The update t ime condition for the metadata of the t ime series. The
update t ime condition includes the following content:

operator: the relational operator. Valid values: =, !=, >, >=, <, and
<=.

timeInUs: the t imestamp when the metadata of the t ime series is
updated. Unit: microseconds.

Parameter Description

Examples

Query all t ime series in which the measurement name is cpu and the tags include the os tag whose
tag value is prefixed with Ubuntu in the t ime series table named test_t imeseries_table.

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

79 > Document Version: 20220711

private static void queryTimeseriesMeta(TimeseriesClient client) {
 String tableName = "test_timeseries_table";
 QueryTimeseriesMetaRequest queryTimeseriesMetaRequest = new QueryTimeseriesMetaReques
t(tableName);
 // Query all time series in which the measurement name is cpu and the tags include th
e os tag whose tag value is prefixed with Ubuntu. Condition: measurement_name="cpu" and h
ave_prefix(os, "Ubuntu").
 CompositeMetaQueryCondition compositeMetaQueryCondition = new CompositeMetaQueryCondi
tion(MetaQueryCompositeOperator.OP_AND);
 compositeMetaQueryCondition.addSubCondition(new MeasurementMetaQueryCondition(MetaQue
rySingleOperator.OP_EQUAL, "cpu"));
 compositeMetaQueryCondition.addSubCondition(new TagMetaQueryCondition(MetaQuerySingle
Operator.OP_PREFIX, "os", "Ubuntu"));
 queryTimeseriesMetaRequest.setCondition(compositeMetaQueryCondition);
 queryTimeseriesMetaRequest.setGetTotalHits(true);
 QueryTimeseriesMetaResponse queryTimeseriesMetaResponse = client.queryTimeseriesMeta(
queryTimeseriesMetaRequest);
 System.out.println(queryTimeseriesMetaResponse.getTotalHits());
 for (TimeseriesMeta timeseriesMeta : queryTimeseriesMetaResponse.getTimeseriesMetas()
) {
 System.out.println(timeseriesMeta.getTimeseriesKey().getMeasurementName());
 System.out.println(timeseriesMeta.getTimeseriesKey().getDataSource());
 System.out.println(timeseriesMeta.getTimeseriesKey().getTags());
 System.out.println(timeseriesMeta.getAttributes());
 System.out.println(timeseriesMeta.getUpdateTimeInUs());
 }
}

Query t ime series data
Parameters

Parameter Description

timeseriesKey

The identifier of the t ime series that you want to query. The identifier
includes the following content:

measurementName: the measurement name of the t ime series.

dataSource: the data source of the t ime series. You can leave this
parameter empty.

tags: the tags of the t ime series. The tags are multiple key-value
pairs of the STRING type.

timeRange

The time range for the query. The time range is a left-open, right-
closed interval. The time range includes the following content:

beginT imeInUs: the start t ime.

endTimeInUs: the end time.

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 80

backward

Specifies whether to sort the query results in reverse chronological
order. This allows you to obtain the latest data in a t ime series. Valid
values:

true: sorts the query results in reverse chronological order.

false: sorts the query results in chronological order. This is the
default value.

fieldsToGet

The columns that you want to return. If you do not specify this
parameter, all columns are returned.

Not ice When you specify the fieldsToGet parameter, you
must specify the name and data type of each column that you
want to return. If the specified data type of a column is not that
of the column in the t ime series table, the data of the column
cannot be returned.

limit

The maximum number of rows that you want to return.

Not e The limit parameter limits only the maximum
number of rows that you want to return. Even if the number of
rows that meet the specified conditions exceeds the limit, the
number of rows that are returned may be less than the value of
the limit parameter due to other limits such as the maximum
amount of data for a scan. In this case, you can obtain the
remaining rows by using the nextToken parameter.

nextToken

The token that is used to obtain more results. If only some rows that
meet the specified conditions are returned in a query, the response
contains the nextToken parameter. You can specify the nextToken
parameter in the next request to obtain the remaining rows.

Parameter Description

Examples

Query the t ime series data that meets the specified condit ions in the t ime series table named
test_t imeseries_table.

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

81 > Document Version: 20220711

private static void getTimeseriesData(TimeseriesClient client) {
 String tableName = "test_timeseries_table";
 GetTimeseriesDataRequest getTimeseriesDataRequest = new GetTimeseriesDataRequest(tabl
eName);
 Map<String, String> tags = new HashMap<String, String>();
 tags.put("region", "hangzhou");
 tags.put("os", "Ubuntu16.04");
 // Use the measurement name, data source, and tags of a time series to construct the
identifier of the time series.
 TimeseriesKey timeseriesKey = new TimeseriesKey("cpu", "host_0", tags);
 getTimeseriesDataRequest.setTimeseriesKey(timeseriesKey);
 // Specify the time range.
 getTimeseriesDataRequest.setTimeRange(0, (System.currentTimeMillis() + 60 * 1000) * 1
000);
 // Specify the maximum number of rows that you want to return.
 getTimeseriesDataRequest.setLimit(10);
 // Optional. Specify whether to sort the query results in reverse chronological order
. Default value: false. If you set this parameter to true, the query results are sorted i
n reverse chronological order.
 getTimeseriesDataRequest.setBackward(false);
 // Optional. Specify the columns that you want to return. If you do not specify this
parameter, all columns are returned.
 getTimeseriesDataRequest.addFieldToGet("string_1", ColumnType.STRING);
 getTimeseriesDataRequest.addFieldToGet("long_1", ColumnType.INTEGER);
 GetTimeseriesDataResponse getTimeseriesDataResponse = client.getTimeseriesData(getTim
eseriesDataRequest);
 System.out.println(getTimeseriesDataResponse.getRows().size());
 if (getTimeseriesDataResponse.getNextToken() != null) {
 // If the nextToken parameter is not empty, you can initiate a request again to o
btain the remaining data.
 getTimeseriesDataRequest.setNextToken(getTimeseriesDataResponse.getNextToken());
 getTimeseriesDataResponse = client.getTimeseriesData(getTimeseriesDataRequest);
 System.out.println(getTimeseriesDataResponse.getRows().size());
 }
}

After you create a t ime series table in Tablestore and a mapping table for the t ime series table in SQL,
you can execute SQL statements in the Tablestore console or by using Tablestore SDKs to query t ime
series data in the t ime series table.

Mapping tables for a t ime series table in SQL

The t ime series model is classified into the single-value model and the mult i-value model based on
whether one or more values are generated at each t ime point in a t ime series. The following table
describes the types of mapping tables that you can create for a t ime series table in SQL to query data.

5.5. Use SQL to query time series data

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 82

Mapping table type Description Creation method
Name of the mapping
table in SQL

Mapping tables in the
single-value model

Queries t ime series data
by using the mapping
table in the single-value
model.

After you create a t ime
series table, the system
automatically creates a
mapping table in SQL
for the t ime series
table.

Same as the name of
the time series table.

Mapping tables in the
multi-value model

Queries t ime series data
by using the mapping
table in the multi-value
model.

After you create a t ime
series table, you
manually create a
mapping table in SQL.

The name of the
mapping table is in the
 Name of the time
series
table::Suffix
format. Specify
 Suffix when you

create a mapping table
in SQL.

Mapping tables for t ime
series metadata

Queries t ime series
metadata.

After you create a t ime
series table, the system
automatically creates a
mapping table in SQL.

The name of the
mapping table is in the
 Name of the time
series table::meta
format.

Mapping tables in the single-value model
After you create a t ime series table, the system automatically creates a mapping table in the single-
value model in SQL for the t ime series table. The name of the mapping table in SQL is the same as the
name of the t ime series table. You can use the mapping table in the single-value model to query t ime
series data in the t ime series table.

The following table describes the schema of the mapping table in SQL.

Column name Type Description

_m_name VARCHAR The metric name.

_data_source VARCHAR The data source.

_tags VARCHAR

The tags of the t ime series. The value is an array
and multiple tags are in the
["tagKey1=tagValue1","tagKey2=tagValue2"]
format.

You can use the tag_value_at function to extract the
value of a tag.

_time BIGINT
The timestamp of the data point. Unit:
microseconds.

_field_name VARCHAR The name of the data column.

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

83 > Document Version: 20220711

_long_value BIGINT
The value of the integer type. If the data type of the
data column is not integer, the value is NULL.

_double_value DOUBLE
The value of the floating-point type. If the data
type of the data column is not floating-point, the
value is NULL.

_bool_value BOOL
The value of the Boolean type. If the data type of
the data column is not Boolean, the value is NULL.

_string_value VARCHAR
The value of the string type. If the data type of the
data column is not string, the value is NULL.

_binary_value MEDIUMBLOB
The value of the binary type. If the data type of the
data column is not binary, the value is NULL.

_attributes VARCHAR
The properties of the t ime series. The format of
properties is the same as the format of tags.

_meta_update_time BIGINT

The point in t ime when the metadata of the t ime
series is updated.

When you update the properties of a t ime series,
the system automatically updates the metadata
update t ime of the t ime series. If you continue to
write data to the t ime series, the system updates
the metadata update t ime of the t ime series at
regular intervals. You can use the metadata update
time to determine whether the t ime series is active.

Column name Type Description

Mapping tables in the multi-value model
If you want to query t ime series data by using a mapping table in the mult i-value model, execute the
CREATE TABLE statement to create a mapping table in the mult i-value model. The mapping table in SQL
uses a name that concatenates the ::Suffix string to the name of the t ime series table. Specify
 Suffix when you create a mapping table in SQL. You can create mult iple mapping tables in the

mult i-value model in SQL for a t ime series table.

When you create a mapping table in the mult i-value model for a t ime series table, specify the name of
the mapping table, and the names and types of the data columns in the mapping table. For more
information, see Create mapping tables in the mult i-value model for t ime series tables.

The following table describes the schema of the mapping table in SQL.

Not e If you want to read the propert ies column (_attributes) of the t ime series metadata or
the metadata update t ime column (_meta_update_t ime) by using a mapping table in the mult i-
value model, add the two columns to the mapping table. The system automatically fills the
content in the two metadata columns.

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 84

Column name Type Description

_m_name VARCHAR The metric name.

_data_source VARCHAR The data source.

_tags VARCHAR

The tags of the t ime series. The value is an array
and multiple tags are in the
["tagKey1=tagValue1","tagKey2=tagValue2"]
format. You can use the tag_value_at function to
extract the value of a tag.

_time BIGINT
The timestamp of the data point. Unit:
microseconds.

The name of the
custom data column.

SQL data types

You can add multiple custom data columns to the
mapping table in SQL.

If the name or type of the specified column in the
mapping table in SQL does not match the name or
type of the column in the t ime series table, the
values of the column in the mapping table are null.

_attributes (optional) MEDIUMTEXT
The properties of the t ime series. The format of
properties is the same as the format of tags.

_meta_update_time
(optional)

BIGINT

The point in t ime when the metadata of the t ime
series is updated.

When you update the properties of a t ime series,
the system automatically updates the metadata
update t ime of the t ime series. If you continue to
write data to the t ime series, the system updates
the metadata update t ime of the t ime series at
regular intervals. You can use the metadata update
time to determine whether the t ime series is active.

Mapping tables for t ime series metadata
After you create a t ime series table, the system automatically creates a mapping table for t ime series
metadata. The mapping table uses a name that concatenates the ::meta string to the name of the
time series table. You can use the mapping table to query t ime series metadata. For example, if the
name of the t ime series table is t imeseries_table, the name of the mapping table for t ime series
metadata is timeseries_table::meta .

The following table describes the schema of the mapping table in SQL.

Column name Type Description

_m_name VARCHAR The metric name.

_data_source VARCHAR The data source.

_tags VARCHAR The tags of the t ime series.

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

85 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/295886.htm#concept-2098470

_attributes VARCHAR The properties of the t ime series.

_meta_update_time BIGINT

The point in t ime when the metadata of the t ime
series is updated.

When you update the properties of a t ime series,
the system automatically updates the metadata
update t ime of the t ime series. If you continue to
write data to the t ime series, the system updates
the metadata update t ime of the t ime series at
regular intervals. You can use the metadata update
time to determine whether the t ime series is active.

Column name Type Description

SQL syntax

Create mapping tables in the multi-value model for t ime series
tables
You can execute the CREATE TABLE statement to create a mapping table in the mult i-value model for a
t ime series table.

SQL syntax

CREATE TABLE `timeseries_table::user_mapping_name` (
 `_m_name` VARCHAR(1024),
 `_data_source` VARCHAR(1024),
 `_tags` VARCHAR(1024),
 `_time` BIGINT(20),
 `user_column_name1 ` data_type,

 `user_column_namen ` data_type,
 PRIMARY KEY(`_m_name`,`_data_source`,`_tags`,`_time`)
);

For more information about the parameters in the SQL syntax, see the table schema in Mapping
tables in the mult i-value model.

SQL example

The following sample code shows how to create a mapping table in the mult i-value model named
timeseries_table::muti_model for the t ime series table. The types of metrics in the mapping table
are cpu, memory, and disktop. SQL sample code:

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 86

CREATE TABLE `timeseries_table::muti_model` (
 `_m_name` VARCHAR(1024),
 `_data_source` VARCHAR(1024),
 `_tags` VARCHAR(1024),
 `_time` BIGINT(20),
 `cpu` DOUBLE(10),
 `memory` DOUBLE(10),
 `disktop` DOUBLE(10),
 PRIMARY KEY(`_m_name`,`_data_source`,`_tags`,`_time`)
);

Query data
You can execute the SELECT statement to query t ime series data. For more information, see Query data.

Tablestore provides the tag_value_at extension function to allow you to extract the value of a tag in
the tags (_tags) of a t ime series. You can also use the function to extract the value of a property in the
propert ies (_attributes) of a t ime series.

If the value of _tags is ["host=abc","region=hangzhou"], you can use tag_value_at(_tags, "host") to
extract the value abc of the host tag. The following SQL statement shows an example:

SELECT tag_value_at(_tags, "host") as host FROM timeseries_table LIMIT 1;

SQL examples

Query t ime series
After you create a t ime series table, the system automatically creates a mapping table for t ime series
metadata. You can use the mapping table to query t ime series.

In this example, a t ime series table named t imeseries_table and a mapping table for t ime series
metadata named timeseries_table::meta are used. The type of the metric in the mapping table is
basic_metric.

Query t ime series whose metric type is basic_metric in the t ime series metadata table.

SELECT * FROM `timeseries_table::meta` WHERE _m_name = "basic_metric" LIMI 100;

Query t ime series that meet mult iple tag condit ions (host=host001 and region=hangzhou) in the t ime
series metadata table.

SELECT * FROM `timeseries_table::meta` WHERE _m_name = "basic_metric" AND tag_value_at(_t
ags, "host") = "host001"
 AND tag_value_at(_tags, "region") = "hangzhou" LIMI 100;

Query t ime series data by using the mapping table in the single-
value model
After you create a t ime series table, the system automatically creates a mapping table in the single-
value model for the t ime series table. You can use the mapping table to query t ime series data.

In this example, a t ime series table named t imeseries_table and a mapping table in the single-value
model named timeseries_table are used. The type of the metric in the mapping table is
basic_metric.

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

87 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/295900.htm#concept-2098388

Query the data whose metric type is basic_metric in the t ime series data table.

SELECT * FROM timeseries_table WHERE _m_name = "basic_metric" LIMIT 10;

Query the data in the t ime series that meets a single tag condit ion (host=host001) in the t ime series
data table.

SELECT * FROM timeseries_table WHERE _m_name = "basic_metric" AND tag_value_at(_tags, "ho
st") = "host001"
 AND _time > (UNIX_TIMESTAMP() - 900) * 1000000 LIMIT 10;

Query the data in the t ime series that meets mult iple tag condit ions (host=host001 and
region=hangzhou) in the t ime series data table.

SELECT * FROM timeseries_table WHERE _m_name = "basic_metric" AND tag_value_at(_tags, "ho
st") = "host001" AND tag_value_at(_tags, "region") = "hangzhou"
 AND _time > (UNIX_TIMESTAMP() - 900) * 1000000 LIMIT 10;

Query t ime series data by using a mapping table in the multi-value
model
After you create a t ime series table, you can create a mapping table in the mult i-value model for the
time series table. You can use the mapping table to query t ime series data. For more information about
how to create a mapping table in the mult i-value model for a t ime series table, see Create mapping
tables in the mult i-value model for t ime series tables.

In this example, a t ime series table named t imeseries_table and a mapping table in the mult i-value
model named timeseries_table::muti_model are used. The types of metrics in the mapping table
are cpu, memory, and disktop.

Query the data whose data source is host_01 by using the mapping table in the mult i-value model. In
this example, host_id is stored in _data_source.

SELECT * FROM `timeseries_table::muti_model` WHERE _data_source = "host_01" LIMIT 10;

Query information about the metrics in the t ime series whose cpu value is greater than 20.0 by using
the mapping table in the mult i-value model.

SELECT cpu,memory,disktop FROM `timeseries_table::muti_model` WHERE cpu > 20.0 LIMIT 10;

Calculate the average cpu values and maximum disktop values of the hosts that meet a specific tag
condit ion (region=hangzhou) on January 1, 2022 by using the mapping table in the mult i-value model.

SELECT avg(cpu) as avg_cpu,max(disktop) as max_disktop FROM `timeseries_table::muti_mode`
WHERE tag_value_at(_tags,"region") = "hangzhou"
 AND _time > 1640966400000000 AND _time < 1641052799000000 GROUP BY _data_source;

Methods

You can use SQL to query t ime series data by using one of the following methods. When you query t ime
series data, you can perform operations on the mapping tables based on your business requirements.

Use SQL to query t ime series data in the Tablestore console. For more information, see Use the
Tablestore console.

Use SQL to query t ime series data by using the Tablestore SDKs. For more information, see Use
Tablestore SDKs.

Tablest ore Funct ion Int roduct ion·TimeSeries mo
del

> Document Version: 20220711 88

https://www.alibabacloud.com/help/doc-detail/295888.htm#concept-2098345
https://www.alibabacloud.com/help/doc-detail/347619.htm#concept-2136301

Use SQL to query t ime series data by using Java Database Connectivity (JDBC). For more information,
see Use JDBC to access Tablestore.

Use SQL to query t ime series data in the Tablestore CLI. For more information, see SQL query.

Funct ion Int roduct ion·TimeSeries mo
del

Tablest ore

89 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/347622.htm#concept-2138968
https://www.alibabacloud.com/help/doc-detail/342833.htm#concept-2134268

The search index feature provides mult iple efficient index schemas to help you process complex queries
in big data scenarios.

Purposes
Data tables in Tablestore use distributed NoSQL data structures. Data such as monitoring data and log
data can be stored, read, and written at a large scale.

In addit ion to queries based on primary keys including single-row read and range read, Tablestore
provides the search index feature to meet your requirements for complex queries. These queries include
Boolean query and queries based on non-primary key columns.

The search index feature is implemented by using inverted indexes and column stores. This feature
provides query methods to solve problems in complex big data scenarios. The query methods include
queries based on non-primary key columns, full-text search, prefix query, fuzzy query, Boolean query,
nested query, and geo query. Aggregation can be implemented by using max, min, count, sum, avg,
dist inct_count, and group_by.

Differences among indexes
Aside from queries based on primary keys in data tables, Tablestore provides two index schemas for
accelerated queries: secondary index and search index. The following table describes the differences
among the three types of indexes.

Index type Description Scenario

Primary key of a
data table

A data table is similar to a large map.
Data tables support queries based only
on primary keys.

You can specify a complete primary key
or the prefix of a primary key.

Secondary index
You can create one or more index tables
and perform queries by using the primary
key columns of the index tables.

You can define the required columns in
advance. Therefore, only a small number
of columns are queried. You can also
specify a complete primary key or the
prefix of a primary key.

6.Search Index
6.1. Overview

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 90

Search index
The search index feature uses inverted
indexes, Bkd-trees, and column stores
for various query scenarios.

The following scenarios do not support
the use of a primary key of a data table
and the secondary index feature:

Query based on non-primary key
columns

Boolean query

Query by using operators such as AND,
OR, and NOT

Full-text search

Geo query

Prefix query

Fuzzy query

Nested query

Exists query

Aggregation by using min, max, sum,
avg, count, distinct_count, and
group_by

Index type Description Scenario

Compared with indexes of conventional database services such as MySQL, the search index feature is
not subject to the leftmost matching principle. Therefore, the search index feature can be used in more
scenarios. In most cases, only one search index is required for a data table. For example, a data table
about student information may contain the student name, ID, gender, grade, class, and home address
columns. When you create a search index, you can add these columns to the search index. When you
use the search index, you can specify a combination of condit ions. Examples: students named Tom in
Grade Three, male students who live one kilometer away from their school, and students in Class Two,
Grade Three who live in the specified residential community.

API operations
The search index feature provides the Search and ParallelScan API operations. The Search API operation
is used for general queries. The ParallelScan API operation is used for data export.

Most features that are provided by the two API operations are the same. However, to improve the
performance and throughput, the ParallelScan API operation does not provide some features of the
Search API operation. The following table compares the two API operations.

API operation Description

Search

Supports all features of search indexes.

Query: query based on non-primary key columns, full-text search,
prefix query, fuzzy query, Boolean query, nested query, and geo
query.

Collapse (distinct)

Sorting

Aggregation

Total number of rows

Funct ion Int roduct ion·Search Index Tablest ore

91 > Document Version: 20220711

ComputeSplits+ParallelScan

Exports data in parallel. The query feature of search indexes is
supported. However, analysis features such as sorting and aggregation
are not supported.

The query speed of a ParallelScan request that includes a parallel scan
task is five t imes faster than the query speed of a Search request.

Query: query based on non-primary key columns, full-text search,
prefix query, fuzzy query, Boolean query, nested query, and geo
query.

Multiple parallel scan tasks included in one ParallelScan request

API operation Description

Usage notes

Not ice Predefined columns are not required when you use a search index.

Index synchronization

After a search index is created for a data table, data is writ ten to the data table first . After the data
is writ ten to the data table, a success message is returned. At the same t ime, another asynchronous
thread reads the newly writ ten data from the data table and writes the data to the search index.
The write performance of Tablestore is not affected when data is being asynchronously
synchronized from a data table to a search index.

In most cases, the latency generated when data is synchronized to a search index is within 3 seconds.
You can view the latency in real t ime in the Tablestore console.

Time to live (TTL)

If the UpdateRow operation is disabled for a data table, you can use the TTL feature of the search
index that is created for the data table. For more information, see TTL of search indexes.

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 92

https://www.alibabacloud.com/help/doc-detail/358812.htm#concept-2142162

If you want to retain the data only for a period of t ime and the t ime field does not need to be
updated, you can implement the TTL feature by split t ing a data table into several t ime-specific
data tables.

This solut ion is implemented based on the following principles and rules, and has the following
benefits:

Principle: Split a data table based on fixed periods of t ime, such as day, week, month, or year.
Then, you can create a search index for each table. This way, tables for the specified periods of
t ime are retained.

For example, if you want to retain data for six months, you can store the data for each month in
a data table (such as table_1, table_2, table_3, table_4, table_5, and table_6) and create a
search index for each data table. Each data table and search index store the data only of a
single month. Then, you only need to delete data tables that are retained for more than six
months to implement the same feature as TTL.

When you query data by using a search index, you only need to query one table if data that
meets the t ime range requirement is in that table. If data that meets the t ime range requirement
is included in mult iple tables, you need to query all these tables and then combine the query
results.

Rule: The size of a single table or search index cannot exceed 50 billion rows. The search index
feature provides the optimal query performance if the size of a single table or search index does
not exceed 20 billion rows.

Benefits:

You can adjust the data storage duration based on the number of data tables retained.

Query performance is directly proport ional to data volumes. After a data table is split into
mult iple data tables, the data volume of each data table has an upper limit . This helps ensure
better query performance and avoid high query latencies or t imeouts.

Max versions

You cannot create a search index for a data table for which you have specified the max versions
parameter.

You can customize the t imestamp when you write data to a column that allows only a single version.
If you first write data with a greater version number and then write data with a smaller version
number, the data with the greater version number may be overwritten by data with the smaller
version number.

Features
Search indexes can solve complex query problems in big data scenarios. Other systems such as
databases and search engines can also solve data query problems. The following figure shows the
differences between Tablestore, databases, and search engines.

Tablestore can provide all features of databases and search engines except for JOIN operations,
transactions, and relevance of search results. Tablestore also has high data reliability of databases and
supports advanced queries of search engines. Therefore, Tablestore can be used to replace the
common architecture that consists of databases and search engines . If you do not need JOIN
operations, transactions, and relevance of search results, we recommend that you use the search index
feature of Tablestore.

Funct ion Int roduct ion·Search Index Tablest ore

93 > Document Version: 20220711

Billing
For more information, see Billable items of search indexes.

This topic describes the core features of search indexes and their equivalent SQL statements.

Core features
Queries based on non-primary key columns

Tablestore supports only queries that are based on primary key columns or prefixes of primary key
columns. Therefore, Tablestore can be applied only to some query scenarios. You can use non-
primary key columns to query data in a column for which you need to create a search index.

Boolean query

Boolean query is suitable for order scenarios. In order scenarios, a table may contain dozens of f ields.
It may be difficult to determine how to combine the fields required for queries when you create a
table. Even if you have determined how to combine the required fields, hundreds of combinations
may be available. If you use a relat ional database service, you have to create hundreds of indexes. In
addit ion, if a combination is not specified in advance, you cannot query the required data.

However, you can use Tablestore to create a search index that includes the required field names,
which can be combined in a query. Search index also supports logical operators such as AND, OR, and
NOT.

Queries by geographical location

As mobile devices gain popularity, geographical location data becomes increasingly important. This
data is used in most apps such as social media apps, food delivery apps, sports apps, and Internet of
Vehicles (IoV) apps. These apps must support query features for the geographical location data that
these apps provide.

Search index supports queries based on the following geographical location data:

Near: queries points within a specified radius based on a central point, such as the People Nearby
feature in WeChat.

Within: queries points within a specified rectangular or polygonal area.

Tablestore allows you to use these features to query geographical location data without using other
database services or search engines.

Full-text search

6.2. Features

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 94

https://www.alibabacloud.com/help/doc-detail/120023.htm#concept-287174

Search index can tokenize data to perform full-text search. However, unlike search engines,
Tablestore returns only BM25-based results. Tablestore does not return custom relevant results in
response to a query. If you need to query relevant results, we recommend that you use search
engines.

Search index supports the following tokenization methods: single-word tokenization, delimiter
tokenization, minimum semantic unit tokenization, maximum semantic unit tokenization, and fuzzy
tokenization. For more information, see Tokenization.

Fuzzy search

Search index supports queries based on wildcards. This feature is similar to the LIKE operator in
relat ional databases. You can specify characters and wildcards such as question marks (?)or
asterisks (*) to query data in the way similar to the LIKE operator.

Prefix query

Search index supports queries by prefix. This feature is applicable to any natural languages. For
example, in a query based on prefix "apple", words such as "apple6s" and "applexr" may be returned.

Nested query

In addit ion to a flat structure, online data such as labeled pictures has some complex and
mult ilayered structures. For example, a database stores a large number of pictures, and each picture
has mult iple elements such as houses, cars, and people. Each element in a picture has a unique weight
score. The score is evaluated based on the size and posit ion of an element in a picture. Therefore,
each picture has mult iple labels. Each label has a name and a weight score. You can use nested
queries to query data based on the data labels.

The following example provides an example of JSON data with labels:

{
 "tags": [
 {
 "name": "car",
 "score": 0.78
 },
 {
 "name": "tree",
 "score": 0.24
 }
]
}

You can use nested queries to store and query mult ilayered data. This feature makes it easy to model
complex data.

Data deduplication

Search index supports to filter out repeated data in query results. This feature allows you to specify
the highest frequency of occurrence of an attribute value to achieve high cardinality. For example,
when you search for a laptop on an e-commerce platform, the first page may display only products
of a single brand, which is not user-friendly. You can use the data deduplication feature of
Tablestore to resolve this issue.

Sort ing

Funct ion Int roduct ion·Search Index Tablest ore

95 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/120227.htm#concept-354503

In Tablestore, table data is sorted in alphabetical order of their primary key columns. To sort data
based on other fields, you must use the sort ing feature of search index. Tablestore supports a
variety of sort ing methods, including ascending, descending, single-field, and mult i-field sort ing. By
default , returned results are sorted by the order of primary key values. Data in a search index is
globally sorted.

Total number of rows

You can specify the number of rows that Tablestore returns for the current request when you use
search index for a query. If you do not specify query condit ions for the search index, Tablestore
returns the total number of rows for which you have created indexes. After you stop writ ing new
data to a table and create indexes for all attributes, Tablestore returns the total number of rows in
the table. This feature applies to data verificat ion and data-driven operations.

SQL
The following table lists the SQL statements and their equivalent search index.

SQL Search index

Show API operation: DescribeSearchIndex

Select Parameter: ColumnsToGet

From

Parameter: index name

Not ice Supported for single-column
indexes.

Where Query: a variety of queries such as term query

Order by Parameter: sort

Limit Parameter: limit

Delete API operations: query followed by DeleteRow

Like Query: WildcardQuery

And Parameter: operator = and

Or Parameter: operator = or

Not Query: BoolQuery(mustNotQueries)

Between Query: RangeQuery

Null Query: ExistsQuery

In Query: TermsQuery

Min Aggregation: min

Max Aggregation: max

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 96

Avg Aggregation: avg

Count Aggregation: count

Count(distinct) Aggregation: distinctCount

Sum Aggregation: sum

Group By GroupBy

SQL Search index

This topic describes the mappings between field data types in data tables and search indexes, and the
addit ional attributes supported by different data types of f ields.

The value of a field in a search index is the value of the field with the same name in the data table for
which the search index is created. The data types of the two values must match. The following table
describes the matching rules.

Not ice The data types of the values in the search index must match the data types in the
data table based on the rules described in the following table. Otherwise, Tablestore discards the
data as dirty data. Make sure that field values of the Geo-point and Nested types comply with the
formats described in the following table. If the formats do not match, Tablestore discards the data
as dirty data. In this case, the data may be available in the data table but unavailable in the search
index for queries.

Field data type in search
indexes

Field data type in data
tables

Description

Long Integer 64-bit long integers.

Double Double 64-bit double-precision floating-point numbers.

Boolean Boolean Boolean values.

Keyword String Character strings that cannot be tokenized.

Text String
Character strings or text that can be tokenized. For
more information about tokenization, see
Tokenization.

Date Integer and String
The Date data type. You can specify the format of
data of the Date type. For more information, see 日
期数据类型.

6.3. Data type mappings

Funct ion Int roduct ion·Search Index Tablest ore

97 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/120227.htm#concept-354503
https://www.alibabacloud.com/help/doc-detail/430834.htm#concept-2215679

Geo-point String

The coordinate information of the location. This
parameter value must be in the format of
 latitude,longitude . Valid values of the

latitude: [-90,+90]. Valid values of the longitude: [-
180,+180]. Example: 35.8,-45.91 .

Nested String The nested type. Example: [{"a": 1}, {"a": 3}].

Field data type in search
indexes

Field data type in data
tables

Description

The following table describes the addit ional attributes of f ields in search indexes.

Attribute Type Description

Index Boolean

Specifies whether to enable indexing.

The value of true indicates that Tablestore
indexes the column with an inverted indexing
schema or a spatio-temporal indexing schema.

The value of false indicates that Tablestore does
not enable indexing for the column.

If the column is not indexed, you cannot query
data based on the column.

EnableSortAndAgg Boolean

Specifies whether to enable the sorting and
aggregation features.

The value of true indicates that the column can
be used for sorting and aggregation.

The value of false indicates that the column
cannot be used for sorting and aggregation.

Store Boolean

Specifies whether to store the value of the column
in the search index.

The value of true indicates that Tablestore stores
the value of the column in the search index. You can
query the search index for the value of the column
without the need to query the data table. This
improves the query performance.

IsArray Boolean

Specifies whether the value of the column is an
array.

The value of true indicates that the value of the
column is an array. Data written to the column must
be a JSON array such as ["a","b","c"].

You do not need to specify the IsArray attribute for
a nested column because a nested column is an
array.

Data of the ARRAY type can be used in all queries
because arrays do not affect queries.

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 98

https://www.alibabacloud.com/help/doc-detail/117483.htm#concept-227000/section-1tx-8xb-zcs

isVirtualField Boolean

Specifies whether the column is a virtual column.

If you set this parameter to true, the column is a
virtual column. If the column is a virtual column,
you must specify the source field that is mapped
to the column. For more information about virtual
columns, see Virtual columns.

If you set this parameter to false, the column is
not a virtual column. In this case, the data type of
the column in the search index must match the
data type of the column in the data table.

Attribute Type Description

The following table describes the combinations of data types and field attributes.

Type Index
EnableSortAnd
Agg

Store IsArray isVirtualField

Long Supported Supported Supported Supported Supported

Double Supported Supported Supported Supported Supported

Boolean Supported Supported Supported Supported Not supported

Keyword Supported Supported Supported Supported Supported

Text Supported Not supported Supported Supported Supported

Date Supported Supported Supported Supported Supported

Geo-point Supported Supported Supported Supported Supported

Nested
Applies only
to child fields.

Applies only
to child fields.

Applies only
to child fields.

Nested fields
are arrays.

Not supported

Search indexes use inverted indexes and column stores to address complex query needs when a large
amount of data exists. After you create a search index, you can use the search index to query data.

Prerequisites
A data table for which the max versions parameter is set to 1 is created. For more information, see
Create a data table.

Step 1: Create a search index
1. Log on to the Tablestore console.

2. On the Overview page, click the name of the desired instance or click Manage Instance in the

6.4. Quick start
6.4.1. Use the Tablestore console

Funct ion Int roduct ion·Search Index Tablest ore

99 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/289172.htm#task-2101512
https://www.alibabacloud.com/help/doc-detail/117483.htm#concept-227000
https://www.alibabacloud.com/help/doc-detail/342853.htm#task-2134826/section-tlv-x24-nfx
https://otsnext.console.aliyun.com/

Act ions column of the desired instance.

3. In the T ables sect ion of the Inst ance Det ails tab, click the name of a data table and then click
the Indexes tab. You can also click Indexes in the Act ions column of the data table.

4. On the Indexes tab, click Creat e Search Index .

5. In the Creat e Index dialog box, configure the parameters that are required to create a search
index.

i. By default , the system generates a search index name. You can also set Index Name to a
specific value.

ii. Set Schema Generation Type.

Not ice The Field Name and Field T ype values must match those in the data table.
For more information about the mappings between fields in data tables and search
indexes, see Data type mappings.

If you set Schema Generation Type to Manual, set f ield names and field types for the field
values. Specify whether to turn on Array.

If you set Schema Generation Type to Aut o Generat e , the system automatically uses the
primary key columns and attribute columns of the data table as indexed fields. Set f ield
types for the field values and specify whether to turn on Array based on your business
requirements.

Not e To optimize performance in some cases, you can use virtual columns. For more
information about virtual columns, see Virtual columns.

6. Click OK.

After the search index is created, click Index Det ails in the Act ions column of the search index. You
can view the information about the search index, such as the metering information and index fields.

Step 2: Query data

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 100

https://www.alibabacloud.com/help/doc-detail/419309.htm#concept-2179521
https://www.alibabacloud.com/help/doc-detail/289172.htm#task-2101512

1. Log on to the Tablestore console.

2. On the Overview page, click the name of the required instance or click Manage Instance in the
Act ions column of the required instance.

3. In the T ables sect ion of the Inst ance Det ails tab, click the name of a data table and then click
the Indexes tab. You can also click Indexes in the Act ions column of the data table.

4. On the Indexes tab, f ind the search index that you want to use to query data and click Manage
Dat a in the Act ions column.

5. In the Search dialog box, configure query condit ions.

i. By default , the system returns all attribute columns. To return specified attribute columns, turn
off All Columns and enter the attribute columns that you want to return. Separate mult iple
attribute columns with commas (,).

Not e By default , the system returns all primary key columns of data tables.

ii. Select indexed fields. Click Add. Set query methods and values for the fields.

iii. By default , the sort ing feature is disabled. To enable sort ing, turn on Sort to sort query results
based on the indexed fields. Add the indexed fields based on which the query results are
sorted and configure sort ing methods.

6. Click OK.

Data that meets the query condit ions is displayed in the specified order on the Indexes tab.

Funct ion Int roduct ion·Search Index Tablest ore

101 > Document Version: 20220711

https://otsnext.console.aliyun.com/

Related operations
If you want to add, update, or delete indexed columns from a search index, you can use the feature
that allows you to dynamically modify the schema of search indexes. For more information, see
Dynamically modify schemas.

If you want to query new fields or data of new field types without modifying the storage schema
and the data in data tables, you can use the virtual column feature. For more information, see Virtual
columns.

Prerequisites
The Tablestore CLI is downloaded. For more information, see Download the Tablestore CLI.

The instance is started and configured. For more information, see Start the Tablestore CLI and
configure access information.

An AccessKey pair is obtained. For more information, see Obtain an AccessKey pair.

A data table for which the max versions parameter is set to 1 is created and used. For more
information, see Create and use a data table.

Step 1: Create a search index
1. Run the creat e_search_index command to create a search index named search_index.

create_search_index -n search_index

2. The following sample code shows how to enter the index schema as prompted:

The index schema includes the sett ings of the search index (IndexSett ing), the list of f ield schemas
(FieldSchemas), and presort ing sett ings for the search index (IndexSort). For more information
about index schemas, see Create search indexes.

 {
 "IndexSetting": {
 "RoutingFields": null
 },
 "FieldSchemas": [
 {
 "FieldName": "gid",
 "FieldType": "LONG",
 "Index": true,
 "EnableSortAndAgg": true,
 "Store": true,
 "IsArray": false,
 "IsVirtualField": false
 },
 {
 "FieldName": "uid",
 "FieldType": "LONG",
 "Index": true,
 "EnableSortAndAgg": true,
 "Store": true,
 "IsArray": false,
 "IsVirtualField": false

6.4.2. Use the Tablestore CLI

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 102

https://www.alibabacloud.com/help/doc-detail/292645.htm#task-2101516
https://www.alibabacloud.com/help/doc-detail/289172.htm#task-2101512
https://www.alibabacloud.com/help/doc-detail/342819.htm#concept-2128430
https://www.alibabacloud.com/help/doc-detail/342820.htm#concept-2128552
https://www.alibabacloud.com/help/doc-detail/175967.htm#task-354412
https://www.alibabacloud.com/help/doc-detail/342854.htm#concept-2128522/section-4ip-h9h-aba
https://www.alibabacloud.com/help/doc-detail/101595.htm#concept-xfn-zn5-hgb

 "IsVirtualField": false
 },
 {
 "FieldName": "col2",
 "FieldType": "LONG",
 "Index": true,
 "EnableSortAndAgg": true,
 "Store": true,
 "IsArray": false,
 "IsVirtualField": false
 },
 {
 "FieldName": "col3",
 "FieldType": "TEXT",
 "Index": true,
 "Analyzer": "single_word",
 "AnalyzerParameter": {
 "CaseSensitive": true,
 "DelimitWord": null
 },
 "EnableSortAndAgg": false,
 "Store": true,
 "IsArray": false,
 "IsVirtualField": false
 },
 {
 "FieldName": "col1",
 "FieldType": "KEYWORD",
 "Index": true,
 "EnableSortAndAgg": true,
 "Store": true,
 "IsArray": false,
 "IsVirtualField": false
 },
 {
 "FieldName": "col3V",
 "FieldType": "LONG",
 "Index": true,
 "EnableSortAndAgg": true,
 "Store": true,
 "IsArray": false,
 "IsVirtualField": true,
 "SourceFieldNames": [
 "col3"
]
 }
]
}

Step 2: Query data
1. Run the search command to use the search_index search index to query data and return all indexed

columns of each row that meets the query condit ions.

Funct ion Int roduct ion·Search Index Tablest ore

103 > Document Version: 20220711

search -n search_index --return_all_indexed

2. The following sample code shows how to enter the query condit ions as prompted by the system:

Search indexes support query methods such as match all query (MatchAllQuery), match query
(MatchQuery), match phrase query (MatchPhraseQuery), term query (TermQuery), terms query
(TermsQuery), and prefix query (PrefixQuery). In this example, term query is used. For more
information about term query, see Term query.

{
 "Offset": -1,
 "Limit": 10,
 "Collapse": null,
 "Sort": null,
 "GetTotalCount": true,
 "Token": null,
 "Query": {
 "Name": "TermQuery",
 "Query": {
 "FieldName": "uid",
 "Term": 10001
 }
 },
 "Aggregations": [{
 "Name": "avg",
 "Aggregation": {
 "AggName": "agg1",
 "Field": "pid"
 }
 }]
}

Prerequisites
A data table for which the max versions parameter is set to 1 is created.

API operations

Category Operation Description

Management
operations

CreateSearchIndex Creates a search index.

DescribeSearchIndex Queries details about a search index.

ListSearchIndex Queries the list of search indexes.

DeleteSearchIndex Deletes a search index.

6.5. Use Tablestore SDKs

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 104

https://www.alibabacloud.com/help/doc-detail/101600.htm#concept-prg-zp5-hgb
https://www.alibabacloud.com/help/doc-detail/117452.htm#concept-226914
https://www.alibabacloud.com/help/doc-detail/117475.htm#concept-226980
https://www.alibabacloud.com/help/doc-detail/117477.htm#concept-226985
https://www.alibabacloud.com/help/doc-detail/117478.htm#concept-226986

Query operations

Search
Implements all query features and analysis features
such as sorting and aggregation. The results are
returned in a specific order.

ParallelScan

Implements all query features. You cannot call this
operation to sort or aggregate data. Data that
meets the query conditions is returned quickly.

When you call this operation, you must call the
ComputeSplits operation to query the maximum
number of parallel scan tasks for a single
ParallelScan request.

Category Operation Description

Procedure
1. Create a search index. For more information, see Create search indexes.

2. Call the Search or ParallelScan operation to query data. The following table describes the query
methods that you can use to query data when you call the Search or ParallelScan operation.

Query method Query Description

Match all query MatchAllQuery
This query is used to query the total number of
rows in a table or randomly retrieve multiple rows
from a table.

Match query MatchQuery

This query uses approximate matches to retrieve
query results. The keyword that you use for a
query and the column values are tokenized based
on the analyzer that you specified. Then, a match
query is performed based on the tokens.

The OR logical operator is used to relate tokens.
If the number of tokens in a row that match the
tokens in the tokenized keyword reaches the
minimum value that you specified, the row meets
the query conditions.

Match phrase query MatchPhraseQuery

This query is similar to match query. A row meets
the query conditions only when the order and
position of the tokens in the row match the order
and posit ion of the tokens that are contained in
the tokenized keyword.

Term query TermQuery

This query uses full and exact matches to retrieve
query results, which is similar to string matching.

If a TEXT column is queried and one of the tokens
in a row exactly matches the keyword, the row
meets the query conditions.

Funct ion Int roduct ion·Search Index Tablest ore

105 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/419308.htm#section-9zh-lrt-p2a
https://www.alibabacloud.com/help/doc-detail/153862.htm#concept-2417726/section-8w4-hvd-hn7
https://www.alibabacloud.com/help/doc-detail/117452.htm#concept-226914
https://www.alibabacloud.com/help/doc-detail/117484.htm#concept-227002
https://www.alibabacloud.com/help/doc-detail/117485.htm#concept-227004
https://www.alibabacloud.com/help/doc-detail/117486.htm#concept-227005
https://www.alibabacloud.com/help/doc-detail/117488.htm#concept-227006

Terms query TermsQuery

This query is similar to term query, but you can
specify multiple keywords at the same time. If
one of the tokens in a row matches one of the
keywords, the row meets the query conditions.

Prefix query PrefixQuery

This query retrieves data that contains the
specified prefix.

If a TEXT column is queried and one of the tokens
in a row contains the specified prefix, the row
meets the query conditions.

Range query RangeQuery

This query retrieves data within a specified range.

If a TEXT column is queried and one of the tokens
in a row is within the specified range, the row
meets the query conditions.

Wildcard query WildcardQuery

This query retrieves data that matches a string
that contains one or more wildcard characters.

You can use the asterisk (*) and question mark (?)
wildcard characters in a string. The asterisk (*)
matches a string of any length in, before, or after
a search term. The question mark (?) matches a
single character in a specific posit ion.

Boolean query BoolQuery

You can use Boolean query to query rows based
on a subquery or a combination of subqueries.
Tablestore returns the rows that match the
subquery or the combination of subqueries.

Subquery conditions can be combined by using
logical operators, such as AND, NOT, and OR.

Nested query NestedQuery
You can use nested query to query the data of
nested fields.

Geo-distance query GeoDistanceQuery

You can specify a circular geographical area that
consists of a central point and radius as a query
condition. Tablestore returns the rows in which
the value of the specified column falls within the
geographical circular area.

Geo-bounding box
query

GeoBoundingBoxQuery

You can specify a rectangular geographical area
as a query condition. Tablestore returns the rows
in which the value of the specified column falls
within the rectangular geographical area.

Geo-polygon query GeoPolygonQuery

You can specify a polygonal geographical area as
a query condition. Tablestore returns the rows in
which the value of the specified column falls
within the polygonal geographical area.

Query method Query Description

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 106

https://www.alibabacloud.com/help/doc-detail/117493.htm#concept-227243
https://www.alibabacloud.com/help/doc-detail/117495.htm#concept-227245
https://www.alibabacloud.com/help/doc-detail/117496.htm#concept-227247
https://www.alibabacloud.com/help/doc-detail/117497.htm#concept-227248
https://www.alibabacloud.com/help/doc-detail/117498.htm#concept-227249
https://www.alibabacloud.com/help/doc-detail/120221.htm#concept-354475
https://www.alibabacloud.com/help/doc-detail/117500.htm#concept-227251
https://www.alibabacloud.com/help/doc-detail/117499.htm#concept-227250
https://www.alibabacloud.com/help/doc-detail/117501.htm#concept-227252

Exists query ExistQuery

Exists query is also called NULL query or NULL-
value query. This query is used for sparse data to
determine whether a column of a row exists. For
example, you can query the rows in which the
value of the address column is not empty.

If a column does not exist in a row or the value of
the column is an empty array ("[]"), the column
does not exist in the row.

Query method Query Description

Related operations
If you want to analyze data in a table, you can call the Search operation to use the aggregate
feature. You can use the aggregate feature to query the maximum value, the sum of the values, and
the number of rows. For more information, see Aggregation.

If you do not need to sort the rows that meet the query condit ions and you want to quickly obtain
all rows that meet the query condit ions, you can call the ParallelScan and ComputeSplits operations
to use the parallel scan feature. For more information, see Parallel scan.

When you call the Search operation to query data, you can sort or paginate the rows that meet the
query condit ions. For more information, see Sort ing and pagination.

When you call the Search operation to query data, you can use the collapse (dist inct) feature to
collapse the result set based on a specified column. This way, data of the specified type appears
only once in the query results. For more information, see Collapse (dist inct).

If you want to perform full-text search, you must tokenize the field for which tokenization can be
performed and select a suitable query method to query data. For more information, see
Tokenization.

If you want to store and query data in mult iple logical relat ionships, you can store the data as a
nested field and use nested query to query the data. For more information, see Nested and Nested
query.

If you want the system to automatically delete the data that is retained in a search index for a period
of t ime that exceeds the specified duration, you can use the t ime to live (TTL) feature of the search
index. For more information, see TTL of search indexes.

After you create a search index for a data table, you can query data in the data table based on the
fields for which indexing is enabled in the search index. You can create mult iple search indexes for a
data table.

Optimal method to create search indexes

6.6. Basic features
6.6.1. Create search indexes

Funct ion Int roduct ion·Search Index Tablest ore

107 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/124204.htm#concept-995063
https://www.alibabacloud.com/help/doc-detail/132191.htm#concept-1909524
https://www.alibabacloud.com/help/doc-detail/153862.htm#concept-2417726
https://www.alibabacloud.com/help/doc-detail/117479.htm#concept-226989
https://www.alibabacloud.com/help/doc-detail/159503.htm#concept-2452702
https://www.alibabacloud.com/help/doc-detail/120227.htm#concept-354503
https://www.alibabacloud.com/help/doc-detail/117483.htm#concept-227000/section-1tx-8xb-zcs
https://www.alibabacloud.com/help/doc-detail/120221.htm#concept-354475
https://www.alibabacloud.com/help/doc-detail/358812.htm#concept-2142162

We recommend that you determine the number of search indexes that you want to create for a data
table based on your query requirements.

If you have a data table that contains the id, name, age, city, and sex fields, you can use one of the
following methods to create search indexes if you want to query data by name, age, or city:

Method 1: Create a search index for each field

If you use this method, you must create the following search indexes: name_index, age_index, and
city_index.

To query students by city, use city_index. To query students by age, use age_index.

However, this method does not work if you want to query students who are younger than 12 years
old and live in City A.

The implementation of the method is similar to that of the global secondary index feature. However,
this method is not cost-effect ive. We recommend that you use Method 2 to create the search index.

Method 2: Create one search index for mult iple fields

In this method, a search index named student_index is created. The search index contains the
following fields: name, age, and city.

To query students by city, query the city field in student_index. To query students by age, query
the age field in student_index.

To query students who are younger than 12 years old and live in City A, query the age and city
fields in student_index.

This method makes full use of the advantages of search indexes and is more cost-effect ive. We
recommend that you use this method to create a search index.

Limits
Timeliness of search index creation

After a search index is created, it takes a few seconds before you can use the search index. During
this period, you can only write data to the data table, but you cannot query the metadata of the
index or query data by using the index.

Quantity

For more information, see Search index limits.

API operation
You can call the CreateSearchIndex operation to create a search index.

Usage
You can use the following SDKs to create search indexes:

Tablestore SDK for Java: Create search indexes

Tablestore SDK for Go: Create search indexes

Tablestore SDK for Python: Create search indexes

Tablestore SDK for Node.js: Create search indexes

Tablestore SDK for .NET: Create search indexes

Tablestore SDK for PHP: Create search indexes

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 108

https://www.alibabacloud.com/help/doc-detail/96407.htm#concept-mtp-x5s-sfb
https://www.alibabacloud.com/help/doc-detail/100309.htm#concept-syl-ywp-dgb
https://www.alibabacloud.com/help/doc-detail/101595.htm#concept-xfn-zn5-hgb
https://www.alibabacloud.com/help/doc-detail/106353.htm#concept-vt3-b1k-pgb
https://www.alibabacloud.com/help/doc-detail/100601.htm#concept-udr-gvk-2gb
https://www.alibabacloud.com/help/doc-detail/100792.htm#concept-ec1-ypc-fgb
https://www.alibabacloud.com/help/doc-detail/121058.htm#concept-473363

Parameters
When you create a search index, you must specify tableName, indexName, and indexSchema. In
indexSchema, you must specify fieldSchemas, indexSett ing, and indexSort. The following table
describes the parameters.

Parameter Description

tableName The name of the data table.

indexName The name of the search index.

Funct ion Int roduct ion·Search Index Tablest ore

109 > Document Version: 20220711

fieldSchemas

The list of field schemas. Each field schema contains the following parameters:

fieldName: This parameter is required and specifies the name of the field in
the search index. The value is used as a column name. Type: String.

A field in a search index can be a primary key column or an attribute column.

fieldType: This parameter is required and specifies the type of the field. Use
FieldType.XXX to set the type. For more information, see Data types of
column values.

array: This parameter is optional and specifies whether the value is an array.
Type: Boolean.

If you set this parameter to true, the column stores data as an array. Data
written to the column must be a JSON array. Example: ["a","b","c"].

The values of fields of the Nested type are arrays. If you set fieldType to
Nested, skip this parameter.

index: This parameter is optional and specifies whether to enable indexing for
the column. Type: Boolean.

Default value: true. A value of true indicates that Tablestore indexes the
column with an inverted indexing schema or a spatio-temporal indexing
schema. A value of false indicates that Tablestore does not enable indexing
for the column.

analyzer: This parameter is optional and specifies the type of the analyzer
that you want to use. If fieldType is set to Text, you can configure this
parameter. Otherwise, the default analyzer type single-word tokenization is
used. For more information about tokenization, see Tokenization.

enableSortAndAgg: This parameter is optional and specifies whether to
enable sorting and aggregation. Type: Boolean.

Sorting can be enabled only for fields for which enableSortAndAgg is set to
true. For more information about sorting, see Sorting and pagination.

Not ice Fields of the Nested type do not support sorting and
aggregation, but subcolumns of fields of the Nested type support
sorting and aggregation.

store: This parameter is optional and specifies whether to store the value of
the field in the search index. Type: Boolean.

If you set store to true, you can read the value of the field from the search
index without querying the data table. This improves query performance.

isVirtualField: This parameter is optional and specifies whether the field is a
virtual column. Type: Boolean. Default value: false. This parameter is required
only when you use virtual columns. For more information about virtual
columns, see Virtual columns.

sourceFieldName: This parameter is optional and specifies the name of the
source field to which the virtual column is mapped in the data table. Type:
String. This parameter is required when isVirtualField is set to true.

Parameter Description

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 110

https://www.alibabacloud.com/help/doc-detail/117453.htm#concept-226919/section-6wz-wq2-70x
https://www.alibabacloud.com/help/doc-detail/120227.htm#concept-354503
https://www.alibabacloud.com/help/doc-detail/117479.htm#concept-226989
https://www.alibabacloud.com/help/doc-detail/289172.htm#task-2101512

indexSetting

The settings of the search index, including routingFields.

routingFields: This parameter is optional and specifies custom routing fields.
You can specify some primary key columns as routing fields. Tablestore
distributes data that is written to a search index across different partit ions
based on the specified routing fields. The data whose routing field values are
the same is distributed to the same partit ion.

indexSort

The presorting settings of the search index, including sorters. If no value is
specified for the indexSort parameter, field values are sorted by primary key by
default.

Not e You can skip the presorting settings for search indexes that
contain fields of the Nested type.

sorters: This parameter is required and specifies the presorting method for the
search index. PrimaryKeySort and FieldSort are supported. For more information,
see Sorting and pagination.

PrimaryKeySort: Data is sorted by primary key. You can configure the
following parameter for PrimaryKeySort:

order: the sort order. Data can be sorted in ascending or descending order.
Default value: SortOrder.ASC.

FieldSort: Data is sorted by field value. You can configure the following
parameters for FieldSort:

Only fields for which indexing is enabled and enableSortAndAgg is set to true
can be presorted.

fieldName: the name of the field that is used to sort data.

order: the sort order. Data can be sorted in ascending or descending order.
Default value: SortOrder.ASC.

mode: the sorting method that is used when the field contains multiple
values.

timeToLive

This parameter is optional and specifies the retention period of data in the
search index. Unit: seconds. Default value: -1.

When the retention period exceeds the t imeToLive value, Tablestore
automatically deletes expired data.

The minimum timeToLive value is 86400, which is equal to one day. A value of -1
specifies that data never expires.

For more information about how to manage the time to live (TTL) of search
indexes, see TTL of search indexes.

Parameter Description

Examples
Create a search index

The following sample code shows how to create a search index that consists of the Col_Keyword
and Col_Long columns. Set the type of data in Col_Keyword to String and Col_Long to Long.

Funct ion Int roduct ion·Search Index Tablest ore

111 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/117479.htm#concept-226989
https://www.alibabacloud.com/help/doc-detail/358812.htm#concept-2142162

private static void createSearchIndex(SyncClient client) {
 CreateSearchIndexRequest request = new CreateSearchIndexRequest();
 request.setTableName(tableName); // Specify the name of the data table.
 request.setIndexName(indexName); // Specify the name of the search index.
 IndexSchema indexSchema = new IndexSchema();
 indexSchema.setFieldSchemas(Arrays.asList(
 new FieldSchema("Col_Keyword", FieldType.KEYWORD) // Specify the name and typ
e of the field.
 .setIndex(true) // Enable indexing.
 .setEnableSortAndAgg(true) // Enable sorting and aggregation.
 .setStore(true), // Specify that the value of the field is stored in
the search index.
 new FieldSchema("Col_Long", FieldType.LONG)
 .setIndex(true)
 .setEnableSortAndAgg(true)
 .setStore(true)));
 request.setIndexSchema(indexSchema);
 client.createSearchIndex(request); // Call a client to create the search index.
}

Create a search index with indexSort specified

private static void createSearchIndexWithIndexSort(SyncClient client) {
 CreateSearchIndexRequest request = new CreateSearchIndexRequest();
 request.setTableName(tableName);
 request.setIndexName(indexName);
 IndexSchema indexSchema = new IndexSchema();
 indexSchema.setFieldSchemas(Arrays.asList(
 new FieldSchema("Col_Keyword", FieldType.KEYWORD).setIndex(true).setEnableSor
tAndAgg(true).setStore(true),
 new FieldSchema("Col_Long", FieldType.LONG).setIndex(true).setEnableSortAndAg
g(true).setStore(true),
 new FieldSchema("Col_Text", FieldType.TEXT).setIndex(true).setStore(true),
 new FieldSchema("Timestamp", FieldType.LONG).setIndex(true).setEnableSortAndA
gg(true).setStore(true)));
 // Presort data by the Timestamp column. You must enable indexing and set enableSortA
ndAgg to true for the Timestamp column.
 indexSchema.setIndexSort(new Sort(
 Arrays.<Sort.Sorter>asList(new FieldSort("Timestamp", SortOrder.ASC))));
 request.setIndexSchema(indexSchema);
 client.createSearchIndex(request);
}

Create a search index with the TTL specified

Not ice Make sure that updates to the data table are prohibited.

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 112

// Use Tablestore SDK for Java V5.12.0 or later to create a search index.
public void createIndexWithTTL(SyncClient client) {
 int days = 7;
 CreateSearchIndexRequest createRequest = new CreateSearchIndexRequest();
 createRequest.setTableName(tableName);
 createRequest.setIndexName(indexName);
 createRequest.setIndexSchema(indexSchema);
 // Specify the TTL for the search index.
 createRequest.setTimeToLiveInDays(days);
 client.createSearchIndex(createRequest);
}

Create a search index with virtual columns specified

The following sample code shows how to create a search index that contains columns Col_Keyword
and Col_Long. Each of the columns has a virtual column. The virtual column of the Col_Keyword
column is Col_Keyword_Virtual_Long and that of the Col_Long column is Col_Long_Virtual_Keyword.
The Col_Keyword_Virtual_Long column is mapped to the Col_Keyword column in the data table, and
the Col_Long_Virtual_Keyword column is mapped to the Col_Long column in the data table.

private static void createSearchIndex(SyncClient client) {
 CreateSearchIndexRequest request = new CreateSearchIndexRequest();
 request.setTableName(tableName); // Specify the name of the data table.
 request.setIndexName(indexName); // Specify the name of the search index.
 IndexSchema indexSchema = new IndexSchema();
 indexSchema.setFieldSchemas(Arrays.asList(
 new FieldSchema("Col_Keyword", FieldType.KEYWORD) // Specify the name and type of
the field.
 .setIndex(true) // Enable indexing.
 .setEnableSortAndAgg(true) // Enable sorting and aggregation.
 .setStore(true),
 new FieldSchema("Col_Keyword_Virtual_Long", FieldType.LONG) // Specify the name a
nd type of the field.
 .setIndex(true)
 .setEnableSortAndAgg(true)
 .setStore(true)
 .setVirtualField(true) // Specify whether the field is a virtual column.
 .setSourceFieldName("Col_Keyword"), // Specify name of the source field to wh
ich the virtual column is mapped in the data table.
 new FieldSchema("Col_Long", FieldType.LONG)
 .setIndex(true)
 .setEnableSortAndAgg(true)
 .setStore(true),
 new FieldSchema("Col_Long_Virtual_Keyword", FieldType.KEYWORD)
 .setIndex(true)
 .setEnableSortAndAgg(true)
 .setStore(true)
 .setVirtualField(true)
 .setSourceFieldName("Col_Long")));
 request.setIndexSchema(indexSchema);
 client.createSearchIndex(request); // Call a client to create the search index.
}

Funct ion Int roduct ion·Search Index Tablest ore

113 > Document Version: 20220711

Time to live (TTL) is an attribute of search indexes that specifies the retention period of data in search
indexes. When data in a search index is retained for a period of t ime that exceeds the TTL value,
Tablestore automatically deletes the data from the search index to free up storage space and reduce
costs.

Usage notes
To use the TTL feature of a search index, you must prohibit the UpdateRow operation on the data
table for which the search index is created due to the following reasons:

The TTL feature of data tables takes effect on attribute columns, and the TTL feature of search
indexes takes effect on the entire rows. If the UpdateRow operation is performed on a data table,
when the system clears data in the data table, the values of some fields are deleted and the values
of some fields are retained in the data table. However, the entire rows in the search index that is
created for the data table are not deleted. As a result , data in the data table and search index is
inconsistent.

If the UpdateRow operation is required, check whether the UpdateRow operation can be changed to
the PutRow operation.

The TTL value of search indexes can be -1 or a posit ive int32 in seconds. The value of -1 indicates
that data in the search index never expires and the maximum int32 value is equivalent to
approximately 68 years.

The TTL value of a search index is independent of and must be smaller than or equal to the TTL value
of the data table for which the search index is created. If you need to change TTL values of search
indexes and data tables for which the search indexes are created to smaller values, you must change
the TTL values of the search indexes before you change the TTL values of the data tables.

Tablestore automatically deletes expired data from search indexes every day. In some cases, you can
still query expired data in search indexes. Tablestore automatically deletes the expired data in the
next cycle.

After you change the TTL values of data tables and search indexes, the system automatically
deletes legacy expired data from the data tables and search indexes in the next cycle.

Procedure
You can configure the TTL of a search index by using the Tablestore console or Tablestore SDKs. To use
the TTL feature of a search index, you must prohibit the UpdateRow operation on the data table for
which the search index is created.

Use the Tablestore console
1. Prohibit the UpdateRow operation on a data table.

i. On the Basic inf ormat ion tab of the data table, click Modif y At t ribut es .

6.6.2. TTL of search indexes

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 114

ii. In the Modif y At t ribut es dialog box, select No for Allow Updates and click OK.

2. Specify the TTL for a search index.

After the UpdateRow operation on a data table is prohibited, you can specify the TTL of a search
index when you create the search index or modify the TTL of exist ing search indexes.

Specify the TTL when you create a search index

a. On the Indexes tab of the data table for which you want to create a search index and on
which the UpdateRow operation is prohibited, click Creat e Search Index .

Funct ion Int roduct ion·Search Index Tablest ore

115 > Document Version: 20220711

b. In the Creat e Index dialog box, configure the Index Name, Time to Live, and Schema
Generation Type parameters, and click OK.

Modify the TTL for an exist ing search index

a. On the Indexes tab of the data table on which the UpdateRow operation is prohibited, f ind
the search index for which you want to modify the TTL and click Index Det ails in the
Actions column.

b. In the Index Det ails dialog box, click the icon, modify the value of the Time to Live

parameter, and then click Modif y .

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 116

c. Click OK.

3. The TTL of a data table is independent of the TTL of the search index that is created for the data
table. If you want to use the TTL of a data table, configure the TTL for the data table.

i. In the Descript ion sect ion of the Basic Inf ormat ion tab, click Modif y At t ribut es .

ii. In the Modif y At t ribut es dialog box, configure the Time to Live parameter based on your
business requirements, and click OK.

Use Tablestore SDKs
1. Prohibit the UpdateRow operation on a data table.

Funct ion Int roduct ion·Search Index Tablest ore

117 > Document Version: 20220711

public void disableTableUpdate(SyncClient client) {
 UpdateTableRequest updateTableRequest = new UpdateTableRequest(tableName);
 TableOptions options = new TableOptions();
 // Prohibit the UpdateRow operation on a data table to prevent impacts on your busi
ness.
 options.setAllowUpdate(false);
 updateTableRequest.setTableOptionsForUpdate(options);
 client.updateTable(updateTableRequest);
}

2. Specify the TTL for search indexes.

After the UpdateRow operation on a data table is prohibited, you can specify the TTL of a search
index when you create the search index or modify the TTL of exist ing search indexes.

Specify the TTL when you create a search index

Modify the TTL for an exist ing search index

// Use Tablestore SDK for Java V5.12.0 or later.
public void updateIndexWithTTL(SyncClient client) {
 int days = 7;
 UpdateSearchIndexRequest updateSearchIndexRequest = new UpdateSearchIndexRequest(
tableName, indexName);
 // Modify the TTL for the search index.
 updateSearchIndexRequest.setTimeToLiveInDays(days);
 client.updateSearchIndex(updateSearchIndexRequest);
}

3. The TTL of a data table is independent of the TTL of the search index that is created for the data
table. If you want to use the TTL of a data table, configure the TTL for the data table.

public void updateTableTTL(SyncClient client) {
 int days = 7;
 UpdateTableRequest updateTableRequest = new UpdateTableRequest(tableName);
 TableOptions options = new TableOptions();
 options.setTimeToLiveInDays(days);
 updateTableRequest.setTableOptionsForUpdate(options);
 client.updateTable(updateTableRequest);
}

This topic describes how to query the descript ion of a search index, including the information of
columns in the search index and configurations of the search index.

Operations
You can call the DescribeSearchIndex operation to query the descript ion of a search index.

Use Tablestore SDKs
You can use the following Tablestore SDKs to query the descript ion of a search index:

Tablestore SDK for Java: Query the descript ion of a search index

6.6.3. Query the description of a search index

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 118

https://www.alibabacloud.com/help/doc-detail/100368.htm#concept-thd-r2s-dgb

Tablestore SDK for GO: Query the descript ion of a search index

Tablestore SDK for Python: Query the descript ion of a search index

Tablestore SDK for Node.js: Query the descript ion of a search index

Tablestore SDK for .NET SDK: Query the descript ion of a search index

Tablestore SDK for PHP SDK: Query the descript ion of a search index

Parameters

Parameter Description

tableName The name of the table.

indexName The name of the search index.

Examples

private static DescribeSearchIndexResponse describeSearchIndex(SyncClient client) {
 DescribeSearchIndexRequest request = new DescribeSearchIndexRequest();
 request.setTableName(TABLE_NAME); request.setTableName(TABLE_NAME); // Set the name of
the table.
 request.setIndexName(INDEX_NAME); // Set the name of the search index.
 DescribeSearchIndexResponse response = client.describeSearchIndex(request);
 System.out.println(response.jsonize()); // Display the details of the response.
 System.out.println(response.getSyncStat().getSyncPhase().name());// Display the synchro
nization status of data in the search index.
 return response;
}

Search index provides the following special f ield types in addit ion to the basic field types such as LONG,
DOUBLE, BOOLEAN, KEYWORD, TEXT, and GEOPOINT:

ARRAY
ARRAY is a type that can be combined with basic field types such as LONG, DOUBLE, BOOLEAN,
KEYWORD, TEXT, and GEOPOINT. For example, the combination of LONG with ARRAY is used to specify
arrays of the LONG INTEGER type. LONG ARRAY fields can contain mult iple long integers. If a query
matches a component of an array, the corresponding row is returned.

The following table describes arrays combined with basic field types.

ARRAY Description

Long Array An array of long integers. Example: [1000, 4, 5555].

Boolean Array An array of BOOLEAN values. Example: [true, false].

Double Array
An array of double-precision floating-point numbers. Example:
[3.1415926, 0.99].

6.6.4. ARRAY and Nested field types

Funct ion Int roduct ion·Search Index Tablest ore

119 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/101597.htm#concept-ajd-c45-hgb
https://www.alibabacloud.com/help/doc-detail/106356.htm#concept-k4f-d1k-pgb
https://www.alibabacloud.com/help/doc-detail/100604.htm#concept-k5h-rvk-2gb
https://www.alibabacloud.com/help/doc-detail/100794.htm#concept-qhr-1qc-fgb
https://www.alibabacloud.com/help/doc-detail/121062.htm#concept-473397

Keyword Array
An array of strings in the JSON ARRAY format. Example: [\"Hangzhou\",
\"Xi'an\"].

Text Array

An array of text in the JSON ARRAY format. Example: [\"Hangzhou\",
\"Xi'an\"].

TEXT JSON arrays are not commonly used.

GeoPoint Array
An array of latitude and longitude coordinate pairs. Example: [\"34.2,
43.0\", \"21.4, 45.2\"].

ARRAY Description

The ARRAY type is supported only in search indexes. Therefore, when the type of an index field involves
ARRAY, the field in the table must be of the STRING type. A basic data type such as LONG or DOUBLE in
the search index remains the same as that in the table. If a price field is of the DOUBLE ARRAY type, the
field type in the table must be STRING, and the field type must be DOUBLE and isArray must be set to
true in the search index.

Nested
Nested indicates nested documents. Nested documents are used when a row of data (document)
contains mult iple child rows (child documents). Mult iple child documents are stored in a Nested field.
You must specify the schema of child rows in the Nested field. The schema must include the fields of
the child rows and the property of each field. Nested is similar to ARRAY. However, Nested supports
more features.

Nested fields are writ ten as strings in JSON arrays to tables.

Not ice Even when a field contains a single child row, the written strings must be JSON arrays.

Example of single-level Nested fields

You can create single-level Nested fields in the console or by using Tablestore SDKs.

This sect ion provides an example on how to create a single-level Nested field by using Tablestore
SDK for Java. A Nested field named tags is used in this example. Each child row contains two fields, as
shown in the following figure.

Field name: tagName. Field type: KEYWORD.

Field name: score. Field type: DOUBLE.

The following data samples are writ ten to the table: [{"tagName":"tag1", "score":0.8}, {"tagNam
e":"tag2", "score":0.2}] .

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 120

// Specify the FieldSchema class for the child rows.
List<FieldSchema> subFieldSchemas = new ArrayList<FieldSchema>();
subFieldSchemas.add(new FieldSchema("tagName", FieldType.KEYWORD)
 .setIndex(true).setEnableSortAndAgg(true));
subFieldSchemas.add(new FieldSchema("score", FieldType.DOUBLE)
 .setIndex(true).setEnableSortAndAgg(true));
// Specify that FieldSchema of the child rows is used as subfieldSchemas of the Nested fi
eld.
FieldSchema nestedFieldSchema = new FieldSchema("tags", FieldType.NESTED)
 .setSubFieldSchemas(subFieldSchemas);

Example of mult iple-level Nested fields

You can create mult iple-level Nested fields only by using Tablestore SDKs.

This sect ion provides an example on how to create a mult iple-level Nested field by using Tablestore
SDK for Java. A Nested field named user is used in this example. Each child row contains three fields of
different basic field types and one Nested field.

Field name: name. Field type: KEYWORD.

Field name: age. Field type: LONG.

Field name: phone. Field type: KEYWORD.

Nested field name: address. Names of the fields contained in each child row: province, city, and
street. All f ields contained in each child row are of the KEYWORD type.

The following data sample is writ ten to the table: [{"name":"Zhangsan","age":20,"phone":"13900
006666","address":[{"province":"Zhejiang Province","city":"Hangzhou City","street":"No. 1201
, Xingfu Community, Yangguang Avenue"}]}]

// Construct FieldSchema for each child row of the address Nested field. Each child row c
ontains three fields. The path specified by user.address can be used to query data of fie
lds in a child row.
List<FieldSchema> addressSubFiledSchemas = new ArrayList<>();
addressSubFiledSchemas.add(new FieldSchema("province",FieldType.KEYWORD));
addressSubFiledSchemas.add(new FieldSchema("city",FieldType.KEYWORD));
addressSubFiledSchemas.add(new FieldSchema("street",FieldType.KEYWORD));
// Construct FieldSchema for each child row of the user Nested field. Each child row cont
ains three fields of different basic field types and one Nested field named address. The
path specified by user can be used to query data of fields in a child row.
List<FieldSchema> subFieldSchemas = new ArrayList<>();
subFieldSchemas.add(new FieldSchema("name",FieldType.KEYWORD));
subFieldSchemas.add(new FieldSchema("age",FieldType.LONG));
subFieldSchemas.add(new FieldSchema("phone",FieldType.KEYWORD));
subFieldSchemas.add(new FieldSchema("address",FieldType.NESTED).setSubFieldSchemas(addres
sSubFiledSchemas));
// Specify that FieldSchema of the child rows in the user Nested field is used as subfiel
dSchemas of the Nested field.
List<FieldSchema> fieldSchemas = new ArrayList<>();
fieldSchemas.add(new FieldSchema("user",FieldType.NESTED).setSubFieldSchemas(subFieldSche
mas));

The Nested type has the following limits:

Nested indexes do not support the IndexSort feature. However, IndexSort can improve query
performance in mult iple scenarios.

Funct ion Int roduct ion·Search Index Tablest ore

121 > Document Version: 20220711

If you use a search index that contains a nested field to query data and require pagination, you must
specify the sort ing method to return data in the query condit ions. Otherwise, Tablestore does not
return nextToken when only part of data that meets the query condit ions is read.

Nested queries provide lower performance than other types of queries.

Apart from the preceding limits, the Nested type supports all queries, sort ing, and aggregations.

After you create a search index, you can query the list of all search indexes created in the current
instance or associated with a table.

Operations
You can call the ListSearchIndex operation to list search indexes.

Use Tablestore SDKs
You can use the following Tablestore SDKs to implement search index:

Tablestore SDK for Java: List search indexes

Tablestore SDK for Go: List search indexes

Tablestore SDK for Python: List search indexes

Tablestore SDK for Node.js: List search indexes

Tablestore SDK for .NET: List search indexes

Tablestore SDK for PHP: List search indexes

Parameters

Parameter Description

tableName

Optional. This parameter specifies the name of the table.

If the name of the table is set, all search indexes associated with the
table are returned.

If the name of the table is not set, all search indexes in the current
instance are returned.

Examples

private static List<SearchIndexInfo> listSearchIndex(SyncClient client) {
 ListSearchIndexRequest request = new ListSearchIndexRequest();
 request.setTableName(TABLE_NAME); // Set the name of the table.
 return client.listSearchIndex(request).getIndexInfos(); // Return all search indexes as
sociated with the table.
}

This topic describes how to delete a search index created for a table.

6.6.5. List search indexes

6.6.6. Delete search indexes

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 122

https://www.alibabacloud.com/help/doc-detail/100366.htm#concept-vk4-qds-dgb
https://www.alibabacloud.com/help/doc-detail/101596.htm#concept-hl1-b45-hgb
https://www.alibabacloud.com/help/doc-detail/106355.htm#concept-x2k-c1k-pgb
https://www.alibabacloud.com/help/doc-detail/100603.htm#concept-odb-4vk-2gb
https://www.alibabacloud.com/help/doc-detail/100793.htm#concept-gln-zpc-fgb
https://www.alibabacloud.com/help/doc-detail/121059.htm#concept-473364

Operations
You can call the DeleteSearchIndex operation to delete a search index.

Use Tablestore SDKs
You can use the following Tablestore SDKs to delete a search index:

Tablestore SDK for Java: Delete search indexes

Tablestore SDK for Go: Delete search indexes

Tablestore SDK for Python: Delete search indexes

Tablestore SDK for Node.js: Delete search indexes

Tablestore SDK for .NET: Delete search indexes

Tablestore SDK for PHP: Delete search indexes

Parameters

Parameter Description

tableName The name of the table.

indexName The name of the search index.

Examples

private static void deleteSearchIndex(SyncClient client) {
 DeleteSearchIndexRequest request = new DeleteSearchIndexRequest();
 request.setTableName(TABLE_NAME); // Set the name of the table.
 request.setIndexName(INDEX_NAME); // Set the name of the search index.
 client.deleteSearchIndex(request); // Call client to delete the search Index.
}

You can specify IndexSort when you create a search index and specify a sort ing method when you
query data. You can use limit and offset or tokens for pagination.

Use Tablestore SDKs
You can use the following Tablestore SDKs to implement sort ing and pagination:

Tablestore SDK for Java: Sort ing and pagination

Tablestore SDK for Go: Sort ing and pagination

Tablestore SDK for Python: Sort ing and pagination

Tablestore SDK for Node.js: Sort ing and pagination

Tablestore SDK for .NET: Sort ing and pagination

Tablestore SDK for PHP: Sort ing and pagination

Index presorting

6.6.7. Sorting and pagination

Funct ion Int roduct ion·Search Index Tablest ore

123 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/100381.htm#concept-sdw-rxv-dgb
https://www.alibabacloud.com/help/doc-detail/101598.htm#concept-h4h-d45-hgb
https://www.alibabacloud.com/help/doc-detail/106357.htm#concept-ffz-d1k-pgb
https://www.alibabacloud.com/help/doc-detail/100606.htm#concept-l13-5vk-2gb
https://www.alibabacloud.com/help/doc-detail/100795.htm#concept-en4-bqc-fgb
https://www.alibabacloud.com/help/doc-detail/121064.htm#concept-473399
https://www.alibabacloud.com/help/doc-detail/100425.htm#concept-slf-n3x-dgb
https://www.alibabacloud.com/help/doc-detail/101608.htm#concept-inv-hq5-hgb
https://www.alibabacloud.com/help/doc-detail/106370.htm#concept-yw3-cck-pgb
https://www.alibabacloud.com/help/doc-detail/100621.htm#concept-j33-pyk-2gb
https://www.alibabacloud.com/help/doc-detail/100805.htm#concept-hpd-5sc-fgb
https://www.alibabacloud.com/help/doc-detail/121083.htm#concept-473609

By default , data in a search index is sorted based on the value of the IndexSort parameter. When you
use a search index to query data, the value of the IndexSort parameter determines the default order in
which the matched data is returned.

When you create a search index, you can specify a value for the IndexSort parameter. If you do not
specify a value for the IndexSort parameter, data in the search index is sorted by primary key. If you do
not specify a value for the IndexSort parameter and use the search index to query data, the matched
data is returned in the order of the primary key by default .

Not ice Search indexes that contain fields of the Nested type do not support index
presort ing.

Specify a sorting method
Sort ing can be enabled only for fields for which enableSortAndAgg is set to true.

You can specify a sort ing method for each query. Search index-based queries support the following
sort ing methods. You can also specify mult iple sort ing methods based on different priorit ies.

ScoreSort

You can use ScoreSort to sort the query results based on the BM25-based keyword relevance score.
ScoreSort is suitable for scenarios such as full-text search.

Not ice You must specify a value for ScoreSort to sort the matched data by keyword
relevance score. Otherwise, the matched data is sorted based on the value that is specified for
the IndexSort parameter.

SearchQuery searchQuery = new SearchQuery();
searchQuery.setSort(new Sort(Arrays.asList(new ScoreSort())));

PrimaryKeySort

You can use PrimaryKeySort to sort the query results based on the value of the primary key.

SearchQuery searchQuery = new SearchQuery();
searchQuery.setSort(new Sort(Arrays.asList(new PrimaryKeySort()))); // Sort the query res
ults in the ascending order.
//searchQuery.setSort(new Sort(Arrays.asList(new PrimaryKeySort(SortOrder.DESC)))); // So
rt the query results in the descending order.

FieldSort

You can use FieldSort to sort the query results based on the values of a specified column.

SearchQuery searchQuery = new SearchQuery();
searchQuery.setSort(new Sort(Arrays.asList(new FieldSort("col", SortOrder.ASC))));

You can also sort values in two columns in specified orders to determine the order in which the
matched data is returned.

SearchQuery searchQuery = new SearchQuery();
searchQuery.setSort(new Sort(Arrays.asList(
 new FieldSort("col1", SortOrder.ASC), new FieldSort("col2", SortOrder.ASC))));

GeoDistanceSort

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 124

You can use GeoDistanceSort to sort the query results by geographical location.

SearchQuery searchQuery = new SearchQuery();
// Sort the results based on the distance from the value in the GEOPOINT geo column to th
e coordinate pairs (0, 0).
Sort.Sorter sorter = new GeoDistanceSort("geo", Arrays.asList("0, 0"));
searchQuery.setSort(new Sort(Arrays.asList(sorter)));

Specify a pagination method
You can use the limit and offset parameters or use tokens to paginate the returned rows.

Use the limit and offset parameters

When the total number of returned rows to obtain is smaller than 50,000, you can configure the limit
and offset parameters to paginate the rows. The sum of the limit and offset parameter values
cannot exceed 50,000. The maximum value of the limit parameter is 100.

Not e For more information about how to set limit to a value greater than 100, see How do
I increase the value of the limit parameter to 1000 when I call the Search operation of the search
index feature to query data?.

If you use the limit and offset parameters to paginate the rows but do not specify values, the
default values are used. The default value of the limit parameter is 10. The default value of the
offset parameter is 0.

SearchQuery searchQuery = new SearchQuery();
searchQuery.setQuery(new MatchAllQuery());
searchQuery.setLimit(100);
searchQuery.setOffset(100);

Use a token

We recommend that you use a token for deep pagination because this method has no limits on the
pagination depth.

If Tablestore cannot read all data that meets the query condit ions, Tablestore returns nextToken.
You can use nextToken to continue to read the subsequent data.

By default , you can only page backward when you use a token. However, you can cache and use the
previous token to page forward because a token is valid during the query.

Not ice If you need to persist nextToken or transfer nextToken to the frontend page, you
can use Base64 to encode nextToken into a string. Tokens are not strings. If you use new String
(nextToken) to encode a token into a string, information about the token is lost.

When you use a token for pagination, the sort ing method is the same as the method that is used in
the previous request. Therefore, you cannot specify the sort ing method if you use a token. You
cannot set the offset parameter when a token is used. Data is returned page by page in sequence,
which results in a slow query.

Funct ion Int roduct ion·Search Index Tablest ore

125 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/169963.htm#concept-2515203

Not ice Search indexes that contain fields of the Nested type do not support IndexSort. If
you use a search index that contains fields of the Nested type to query data and require
pagination, you must specify the sort ing method in the query condit ions to return data in the
specified order. Otherwise, Tablestore does not return nextToken when only part of data that
meets the query condit ions is returned.

private static void readMoreRowsWithToken(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 searchQuery.setQuery(new MatchAllQuery());
 searchQuery.setGetTotalCount(true);// Specify that the total number of matched rows i
s returned.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", s
earchQuery);
 SearchResponse resp = client.search(searchRequest);
 if (!resp.isAllSuccess()) {
 throw new RuntimeException("not all success");
 }
 List<Row> rows = resp.getRows();
 while (resp.getNextToken()!=null) { // If nextToken is null in the response, all data
is read.
 // Query the nextToken value.
 byte[] nextToken = resp.getNextToken();
 {
 // If you need to persist nextToken or transfer nextToken to the frontend pag
e, you can use Base64 to encode nextToken into a string.
 // Tokens are not strings. If you use new String(nextToken) to encode a token
into a string, information about the token is lost.
 String tokenAsString = Base64.toBase64String(nextToken);
 // Decode the string into bytes.
 byte[] tokenAsByte = Base64.fromBase64String(tokenAsString);
 }
 // Set the token in this request to the nextToken value in the previous response.

 searchRequest.getSearchQuery().setToken(nextToken);
 resp = client.search(searchRequest);
 if (!resp.isAllSuccess()) {
 throw new RuntimeException("not all success");
 }
 rows.addAll(resp.getRows());
 }
 System.out.println("RowSize: " + rows.size());
 System.out.println("TotalCount: " + resp.getTotalCount());// Specify that the total n
umber of matched rows is displayed. The number of returned rows is not displayed.
}

After a tokenization method is specified for TEXT fields, Tablestore tokenizes field values into mult iple
tokens based on the tokenization method that you configure. You cannot specify tokenization
methods for non-TEXT fields.

6.6.8. Tokenization

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 126

You can use match query (MatchQuery) and match phrase query (MatchPhraseQuery) to query TEXT
data. You can also use term query (TermQuery), terms query (TermsQuery), prefix query (PrefixQuery),
and wildcard query (WildcardQuery) based on your business scenario.

Tokenization methods
The following tokenization methods are supported:

Single-word tokenization (SingleWord)

This tokenization method applies to all natural languages such as Chinese, English, and Japanese. By
default , the tokenization method for TEXT fields is single-word tokenization.

After single-word tokenization is specified, Tablestore performs tokenization based on the following
rules:

Chinese texts are tokenized based on each Chinese character. For example, "杭州" is tokenized into
"杭" and "州". You can use match query (MatchQuery) or match phrase query (MatchPhraseQuery)
and set the keyword to "杭" to query the data that contains "杭州".

Letters or digits are tokenized based on spaces or punctuation marks. Uppercase letters are
converted to lowercase letters. For example, "Hang Zhou" is tokenized into "hang" and "zhou". You
can use match query (MatchQuery) or match phrase query (MatchPhraseQuery) and set the keyword
to "hang", "HANG", or "Hang" to query the rows that contain "Hang Zhou".

By default , alphanumeric characters such as model numbers are also tokenized by spaces or
punctuation marks. However, these characters cannot be tokenized into smaller words. For
example, "IPhone6" can only be tokenized into "IPhone6". When you use match query (MatchQuery)
or match phrase query (MatchPhraseQuery), you must specify "iphone6". No results are returned if
you use "iphone".

The following table describes the parameters for single-word tokenization.

Parameter Description

caseSensitive

Specifies whether to enable case sensit ivity. Default value: false. If
you set the parameter to false, all letters are converted to lowercase
letters.

If you do not need Tablestore to convert letters to lowercase letters,
you can set the parameter to true.

delimitWord

Specifies whether to tokenize alphanumeric characters. Default
value: false.

You can set the delimitWord parameter to true to separate letters
from digits. This way, "iphone6" is tokenized into "iphone" and "6".

Delimiter tokenization (Split)

Tablestore provides general dict ionary-based tokenization. However, some industries require custom
dict ionaries for tokenization. To meet this requirement, Tablestore provides delimiter tokenization.
You can perform tokenization by using custom methods, use delimiter tokenization, and then write
data to Tablestore.

Delimiter tokenization applies to all natural languages such as Chinese, English, and Japanese.

Funct ion Int roduct ion·Search Index Tablest ore

127 > Document Version: 20220711

After the tokenization method is set to delimiter tokenization, the system tokenizes field values
based on the specified delimiter. For example, a field value is "badminton,ping pong,rap". The
delimiter is set to a comma (,). The value is tokenized into "badminton", "ping pong", and "rap". The
field is indexed. When you use match query (MatchQuery) or match phrase query (MatchPhraseQuery)
to query "badminton", "ping pong", "rap", or "badminton,ping pong", the row can be obtained.

The following table describes the parameters for delimiter tokenization.

Parameter Description

delimiter

The delimiter. By default, the value is a whitespace character. You
can customize the delimiter.

When you create a search index, the delimiter specified for field
tokenization must be the same as the delimiter that is included in
the value of the column in the data table. Otherwise, data may not
be obtained.

If the custom delimiter is a number sign (#), replace the delimiter
with an escape character.

Minimum semantic unit-based tokenization (MinWord)

This tokenization method applies to the Chinese language in full-text search scenarios.

After the tokenization method is set to minimum semantic unit-based tokenization, Tablestore
tokenizes the TEXT field values into the minimum number of semantic units when Tablestore
performs a query.

Maximum semantic unit-based tokenization (MaxWord)

This tokenization method applies to the Chinese language in full-text search scenarios.

After the tokenization method is set to maximum semantic unit-based tokenization, Tablestore
tokenizes the TEXT field values into the maximum number of semantic units when Tablestore
performs a query. However, different semantic units may overlap. The total length of the tokenized
words is longer than the length of the original text. The index size is increased.

This tokenization method can generate more tokens and increase the probability that the rows are
matched. However, the index size is greatly increased. You can use match phrase query
(MatchPhraseQuery) when the tokenization method is set to maximum semantic unit-based
tokenization. Match query (MatchQuery) is more suitable for this tokenization method. If you use
match phrase query together with this tokenization method, data may not be obtained due to
overlapping tokens because the keyword is also tokenized based on maximum semantic unit-based
tokenization.

Fuzzy tokenization

This tokenization method applies to all natural languages such as Chinese, English, and Japanese in
scenarios that involve short text content, such as t it les, movie names, book t it les, f ile names, and
directory names.

The combination of fuzzy tokenization and match phrase query can be used to return query results
at a low latency. The combination of fuzzy tokenization and match phrase query outperforms
wildcard query (WildcardQuery). However, the index size is greatly increased.

After the tokenization method is set to fuzzy tokenization, Tablestore performs tokenization by
using n-gram. The results are between minChars and maxChars. For example, this tokenization
method is used to populate the drop-down list .

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 128

Fuzzy tokenization converts the field values into lowercase letters. Therefore, fuzzy tokenization is
case-insensit ive and is similar to the LIKE operator in SQL.

To perform a fuzzy query, you must perform a match phrase query (MatchPhraseQuery) on the
columns for which fuzzy tokenization is used. If you have more query requirements on the column,
use the virtual column feature. For more information about the virtual column feature, see Virtual
columns.

Limits

You can use fuzzy tokenization to tokenize the TEXT field values that are equal to or smaller
than 1,024 characters in length. If the TEXT field value exceeds 1,024 characters in length,
Tablestore truncates the excess characters and discards them, and only tokenizes the first 1,024
characters.

To prevent excessive increase of index data, the difference between the values of maxChars
and minChars must not exceed 6.

Parameters

Parameter Description

minChars The minimum number of characters for a token. Default value: 1.

maxChars The maximum number of characters for a token. Default value: 7.

Comparison
The following table compares the tokenization methods.

Dimension
Single-word
tokenization

Delimiter
tokenization

Minimum
semantic unit-
based
tokenization

Maximum
semantic unit-
based
tokenization

Fuzzy
tokenization

Index increase Small Small Small Medium Large

Relevance Weak Weak Medium
Relatively
strong

Relatively
strong

Applicable
language

All All Chinese Chinese All

Length limit None None None None
1,024
characters

Recall rate High Low Low Medium Medium

You can use match all query to match all rows in a table to query the total number of rows in the table
and return mult iple random rows.

API operation

6.6.9. Match all query

Funct ion Int roduct ion·Search Index Tablest ore

129 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/289172.htm#task-2101512

You can call the Search or ParallelScan operation and set the query type to MatchAllQuery to perform a
match all query.

Usage
You can use the following Tablestore SDKs to perform a match all query:

Tablestore SDK for Java: Match all query

Tablestore SDK for Go: Match all query

Tablestore SDK for Python: Match all query

Tablestore SDK for Node.js: Match all query

Tablestore SDK for .NET: Match all query

Tablestore SDK for PHP: Match all query

Parameters

Parameter Description

query The query type. Set the query type to MatchAllQuery.

tableName The name of the data table.

indexName The name of the search index.

limit

The maximum number of rows that you want the current query to
return.

If you want the current query to return multiple random rows of data,
set limit to a posit ive integer.

To query only the number of matched rows without returning specific
data, you can set limit to 0. This way, Tablestore returns the number of
matched rows without data from the table.

columnsToGet

Specifies whether to return all columns.

By default, returnAll is false, which specifies that not all columns are
returned. In this case, you can use columns to specify the columns that
you want to return. If you do not specify the columns that you want to
return, only the primary key columns are returned.

If returnAll is set to true, all columns are returned.

getTotalCount

Specifies whether to return the total number of rows that match the
query conditions. By default, getTotalCount is false, which specifies
that the total number of rows that match the query conditions is not
returned.

If this parameter is set to true, the query performance is compromised.

Examples

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 130

https://www.alibabacloud.com/help/doc-detail/100417.htm#concept-qfq-13x-dgb
https://www.alibabacloud.com/help/doc-detail/101601.htm#concept-psk-1q5-hgb
https://www.alibabacloud.com/help/doc-detail/106363.htm#concept-uzp-xbk-pgb
https://www.alibabacloud.com/help/doc-detail/100613.htm#concept-fdg-hwk-2gb
https://www.alibabacloud.com/help/doc-detail/100797.htm#concept-mh4-1sc-fgb
https://www.alibabacloud.com/help/doc-detail/120964.htm#concept-422893

/**
 * Use match all query to query the total number of rows in a table.
 * @param client
 */
private static void matchAllQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 /**
 * Set the query type to MatchAllQuery.
 */
 searchQuery.setQuery(new MatchAllQuery());
 /**
 * In the MatchAllQuery-based query result, the value of TotalCount is the total number
of rows in the table.
 If you want the current query to return multiple random rows of data, set limit to a p
ositive integer.
 * To query only the number of matched rows without returning specific data, you can se
t limit to 0. This way, Tablestore returns the number of matched rows without data from the
table.
 */
 searchQuery.setLimit(0);
 SearchRequest searchRequest = new SearchRequest(TABLE_NAME, INDEX_NAME, searchQuery);
 /**
 * Specify that the total number of rows that match the query conditions is returned.
 */
 searchQuery.setGetTotalCount(true);
 SearchResponse resp = client.search(searchRequest);
 /**
 * Check whether the returned total number of rows that match the query conditions is c
orrect. If isAllSuccess is false, Tablestore may fail to query data on all servers and retu
rn a value that is smaller than the total number of rows that match the query conditions.
 */
 if (!resp.isAllSuccess()) {
 System.out.println("NotAllSuccess!");
 }
 System.out.println("IsAllSuccess: " + resp.isAllSuccess());
 System.out.println("TotalCount: " + resp.getTotalCount()); // Specify that the total nu
mber of rows that match the query conditions is displayed.
 System.out.println(resp.getRequestId());
}

You can use match query (MatchQuery) to query data in a table based on approximate matches.
Tablestore tokenizes the values in TEXT columns and the keywords you use to perform match queries
based on the analyzer that you specify. Therefore, Tablestore can perform match queries based on the
tokens. We recommend that you use match phase query (MatchPhraseQuery) for columns for which
fuzzy tokenization is used to ensure high performance in fuzzy queries.

Scenarios

6.6.10. Match query

Funct ion Int roduct ion·Search Index Tablest ore

131 > Document Version: 20220711

You can use match query to query data in TEXT columns in full-text search scenarios. For example, the
value in the t it le column of a row is "Hangzhou West Lake Scenic Area" and single-word tokenization is
used. If you set the keyword to "Lake Scenic" for the match query, Tablestore returns this row in the
query result .

API operation
You can call the Search or ParallelScan operation and set the query type to MatchQuery to perform a
match query.

Usage
You can use the following Tablestore SDKs to perform a match query:

Tablestore SDK for Java: Match query

Tablestore SDK for Go: Match query

Tablestore SDK for Python: Match query

Tablestore SDK for Node.js: Match query

Tablestore SDK for .NET: Match query

Tablestore SDK for PHP: Match query

Parameters

Parameter Description

fieldName
The name of the column that you want to query.

Match query applies to TEXT columns.

text

The keyword that is used to match the column values when you
perform a match query.

If the column to query is a TEXT column, the keyword is tokenized into
multiple tokens based on the analyzer that you specify when you
create the search index. By default, single-word tokenization is
performed if you do not specify the analyzer when you create the
search index.

For example, if you set the tokenization method to single-word
tokenization and use "this is" as a search keyword, you can obtain
query results such as "..., this is tablestore", "is this tablestore",
"tablestore is cool", "this", and "is".

query The query type, which is set to matchQuery.

offset The posit ion from which the current query starts.

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 132

https://www.alibabacloud.com/help/doc-detail/179423.htm#concept-1920131
https://www.alibabacloud.com/help/doc-detail/179426.htm#concept-1920133
https://www.alibabacloud.com/help/doc-detail/179428.htm#concept-1920135
https://www.alibabacloud.com/help/doc-detail/179430.htm#concept-1920137
https://www.alibabacloud.com/help/doc-detail/179433.htm#concept-1920139
https://www.alibabacloud.com/help/doc-detail/179435.htm#concept-1920141

limit

The maximum number of rows that you want the current query to
return.

To query only the number of matched rows without returning specific
data, you can set limit to 0. This way, Tablestore returns the number of
matched rows instead of specific data from the table.

minimumShouldMatch

The minimum number of matched tokens contained in a column value.

A row is returned only when the value of the fieldName column in the
row contains at least the minimum number of matched tokens.

Not e minimumShouldMatch must be used together with
the OR logical operator.

operator

The logical operator. By default, OR is used as the logical operator,
which specifies that a row matches the query conditions when one of
the tokens is matched.

If you set the operator to AND, the row meets the query conditions
only when the column value contains all tokens.

getTotalCount

Specifies whether to return the total number of rows that match the
query conditions. By default, the value of this parameter is false, which
specifies that the total number of rows that match the query
conditions is not returned.

If this parameter is set to true, the query performance is compromised.

tableName The name of the data table.

indexName The name of the search index.

columnsToGet

Specifies whether to return all columns of each matched row. You can
configure returnAll and columns for this parameter.

By default, the value of returnAll is false, which specifies that not all
columns are returned. In this case, you can use columns to specify the
columns that you want to return. If you do not specify the columns
that you want to return, only the primary key columns are returned.

If returnAll is set to true, all columns are returned.

Parameter Description

Examples

Funct ion Int roduct ion·Search Index Tablest ore

133 > Document Version: 20220711

/**
 * Search the table for rows in which the value in Col_Keyword matches "hangzhou". Tablesto
re returns part of the matched rows and the total number of matched rows in this query.
 * @param client
 */
private static void matchQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 MatchQuery matchQuery = new MatchQuery(); // Set the query type to MatchQuery.
 matchQuery.setFieldName("Col_Keyword"); // Specify the name of the column that you want
to query.
 matchQuery.setText("hangzhou"); // Specify the keyword that you want to match.
 searchQuery.setQuery(matchQuery);
 searchQuery.setOffset(0); // Set offset to 0.
 searchQuery.setLimit(20); // Set limit to 20 to return up to 20 rows.
 //searchQuery.setGetTotalCount(true); // Specify that the total number of matched rows
is returned.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", sea
rchQuery);
 // You can configure the columnsToGet parameter to specify the columns to return or spe
cify that all columns are returned. If you do not configure this parameter, only the primar
y key columns are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set ReturnAll to true to return all columns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set Columns to retu
rn the columns that you want to return.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Specify that the total
number of matched rows instead of the number of returned rows is displayed.
 System.out.println("Row: " + resp.getRows());
}

Match phrase query is similar to match query, except match phrase query evaluates the posit ions of
tokens. A row meets the query condit ion only when the order and posit ions of the tokens in the row
match the order and posit ions of the tokens that are contained in the keyword. If the tokenization
method for the column that you want to query is fuzzy tokenization, match phrase query is performed
at a lower latency than wildcard query.

For example, the value in the column is "Hangzhou West Lake Scenic Area" and the keyword you specify
in Query is "Hangzhou Scenic Area". Tablestore returns the row when you use match query. However,
when you use match phrase query, Tablestore does not return the row. The distance between
"Hangzhou" and "Scenic Area" in Query is 0, but the distance in the column of this row is 2 because the
two words "West" and "Lake" exist between "Hangzhou" and "Scenic Area".

API operation
You can call the Search or ParallelScan operation and set the query type to MatchPhraseQuery to
perform a match phrase query.

6.6.11. Match phrase query

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 134

Usage
You can use the following Tablestore SDKs to perform a match phrase query:

Tablestore SDK for Java: Match phrase query

Tablestore SDK for Go: Match phrase query

Tablestore SDK for Python: Match phrase query

Tablestore SDK for Node.js: Match phrase query

Tablestore SDK for .NET: Match phrase query

Tablestore SDK for PHP: Match phrase query

Parameters

Parameter Description

fieldName
The name of the column that you want to query.

Match phrase query applies to TEXT columns.

text

The keyword that is used to match the column values when you
perform a match phrase query.

If the column to query is a TEXT column, the keyword is tokenized into
multiple tokens based on the analyzer that you specify when you
create the search index. By default, single-word tokenization is
performed if you do not set the analyzer when you create the search
index.

For example, if you query the phrase "this is", "..., this is tablestore"
and "this is a table" are returned. "this table is ..." and "is this a table"
are not returned.

query The query type, which is set to matchPhraseQuery.

offset The posit ion from which the current query starts.

limit

The maximum number of rows that you want the current query to
return.

To query only the number of matched rows without returning specific
data, you can set limit to 0. This way, Tablestore returns the number of
matched rows instead of specific data from the table.

getTotalCount

Specifies whether to return the total number of rows that match the
query conditions. By default, the value of this parameter is false, which
specifies that the total number of rows that match the query
conditions is not returned.

If you set this parameter to true, the query performance is
compromised.

Funct ion Int roduct ion·Search Index Tablest ore

135 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/179425.htm#concept-1920132
https://www.alibabacloud.com/help/doc-detail/179427.htm#concept-1920134
https://www.alibabacloud.com/help/doc-detail/179429.htm#concept-1920136
https://www.alibabacloud.com/help/doc-detail/179432.htm#concept-1920138
https://www.alibabacloud.com/help/doc-detail/179434.htm#concept-1920140
https://www.alibabacloud.com/help/doc-detail/179436.htm#concept-1920142

tableName The name of the data table.

indexName The name of the search index.

columnsToGet

Specifies whether to return all columns of each matched row. You can
configure returnAll and columns for this parameter.

By default, the value of returnAll is false, which specifies that not all
columns are returned. If returnAll is set to false, you can use columns
to specify the columns that you want to return. If you do not specify
the columns that you want to return, only the primary key columns are
returned.

If returnAll is set to true, all columns are returned.

Parameter Description

Examples

/**
 * Search the table for rows in which the value of the Col_Text column matches the whole ph
ase "hangzhou shanghai" in order. Tablestore returns part of the matched rows and the numbe
r of rows that match the phrase in this query.
 * @param client
 */
private static void matchPhraseQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 MatchPhraseQuery matchPhraseQuery = new MatchPhraseQuery(); // Set the query type to Ma
tchPhraseQuery.
 matchPhraseQuery.setFieldName("Col_Text"); // Specify the name of the column to query.
 matchPhraseQuery.setText("hangzhou shanghai"); // Specify the keyword that you want to
match.
 searchQuery.setQuery(matchPhraseQuery);
 searchQuery.setOffset(0); // Set offset to 0.
 searchQuery.setLimit(20); // Set limit to 20 to return up to 20 rows.
 //searchQuery.setGetTotalCount(true); // Specify that the total number of matched rows
is returned.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", sea
rchQuery);
 // You can configure the columnsToGet parameter to specify the columns that you want to
return or specify that all columns are returned. If you do not configure this parameter, on
ly the primary key columns are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set ReturnAll to true to return all columns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set Columns to retu
rn specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Specify that the total
number of matched rows instead of the number of returned rows is displayed.
 System.out.println("Row: " + resp.getRows());
}

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 136

You can use term query to query data that exactly matches the specified value of a field. Term query is
similar to queries based on string match condit ions. If the type of a field is TEXT, Tablestore tokenizes
the string and exactly matches tokens.

Operations
You can call the Search or ParallelScan operation and set the query type to TermQuery to implement
term query.

Use Tablestore SDKs
You can use the following Tablestore SDKs to implement term query:

Tablestore SDK for Java: Term query

Tablestore SDK for Go: Term query

Tablestore SDK for Python: Term query

Tablestore SDK for Node.js: Term query

Tablestore SDK for .NET: Term query

Tablestore SDK for PHP: Term query

Parameters

Parameter Description

query The type of the query. Set the query type to TermQuery.

fieldName The name of the field you want to match.

term

The keyword used to match the column values when you perform a
term query.

This word is not tokenized. Instead, the whole word is used to match
the field values.

If the type of a field is TEXT, Tablestore tokenizes the string and
exactly matches tokens. For example, TEXT string "tablestore is cool"
is tokenized into "tablestore", "is", and "cool". When you specify one of
these tokens as a search string, you can retrieve query results that
contain "tablestore is cool".

getTotalCount

Specifies whether to return the total number of rows that match the
query conditions. By default, this parameter is set to false, which
indicates that the total number of rows that match the query
conditions is not returned.

Query performance is affected when this parameter is set to true.

tableName The name of the table.

indexName The name of the search index.

6.6.12. Term query

Funct ion Int roduct ion·Search Index Tablest ore

137 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/100416.htm#concept-orp-zhx-dgb
https://www.alibabacloud.com/help/doc-detail/101600.htm#concept-prg-zp5-hgb
https://www.alibabacloud.com/help/doc-detail/106362.htm#concept-d15-wbk-pgb
https://www.alibabacloud.com/help/doc-detail/100612.htm#concept-f4f-gwk-2gb
https://www.alibabacloud.com/help/doc-detail/100796.htm#concept-p1l-xrc-fgb
https://www.alibabacloud.com/help/doc-detail/120963.htm#concept-422892

columnsToGet

Specifies whether to return all columns of each matched row. You can
configure returnAll and columns for this parameter.

By default, returnAll is set to false, which indicates that not all columns
are returned. If returnAll is set to false, you can use columns to specify
the columns to return. If you do not specify the columns to return, only
the primary key columns are returned.

If returnAll is set to true, all columns are returned.

Parameter Description

Examples

/**
 * Search the table for rows where the value of Col_Keyword exactly matches "hangzhou".
 * @param client
 */
private static void termQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 TermQuery termQuery = new TermQuery(); // Set the query type to TermQuery.
 termQuery.setFieldName("Col_Keyword"); // Set the name of the field that you want to ma
tch.
 termQuery.setTerm(ColumnValue.fromString("hangzhou")); // Set the value that you want t
o match.
 searchQuery.setQuery(termQuery);
 //searchQuery.setGetTotalCount(true); // Specify that the total number of matched rows
is returned.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", sea
rchQuery);
 // You can set the columnsToGet parameter to specify the columns to return or specify t
hat all columns are returned. If you do not set this parameter, only the primary key column
s are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set ReturnAll to true to return all columns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set Columns to retu
rn specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Display the total numbe
r of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());
}

This query is similar to a term query. A terms query supports mult iple terms. A row of data is returned if
one of the keywords matches field values. Terms queries can be used in the same manner as the IN
operator in SQL statements.

Operations

6.6.13. Terms query

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 138

You can call the Search or ParallelScan operation and set the query type to TermsQuery to perform a
terms query.

Use Tablestore SDKs
You can use the following Tablestore SDKs to perform terms queries:

Tablestore SDK for Java: Terms query

Tablestore SDK for Go: Terms query

Tablestore SDK for Python: Terms query

Tablestore SDK for Node.js: Terms query

Tablestore SDK for PHP: Terms query

Parameters

Parameter Description

query The type of the query. Set the value to TermsQuery.

fieldName The name of the field that you want to match.

terms

The keywords that are used to match the field values when you
perform a terms query. You can specify up to 1,024 keywords.

A row of data is returned if one of the keywords matches field values.

getTotalCount

Specifies whether to return the total number of rows that match the
query conditions. By default, this parameter is set to false. This value
indicates that the total number of rows that match the query
conditions is not returned.

If this parameter is set to true, query performance is affected.

tableName The name of the data table.

indexName The name of the search index.

columnsToGet

Specifies whether to return all columns of each matched row. You can
configure ReturnAll and Columns for this parameter.

By default, ReturnAll is set to false. This value indicates that not all
columns of each matched row are returned. If ReturnAll is set to false,
you can use Columns to specify the columns to return. If you do not
specify the columns to return, only the primary key columns are
returned.

If ReturnAll is set to true, all columns of each matched row are
returned.

Examples

Funct ion Int roduct ion·Search Index Tablest ore

139 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/184098.htm#concept-1938615
https://www.alibabacloud.com/help/doc-detail/184099.htm#concept-1938619
https://www.alibabacloud.com/help/doc-detail/184102.htm#concept-1938647
https://www.alibabacloud.com/help/doc-detail/184103.htm#concept-1938654
https://www.alibabacloud.com/help/doc-detail/184108.htm#concept-1938634

/**
 * Search the table for rows in which the value of Col_Keyword is "hangzhou" or "xi'an".
 * @param client
 */
private static void termQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 TermsQuery termsQuery = new TermsQuery(); // Set the query type to TermsQuery.
 termsQuery.setFieldName("Col_Keyword"); // Specify the name of the field that you want
to match.
 termsQuery.addTerm(ColumnValue.fromString("hangzhou")); // Specify the keyword that you
want to match.
 termsQuery.addTerm(ColumnValue.fromString("xi'an")); // Specify the keyword that you wa
nt to match.
 searchQuery.setQuery(termsQuery);
 //searchQuery.setGetTotalCount(true); // Specify that the total number of matched rows
is returned.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", sea
rchQuery);
 // You can configure the columnsToGet parameter to specify the columns to return or spe
cify that all columns are returned. If you do not configure this parameter, only the primar
y key columns are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set ReturnAll to true to return all columns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Specify the columns
to return.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Specify that the total
number of matched rows but not returned rows is displayed.
 System.out.println("Row: " + resp.getRows());
}

You can use prefix query to query data that matches a specified prefix. If the type of a field is TEXT,
Tablestore tokenizes the string and matches tokens by using the specified prefix.

Operations
You can call the Search or ParallelScan operation and set the query type to PrefixQuery to implement
prefix query.

Use Tablestore SDKs
You can use the following Tablestore SDKs to implement prefix query:

Tablestore SDK for Java: Prefix query

Tablestore SDK for Go: Prefix query

Tablestore SDK for Python: Prefix query

Tablestore SDK for Node.js: Prefix query

Tablestore SDK for .NET: Prefix query

6.6.14. Prefix query

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 140

https://www.alibabacloud.com/help/doc-detail/100418.htm#concept-nq3-b3x-dgb
https://www.alibabacloud.com/help/doc-detail/101602.htm#concept-hmk-bq5-hgb
https://www.alibabacloud.com/help/doc-detail/106364.htm#concept-s4j-ybk-pgb
https://www.alibabacloud.com/help/doc-detail/100614.htm#concept-zlw-hwk-2gb
https://www.alibabacloud.com/help/doc-detail/100799.htm#concept-lbm-msc-fgb

Tablestore SDK for PHP: Prefix query

Parameters

Parameter Description

query The type of the query. Set the query type to PrefixQuery.

fieldName The name of the field that you want to match.

prefix

The prefix.

If the field used to match the query conditions is a TEXT field, the field
values are tokenized. A row meets the query conditions when the
tokenized value of the specified field contains at least one term that
contains the specified prefix.

getTotalCount

Specifies whether to return the total number of rows that match the
query conditions. By default, this parameter is set to false, which
indicates that the total number of rows that match the query
conditions is not returned.

Query performance is affected when this parameter is set to true.

tableName The name of the table.

indexName The name of the search index.

columnsToGet

Specifies whether to return all columns of each matched row. You can
configure returnAll and columns for this parameter.

By default, returnAll is set to false, which indicates that not all columns
are returned. If returnAll is set to false, you can use columns to specify
the columns to return. If you do not specify the columns to return, only
the primary key columns are returned.

If returnAll is set to true, all columns are returned.

Examples

Funct ion Int roduct ion·Search Index Tablest ore

141 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/120966.htm#concept-422894

/**
 * Search the table for rows where the value of Col_Keyword contains the prefix that exactl
y matches "hangzhou".
 * @param client
 */
private static void prefixQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 PrefixQuery prefixQuery = new PrefixQuery(); // Set the query type to PrefixQuery.
 searchQuery.setGetTotalCount(true);
 prefixQuery.setFieldName("Col_Keyword");
 prefixQuery.setPrefix("hangzhou");
 searchQuery.setQuery(prefixQuery);
 //searchQuery.setGetTotalCount(true); // Specify that the total number of matched rows
is returned.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", sea
rchQuery);
 // You can set the columnsToGet parameter to specify the columns to return or specify t
hat all columns are returned. If you do not set this parameter, only the primary key column
s are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set ReturnAll to true to return all columns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set Columns to retu
rn specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Display the total numbe
r of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());

You can use RangeQuery to query data that falls within a specified range. When a table contains a
TEXT string, Tablestore tokenizes the string and matches tokens by using the specified prefix.

Operations
You can call the Search or ParallelScan operation and set the query type to RangeQuery to perform
range queries.

Use Tablestore SDKs
You can use the following Tablestore SDKs to implement range query:

Tablestore SDK for Java: Range query

Tablestore SDK for Go: Range query

Tablestore SDK for Python: Range query

Tablestore SDK for Node.js: Range query

Tablestore SDK for .NET: Range query

Tablestore SDK for PHP: Range query

Parameters

6.6.15. Range query

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 142

https://www.alibabacloud.com/help/doc-detail/100419.htm#concept-a23-c3x-dgb
https://www.alibabacloud.com/help/doc-detail/101603.htm#concept-hwl-cq5-hgb
https://www.alibabacloud.com/help/doc-detail/106365.htm#concept-xhb-zbk-pgb
https://www.alibabacloud.com/help/doc-detail/100616.htm#concept-cmj-4xk-2gb
https://www.alibabacloud.com/help/doc-detail/100800.htm#concept-z3q-nsc-fgb
https://www.alibabacloud.com/help/doc-detail/120969.htm#concept-422897

Parameter Description

fieldName The name of the field you want to match.

from

The value from which the query starts.

When you set range conditions, you can use greaterThan to indicate
the greater than (>) sign and greaterThanOrEqual to indicate the
greater-than-or-equal-to (≥) sign.

to

The value with which the query ends.

When you set range conditions, you can use lessThan to indicate the
less-than (<) sign and lessThanOrEqual to indicate the less-than-or-
equal-to (≤) sign.

includeLower
Specifies whether to include the value of the from parameter in the
response. Type: Boolean.

includeUpper
Specifies whether to include the value of the to parameter in the
response. Type: Boolean.

query The query type, which is set to RangeQuery.

sort The sorting method. For more information, see Sorting and pagination.

getTotalCount

Specifies whether to return the total number of rows that match the
query conditions. By default, this parameter is set to false, which
indicates that the total number of rows that match the query
conditions is not returned.

Query performance is affected when the total number of rows that
match the query conditions is returned.

tableName The name of the table.

indexName The name of the search index.

columnsToGet

Specifies whether to return all columns.

By default, returnAll is set to false, which indicates that not all columns
are returned. If returnAll is set to false, you can use columns to specify
the columns to return. If you do not specify the columns to return, only
the primary key columns are returned.

If returnAll is set to true, all columns are returned.

Examples

Funct ion Int roduct ion·Search Index Tablest ore

143 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/117479.htm#concept-226989

/**
 * Search the table for rows where the value in Col_Long is greater than 3. Tablestore sort
s these rows by Col_Long in descending order.
 * @param client
 */
private static void rangeQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 RangeQuery rangeQuery = new RangeQuery(); // Set the query type to RangeQuery.
 rangeQuery.setFieldName("Col_Long"); // Set the name of the field that you want to mat
ch.
 rangeQuery.greaterThan(ColumnValue.fromLong(3)); // Specify the range of the values of
the field. The matched values are greater than 3.
 searchQuery.setGetTotalCount(true);
 searchQuery.setQuery(rangeQuery);
 // Sort the query results by Col_Long in descending order.
 FieldSort fieldSort = new FieldSort("Col_Long");
 fieldSort.setOrder(SortOrder.DESC);
 searchQuery.setSort(new Sort(Arrays.asList((Sort.Sorter)fieldSort)));
 //searchQuery.setGetTotalCount(true);//Set the total number of matched rows to return.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", sea
rchQuery);
 // You can set the columnsToGet parameter to specify the columns to return or specify t
o return all columns. If you do not set this parameter, only the primary key columns are re
turned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set returnAll to true to return all columns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set columns to retu
rn specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Display the total numbe
r of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());
}

When you perform a wildcard query, you can use the asterisk (*) and question mark (?) wildcard
characters in the query to search for data. The asterisk (*) matches a string of any length at, before, or
after a search term. The question mark (?) matches a single character in a specific posit ion. The string
can start with an asterisk (*) or a question mark (?). For example, if you search for the "table*e" string,
"tablestore" can be matched.

The *word* string is equivalent to the WHERE field_a LIKE '%word%' clause in SQL. If you want to
search for the *word* string, you can perform a fuzzy query that provides higher performance than a
wildcard query. For more information about how to perform a fuzzy query, see Fuzzy query. If you
perform a fuzzy query, the query performance is not compromised when the data volume increases.

Limit
A string that contains wildcards can be up to 32 characters in length.

6.6.16. Wildcard query

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 144

https://www.alibabacloud.com/help/doc-detail/360437.htm#concept-2149317

API operations
You can call the Search or ParallelScan operation and set the query type to WildcardQuery to perform a
wildcard query.

Tablestore SDKs
You can use the following Tablestore SDKs to perform a wildcard query:

Tablestore SDK for Java: Wildcard query

Tablestore SDK for Go: Wildcard query

Tablestore SDK for Python: Wildcard query

Tablestore SDK for Node.js: Wildcard query

Tablestore SDK for .NET: Wildcard query

Tablestore SDK for PHP: Wildcard query

Parameters

Parameter Description

fieldName The name of the column.

value
The string that contains wildcards. The string cannot exceed 32
characters in length.

query The type of the query. Set the query type to WildcardQuery.

getTotalCount

Specifies whether to return the total number of rows that match the
query conditions. The default value of this parameter is false, which
indicates that the total number of rows that match the query
conditions is not returned.

If this parameter is set to true, the query performance is compromised.

tableName The name of the data table.

indexName The name of the search index.

columnsToGet

Specifies whether to return all columns of each row that meets the
query conditions. You can configure returnAll and columns for this
parameter.

The default value of returnAll is false, which indicates that not all
columns are returned. In this case, you can use columns to specify the
columns that you want to return. If you do not specify the columns
that you want to return, only the primary key columns are returned.

If returnAll is set to true, all columns are returned.

Examples

Funct ion Int roduct ion·Search Index Tablest ore

145 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/100420.htm#concept-mhd-d3x-dgb
https://www.alibabacloud.com/help/doc-detail/101604.htm#concept-xwl-dq5-hgb
https://www.alibabacloud.com/help/doc-detail/106366.htm#concept-n4x-zbk-pgb
https://www.alibabacloud.com/help/doc-detail/100617.htm#concept-cgj-pxk-2gb
https://www.alibabacloud.com/help/doc-detail/100801.htm#concept-d25-4sc-fgb
https://www.alibabacloud.com/help/doc-detail/120972.htm#concept-422927

/**
 * Search the table for rows in which the value of the Col_Keyword column matches "hang*u".

 * @param client
 */
private static void wildcardQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 WildcardQuery wildcardQuery = new WildcardQuery(); // Set the query type to WildcardQue
ry.
 wildcardQuery.setFieldName("Col_Keyword");
 wildcardQuery.setValue("hang*u"); // Specify a string that contains one or more wildcar
d characters in wildcardQuery.
 searchQuery.setQuery(wildcardQuery);
 //searchQuery.setGetTotalCount(true); // Specify that the total number of rows that mee
t the query conditions is returned.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", sea
rchQuery);
 // You can use the columnsToGet parameter to specify the columns that you want to retur
n or specify that all columns are returned. If you do not specify this parameter, only the
primary key columns are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set ReturnAll to true to return all columns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Specify the columns
that you want to return.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Specify that the total
number of rows that meet the query conditions instead of the number of returned rows is dis
played.
 System.out.println("Row: " + resp.getRows());
}

This topic describes how to use Boolean query to query the rows based on a combination of
subqueries. Tablestore returns the rows that match the subqueries. Each subquery can be of any type,
including BoolQuery.

API operations
You can call the Search or ParallelScan operation and set the query type to BoolQuery to implement
Boolean queries.

Use Tablestore SDKs
You can use the following Tablestore SDKs to implement Boolean queries:

Tablestore SDK for Java: Boolean query

Tablestore SDK for Go: Boolean query

Tablestore SDK for Python: Boolean query

Tablestore SDK for Node.js: Boolean query

Tablestore SDK for .NET: Boolean query

6.6.17. Boolean query

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 146

https://www.alibabacloud.com/help/doc-detail/100422.htm#concept-rwn-23x-dgb
https://www.alibabacloud.com/help/doc-detail/101606.htm#concept-hhl-fq5-hgb
https://www.alibabacloud.com/help/doc-detail/106368.htm#concept-hkf-bck-pgb
https://www.alibabacloud.com/help/doc-detail/100619.htm#concept-zwr-nyk-2gb
https://www.alibabacloud.com/help/doc-detail/100803.htm#concept-ww3-rsc-fgb

Tablestore SDK for PHP: Boolean query

Parameters

Parameter Description

mustQueries
The list of subqueries that the query results must match. This
parameter is equivalent to the AND operator.

mustNotQueries
The list of subqueries that the query results must not match. This
parameter is equivalent to the NOT operator.

filterQueries

The list of subqueries. Only rows that match all subfilters are returned.
filter is similar to query except that filter does not calculate the
relevance score based on the number of subfilters that the row
matches.

shouldQueries

The list of subqueries that the query results can or cannot match. This
parameter is equivalent to the OR operator.

Only rows that meet the minimum number of subquery conditions
specified by shouldQueries are returned.

A higher overall relevance score indicates that more subquery
conditions specified by shouldQueries are met.

minimumShouldMatch

The minimum number of subquery conditions specified by
shouldQueries that the rows must meet. If no other subquery
conditions except the subquery conditions that are specified by
shouldQueries are specified, the default value of the
minimumShouldMatch parameter is 1. If other subquery conditions,
such as subquery conditions specified by mustQueries,
mustNotQueries, and filterQueries are specified, the default value of
the minimumShouldMatch parameter is 0.

getTotalCount

Specifies whether to return the total number of rows that match the
query conditions. By default, getTotalCount is false, which indicates
that the total number of rows that match the query conditions is not
returned.

If this parameter is set to true, query performance is compromised.

tableName The name of the data table.

indexName The name of the search index.

columnsToGet

Specifies whether to return all columns of each matched row. You can
configure returnAll and columns for this parameter.

By default, returnAll is false, which indicates that not all columns are
returned. In this case, you can use columns to specify the columns to
return. If you do not specify the columns to return, only the primary key
columns are returned.

If returnAll is set to true, all columns are returned.

Funct ion Int roduct ion·Search Index Tablest ore

147 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/120976.htm#concept-422941

Examples
Example 1:

Perform a Boolean query to query the rows that match the AND-based condit ions.

/**
 * Perform a Boolean query to query the rows that match the AND-based conditions.
 * @param client
 */
public static void andQuery(SyncClient client){
 /**
 * Condition 1: Perform a range query to query the rows where the Col_Long column val
ue is greater than 3.
 */
 RangeQuery rangeQuery = new RangeQuery();
 rangeQuery.setFieldName("Col_Long");
 rangeQuery.greaterThan(ColumnValue.fromLong(3));
 /**
 * Condition 2: Perform a match query to query the rows where the Col_Keyword column
value matches hangzhou.
 */
 MatchQuery matchQuery = new MatchQuery();
 matchQuery.setFieldName("Col_Keyword");
 matchQuery.setText("hangzhou");
 SearchQuery searchQuery = new SearchQuery();
 {
 /**
 * Construct a Boolean query where the query results meet both Condition 1 and Co
ndition 2.
 */
 BoolQuery boolQuery = new BoolQuery();
 boolQuery.setMustQueries(Arrays.asList(rangeQuery, matchQuery));
 searchQuery.setQuery(boolQuery);
 //searchQuery.setGetTotalCount(true);// Set GetTotalCount to true to return the t
otal number of matched rows.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex
", searchQuery);
 // You can configure the columnsToGet parameter to specify the columns to return
or specify that all columns are returned. If you do not configure this parameter, only th
e primary key columns are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set ReturnAll to true to return all columns
.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set Columns t
o return specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Specify that all
rows that match the specified conditions are displayed. The number of rows to return is n
ot displayed.
 System.out.println("Row: " + resp.getRows());
 }
}

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 148

Example 2

Perform a Boolean query to query the rows that match the OR-based condit ions.

/**
 * Perform a Boolean query to query the rows that match the OR-based conditions.
 * @param client
 */
public static void orQuery(SyncClient client) {
 /**
 * Condition 1: Perform a range query to query the rows where the Col_Long column val
ue is greater than 3.
 */
 RangeQuery rangeQuery = new RangeQuery();
 rangeQuery.setFieldName("Col_Long");
 rangeQuery.greaterThan(ColumnValue.fromLong(3));
 /**
 * Condition 2: Perform a match query to query the rows where the Col_Keyword column
value matches hangzhou.
 */
 MatchQuery matchQuery = new MatchQuery();
 matchQuery.setFieldName("Col_Keyword");
 matchQuery.setText("hangzhou");
 SearchQuery searchQuery = new SearchQuery();
 {
 /**
 * Construct a Boolean query where the query results meet at least one of Condition 1
and Condition 2.
 */
 BoolQuery boolQuery = new BoolQuery();
 boolQuery.setShouldQueries(Arrays.asList(rangeQuery, matchQuery));
 boolQuery.setMinimumShouldMatch(1); // Specify that the results meet at least one of
the conditions.
 searchQuery.setQuery(boolQuery);
 //searchQuery.setGetTotalCount(true);// Specify that the total number of matched rows
is returned.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", s
earchQuery);
 // You can configure the columnsToGet parameter to specify the columns to return or s
pecify that all columns are returned. If you do not configure this parameter, only the pr
imary key columns are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set ReturnAll to true to return all columns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set Columns to re
turn specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Specify that all rows
that match the specified conditions are displayed. The number of rows to return is not di
splayed.
 System.out.println("Row: " + resp.getRows());
 }
}

Funct ion Int roduct ion·Search Index Tablest ore

149 > Document Version: 20220711

Example 3

Perform a Boolean query to query the rows that match the NOT-based condit ions.

/**
 * Perform a Boolean query to query the rows that match the NOT-based conditions.
 * @param client
 */
public static void notQuery(SyncClient client) {
 /**
 * Condition 1: Perform a match query to query the rows where the Col_Keyword column
value matches hangzhou.
 */
 MatchQuery matchQuery = new MatchQuery();
 matchQuery.setFieldName("Col_Keyword");
 matchQuery.setText("hangzhou");
 SearchQuery searchQuery = new SearchQuery();
 {
 /**
 * Construct a Boolean query where the query results do not meet Condition 1.
 */
 BoolQuery boolQuery = new BoolQuery();
 boolQuery.setMustNotQueries(Arrays.asList(matchQuery));
 searchQuery.setQuery(boolQuery);
 //searchQuery.setGetTotalCount(true);// Specify that the total number of matched
rows is returned.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex
", searchQuery);
 // You can set the columnsToGet parameter to specify the columns to return or spe
cify that all columns are returned. If you do not set this parameter, only the primary ke
y columns are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set ReturnAll to true to return all columns
.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set Columns t
o return specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Specify that all
rows that match the specified conditions are displayed. The number of rows to return is n
ot displayed.
 System.out.println("Row: " + resp.getRows());
 }
}

Example 4

The following sample code provides an example on how to perform a Boolean query that includes
mult iple subqueries of the BoolQuery type. In (col2 < 4 or col3 < 5) or (col2 = 4 and (col3 = 5 or col3 =
6)), each subquery of the BoolQuery type is connected by AND or OR.

/**
 * (col2<4 or col3<5) or (col2 = 4 and (col3 = 5 or col3 =6))
 * In the preceding example, each subquery of the BoolQuery type is connected by AND or O
R.
 * @param client

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 150

 * @param client
*/
private static void boolQuery2(SyncClient client){
 // Condition 1: col2 < 4
 RangeQuery rangeQuery1 = new RangeQuery();
 rangeQuery1.setFieldName("col2");
 rangeQuery1.lessThan(ColumnValue.fromLong(4));
 // Condition 2: col3 < 5
 RangeQuery rangeQuery2 = new RangeQuery();
 rangeQuery2.setFieldName("col3");
 rangeQuery2.lessThan(ColumnValue.fromLong(5));
 // Condition 3: col2 = 4
 TermQuery termQuery = new TermQuery();
 termQuery.setFieldName("col2");
 termQuery.setTerm(ColumnValue.fromLong(4));
 // Condition 4: col3 = 5 or col3 = 6
 TermsQuery termsQuery = new TermsQuery();
 termsQuery.setFieldName("col3");
 termsQuery.addTerm(ColumnValue.fromLong(5));
 termsQuery.addTerm(ColumnValue.fromLong(6));
 SearchQuery searchQuery = new SearchQuery();
 List<Query> queryList1 = new ArrayList<>();
 queryList1.add(rangeQuery1);
 queryList1.add(rangeQuery2);
 // Combination 1: col2 < 4 or col3 < 5
 BoolQuery boolQuery1 = new BoolQuery();
 boolQuery1.setShouldQueries(queryList1);
 // Combination 2: col2 = 4 and (col3 = 5 or col3 = 6)
 List<Query> queryList2 = new ArrayList<>();
 queryList2.add(termQuery);
 queryList2.add(termsQuery);
 BoolQuery boolQuery2 = new BoolQuery();
 boolQuery2.setMustQueries(queryList2);
 // Final combination: (col2 < 4 or col3 < 5) or (col2 = 4 and (col3 = 5 or col3 =
6))
 List<Query> queryList3 = new ArrayList<>();
 queryList3.add(boolQuery1);
 queryList3.add(boolQuery2);
 BoolQuery boolQuery = new BoolQuery();
 boolQuery.setShouldQueries(queryList3);
 searchQuery.setQuery(boolQuery);
 //searchQuery.setGetTotalCount(true);// Specify that the total number of matched
rows is returned.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex
", searchQuery);
 // You can configure the columnsToGet parameter to specify the columns to return
or specify that all columns are returned. If you do not configure this parameter, only th
e primary key columns are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set ReturnAll to true to return all columns
.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set Columns t
o return specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse response = client.search(searchRequest);

Funct ion Int roduct ion·Search Index Tablest ore

151 > Document Version: 20220711

 SearchResponse response = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Specify that all
rows that match the specified conditions are displayed. The number of rows to return is n
ot displayed.
 System.out.println(response.getRows());
 }

This topic describes how to use nested query to query the data in the child rows of nested fields.
Nested fields cannot be directly queried. To query a nested field, you must specify the path of the
nested field and a subquery in a NestedQuery object. The subquery can be a query of any type.

Not e

Only nested columns can be queried in nested queries.

However, you can implement nested queries and queries of other types in a single request.
For more information about the nested type, see Nested.

Operations
You can call the Search or ParallelScan operation and set the query type to NestedQuery to implement
nested queries.

Use Tablestore SDKs
You can use the following Tablestore SDKs to implement nested queries:

Tablestore SDK for Java: Nested query

Tablestore SDK for Go: Nested query

Tablestore SDK for Python: Nested query

Tablestore SDK for Node.js: Nested query

Tablestore SDK for .NET: Nested query

Tablestore SDK for PHP: Nested query

Parameters

Parameter Description

path
The path of the nested field. The path is similar to the tree structure.
For example, news.tit le indicates the t it le subcolumn in the nested
field named news.

query
The query implemented on the subcolumn in the nested field. The
query can be of any query type.

scoreMode
Specifies which value is used to calculate the score when the field
contains multiple values.

6.6.18. Nested query

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 152

https://www.alibabacloud.com/help/doc-detail/117483.htm#concept-227000/section-1tx-8xb-zcs
https://www.alibabacloud.com/help/doc-detail/100423.htm#concept-z2f-l3x-dgb
https://www.alibabacloud.com/help/doc-detail/101607.htm#concept-yhp-gq5-hgb
https://www.alibabacloud.com/help/doc-detail/106369.htm#concept-ibv-bck-pgb
https://www.alibabacloud.com/help/doc-detail/100620.htm#concept-z5n-4yk-2gb
https://www.alibabacloud.com/help/doc-detail/100804.htm#concept-whw-ssc-fgb
https://www.alibabacloud.com/help/doc-detail/120980.htm#concept-422968

getTotalCount

Specifies whether to return the total number of rows that match the
query conditions. By default, this parameter is set to false, which
indicates that the total number of rows that match the query
conditions is not returned.

Query performance is affected when this parameter is set to true.

tableName The name of the table.

indexName The name of the search index.

columnsToGet

Specifies whether to return all columns of each matched row. You can
configure returnAll and columns for this parameter.

By default, returnAll is set to false, which indicates that not all columns
are returned. If returnAll is set to false, you can use columns to specify
the columns to return. If you do not specify the columns to return, only
the primary key columns are returned.

If returnAll is set to true, all columns are returned.

Parameter Description

Examples
The following examples show how to use nested queries.

Example 1

The following code provides an example on how to query data that matches the "tablestore"
condit ion in the col_nested.nested_1 column. In this example, the nested field named col_nested
includes two subcolumns: nested_1 and nested_2.

private static void nestedQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 NestedQuery nestedQuery = new NestedQuery(); // Set the query type to NestedQuery.
 nestedQuery.setPath("col_nested"); // Set the path of the nested column.
 TermQuery termQuery = new TermQuery(); // Create the child query of the NestedQuery o
bject.
 termQuery.setFieldName("col_nested.nested_1"); // Set the column name. Note the path
that includes nested columns.
 termQuery.setTerm(ColumnValue.fromString("tablestore")); // Specify the value that yo
u want to query.
 nestedQuery.setQuery(termQuery);
 nestedQuery.setScoreMode(ScoreMode.None);
 searchQuery.setQuery(nestedQuery);
 //searchQuery.setGetTotalCount(true);// Specify the setGetTotalCount parameter to tru
e to return the total number of rows that match the query condition.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", s
earchQuery);
 // You can set the columnsToGet parameter to specify whether to return all columns or
only specified columns. By default, if this parameter is not set, only the primary column
s are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set the setReturnAll parameter to return all co
lumns.

Funct ion Int roduct ion·Search Index Tablest ore

153 > Document Version: 20220711

lumns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set the setColumn
s parameter to return specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: "+ resp.getTotalCount()); // Display the total numb
er of matched columns but not returned columns.
System.out.println("Row: " + resp.getRows());
}
 TermQuery termQuery = new TermQuery(); // Create the child query of the NestedQuery o
bject.
 termQuery.setFieldName("col_nested.nested_1"); // Set the column name. Note the path
that includes nested columns.
 termQuery.setTerm(ColumnValue.fromString("tablestore")); // Specify the value that yo
u want to query.
 nestedQuery.setQuery(termQuery);
 nestedQuery.setScoreMode(ScoreMode.None);
 searchQuery.setQuery(nestedQuery);
 //searchQuery.setGetTotalCount(true);// Specify the setGetTotalCount parameter to tru
e to return the total number of rows that match the query condition.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", s
earchQuery);
 // You can set the columnsToGet parameter to specify whether to return all columns or
only specified columns. By default, if this parameter is not set, only the primary column
s are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set the setReturnAll parameter to return all co
lumns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set the setColumn
s parameter to return specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Display the total num
ber of matched columns but not returned columns.
 System.out.println("Row: " + resp.getRows());
}

Example 2

The following code provides an example on how to query data that matches the "tablestore"
condit ion in the col_nested.nested_2.nested_2_2 column. In this example, the nested field named
col_nested includes two subcolumns: nested_1 and nested_2. The nested_2 subcolumn includes two
columns: nested_2_1 and nested_2_2.

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 154

private static void nestedQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 NestedQuery nestedQuery = new NestedQuery(); // Set the query type to NestedQuery.
 nestedQuery.setPath("col_nested.nested_2"); // Set the path of the nested column, whi
ch is the parent path of the field to query.
 TermQuery termQuery = new TermQuery(); // Create the child query of the NestedQuery o
bject.
 termQuery.setFieldName("col_nested.nested_2.nested_2_2"); // Set the path of the colu
mn, which is the full path of the field to query.
 termQuery.setTerm(ColumnValue.fromString("tablestore")); // Specify the value that yo
u want to query.
 nestedQuery.setQuery(termQuery);
 nestedQuery.setScoreMode(ScoreMode.None);
 searchQuery.setQuery(nestedQuery);
 //searchQuery.setGetTotalCount(true);// Set the setGetTotalCount parameter to true to
return the total number of rows that match the query condition.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", s
earchQuery);
 // You can set the columnsToGet parameter to specify whether to return all columns or
only specified columns. By default, if this parameter is not set, only the primary column
s are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set the setReturnAll parameter to return all co
lumns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set the setColumn
s parameter to return specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Display the total num
ber of matched columns but not returned columns.
 System.out.println("Row: " + resp.getRows());
}

You can use geo-distance query to specify a circular geographical area that is defined by a central
point and radius as a query condit ion. Tablestore returns the rows where the value of a field falls within
the circular geographical area.

Parameters

Parameter Description

fieldName The name of the column. Set the query type to Geopoint.

centerPoint

The coordinate pair of the central point. The coordinate pair consists
of latitude and longitude values.

This parameter value must be in the format of
 latitude,longitude . Valid values of the latitude: [-90,+90]. Valid

values of the longitude: [-180,+180]. Example: 35.8,-45.91 .

6.6.19. Geo-distance query

Funct ion Int roduct ion·Search Index Tablest ore

155 > Document Version: 20220711

distanceInMeter
The radius of the circle centered on the specified location. Type:
DOUBLE. Unit: meter.

getTotalCount

Specifies whether to return the total number of rows that match the
query conditions. By default, this parameter is set to false, which
indicates that the total number of rows that match the query
conditions is not returned.

Query performance is affected when this parameter is set to true.

query
The query statement for the search index. Set the query type to
GeoDistanceQuery.

tableName The name of the table.

indexName The name of the search index.

columnsToGet

Specifies whether to return all columns of each matched row. You can
configure returnAll and columns for this parameter.

By default, returnAll is set to false, which indicates that not all columns
are returned. If returnAll is set to false, you can use columns to specify
the columns to return. If you do not specify the columns to return, only
the primary key columns are returned.

If returnAll is set to true, all columns are returned.

Parameter Description

Examples
Search the table for rows where the value of Col_GeoPoint falls within a specified distance from a
specified central point.

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 156

public static void geoDistanceQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 GeoDistanceQuery geoDistanceQuery = new GeoDistanceQuery(); // Set the query type to G
eoDistanceQuery.
 geoDistanceQuery.setFieldName("Col_GeoPoint");
 geoDistanceQuery.setCenterPoint("5,5"); // Specify the coordinate pair for a central po
int.
 geoDistanceQuery.setDistanceInMeter(10000); // You can set the distance from the centra
l point to a value greater than or equal to 10,000. Unit: meter.
 searchQuery.setQuery(geoDistanceQuery);
 //searchQuery.setGetTotalCount(true); // Specify that the total number of matched rows
is returned.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", sea
rchQuery);
 // You can set the columnsToGet parameter to specify the columns to return or specify t
hat all columns are returned. If you do not set this parameter, only the primary key column
s are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set ReturnAll to true to return all columns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set Columns to retu
rn specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Display the total numbe
r of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());
}

You can use geo-bounding box query to query data that falls within a rectangular geographic area.
You can specify the rectangular geographic area as a query condit ion. Tablestore returns the rows
where the value of a field falls within the rectangular geographic area.

Parameters

Parameter Description

fieldName The name of the column. Set the query type to Geopoint.

topLeft
The coordinate pair of the upper-left corner of the rectangular
geographic area.

bottomRight

The coordinate pair of the lower-right corner of the rectangular
geographic area. The coordinate pairs of the upper-left corner and
lower-right corner define a unique rectangular geographic area.

This parameter value must be in the format of "latitude,longitude".
Valid values of the latitude: [-90, 90]. Valid values of the longitude: [-
180, 180]. Example: “35.8,-45.91".

6.6.20. Geo-bounding box query

Funct ion Int roduct ion·Search Index Tablest ore

157 > Document Version: 20220711

query
The query statement for the search index. Set the query type to
GeoBoundingBoxQuery.

getTotalCount

Specifies whether to return the total number of rows that match the
query conditions. By default, this parameter is set to false, which
indicates that the total number of rows that match the query
conditions is not returned.

Query performance is affected when the total number of rows that
match the query conditions is returned.

tableName The name of the table.

indexName The name of the search index.

columnsToGet

Specifies whether to return all columns of each matched row. You can
configure returnAll and columns for this parameter.

By default, returnAll is set to false, which indicates that not all columns
are returned. If returnAll is set to false, you can use columns to specify
the columns you want to return. If you do not specify the columns to
return, only the primary key columns are returned.

If returnAll is set to true, all columns are returned.

Parameter Description

Examples
* The data type of Col_GeoPoint is GeoPoint. You can obtain the rows where the value of Col_GeoPoint
falls within the rectangular geographic area where the upper-left corner is at "10,0" and the lower-right
corner is at "0,10".

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 158

/**
 * @param client
 */public static void geoBoundingBoxQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 GeoBoundingBoxQuery geoBoundingBoxQuery = new GeoBoundingBoxQuery(); // Set the query t
ype to GeoBoundingBoxQuery.
 geoBoundingBoxQuery.setFieldName("Col_GeoPoint"); // Set the name of the field that you
want to match.
 geoBoundingBoxQuery.setTopLeft("10,0"); // Specify coordinates for the upper-left corne
r of the rectangular geographic area.
 geoBoundingBoxQuery.setBottomRight("0,10"); // Specify coordinates for the lower-right
corner of the rectangular geographic area.
 searchQuery.setQuery(geoBoundingBoxQuery);
 //searchQuery.setGetTotalCount(true);//Set the total number of matched rows to return.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", sea
rchQuery);
 // You can set the columnsToGet parameter to specify the columns to return or specify t
o return all columns. If you do not set this parameter, only the primary key columns are re
turned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set returnAll to true to return all columns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set columns to retu
rn specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Display the total numbe
r of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());
}

You can use geo-polygon query to query data that falls within a polygon geographic area. You can
specify the polygon geographic area as a query condit ion. Tablestore returns the rows where the value
of a field falls within the polygon geographic area.

Parameters

Parameter Description

fieldName The name of the column. Set the query type to Geopoint.

points

The coordinate pairs of the points that define a polygon area.

This parameter value must be in the format of "latitude,longitude".
Valid values of the latitude: [-90,90]. Valid values of longitude: [-
180,180]. Example: “35.8,-45.91".

query
The query statement for the search index. Set the query type to
GeoPolygonQuery.

6.6.21. Geo-polygon query

Funct ion Int roduct ion·Search Index Tablest ore

159 > Document Version: 20220711

getTotalCount

Specifies whether to return the total number of rows that match the
query conditions. By default, this parameter is set to false, which
indicates that the total number of rows that match the query
conditions is not returned.

Query performance is affected when the total number of rows that
match the query conditions is returned.

tableName The name of the table.

indexName The name of the search index.

columnsToGet

Specifies whether to return all columns.

By default, returnAll is set to false, which indicates that not all columns
are returned. If returnAll is set to false, you can use columns to specify
the columns to return. If you do not specify the columns to return, only
the primary key columns are returned.

If returnAll is set to true, all columns are returned.

Parameter Description

Examples
Query the table for rows where the value of Col_GeoPoint falls within a specified polygon geographic
area.

public static void geoPolygonQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 GeoPolygonQuery geoPolygonQuery = new GeoPolygonQuery(); // Set the query type to GeoP
olygonQuery.
 geoPolygonQuery.setFieldName("Col_GeoPoint");
 geoPolygonQuery.setPoints(Arrays.asList("0,0","5,5","5,0")); // Specify coordinate pair
s for vertices of a polygon geographic area.
 searchQuery.setQuery(geoPolygonQuery);
 //searchQuery.setGetTotalCount(true);//Set the total number of matched rows to return.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", sea
rchQuery);
 // You can set the columnsToGet parameter to specify the columns to return or specify t
o return all columns. If you do not set this parameter, only the primary key columns are re
turned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set returnAll to true to return all columns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set columns to retu
rn specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Display the total numbe
r of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());
}

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 160

Exists query is also called NULL query or NULL-value query. This query is used in sparse data to determine
whether a column of a row exists. For example, you can query the rows in which the value of the
address column is not empty.

Not e

If you want to check whether a column contains empty values, you must use ExistsQuery
together with mustNotQueries of BoolQuery.

If one of the following condit ions is met, the system considers that a column does not to
exist . In this example, the city column is used.

The type of the city column in the search index is a basic type such as keyword. If a
row in which the city column does not exist in the data table, the search index
considers that the city column does not exist .

The type of the city column in the search index is a basic type such as keyword. If a
row in which the value of the city column is an empty array in the data table ("city" =
"[]"), the search index considers that the city column does not exist .

API operations
You can call the Search or ParallelScan operation and set the query type to ExistsQuery to perform
exists query.

Tablestore SDKs
You can use one of the following Tablestore SDKs to perform exists query:

Tablestore SDK for Java: Exists query

Tablestore SDK for Go: Exists query

Tablestore SDK for Python: Exists query

Tablestore SDK for PHP: Exists query

Parameters

Parameter Description

fieldName The name of the column.

query The query type. Set the value to ExistsQuery.

getTotalCount

Specifies whether to return the total number of rows that meet the
query conditions. The default value of this parameter is false, which
indicates that the total number of rows that meet the query conditions
is not returned.

If you set this parameter to true, the query performance is
compromised.

tableName The name of the data table.

6.6.22. Exists query

Funct ion Int roduct ion·Search Index Tablest ore

161 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/184987.htm#concept-1940420
https://www.alibabacloud.com/help/doc-detail/184988.htm#concept-1940457
https://www.alibabacloud.com/help/doc-detail/410959.htm#concept-2188268
https://www.alibabacloud.com/help/doc-detail/120974.htm#concept-422933

indexName The name of the search index.

columnsToGet

Specifies whether to return all columns of each row that meets the
query conditions. You can configure returnAll and columns for this
parameter.

The default value of returnAll is false, which indicates that not all
columns are returned. In this case, you can use columns to specify the
columns that you want to return. If you do not specify the columns
that you want to return, only the primary key columns are returned.

If you set returnAll to true, all columns are returned.

Parameter Description

Examples

/**
 * Use ExistsQuery to query the rows in which the address column is not empty.
 * @param client
 */
private static void existQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 ExistsQuery existQuery = new ExistsQuery(); // Set the query type to ExistsQuery.
 existQuery.setFieldName("address");
 searchQuery.setQuery(existQuery);
 //searchQuery.setGetTotalCount(true); // Specify that the total number of rows that mee
t the query conditions is returned.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", sea
rchQuery);
 // You can use the columnsToGet parameter to specify the columns that you want to retur
n or specify that all columns are returned. If you do not specify this parameter, only the
primary key columns are returned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set ReturnAll to true to return all columns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Specify the columns
that you want to return.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 //System.out.println("TotalCount: " + resp.getTotalCount()); // Specify that the total
number of rows that meet the query conditions instead of the number of returned rows is dis
played.
 System.out.println("Row: " + resp.getRows());
}

You can use the collapse feature to collapse the result set based on a specified column when the
results of a query contain large amounts of data of a specific type. Data of the corresponding type is
displayed only once in the query results to ensure diversity in the result types.

6.6.23. Collapse (distinct)

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 162

You can use the collapse feature to obtain dist inct values based on collapsed columns in most
scenarios. However, this feature is supported only for columns whose values are of the INTEGER,
FLOATING-POINT or KEYWORD type. Only the first 10,000 sorted results are returned.

Usage notes
If you use the collapse feature, you must implement pagination by specifying offset and limit instead
of Token.

If you aggregate and collapse a result set at the same t ime, the result set is aggregated before it is
collapsed.

If you collapse the query results, the total number of groups of the returned results is determined by
the sum of the offset and limit values. A maximum of 10,000 groups can be returned.

The total number of rows returned in the results indicates the number of returned rows before you
use the collapse feature. After the result set is collapsed, the total number of the returned groups
cannot be queried.

API operations
The API operation for the collapse (dist inct) feature is Search, which is implemented by using the
collapse parameter.

Usage
You can use the following Tablestore SDKs to implement the collapse (dist inct) feature:

Tablestore SDK for Java: Collapse (dist inct)

Tablestore SDK for Go: Collapse (dist inct)

Tablestore SDK for PHP: Collapse (dist inct)

Parameters

Parameter Description

query The query type.

collapse

The collapse parameter, including the fieldName field.

fieldName: the name of the column based on which the result set is collapsed.
Only columns whose values are of the INTEGER, FLOATING-POINT or KEYWORD
type are supported.

offset The posit ion from which the current query starts.

limit

The maximum number of rows that the current query returns.

To query only the number of matched rows without the data, you can set limit
to 0. In this case, Tablestore returns the number of matched rows without table
data.

Funct ion Int roduct ion·Search Index Tablest ore

163 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/176933.htm#concept-1918479
https://www.alibabacloud.com/help/doc-detail/176932.htm#concept-1918480
https://www.alibabacloud.com/help/doc-detail/190647.htm#concept-1940475

getTotalCount

Specifies whether to return the total number of rows that match the query
conditions. By default, this parameter is set to false, which indicates that the
total number of rows that match the query conditions is not returned.

Query performance is affected when the total number of rows that match the
query conditions is returned.

tableName The name of the table.

indexName The name of the search index.

columnsToGet

Specifies whether to return all columns.

By default, returnAll is set to false, which indicates that not all columns are
returned. If returnAll is set to false, you can use columns to specify the columns
to return. If you do not specify the columns to return, only the primary key
columns are returned.

If returnAll is set to true, all columns are returned.

Parameter Description

Examples

private static void UseCollapse(SyncClient client){
 SearchQuery searchQuery = new SearchQuery(); // Specify the query conditions.
 MatchQuery matchQuery = new MatchQuery();
 matchQuery.setFieldName("user_id");
 matchQuery.setText("00002");
 searchQuery.setQuery(matchQuery);
 Collapse collapse = new Collapse("product_name"); // Collapse the result set based on t
he product_name values.
 searchQuery.setCollapse(collapse);
 searchQuery.setOffset(1000);
 searchQuery.setLimit(20);
 //searchQuery.setGetTotalCount(true);//Set the total number of matched rows to return.
 SearchRequest searchRequest = new SearchRequest("sampleTable", "sampleSearchIndex", sea
rchQuery);// Specify the names of the table and the search index.
 // You can set the columnsToGet parameter to specify the columns to return or specify t
o return all columns. If you do not set this parameter, only the primary key columns are re
turned.
 //SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 //columnsToGet.setReturnAll(true); // Set returnAll to true to return all columns.
 //columnsToGet.setColumns(Arrays.asList("ColName1","ColName2")); // Set columns to retu
rn specified columns.
 //searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse response = client.search(searchRequest);
 //System.out.println(response.getTotalCount()); // Display the total number of matched
rows instead of the number of returned rows.
 //System.out.println(response.getRows().size()); // Display the number of the product n
ame based on the product_name values.
 System.out.println(response.getRows()); // Display the product names based on the produ
ct_name values.
}

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 164

You can perform aggregation operations to obtain the minimum value, maximum value, sum, average,
count and dist inct count of rows, percentile stat ist ics, and rows in each group. You can also perform
aggregation operations to group results by field value, range, geographical location, f ilter, or
histogram, and perform nested queries. You can perform mult iple aggregation operations for complex
queries.

Minimum value
The aggregation method that can be used to return the minimum value of a field. This method can be
used in a similar manner as the SQL MIN function.

Parameters

Parameter Description

aggregationName
The unique name of the aggregation operation. You can query the results of a
specific aggregation operation based on this name.

fieldName
The name of the field that is used to perform the aggregation operation. Only
the LONG and DOUBLE data types are supported.

missing

The default value for the field that is used to perform the aggregation
operation on a row when the field value is empty.

If you do not specify a value for the missing parameter, the row is ignored.

If you specify a value for the missing parameter, the value of this parameter
is used as the field value of the row.

Examples

6.6.24. Aggregation

Funct ion Int roduct ion·Search Index Tablest ore

165 > Document Version: 20220711

/**
 * The price of each product is listed in the product table. Query the minimum price of
the products that are produced in Zhejiang.
 * SQL statement: SELECT min(column_price) FROM product where place_of_production = "Zhe
jiang".
 */
public void min(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.term("place_of_production","Zhejiang"))
 .limit(0) // If you want to obtain only the aggregation results instead o
f specific data, you can set limit to 0 to improve query performance.
 .addAggregation(AggregationBuilders.min("min_agg_1", "column_price").miss
ing(100))
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results.
 System.out.println(resp.getAggregationResults().getAsMinAggregationResult("min_agg_1"
).getValue());
}

Maximum value
The aggregation method that can be used to return the maximum value of a field. This method can be
used in a similar manner as the SQL MAX function.

Parameters

Parameter Description

aggregationName
The unique name of the aggregation operation. You can query the results of a
specific aggregation operation based on this name.

fieldName
The name of the field that is used to perform the aggregation operation. Only
the LONG and DOUBLE data types are supported.

missing

The default value for the field that is used to perform the aggregation
operation on a row when the field value is empty.

If you do not specify a value for the missing parameter, the row is ignored.

If you specify a value for the missing parameter, the value of this parameter
is used as the field value of the row.

Examples

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 166

/**
 * The price of each product is listed in the product table. Query the maximum price of t
he products that are produced in Zhejiang.
 * SQL statement: SELECT max(column_price) FROM product where place_of_production = "Zhej
iang".
 */
public void max(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.term("place_of_production", "Zhejiang"))
 .limit(0) // If you want to obtain only the aggregation results instead o
f specific data, you can set limit to 0 to improve query performance.
 .addAggregation(AggregationBuilders.max("max_agg_1", "column_price").miss
ing(0))
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results.
 System.out.println(resp.getAggregationResults().getAsMaxAggregationResult("max_agg_1"
).getValue());
}

Sum
The aggregation method that can be used to return the sum of all values for a numeric field. This
method can be used in a similar manner as the SQL SUM function.

Parameters

Parameter Description

aggregationName
The unique name of the aggregation operation. You can query the results of a
specific aggregation operation based on this name.

fieldName
The name of the field that is used to perform the aggregation operation. Only
the LONG and DOUBLE data types are supported.

missing

The default value for the field that is used to perform the aggregation
operation on a row when the field value is empty.

If you do not specify a value for the missing parameter, the row is ignored.

If you specify a value for the missing parameter, the value of this parameter
is used as the field value of the row.

Examples

Funct ion Int roduct ion·Search Index Tablest ore

167 > Document Version: 20220711

/**
 * The sales volume of each product is listed in the product table. Query the total numbe
r of the sold products that are produced in Zhejiang. The value of the missing parameter
is set to 10.
 * SQL statement: SELECT sum(column_price) FROM product where place_of_production = "Zhej
iang".
 */
public void sum(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.term("place_of_production", "Zhejiang"))
 .limit(0) // If you want to obtain only the aggregation results instead o
f specific data, you can set limit to 0 to improve query performance.
 .addAggregation(AggregationBuilders.sum("sum_agg_1", "column_number").mis
sing(10))
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results.
 System.out.println(resp.getAggregationResults().getAsSumAggregationResult("sum_agg_1"
).getValue());
}

Average
The aggregation method that can be used to return the average of all values for a numeric field. This
method is used in a similar manner as the SQL AVG function.

Parameters

Parameter Description

aggregationName
The unique name of the aggregation operation. You can query the results of a
specific aggregation operation based on this name.

fieldName
The name of the field that is used to perform the aggregation operation. Only
the LONG and DOUBLE data types are supported.

missing

The default value for the field that is used to perform the aggregation
operation on a row when the field value is empty.

If you do not specify a value for the missing parameter, the row is ignored.

If you specify a value for the missing parameter, the value of this parameter
is used as the field value of the row.

Examples

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 168

/**
 * The sales volume of each product is listed in the product table. Query the average pri
ce of the products that are produced in Zhejiang.
 * SQL statement: SELECT avg(column_price) FROM product where place_of_production = "Zhej
iang".
 */
public void avg(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.term("place_of_production", "Zhejiang"))
 .limit(0) // If you want to obtain only the aggregation results instead o
f specific data, you can set limit to 0 to improve query performance.
 .addAggregation(AggregationBuilders.avg("avg_agg_1", "column_number"))
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results.
 System.out.println(resp.getAggregationResults().getAsAvgAggregationResult("avg_agg_1"
).getValue());
}

Count
The aggregation method that can be used to return the total number of values for a specified field or
the total number of rows in a table. This method can be used in a similar manner as the SQL COUNT
function.

Not e You can use one of the following methods to query the total number of rows in a
table or the total number of rows that match the query condit ions:

Use the count feature of aggregation. Set the count parameter to * in the request.

Use the query feature to obtain the number of rows that match the query condit ions. Set
the setGetTotalCount parameter to true in the query. Use MatchAllQuery to obtain the total
number of rows in a table.

You can use the name of a column as the value of the count expression to query the number of
rows that contain the column in a table. This method is suitable for scenarios that involve sparse
columns.

Parameters

Parameter Description

aggregationName
The unique name of the aggregation operation. You can query the results of a
specific aggregation operation based on this name.

Funct ion Int roduct ion·Search Index Tablest ore

169 > Document Version: 20220711

fieldName
The name of the field that is used for the aggregation operation. Only the
following data types are supported: LONG, DOUBLE, BOOLEAN, KEYWORD, and
GEOPOINT.

Parameter Description

Examples

/**
 * Punishment records of merchants are recorded in the merchant table. You can query the
number of merchants who are located in Zhejiang and for whom punishment records exist. If
no punishment records exist for a merchant, the field that corresponds to punishment reco
rds also does not exist for the merchant.
 * SQL statement: SELECT count(column_history) FROM product where place_of_production = "
Zhejiang".
 */
public void count(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.term("place", "Zhejiang"))
 .limit(0)
 .addAggregation(AggregationBuilders.count("count_agg_1", "column_history"
))
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results.
 System.out.println(resp.getAggregationResults().getAsCountAggregationResult("count_ag
g_1").getValue());
}

Distinct count
The aggregation method that can be used to return the number of dist inct values for a field. This
method can be used in a similar manner as the SQL COUNT(DISTINCT) function.

Not e The number of dist inct values is an approximate number.

If the total number of rows before the dist inct count feature is used is less than 10,000, the
calculated result is an exact value.

If the total number of rows before the dist inct count feature is used is greater than or equal
to 100 million, the error rate is approximately 2%.

Parameters

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 170

Parameter Description

aggregationName
The unique name of the aggregation operation. You can query the results of a
specific aggregation operation based on this name.

fieldName
The name of the field that is used for the aggregation operation. Only the
following data types are supported: LONG, DOUBLE, BOOLEAN, KEYWORD, and
GEOPOINT.

missing

The default value for the field that is used to perform the aggregation
operation on a row when the field value is empty.

If you do not specify a value for the missing parameter, the row is ignored.

If you specify a value for the missing parameter, the value of this parameter
is used as the field value of the row.

Examples

/**
 * Query the number of distinct provinces from which the products are produced.
 * SQL statement: SELECT count(distinct column_place) FROM product.
 */
public void distinctCount(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addAggregation(AggregationBuilders.distinctCount("dis_count_agg_1", "col
umn_place"))
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results.
 System.out.println(resp.getAggregationResults().getAsDistinctCountAggregationResult("
dis_count_agg_1").getValue());
}

Percentile statistics
A percentile value indicates the relat ive posit ion of a value in a dataset. For example, when you collect
stat ist ics for the response t ime of each request during the routine O&M of your system, you must
analyze the response t ime distribution by using percentiles such as p25, p50, p90, and p99.

Not e To improve the accuracy of the results, we recommend that you specify extreme
percentile values such as p1 and p99. If you use extreme percentile values instead of other values
such as p50, the returned results are more accurate.

Parameters

Funct ion Int roduct ion·Search Index Tablest ore

171 > Document Version: 20220711

Parameter Description

aggregationName
The unique name of the aggregation operation. You can query the results of a
specific aggregation operation based on this name.

fieldName
The name of the field that is used for the aggregation operation. Only the
LONG and DOUBLE data types are supported.

percentiles
The percentiles such as p50, p90, and p99. You can specify one or more
percentiles.

missing

The default value for the field that is used to perform the aggregation
operation on a row when the field value is empty.

If you do not specify a value for the missing parameter, the row is ignored.

If you specify a value for the missing parameter, the value of this parameter
is used as the field value of the row.

Examples

/**
 * Analyze the distribution of the response time of each request that is sent to the syst
em by using percentiles.
 */
public void percentilesAgg(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .addAggregation(AggregationBuilders.percentiles("percentilesAgg", "latenc
y")
 .percentiles(Arrays.asList(25.0d, 50.0d, 99.0d))
 .missing(1.0))
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the analysis results.
 PercentilesAggregationResult percentilesAggregationResult = resp.getAggregationResult
s().getAsPercentilesAggregationResult(
 "percentilesAgg");
 for (PercentilesAggregationItem item : percentilesAggregationResult.getPercentilesAgg
regationItems()) {
 System.out.println("key: " + item.getKey() + " value:" + item.getValue().asDouble
());
 }
}

Group by field value

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 172

The aggregation method that can be used to group query results based on field values. The values
that are the same are grouped together. The identical value of each group and the number of identical
values in each group are returned.

Not e The calculated number may be different from the actual number if the number of
values in a group is very large.

Parameters

Parameter Description

groupByName
The unique name of the aggregation operation. You can query the results of a
specific aggregation operation based on this name.

fieldName
The name of the field that is used for the aggregation operation. Only the
following data types are supported: LONG, DOUBLE, BOOLEAN, and KEYWORD.

groupBySorter

The sorting rules for items in a group. By default, group items are sorted in
descending order. If you configure multiple sorting rules, data is sorted based
on the order in which the rules are configured. Supported parameters:

Sort by value in alphabetical order

Sort by value in reverse alphabetical order

Sort by row count in ascending order

Sort by row count in descending order

Sort the values that are obtained from sub-aggregation results in ascending
order

Sort the values that are obtained from sub-aggregation results in
descending order

size
The number of returned groups. Maximum value: 2000. If the number of
groups exceeds 2,000, only the first 2,000 groups are returned.

subAggregation and
subGroupBy

The sub-aggregation operation. You can perform the sub-aggregation
operation based on the grouping results.

Scenario

Query the number of products in each category, and the maximum and
minimum product prices in each category.

Method

Group query results by product category to obtain the number of products
in each category. Then, perform two sub-aggregation operations to obtain
the maximum and minimum product prices in each category.

Examples

Fruits: 5. The maximum price is 15. The minimum price is 3.

Toiletries: 10. The maximum price is 98. The minimum price is 1.

Electronic devices: 3. The maximum price is 8,699. The minimum price is
2,300.

Other products: 15. The maximum price is 1,000. The minimum price is 80.

Funct ion Int roduct ion·Search Index Tablest ore

173 > Document Version: 20220711

Example 1:

/**
 * Query the number of products, and the maximum and minimum product prices in each categ
ory.
 * Example of returned results: Fruits: 5. The maximum price is 15, and the minimum price
is 3. Toiletries: 10. The maximum price is 98, and the minimum price is 1. Electronic dev
ices: 3. The maximum price is 8,699, and the minimum price is 2,300. Other products: 15.
The maximum price is 1,000, and the minimum price is 80.
 */
public void groupByField(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addGroupBy(GroupByBuilders
 .groupByField("name1", "column_type")
 .addSubAggregation(AggregationBuilders.min("subName1", "column_price"
))
 .addSubAggregation(AggregationBuilders.max("subName2", "column_price"
))
)
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results.
 for (GroupByFieldResultItem item : resp.getGroupByResults().getAsGroupByFieldResult("
name1").getGroupByFieldResultItems()) {
 // Display values.
 System.out.println(item.getKey());
 // Display the number of rows.
 System.out.println(item.getRowCount());
 // Display the minimum prices.
 System.out.println(item.getSubAggregationResults().getAsMinAggregationResult("sub
Name1").getValue());
 // Display the maximum prices.
 System.out.println(item.getSubAggregationResults().getAsMaxAggregationResult("sub
Name2").getValue());
 }
}

Example 2

 /**
 * Group results based on multiple fields.
 * Search indexes do not support the GROUP BY clause for multiple fields in SQL. You
can use nested GroupBy parameters to obtain the results that are the same as those obtain
ed by using the GROUP BY clause for multiple fields.
 * SQL statement: select a,d, sum(b),sum(c) from user group by a,d.
 */

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 174

 */
 public void GroupByMultiField() {
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .returnAllColumns(true) // You can set returnAllColumns to false and specif
y a value for addColumesToGet to have better query performance.
 //.addColumnsToGet("col_1","col_2")
 .searchQuery(SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll()) // Specify query conditions. Query con
ditions can be used in the same manner as the WHERE clause in SQL. You can use QueryBuild
ers.bool() to perform nested queries.
 .addGroupBy(
 GroupByBuilders
 .groupByField("unique name_1", "field_a")
 .size(20)
 .addSubGroupBy(
 GroupByBuilders
 .groupByField("unique name_2", "field_d")
 .size(20)
 .addSubAggregation(AggregationBuilders.sum("unique name_3
", "field_b"))
 .addSubAggregation(AggregationBuilders.sum("unique name_4
", "field_c"))
)
)
 .build())
 .build();
 SearchResponse response = client.search(searchRequest);
 // Query rows that meet the specified conditions.
 List<Row> rows = response.getRows();
 // Obtain the aggregation results.
 GroupByFieldResult groupByFieldResult1 = response.getGroupByResults().getAsGroupB
yFieldResult("unique name_1");
 for (GroupByFieldResultItem resultItem : groupByFieldResult1.getGroupByFieldResul
tItems()) {
 System.out.println("field_a key:" + resultItem.getKey() + " Count:" + resultI
tem.getRowCount());
 // Obtain the sub-aggregation results.
 GroupByFieldResult subGroupByResult = resultItem.getSubGroupByResults().getAs
GroupByFieldResult("unique name_2");
 for (GroupByFieldResultItem item : subGroupByResult.getGroupByFieldResultItem
s()) {
 System.out.println("field_a " + resultItem.getKey() + " field_d key:" + i
tem.getKey() + " Count: " + item.getRowCount());
 double sumOf_field_b = item.getSubAggregationResults().getAsSumAggregatio
nResult("unique name_3").getValue();
 double sumOf_field_c = item.getSubAggregationResults().getAsSumAggregatio
nResult("unique name_4").getValue();
 System.out.println("sumOf_field_b:" + sumOf_field_b);
 System.out.println("sumOf_field_c:" + sumOf_field_c);
 }
 }
 }

Funct ion Int roduct ion·Search Index Tablest ore

175 > Document Version: 20220711

Example 3

 /**
 * Configure sorting rules for aggregation.
 * Method: Configure sorting rules by specifying GroupBySorter. If you configure mult
iple sorting rules, data is sorted based on the order in which the rules are configured.
GroupBySorter supports sorting in ascending or descending order.
 * By default, data is sorted by row count in descending order. You can sort data by
using GroupBySorter.rowCountSortInDesc().
 */
 public void groupByFieldWithSort(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addGroupBy(GroupByBuilders
 .groupByField("name1", "column_type")
 //.addGroupBySorter(GroupBySorter.subAggSortInAsc("subName1")) //
Sort data in ascending order based on the values that are obtained from sub-aggregation r
esults.
 .addGroupBySorter(GroupBySorter.groupKeySortInAsc()) //
Sort data in ascending order based on the values that are obtained from aggregation resul
ts.
 //.addGroupBySorter(GroupBySorter.rowCountSortInDesc()) //
Sort data in descending order based on the number of rows that are obtained from the aggr
egation results.
 .size(20)
 .addSubAggregation(AggregationBuilders.min("subName1", "column_pr
ice"))
 .addSubAggregation(AggregationBuilders.max("subName2", "column_pr
ice"))
)
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 }

Group by range
The aggregation method that can be used to group query results based on the value ranges of a field.
Field values that are within a specified range are grouped together. The number of values in each range
is returned.

Parameters

Parameter Description

groupByName
The unique name of the aggregation operation. You can query the results of a
specific aggregation operation based on this name.

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 176

fieldName
The name of the field that is used for the aggregation operation. Only the
LONG and DOUBLE data types are supported.

range[double_from,
double_to)

The value ranges for grouping.

The value range can start from Double.MIN_VALUE and end with
Double.MAX_VALUE.

subAggregation and
subGroupBy

The sub-aggregation operation. You can perform the sub-aggregation
operation based on the grouping results.

For example, after you group query results by sales volume and by province,
you can obtain the province that has the largest proportion of sales volume in
a specified range. You must specify a value for GroupByField in GroupByRange
to perform this query.

Parameter Description

Examples

/**
 * Group sales volumes based on ranges [0, 1000), [1000, 5000), and [5000, Double.MAX_VAL
UE) to obtain the sales volume in each range.
 */
public void groupByRange(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addGroupBy(GroupByBuilders
 .groupByRange("name1", "column_number")
 .addRange(0, 1000)
 .addRange(1000, 5000)
 .addRange(5000, Double.MAX_VALUE)
)
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results.
 for (GroupByRangeResultItem item : resp.getGroupByResults().getAsGroupByRangeResult("
name1").getGroupByRangeResultItems()) {
 // Display the number of rows.
 System.out.println(item.getRowCount());
 }
}

Group by geographical location

Funct ion Int roduct ion·Search Index Tablest ore

177 > Document Version: 20220711

The aggregation method that can be used to group query results based on geographical locations to a
central point. Query results in distances that are within a specified range are grouped together. The
number of items in each range is returned.

Parameters

Parameter Description

groupByName
The unique name of the aggregation operation. You can query the results of a
specific aggregation operation based on this name.

fieldName
The name of the field that is used for the aggregation operation. Only the
GEOPOINT data type is supported.

origin(double lat,
double lon)

The longitude and latitude of the central point.

double lat specifies the latitude of the central point. double lon specifies the
longitude of the central point.

range[double_from,
double_to)

The distance ranges that are used for grouping. Unit: meters.

The start value of the value range can be Double.MIN_VALUE and the end value
can be Double.MAX_VALUE.

subAggregation and
subGroupBy

The sub-aggregation operation. You can perform the sub-aggregation
operation based on the grouping results.

Examples

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 178

/**
 * Group users based on geographical locations to a Wanda Plaza to obtain the number of u
sers in each distance range. The distance ranges are [0, 1000), [1000, 5000), and [5000,
Double.MAX_VALUE). Unit: meters.
 */
public void groupByGeoDistance(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addGroupBy(GroupByBuilders
 .groupByGeoDistance("name1", "column_geo_point")
 .origin(3.1, 6.5)
 .addRange(0, 1000)
 .addRange(1000, 5000)
 .addRange(5000, Double.MAX_VALUE)
)
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results.
 for (GroupByGeoDistanceResultItem item : resp.getGroupByResults().getAsGroupByGeoDist
anceResult("name1").getGroupByGeoDistanceResultItems()) {
 // Display the number of rows.
 System.out.println(item.getRowCount());
 }
}

Group by filter
The aggregation method that can be used to filter the query results and group them together to
obtain the number of results that match each filter. Results are returned in the order in which the filters
are specified.

Parameters

Parameter Description

groupByName
The unique name of the aggregation operation. You can query the results of a
specific aggregation operation based on this name.

filter
The filters that can be used for the query. Results are returned in the order in
which the filters are specified.

subAggregation and
subGroupBy

The sub-aggregation operation. You can perform the sub-aggregation
operation based on the grouping results.

Examples

Funct ion Int roduct ion·Search Index Tablest ore

179 > Document Version: 20220711

/**
 * Specify the following filters to obtain the number of items that match each filter: Th
e sales volume exceeds 100, the place of origin is Zhejiang, and the description contains
Hangzhou.
 */
public void groupByFilter(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addGroupBy(GroupByBuilders
 .groupByFilter("name1")
 .addFilter(QueryBuilders.range("number").greaterThanOrEqual(100))
 .addFilter(QueryBuilders.term("place","Zhejiang"))
 .addFilter(QueryBuilders.match("text","Hangzhou"))
)
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results based on the order of filters.
 for (GroupByFilterResultItem item : resp.getGroupByResults().getAsGroupByFilterResult
("name1").getGroupByFilterResultItems()) {
 // Display the number of rows.
 System.out.println(item.getRowCount());
 }
}

Query by histogram
The aggregation method that can be used to group query results based on specific data intervals. Field
values that are within the same range are grouped together. The value range of each group and the
number of values in each group are returned.

Parameters

Parameter Description

groupByName
The unique name of the aggregation operation. You can query the results of a
specific aggregation operation based on this name.

fieldName
The name of the field that is used to perform the aggregation operation. Only
the LONG and DOUBLE data types are supported.

interval The data interval that is used to obtain aggregation results.

fieldRange[min,max]
The range that is used together with the interval parameter to limit the
number of groups. The value that is calculated by using the (fieldRange.ma
x-fieldRange.min)/interval formula cannot exceed 2,000.

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 180

minDocCount
The minimum number of rows. If the number of rows in a group is less than
the minimum number of rows, the aggregation results for the group are not
returned.

missing

The default value for the field that is used to perform the aggregation
operation on a row when the field value is empty.

If you do not specify a value for the missing parameter, the row is ignored.

If you specify a value for the missing parameter, the value of this parameter
is used as the field value of the row.

Parameter Description

Examples

/**
 * Collect statistics on the distribution of users by age group.
 */
public static void groupByHistogram(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .addGroupBy(GroupByBuilders
 .groupByHistogram("groupByHistogram", "age")
 .interval(10)
 .minDocCount(0L)
 .addFieldRange(0, 99))
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = ots.search(searchRequest);
 // Obtain the results that are returned when the aggregation operation is performed.
 GroupByHistogramResult results = resp.getGroupByResults().getAsGroupByHistogramResult
("groupByHistogram");
 for (GroupByHistogramItem item : results.getGroupByHistogramItems()) {
 System.out.println("key:" + item.getKey().asLong() + " value:" + item.getValue())
;
 }
}

Query the rows that are obtained from the results of an aggregation
operation in each group
After you group query results, you can query the rows in each group. This method can be used in a
similar manner as ANY_VALUE(field) in MySQL.

Funct ion Int roduct ion·Search Index Tablest ore

181 > Document Version: 20220711

Not e When you query the rows that are obtained from the results of an aggregation
operation in each group, the returned results contain only the primary key information if the search
index contains the NESTED, GEOPOINT, or ARRAY field. To obtain the required field, you must query
the data table.

Parameters

Parameter Description

aggregationName
The unique name of the aggregation operation. You can query the results of a
specific aggregation operation based on this name.

limit
The maximum number of rows that can be returned for each group. By
default, only one row of data is returned.

sort The sorting method that is used to sort data in groups.

columnsToGet
The fields that you want to return. Only fields in search indexes are supported.
ARRAY, GEOPOINT, and NESTED fields are not supported.

Examples

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 182

/**
 * An activity application form of a school contains fields in which information such as
the names of students, classes, head teachers, and class presidents can be specified. You
can group students by class to view the application statistics and the property informati
on of each class.
 * SQL statement: select className, teacher, monitor, COUNT(*) as number from table GROUP
BY className.
 */
public void testTopRows(SyncClient client) {
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .indexName("indexName")
 .tableName("tableName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addGroupBy(GroupByBuilders.groupByField("groupName", "classN
ame")
 .size(5)
 .addSubAggregation(AggregationBuilders.topRows("topRo
wsName")
 .limit(1)
 .sort(new Sort(Arrays.asList(new FieldSort("t
eacher", SortOrder.DESC)))) // Sort rows by teacher in descending order.
)
)
 .build())
 .addColumnsToGet(Arrays.asList("teacher", "monitor"))
 .build();
 SearchResponse resp = client.search(searchRequest);
 List<GroupByFieldResultItem> items = resp.getGroupByResults().getAsGroupByFieldResult
("groupName").getGroupByFieldResultItems();
 for (GroupByFieldResultItem item : items) {
 String className = item.getKey();
 long number = item.getRowCount();
 List<Row> topRows = item.getSubAggregationResults().getAsTopRowsAggregationResult
("topRowsName").getRows();
 Row row = topRows.get(0);
 String teacher = row.getLatestColumn("teacher").getValue().asString();
 String monitor = row.getLatestColumn("monitor").getValue().asString();
 }
}

Nesting
GroupBy supports nest ing. You can perform sub-aggregation operations by using GroupBy.

You can use nest ing to perform sub-aggregation operations in a group. For example, you can perform
nesting aggregation operations up to two levels.

GroupBy + SubGroupBy: Items are grouped by province and by city to obtain data for each city in
each province.

GroupBy + SubAggregation: Items are grouped by province to obtain the maximum value of a metric
for each province.

Funct ion Int roduct ion·Search Index Tablest ore

183 > Document Version: 20220711

Not e To ensure high performance of queries and perform GroupBy operations, you can
specify only a small number of levels for nest ing. For more information, see Search index limits.

Examples

/**
 * Perform nesting-based aggregation.
 * Two aggregations and one GroupByField attribute are specified in the outermost level. Tw
o sub-aggregations and one GroupByRange attribute are specified in GroupByField.
 */
public void subGroupBy(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .indexName("index_name")
 .tableName("table_name")
 .returnAllColumns(true)
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.match("textField", "hello"))
 .limit(10)
 .addAggregation(AggregationBuilders.min("name1", "fieldName1"))
 .addAggregation(AggregationBuilders.max("name2", "fieldName2"))
 .addGroupBy(GroupByBuilders
 .groupByField("name3", "fieldName3")
 .addSubAggregation(AggregationBuilders.max("subName1", "fieldName4"))
 .addSubAggregation(AggregationBuilders.sum("subName2", "fieldName5"))
 .addSubGroupBy(GroupByBuilders
 .groupByRange("subName3", "fieldName6")
 .addRange(12, 90)
 .addRange(100, 900)
))
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the maximum and minimum values for the first level.
 AggregationResults aggResults = resp.getAggregationResults();
 System.out.println(aggResults.getAsMinAggregationResult("name1").getValue());
 System.out.println(aggResults.getAsMaxAggregationResult("name2").getValue());
 // Obtain the GroupByField results of the first level and the results of the aggregatio
ns that are nested in GroupByField.
 GroupByFieldResult results = resp.getGroupByResults().getAsGroupByFieldResult("someName
1");
 for (GroupByFieldResultItem item : results.getGroupByFieldResultItems()) {
 System.out.println("count:" + item.getRowCount());
 System.out.println("key:" + item.getKey());
 // Obtain the sub-aggregation results.
 // Display the maximum value that is obtained from the results of the sub-aggregati
on operation.
 System.out.println(item.getSubAggregationResults().getAsMaxAggregationResult("subNa
me1"));
 // Display the sum that is obtained from the results of the sub-aggregation operati
on.
 System.out.println(item.getSubAggregationResults().getAsSumAggregationResult("subNa

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 184

https://www.alibabacloud.com/help/doc-detail/96407.htm#concept-mtp-x5s-sfb

 System.out.println(item.getSubAggregationResults().getAsSumAggregationResult("subNa
me2"));
 // Display the GroupByRange values that are obtained from the results of the sub-ag
gregation operation.
 GroupByRangeResult subResults = resp.getGroupByResults().getAsGroupByRangeResult("s
ubName3");
 for (GroupByRangeResultItem subItem : subResults.getGroupByRangeResultItems()) {
 System.out.println("count:" + subItem.getRowCount());
 System.out.println("key:" + subItem.getKey());
 }
 }
}

Multiple aggregations
You can perform mult iple aggregation operations.

Not e If you perform mult iple complex aggregation operations at the same t ime, a long
period of t ime may be required.

Example 1:

public void multipleAggregation(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addAggregation(AggregationBuilders.min("name1", "long"))
 .addAggregation(AggregationBuilders.sum("name2", "long"))
 .addAggregation(AggregationBuilders.distinctCount("name3", "long"))
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the minimum value from the results of the aggregation operation.
 System.out.println(resp.getAggregationResults().getAsMinAggregationResult("name1").ge
tValue());
 // Obtain the sum from the results of the aggregation operation.
 System.out.println(resp.getAggregationResults().getAsSumAggregationResult("name2").ge
tValue());
 // Obtain the number of distinct values from the results of the aggregation operation
.
 System.out.println(resp.getAggregationResults().getAsDistinctCountAggregationResult("
name3").getValue());
}

Example 2

Funct ion Int roduct ion·Search Index Tablest ore

185 > Document Version: 20220711

public void multipleGroupBy(SyncClient client) {
 // Create a query statement.
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addAggregation(AggregationBuilders.min("name1", "long"))
 .addAggregation(AggregationBuilders.sum("name2", "long"))
 .addAggregation(AggregationBuilders.distinctCount("name3", "long"))
 .addGroupBy(GroupByBuilders.groupByField("name4", "type"))
 .addGroupBy(GroupByBuilders.groupByRange("name5", "long").addRange(1, 15)
)
 .build())
 .build();
 // Execute the query statement.
 SearchResponse resp = client.search(searchRequest);
 // Obtain the minimum value from the results of the aggregation operation.
 System.out.println(resp.getAggregationResults().getAsMinAggregationResult("name1").ge
tValue());
 // Obtain the sum from the results of the aggregation operation.
 System.out.println(resp.getAggregationResults().getAsSumAggregationResult("name2").ge
tValue());
 // Obtain the number of distinct values from the results of the aggregation operation
.
 System.out.println(resp.getAggregationResults().getAsDistinctCountAggregationResult("
name3").getValue());
 // Obtain the values of GroupByField from the results of the aggregation operation.
 for (GroupByFieldResultItem item : resp.getGroupByResults().getAsGroupByFieldResult("
name4").getGroupByFieldResultItems()) {
 // Display the keys.
 System.out.println(item.getKey());
 // Display the number of rows.
 System.out.println(item.getRowCount());
 }
 // Obtain the values of GroupByRange from the results of the aggregation operation.
 for (GroupByRangeResultItem item : resp.getGroupByResults().getAsGroupByRangeResult("
name5").getGroupByRangeResultItems()) {
 // Display the number of rows.
 System.out.println(item.getRowCount());
 }
}

If you do not have requirements on the order of query results, you can use parallel scan to quickly
obtain query results.

Background information

6.6.25. Parallel scan

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 186

The search index feature allows you to call the Search API operation to query data, sort data in a
specific order, and aggregate data.

In some cases, a faster query speed may be more important than the order of query results. For
example, when you want to connect Tablestore to a cluster computing environment such as Spark or
Presto, or you want to query a specified group of objects. To improve query speeds, Tablestore
provides the ParallelScan API operation for the search index feature.

Not e Tablestore SDKs 5.6.0 and later versions support the parallel scan feature.

Compared with the Search operation, the ParallelScan operation supports all query features but does
not provide analyt ics capabilit ies such as sort ing and aggregation. This way, query speeds are improved
by more than five t imes. You can call the ParallelScan operation to export hundreds of millions of data
rows within a minute. The capability to export data can be horizontally scaled without upper limits.

The maximum number of rows that can be returned by each ParallelScan call is greater than the
maximum number of rows that can be returned by each Search call. The Search operation returns up to
100 rows per call, whereas the ParallelScan operation returns up to 2,000 rows per call. The parallel
scan feature allows you to use mult iple threads to init iate requests in a session in parallel, which
accelerates data export.

Scenarios
If you want to sort or aggregate query results, or the query request is sent from an end user, use the
Search operation.

If you do not need to sort query results and want to quickly return all matched results, or the data is
pulled by a computing environment such as Spark or Presto, use the ParallelScan operation.

Features
The differences between the ParallelScan operation and the Search operation lie in the following
aspects:

Stable results

Parallel scan tasks are stateful. In a session, the result set of the scanned data is determined by the
data status when the first request is init iated. If data is inserted or modified after the first request is
sent, the result set is not affected.

Sessions

Parallel scan-related operations use sessions. The session ID can be used to determine the result set
of scanned data. The following process describes how to obtain and use a session ID:

i. Use the ComputeSplits operation to query the maximum number of parallel scan tasks and the
current session ID.

ii. Init iate mult iple parallel scan requests to read data. You must specify the current session ID and
the parallel scan task IDs in these requests.

If the session ID is difficult to obtain, you can call the ParallelScan operation to init iate a request
without a specified session ID. However, if you send a request without a specified session ID, there is a
very low probability that the obtained result set contains duplicate data.

Tablestore returns the OTSSessionExpired error code when network exceptions, thread exceptions,
dynamic modificat ions on schemas, or index switchovers occur in the parallel scan process and data
scans stop. In these cases, you must init iate another parallel scan task to scan data again.

Funct ion Int roduct ion·Search Index Tablest ore

187 > Document Version: 20220711

Maximum number of parallel scan tasks in a single request

The maximum number of parallel scan tasks in a single request supported by the ParallelScan
operation is determined by the return value of the ComputeSplits request. A larger volume of data
requires more parallel scan tasks in a session.

A single request is specified by one query statement. For example, if you use the Search operation to
query results in which the value of city is Hangzhou, all data that matches this condit ion is returned in
the result . However, if you use the ParallelScan operation and the number of parallel scan tasks in a
session is 2, each ParallelScan request returns half of the results. The complete result set consists of
the two parallel result sets.

Maximum number of rows that can be returned by each ParallelScan call

The default value of limit is 2000. The maximum value of limit is 2000. If you enter a value greater
than 2000, the performance is not affected.

Cost

ParallelScan requests consume fewer resources and are offered at a lower price. To export large
amounts of data, we recommend that you use the ParallelScan operation.

Columns to return

Only indexed columns can be returned from search indexes. You can set the ReturnType parameter to
RETURN_ALL_INDEX or RETURN_SPECIFIED, but not to RETURN_ALL.

The ParallelScan operation can return only values of the ARRAY and GEOPOINT columns. However, the
return values are formatted and may be different from the values that are writ ten to the data table.
For example, if you write [1,2, 3, 4] to an ARRAY column, the ParallelScan operation returns [1,2,3,4] as
the value. If you write 10,50 to a GEOPOINT column, the ParallelScan operation returns 10.0,50.
0 as the value.

Limits

The maximum number of parallel scan tasks is 10. You can adjust this limit based on your business
requirements. Parallel tasks that have the same session ID and the same ScanQuery parameter value
are considered one task. A parallel scan task starts from the t ime when you send the first ParallelScan
request, and ends when all data is scanned or the token expires.

API operations
You can call the following API operations to use the parallel scan feature:

ComputeSplits: You can call this operation to query the maximum number of parallel scan tasks for a
single ParallelScan request.

ParallelScan: You can call this operation to export data.

Parameters

Parameter Description

tableName The name of the data table.

indexName The name of the search index.

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 188

scanQuery

query

The query statement for the search index. The
operation supports term query, fuzzy query, range
query, geo query, and nested query, which are
similar to those of the Search operation.

limit
The maximum number of rows that can be returned
by each ParallelScan call.

maxParallel

The maximum number of parallel scan tasks per
request. The maximum number of parallel scan
tasks per request varies based on the data volume.
A larger volume of data requires more parallel scan
tasks per request. You can use the ComputeSplits
operation to query the maximum number of parallel
scan tasks per request.

currentParallelId
The ID of the parallel scan task in the request. Valid
values: [0, Value of maxParallel)

token

The token that is used to paginate query results.
The results of the ParallelScan request contain the
token for the next page. You can use the token to
retrieve the next page.

aliveT ime

The validity period of the current parallel scan task.
This validity period is also the validity period of the
token. Unit: seconds. Default value: 60. We
recommend that you use the default value. If the
next request is not init iated within the validity
period, more data cannot be queried. The validity
time of the token is refreshed each time you send a
request.

Not e The server uses the asynchronous
method to process expired tasks. The current
task does not expire within the validity period.
However, Tablestore does not guarantee that
the task expires after the validity period.

columnsToGet

You can use parallel scan to scan data only in search
indexes. To use parallel scan for a search index, you
must set store to true when you create the search
index.

sessionId

The session ID of the parallel scan task. You can call
the ComputeSplits operation to create a session
and query the maximum number of parallel scan
tasks that are supported by the parallel scan
request.

Parameter Description

Examples

Funct ion Int roduct ion·Search Index Tablest ore

189 > Document Version: 20220711

The following code provides examples on how to scan data by using a single thread or by using
mult iple threads at the same t ime:

Scan data by using a single thread

When you use parallel scan, the code for a request that uses a single thread is simpler than the code
for a request that uses mult iple threads. The currentParallelId and maxParallel parameters are not
required for a request that uses a single thread. The ParallelScan request that uses a single thread
provides higher throughput than the Search request. However, the ParallelScan request that uses a
single thread provides lower throughput than the ParallelScan request that uses mult iple threads. For
more information about how to scan data by using mult iple threads at the same t ime, see the "Scan
data by using mult iple threads" sect ion.

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import com.alicloud.openservices.tablestore.SyncClient;
import com.alicloud.openservices.tablestore.model.ComputeSplitsRequest;
import com.alicloud.openservices.tablestore.model.ComputeSplitsResponse;
import com.alicloud.openservices.tablestore.model.Row;
import com.alicloud.openservices.tablestore.model.SearchIndexSplitsOptions;
import com.alicloud.openservices.tablestore.model.iterator.RowIterator;
import com.alicloud.openservices.tablestore.model.search.ParallelScanRequest;
import com.alicloud.openservices.tablestore.model.search.ParallelScanResponse;
import com.alicloud.openservices.tablestore.model.search.ScanQuery;
import com.alicloud.openservices.tablestore.model.search.SearchRequest.ColumnsToGet;
import com.alicloud.openservices.tablestore.model.search.query.MatchAllQuery;
import com.alicloud.openservices.tablestore.model.search.query.Query;
import com.alicloud.openservices.tablestore.model.search.query.QueryBuilders;
public class Test {
 public static List<Row> scanQuery(final SyncClient client) {
 String tableName = "<TableName>";
 String indexName = "<IndexName>";
 // Query the session ID and the maximum number of parallel scan tasks supported b
y the request.
 ComputeSplitsRequest computeSplitsRequest = new ComputeSplitsRequest();
 computeSplitsRequest.setTableName(tableName);
 computeSplitsRequest.setSplitsOptions(new SearchIndexSplitsOptions(indexName));
 ComputeSplitsResponse computeSplitsResponse = client.computeSplits(computeSplitsR
equest);
 byte[] sessionId = computeSplitsResponse.getSessionId();
 int splitsSize = computeSplitsResponse.getSplitsSize();
 /*
 * Create a parallel scan request.
 */
 ParallelScanRequest parallelScanRequest = new ParallelScanRequest();
 parallelScanRequest.setTableName(tableName);
 parallelScanRequest.setIndexName(indexName);
 ScanQuery scanQuery = new ScanQuery();
 // This query determines the range of the data to scan. You can create a nested a
nd complex query.
 Query query = new MatchAllQuery();
 scanQuery.setQuery(query);
 // Specify the maximum number of rows that can be returned by each ParallelScan c
all.

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 190

 scanQuery.setLimit(2000);
 parallelScanRequest.setScanQuery(scanQuery);
 ColumnsToGet columnsToGet = new ColumnsToGet();
 columnsToGet.setColumns(Arrays.asList("col_1", "col_2"));
 parallelScanRequest.setColumnsToGet(columnsToGet);
 parallelScanRequest.setSessionId(sessionId);
 /*
 * Use builder to create a parallel scan request that has the same features as th
e preceding request.
 */
 ParallelScanRequest parallelScanRequestByBuilder = ParallelScanRequest.newBuilder
()
 .tableName(tableName)
 .indexName(indexName)
 .scanQuery(ScanQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(2000)
 .build())
 .addColumnsToGet("col_1", "col_2")
 .sessionId(sessionId)
 .build();
 List<Row> result = new ArrayList<>();
 /*
 * Use the native API operation to scan data.
 */
 {
 ParallelScanResponse parallelScanResponse = client.parallelScan(parallelScanR
equest);
 // Query the token of ScanQuery for the next request.
 byte[] nextToken = parallelScanResponse.getNextToken();
 // Obtain the data.
 List<Row> rows = parallelScanResponse.getRows();
 result.addAll(rows);
 while (nextToken != null) {
 // Specify the token.
 parallelScanRequest.getScanQuery().setToken(nextToken);
 // Continue to scan the data.
 parallelScanResponse = client.parallelScan(parallelScanRequest);
 // Obtain the data.
 rows = parallelScanResponse.getRows();
 result.addAll(rows);
 nextToken = parallelScanResponse.getNextToken();
 }
 }
 /*
 * Recommended method.
 * Use an iterator to scan all matched data. This method has the same query speed
but is easier to use compared with the previous method.
 */
 {
 RowIterator iterator = client.createParallelScanIterator(parallelScanRequestB
yBuilder);
 while (iterator.hasNext()) {
 Row row = iterator.next();

Funct ion Int roduct ion·Search Index Tablest ore

191 > Document Version: 20220711

 result.add(row);
 // Obtain the specific values.
 String col_1 = row.getLatestColumn("col_1").getValue().asString();
 long col_2 = row.getLatestColumn("col_2").getValue().asLong();
 }
 }
 /*
 * If the operation fails, retry the operation. If the caller of this function ha
s a retry mechanism or if you do not want to retry the failed operation, you can ignore t
his part.
 * To ensure availability, we recommend that you start a new parallel scan task w
hen exceptions occur.
 * The following exceptions may occur when you send a ParallelScan request:
 * 1. A session exception occurs on the server side. The error code is OTSSession
Expired.
 * 2. An exception such as a network exception occurs on the client side.
 */
 try {
 // Execute the processing logic.
 {
 RowIterator iterator = client.createParallelScanIterator(parallelScanRequ
estByBuilder);
 while (iterator.hasNext()) {
 Row row = iterator.next();
 // Process rows of data. If you have sufficient memory resources, you
can add the rows to a list.
 result.add(row);
 }
 }
 } catch (Exception ex) {
 // Retry the processing logic.
 {
 result.clear();
 RowIterator iterator = client.createParallelScanIterator(parallelScanRequ
estByBuilder);
 while (iterator.hasNext()) {
 Row row = iterator.next();
 // Process rows of data. If you have sufficient memory resources, you
can add the rows to a list.
 result.add(row);
 }
 }
 }
 return result;
 }
}

Scan data by using mult iple threads

import com.alicloud.openservices.tablestore.SyncClient;
import com.alicloud.openservices.tablestore.model.ComputeSplitsRequest;
import com.alicloud.openservices.tablestore.model.ComputeSplitsResponse;
import com.alicloud.openservices.tablestore.model.Row;
import com.alicloud.openservices.tablestore.model.SearchIndexSplitsOptions;
import com.alicloud.openservices.tablestore.model.iterator.RowIterator;

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 192

import com.alicloud.openservices.tablestore.model.iterator.RowIterator;
import com.alicloud.openservices.tablestore.model.search.ParallelScanRequest;
import com.alicloud.openservices.tablestore.model.search.ScanQuery;
import com.alicloud.openservices.tablestore.model.search.query.QueryBuilders;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Semaphore;
import java.util.concurrent.atomic.AtomicLong;
public class Test {
 public static void scanQueryWithMultiThread(final SyncClient client, String tableName
, String indexName) throws InterruptedException {
 // Query the number of CPU cores on the client.
 final int cpuProcessors = Runtime.getRuntime().availableProcessors();
 // Specify the number of parallel threads for the client. We recommend that you s
pecify the number of CPU cores on the client as the number of parallel threads for the cl
ient to prevent impact on the query performance.
 final Semaphore semaphore = new Semaphore(cpuProcessors);
 // Query the session ID and the maximum number of parallel scan tasks supported b
y the request.
 ComputeSplitsRequest computeSplitsRequest = new ComputeSplitsRequest();
 computeSplitsRequest.setTableName(tableName);
 computeSplitsRequest.setSplitsOptions(new SearchIndexSplitsOptions(indexName));
 ComputeSplitsResponse computeSplitsResponse = client.computeSplits(computeSplitsR
equest);
 final byte[] sessionId = computeSplitsResponse.getSessionId();
 final int maxParallel = computeSplitsResponse.getSplitsSize();
 // Create an AtomicLong object if you need to obtain the row count for your busin
ess.
 AtomicLong rowCount = new AtomicLong(0);
 /*
 * If you want to perform multithreading by using a function, you can build an in
ternal class to inherit the threads.
 * You can also build an external class to organize the code.
 */
 final class ThreadForScanQuery extends Thread {
 private final int currentParallelId;
 private ThreadForScanQuery(int currentParallelId) {
 this.currentParallelId = currentParallelId;
 this.setName("ThreadForScanQuery:" + maxParallel + "-" + currentParallelI
d); // Specify the thread name.
 }
 @Override
 public void run() {
 System.out.println("start thread:" + this.getName());
 try {
 // Execute the processing logic.
 {
 ParallelScanRequest parallelScanRequest = ParallelScanRequest.new
Builder()
 .tableName(tableName)
 .indexName(indexName)
 .scanQuery(ScanQuery.newBuilder()
 .query(QueryBuilders.range("col_long").lessThan(1
0_0000)) // Specify the data to query.
 .limit(2000)

Funct ion Int roduct ion·Search Index Tablest ore

193 > Document Version: 20220711

 .currentParallelId(currentParallelId)
 .maxParallel(maxParallel)
 .build())
 .addColumnsToGet("col_long", "col_keyword", "col_bool")
// Specify the fields to return from the search index. To return all fields from the sear
ch index, set returnAllColumnsFromIndex to true.
 //.returnAllColumnsFromIndex(true)
 .sessionId(sessionId)
 .build();
 // Use an iterator to obtain all the data.
 RowIterator ltr = client.createParallelScanIterator(parallelScanR
equest);
 long count = 0;
 while (ltr.hasNext()) {
 Row row = ltr.next();
 // Add a custom processing logic. The following sample code s
hows how to add a custom processing logic to count the number of rows:
 count++;
 }
 rowCount.addAndGet(count);
 System.out.println("thread[" + this.getName() + "] finished. this
thread get rows:" + count);
 }
 } catch (Exception ex) {
 // If exceptions occur, you can retry the processing logic.
 } finally {
 semaphore.release();
 }
 }
 }
 // Simultaneously execute threads. Valid values of currentParallelId: [0, Value o
f maxParallel).
 List<ThreadForScanQuery> threadList = new ArrayList<ThreadForScanQuery>();
 for (int currentParallelId = 0; currentParallelId < maxParallel; currentParallelI
d++) {
 ThreadForScanQuery thread = new ThreadForScanQuery(currentParallelId);
 threadList.add(thread);
 }
 // Simultaneously initiate the threads.
 for (ThreadForScanQuery thread : threadList) {
 // Specify a value for semaphore to limit the number of threads that can be i
nitiated at the same time to prevent bottlenecks on the client.
 semaphore.acquire();
 thread.start();
 }
 // The main thread is blocked until all threads are complete.
 for (ThreadForScanQuery thread : threadList) {
 thread.join();
 }
 System.out.println("all thread finished! total rows:" + rowCount.get());
 }
}

6.7. Advanced features

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 194

When you use the virtual column feature, you can modify the schema of a search index or create a
search index to query new fields and data of new field types without modifying the storage schema
and the data of Tablestore.

Purposes
The virtual column feature allows you to map a column in a data table to a virtual column in a search
index when you create the search index. The type of the virtual column can be different from that of
the column in the data table. This allows you to create a column without modifying the table schema
and data. The new column can be used to accelerate queries or can be configured with different
analyzers.

You can configure different analyzers for a TEXT field.

A single STRING column can be mapped to mult iple TEXT columns of a search index. Different TEXT
columns use different tokens to meet various business requirements.

Accelerate queries

You do not need to cleanse data or re-create a table schema. You need only to map required
columns of a data table to the columns in a search index. The column types can be different
between the data table and the search index. For example, you can convert the numeric type to the
KEYWORD type to improve the performance of term query, and convert the STRING type to the
numeric type to improve the performance of range query.

Precautions
The following table describes the data type conversion between virtual columns and columns in data
tables.

Field type of data tables Field type of virtual columns

String KEYWORD and KEYWORD ARRAY

String TEXT and TEXT ARRAY

String LONG and LONG ARRAY

String DOUBLE and DOUBLE ARRAY

String GEOPOINT and GEOPOINT ARRAY

Long Keyword

Long Text

Double Keyword

Double Text

6.7. Advanced features
6.7.1. Virtual columns

Funct ion Int roduct ion·Search Index Tablest ore

195 > Document Version: 20220711

Virtual columns can be used only in query statements and cannot be used in ColumnsToGet to return
column values. To return column values, you can specify that the system returns the source columns
of the virtual columns.

Use the virtual column feature in the Tablestore console
After you specify a field as a virtual column when you create a search index in the Tablestore console,
you can use the virtual column to query data.

1. Log on to the Tablestore console.

2. On the Overview page, click the name of the required instance or click Manage Inst ance in the
Actions column that corresponds to the instance.

3. In the T ables sect ion of the Inst ance Det ails tab, click the name of the data table whose search
index you want to view and then click the Indexes tab. You can also click Indexes in the Act ions
column that corresponds to the data table.

4. On the Indexes tab, click Creat e Search Index .

5. In the Creat e Index dialog box, specify virtual columns when you create a search index.

i. The system generates a search index name. You can also set Index Name to a specific value.

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 196

https://otsnext.console.aliyun.com/

ii. Set Schema Generation Type.

If you set Schema Generation Type to Manual, enter the field names. Set supported data
types for the field values. Specify whether to turn on Array.

If you set Schema Generation Type to Aut o Generat e , the system automatically uses the
primary key columns and attribute columns of the data table as the index fields. Set
supported data types for the field values. Specify whether to turn on Array.

Not e The Field Name and Field T ype values must be the same as those of the
data table. For more information about the mapping of field types between the data
table and the search index, see Data types of column values.

iii. Create a virtual column.

Not ice When you create a virtual column, the data table must contain the name of
the source field and the data type of the source field must match that of the virtual
column.

a. Click Add an Index Field.

b. Set Field Name and Field T ype .

c. Turn on Virtual Column. Set Index Field Name.

iv. Click OK.

After the search index is created, click Index Det ails in the Act ions column that corresponds
to the search index. You can view the information about the search index, such as the metering
information and index fields.

6. Use the virtual column to query data.

i. Click Search in the Act ions column that corresponds to the search index.

Funct ion Int roduct ion·Search Index Tablest ore

197 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/117453.htm#concept-226919/section-6wz-wq2-70x

i. Click Search in the Act ions column that corresponds to the search index.

ii. In the Search dialog box, set f ilter condit ions.

a. By default , the system returns all columns. To return specified attribute columns, turn off
All Columns. Enter the attribute columns to return. Separate mult iple attribute columns
with commas (,).

b. Select index fields. Click Add. Set query methods and values for the fields.

c. By default , the sort ing feature is disabled. To enable sort ing, turn on Sort to sort query
results based on the index fields. Add the index fields and configure sort ing methods.

d. Click OK.

Data that meets the filter condit ions is displayed in the specified order on the Dat a
Edit or tab.

Use Tablestore SDKs to manage the virtual column feature
After you specify a field as a virtual column when you use a Tablestore SDK to create a search index,
you can use the virtual column to query data.

1. Specify a virtual column when you create a search index.

Parameters

For more information about parameters, see Create search indexes.

Examples

2. Use a virtual column to query data.

Query the Col_Long_Virtual_Keyword column from a data table whose value can match "1000".
Specify that the macthed rows and the total number of matched rows are returned.

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 198

https://www.alibabacloud.com/help/doc-detail/117452.htm#concept-226914

private static void query(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 TermsQuery termsQuery = new TermsQuery(); // Set the query type to TermsQuery.
 termsQuery.setFieldName("Col_Long_Virtual_Keyword"); // Set the name of the field t
hat you want to match.
 termsQuery.addTerm(ColumnValue.fromString("1000")); // Set the value that you want
to match.
 searchQuery.setQuery(termsQuery);
 searchQuery.setGetTotalCount(true); // Specify that the total number of matched row
s is returned.
 SearchRequest searchRequest = new SearchRequest("tableName", "indexName", searchQue
ry);
 SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.ColumnsToGet();
 columnsToGet.setReturnAll(true); // Set ReturnAll to true to return all columns wit
hout returning the virtual column.
 searchRequest.setColumnsToGet(columnsToGet);
 SearchResponse resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount()); // Display the total num
ber of matched columns but not returned rows.
 System.out.println("Row: " + resp.getRows());
}

You can dynamically modify the schema of a search index. For example, you can add, update, or delete
index columns for the search index, and modify the routing keys of the search index.

Overview
Data tables of Tablestore are schema-free. However, search indexes have rigid schemas. When you
create a search index, you must specify the columns you want to add to the search index. Then, you
can query these columns when you use the search index to query data. To adapt to business changes
and optimize performance, an increasing number of users need to modify the schemas of search
indexes. Tablestore allows you to dynamically modify the schemas of search indexes in the following
scenarios:

Add index columns: You can add index columns if your business requires more columns for queries.

Update index columns: Modify the analyzer of a TEXT field.

Delete index columns: You may need to remove unnecessary columns added when you create a
search index.

Modify routing keys: You can specify routing keys to reduce read workloads and improve query
efficiency.

The following process describes how to dynamically modify a schema with ease. The whole process
does not affect business. You do not need to change business code.

1. Create a grayscale index on a data table. Add, modify, or remove the schema of a search index.

2. Wait until the exist ing and incremental data of the data table is synchronized to the grayscale
index and the synchronization progress is the same as that of the search index.

3. Use A/B test ing to make sure that traffic is gradually directed to the grayscale index. Wait until all
traffic is switched to the grayscale index.

4. After you verify that the grayscale index works normally, switch the schemas between the source

6.7.2. Dynamically modify schemas

Funct ion Int roduct ion·Search Index Tablest ore

199 > Document Version: 20220711

index and the grayscale index.

5. Delete the source index schema.

Procedure
1. Go to the Indexes tab.

i. Log on to the Tablestore console.

ii. On the Overview page, click the name of the required instance or click Manage Inst ance in
the Act ions column that corresponds to the instance.

iii. In the T ables sect ion of the Inst ance Det ails tab, click the name of the data table and then
click the Indexes tab. You can also click Indexes in the Act ions column that corresponds to
the data table.

2. Create a grayscale index based on the source index.

i. On the Indexes tab, click Change Schema in the Act ions column that corresponds to the
search index.

ii. In the Reindex dialog box, add, modify, or delete index fields.

iii. Click OK.

iv. In the Compare Schemas message, compare the schema information between the source
index and the grayscale index. After you confirm the information, click OK.

3. View the index synchronization information.

The exist ing data synchronization and incremental data synchronization stages are required for the
grayscale index. Before data is synchronized, the system displays Yes, but t he operat ion may

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 200

https://otsnext.console.aliyun.com/

cause securit y risks. In this case, you cannot perform the switchover. When the synchronization
progress of the grayscale index is the same as that of the source index, the system displays Yes.
T he operat ion is secure. You can perform subsequent operations.

i. Click the icon in front of the source index or click the name of the source index.

The system displays the grayscale index of the source index.

ii. Click Use Gray Index in the Act ions column that corresponds to the grayscale index.

iii. In the Use Gray Index dialog box, view the synchronization information of the indexes.

4. After data is synchronized for the indexes, set weights to perform A/B test ing.

A/B test ing allows you to allocate traffic to the source index and the grayscale index based on
proport ions and verify the effects of changes to the schema. You can perform subsequent
operations only when all traffic is directed to the grayscale index.

i. In the Operat ions sect ion of the Use Gray Index dialog box, adjust the slider to control the
weights for the source index and the grayscale index. Click Set Weight .

Funct ion Int roduct ion·Search Index Tablest ore

201 > Document Version: 20220711

ii. In the Set Weight dialog box, view the weight data and the schema comparison information.

iii. After you confirm the information, click Set Weight .

iv. In the message that appears, click OK.

5. After all t raffic for queries is directed to the grayscale index, switch the schemas between the
source index and the grayscale index.

After you switch the schemas, the name of the source index is associated with the new schema.
The name of the grayscale index is associated with the source index schema. All traffic is directed
to query the new schema associated with the source index name.

i. In the Operat ions sect ion of the Use Gray Index dialog box, click Swit ch Index .

ii. In the Swit ch Index dialog box, check the schema information of the source index and the
grayscale index. Click Conf irm Swit ch .

6. You can delete the source index schema after you verify that new schema is correct. To delete the
source index schema, we recommend that you wait for a period of t ime such as one day.

In the Use Gray Index dialog box, click Delet e Source Search Index . You can delete the source
index schema.

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 202

Security
To prevent incorrect operations, Tablestore provides the rollback mechanism and switchover notes to
minimize the risks caused by modifying schemas.

Rollback mechanism

When you dynamically modify the schema of a search index, you can roll back the modificat ion.

After you create a grayscale index, you can delete the grayscale index and create a grayscale
index if the schema of the grayscale index does not meet your expectations.

When you perform A/B test ing, you can configure weights to gradually direct traffic to the
grayscale index. In this process, you can reset the weights anytime to direct traffic back to the
source index if you find issues.

After you switch the schemas between the source index and the grayscale index, you can cancel
the switchover anytime to switch back the schemas if you find issues. Index swit chover is t he
reverse of swit chover cancellat ion.

Switchover notes

If you switch traffic to a grayscale index when the synchronization progress of the grayscale index is
slower than that of the source index, the data you query may not be the latest. At this t ime,
Tablestore determines whether to switch indexes based on the synchronization status and the last
synchronization t ime of the source index and the grayscale index.

If the following situations exist , Tablestore determines that the indexes can be switched:

Funct ion Int roduct ion·Search Index Tablest ore

203 > Document Version: 20220711

The source index is in the full data synchronization stage. The grayscale index is in the full or
incremental data synchronization stage. The synchronization progress of the grayscale index is the
same as that of the source index.

The source index and the grayscale index are in the incremental data synchronization stage. The
last synchronization t ime of the source index is at most 60 seconds earlier than that of the
grayscale index.

If you use *word* for a wildcard query (WildcardQuery), you can use fuzzy tokenization together
with a match phrase query to obtain better query performance.

Background information
Fuzzy query is a common requirement in databases. For example, you can perform a fuzzy query to
query file names and mobile numbers. To perform fuzzy queries in Tablestore, you can use the wildcard
query feature of search indexes. The wildcard query feature is similar to the LIKE operator in MySQL.
However, the wildcard query feature supports only up to 20 characters in the string that is used for a
wildcard query, and the query performance decreases as the volume of data increases.

To resolve these issues, search indexes support fuzzy tokenization to ensure high performance in fuzzy
queries. When you use fuzzy tokenization, Tablestore does not limit the length of the string that is
used for a query. However, if the field value exceeds 1,024 characters in length, the system truncates
the field value and performs tokenization only for the first 1,024 characters.

Scenarios
You can select a method that fits your scenario to perform a fuzzy query.

If you use *word* for a wildcard query, you can use fuzzy tokenization to perform a fuzzy query.
For example, if you use "123" to query mobile numbers that contain 123 at any posit ion, you
can use fuzzy tokenization to perform a fuzzy query.

In this case, the fuzzy tokenization improves the query performance by more than 10 t imes than the
wildcard query.

For example, a data table contains a column named file_name, and the field type is Text and the
tokenization method is fuzzy tokenization (Fuzzy_Analyzer) for the column in the search index. If you
use the search index to query the rows whose file_name column value is 2021 woRK@Hangzhou , you
must perform a match phrase query (MatchPhraseQuery) and set the tokens to consecutive substrings
for the query.

If the token for the query is 2021 , 20 , 21 , work , WORK , @ , Hang , zhou , Hang
zhou , or @Hangzhou , the rows whose file_name column value is 2021 woRK@Hangzhou can
match the token.

If the token for the query is 21work , 2021Hangzhou , 2120 , or #Hangzhou , the rows whose
file_name column value is 2021 woRK@Hangzhou cannot match the token.

For other complex queries, you can use wildcard queries for fuzzy queries. For more information
about the wildcard query, see Wildcard query.

Use fuzzy tokenization for a fuzzy query
To use fuzzy tokenization for a fuzzy query, perform the following steps:

6.7.3. Fuzzy query

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 204

https://www.alibabacloud.com/help/doc-detail/117497.htm#concept-227248

1. Create a search index. When you create a search index, set the field type to Text and the
tokenization method to fuzzy tokenization (Fuzzy Analyzer) for the specified column, and retain
the default sett ings for other parameters.

Not e If a search index exists, you can add a virtual column for the specified column by
dynamically modifying the schema of the search index. Then, set the field type to Text and the
tokenization method to fuzzy tokenization for the virtual column. For more information about
the specific operations, see Dynamically modify schemas and Virtual columns.

2. Use the search index to query data. When you use the search index to query data, perform a match
phrase query. For more information about the match phrase query, see Match phrase query.

Examples
The following test case shows how to use fuzzy tokenization to perform a fuzzy query:

package com.aliyun.tablestore.search.test;
import com.alicloud.openservices.tablestore.SyncClient;
import com.alicloud.openservices.tablestore.model.*;
import com.alicloud.openservices.tablestore.model.search.*;
import com.alicloud.openservices.tablestore.model.search.query.QueryBuilders;
import com.aliyun.tablestore.search.common.Conf;
import com.aliyun.tablestore.search.common.TableStoreHelper;
import org.junit.Test;
import java.util.Arrays;
import java.util.Collections;
import static org.junit.Assert.assertEquals;
public class Test {
 private static final Conf conf = Conf.newInstance("src/test/resources/conf.json");
 private static final SyncClient ots = new SyncClient(conf.getEndpoint(), conf.getAccess
Id(), conf.getAccessKey(), conf.getInstanceName());
 private static final String tableName = "analysis_test";
 private static final String indexName = "analysis_test_index";
 @Test
 public void testFuzzyMatchPhrase() {
 // Delete the existing data table and index.
 TableStoreHelper.deleteTableAndIndex(ots, tableName);
 // Create a data table.
 TableStoreHelper.createTable(ots, tableName);
 // Define the schema of the data table.
 IndexSchema indexSchema = new IndexSchema();
 indexSchema.setFieldSchemas(Collections.singletonList(
 // Note: If you change the type of the name field for the query from Keywor
d to Text and set the tokenization method for the field, exceptions may occur in the query.

 // If you want to retain the fields of both the Keyword and Text types, see
the example provided in the "Virtual columns" topic. If you use *abc* to match the name fie
ld, only the name field of the Text type is required. The name field of the Keyword type is
not required.
 new FieldSchema("name", FieldType.TEXT).setAnalyzer(FieldSchema.Analyzer.Fu
zzy)
));
 // Create a search index.
 TableStoreHelper.createIndex(ots, tableName, indexName, indexSchema);

Funct ion Int roduct ion·Search Index Tablest ore

205 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/292645.htm#task-2101516
https://www.alibabacloud.com/help/doc-detail/289172.htm#task-2101512
https://www.alibabacloud.com/help/doc-detail/117486.htm#concept-227005

 TableStoreHelper.createIndex(ots, tableName, indexName, indexSchema);
 // Write a row of data to the data table.
 PrimaryKey primaryKey = PrimaryKeyBuilder.createPrimaryKeyBuilder()
 .addPrimaryKeyColumn("pk1", PrimaryKeyValue.fromString("1"))
 .addPrimaryKeyColumn("pk2", PrimaryKeyValue.fromLong(1))
 .addPrimaryKeyColumn("pk3", PrimaryKeyValue.fromBinary(new byte[]{1, 2, 3})
)
 .build();
 RowPutChange rowPutChange = new RowPutChange(tableName, primaryKey);
 // Add an attribute column to the data table.
 rowPutChange.addColumn("name", ColumnValue.fromString("TheLionKing1024x768P.mp4"));
 PutRowRequest request = new PutRowRequest(rowPutChange);
 ots.putRow(request);
 // Wait until the row of data is synchronized to the search index.
 TableStoreHelper.waitDataSync(ots, tableName, indexName, 1);
 // Use *abc* for the query.
 assertMatchPhraseQuery(ots, tableName, indexName, "name", "The", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name", "TheLion", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name", "The Lion", 0);
 assertMatchPhraseQuery(ots, tableName, indexName, "name", "TheLionKing102", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name", "TheLionKing1024", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name", "TheLionKing1024x", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name", "TheLionKing1024x7", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name", "TheLionKing1024x768P.mp4
", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name", "24x768P.mp4", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name", "24x76 8P.mp4", 0);
 assertMatchPhraseQuery(ots, tableName, indexName, "name", "24x7 P.mp4", 0);
 }
 @Test
 // Use a virtual column.
 public void testFuzzyMatchPhraseWithVirtualField() {
 // Delete the existing data table and index.
 TableStoreHelper.deleteTableAndIndex(ots, tableName);
 // Create a data table.
 TableStoreHelper.createTable(ots, tableName);
 // Define the schema of the data table.
 IndexSchema indexSchema = new IndexSchema();
 indexSchema.setFieldSchemas(Arrays.asList(
 // Set the type of the name field to Keyword, which facilitates equivalent
queries.
 new FieldSchema("name", FieldType.KEYWORD).setIndex(true).setStore(true),
 // Create a virtual column named name_virtual_text and set the field type t
o Text and the tokenization method to Fuzzy for the virtual column. The data source of the
virtual column is the name field.
 new FieldSchema("name_virtual_text", FieldType.TEXT).setIndex(true).setAnal
yzer(FieldSchema.Analyzer.Fuzzy).setVirtualField(true).setSourceFieldName("name")
));
 // Create a search index.
 TableStoreHelper.createIndex(ots, tableName, indexName, indexSchema);
 // Write a row of data to the data table.
 PrimaryKey primaryKey = PrimaryKeyBuilder.createPrimaryKeyBuilder()
 .addPrimaryKeyColumn("pk1", PrimaryKeyValue.fromString("1"))
 .addPrimaryKeyColumn("pk2", PrimaryKeyValue.fromLong(1))
 .addPrimaryKeyColumn("pk3", PrimaryKeyValue.fromBinary(new byte[]{1, 2, 3})

Tablest ore Funct ion Int roduct ion·Search Index

> Document Version: 20220711 206

)
 .build();
 RowPutChange rowPutChange = new RowPutChange(tableName, primaryKey);
 // Add an attribute column to the data table.
 rowPutChange.addColumn("name", ColumnValue.fromString("TheLionKing1024x768P.mp4"));
 PutRowRequest request = new PutRowRequest(rowPutChange);
 ots.putRow(request);
 // Wait until the row of data is synchronized to the search index.
 TableStoreHelper.waitDataSync(ots, tableName, indexName, 1);
 // Use *abc* for the query.
 // Note: The field for the query is name_virtual_text instead of name.
 assertMatchPhraseQuery(ots, tableName, indexName, "name_virtual_text", "The", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name_virtual_text", "TheLion", 1
);
 assertMatchPhraseQuery(ots, tableName, indexName, "name_virtual_text", "The Lion",
0);
 assertMatchPhraseQuery(ots, tableName, indexName, "name_virtual_text", "TheLionKing
102", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name_virtual_text", "TheLionKing
1024", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name_virtual_text", "TheLionKing
1024x", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name_virtual_text", "TheLionKing
1024x7", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name_virtual_text", "TheLionKing
1024x768P.mp4", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name_virtual_text", "24x768P.mp4
", 1);
 assertMatchPhraseQuery(ots, tableName, indexName, "name_virtual_text", "24x76 8P.mp
4", 0);
 assertMatchPhraseQuery(ots, tableName, indexName, "name_virtual_text", "24x7 P.mp4"
, 0);
 }
 // Perform a match phrase query.
 public static void assertMatchPhraseQuery(SyncClient ots, String tableName, String inde
xName, String fieldName, String searchContent, long exceptCount) {
 SearchRequest searchRequest = new SearchRequest();
 searchRequest.setTableName(tableName);
 searchRequest.setIndexName(indexName);
 SearchQuery searchQuery = new SearchQuery();
 // Perform a match phrase query to query data that matches the tokens.
 searchQuery.setQuery(QueryBuilders.matchPhrase(fieldName, searchContent).build());
 searchQuery.setLimit(0);
 // Specify that the total number of matched rows is returned. If you are not concer
ned about the total number of matched rows, set this parameter to false for better performa
nce.
 searchQuery.setGetTotalCount(true);
 searchRequest.setSearchQuery(searchQuery);
 SearchResponse response = ots.search(searchRequest);
 assertEquals(String.format("field:[%s], searchContent:[%s]", fieldName, searchConte
nt), exceptCount, response.getTotalCount());
 }
}

Funct ion Int roduct ion·Search Index Tablest ore

207 > Document Version: 20220711

This topic describes the terms and the features of secondary indexes and the differences between
secondary index types. This topic also describes the considerations when you use secondary indexes.

Background information
Secondary indexes allow you to create one or more index tables for a data table. Then, you can query
data from the primary key columns of the index tables instead of the data table. This improves query
performance.

Tablestore provides global secondary indexes and local secondary indexes to meet your requirements,
such as strong query consistency.

Differences between secondary index types
Secondary indexes can be classified into global secondary indexes and local secondary indexes. You can
use secondary indexes based on your requirements.

Name Difference

Global secondary index

Tablestore automatically synchronizes the data in indexed columns and
primary key columns from a data table to an index table in asynchronous
mode. In most cases, the synchronization is completed within milliseconds.

The first primary key column of the index table can be a primary key column or
a predefined column of the data table.

Local secondary index

Tablestore automatically synchronizes the data in indexed columns and
primary key columns from a data table to an index table in synchronous
mode. You can immediately query the data from the index table after the
data is synchronized.

The first primary key column of the index table must be the first primary key
column of the data table.

Terms

Term Description

index table

The table created based on the indexed columns of a data table.

The data in the index table is read-only.

7.Secondary index
7.1. Overview

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 208

predefined column

The non-primary column predefined when you create a data table. A predefined
column is used as an attribute column of an index table. You can also specify
the data type for the non-primary key column.

Not e Tablestore uses a schema-free model. You can write the data
of different attribute columns to a row. You do not need to specify
attribute columns for the table schema.

single-column index The index that is created on a single column.

compound index
The index that is created on multiple columns. For example, a compound index
can have indexed columns 1 and 2.

indexed attribute
column

The predefined column mapped to an index table.

autocomplete
The feature that allows the system to automatically add the primary key
columns that are not specified as indexed columns to an index table.

Term Description

Features
Single-column index and compound index

You can create an index on one or more columns in a data table.

Index synchronization

Global secondary indexes and local secondary indexes synchronize data in different modes.

If you use global secondary indexes, Tablestore automatically synchronizes the data in indexed
columns and primary key columns from a data table to an index table in asynchronous mode. In
most cases, the synchronization is completed within milliseconds.

If you use local secondary indexes, Tablestore automatically synchronizes the data in indexed
columns and primary key columns from a data table to an index table in synchronous mode. You
can immediately query the data from the index table after the data is synchronized.

Covered indexes

Index tables can contain attribute columns. You can create predefined columns when you create a
data table. Then, you can create an index table based on predefined columns and primary key
columns of the data table. You can specify predefined columns as indexed attribute columns. You
can also specify no indexed attribute columns.

If you specify predefined columns of a data table as indexed attribute columns, you can query the
values in the predefined columns from the index table. You do not need to query the data table.

Index that contains exist ing data of a data table

You can create an index table that contains the exist ing data of a data table.

Sparse index

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

209 > Document Version: 20220711

You can specify a predefined column of a data table as an indexed attribute column. If a row in the
data table does not contain the predefined column but contains all indexed columns, an index is
created on the row. However, an index cannot be created on a row if the row does not contain all
indexed columns.

For example, a data table contains primary key columns PK0, PK1, and PK2, and predefined columns
Defined0, Defined1, and Defined2. You create an index table that contains primary key columns PK0,
Defined0, and Defined1, and an indexed attribute column Defined2.

If a row of the data table contains Defined0 and Defined1 but does not contain Defined2, an index
is created on the row.

If a row of the data table contains Defined0 and Defined2 but does not contain Defined1, an index
cannot be created on the row.

Limits
For more information, see Secondary index limits.

Considerations
When you configure indexed columns and attribute columns for an index table, take note of the
following items:

The system automatically adds the primary key columns that are not specified as indexed columns to
an index table. When you scan data in an index table, you must specify the values of primary key
columns. The values range from negative infinity to posit ive infinity.

When you create an index table, you need only to specify the columns to be indexed. The system
automatically adds all primary key columns of the data table to the index table. For example, a data
table contains primary key columns PK0 and PK1 and a predefined column Defined0.

If you use global secondary indexes, you can create an index on columns as needed.

If you create an index on Defined0, Tablestore generates the index table whose primary key
columns are Defined0, PK0, and PK1.

If you create an index on Defined0 and PK1, Tablestore generates the index table whose primary
key columns are Defined0, PK1, and PK0.

If you create an index on PK1, Tablestore generates the index table whose primary key columns are
PK1 and PK0.

If you use local secondary indexes, the first primary key column of an index table must be the same as
the first primary key column of the data table.

If you create an index on PK0 and Defined0, Tablestore generates the index table whose primary
key columns are PK0, Defined0, and PK1.

If you create an index on PK0, PK1, and Defined0, Tablestore generates an index table whose
primary key columns are PK0, PK1, and Defined0.

If you create an index on PK0 and PK1, Tablestore generates the index table whose primary key
columns are PK0 and PK1.

You can specify predefined columns of a data table as indexed attribute columns based on your
query modes and costs.

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 210

https://www.alibabacloud.com/help/doc-detail/189566.htm#concept-1986263

After you specify a predefined column of a data table as an indexed attribute column, you can query
the value in the predefined column from the index table. You do not need to query the data table.
However, this increases storage costs. If the predefined column of the data table is not specified as
an indexed attribute column, you must query the column value from the data table.

When you use global secondary indexes, specify a column of a data table as the first primary key
column of an index table based on your requirements.

If the column whose value is t ime or a date is the first primary key column of an index table, the
update speed of the index table may decrease. Therefore, we recommend that you do not specify
this type of column as the first primary key column of an index table.

We recommend that you hash the column whose value is t ime or a date and create an index on the
hashed column. If you have such a requirement, use DingTalk to contact Tablestore technical
support.

We recommend that you do not specify a column of low cardinality or a column that contains
enumerated values as the first primary key column of an index table. For example, if you specify the
gender column as the first primary key column of an index table, the horizontal scalability of the
index table is limited. As a result , the write performance is compromised.

When you use an index table, take note of the following items:

You must comply with the following rules when you write data to a data table that is associated
with an index table. Otherwise, the data cannot be written to the data table.

You cannot customize the version number for the data that you write to an index table.

An index table cannot contain a row that has the same primary keys during a batch write
operation.

Pricing
For more information, see Billable items of secondary indexes.

The secondary index feature allows you to create an index on the specified columns. Data in the
generated index table is sorted by the specified indexed columns. All data written to the data table is
automatically synchronized to the index table. If you only write data to the data table and then query
the index table that is created on the data table, the query performance can be improved in most
scenarios.

Global secondary index
You can use the global secondary index feature to perform various queries based on a data table of
phone calls.

The following data table records the information about phone calls. When a phone call is complete,
the information about the phone call is recorded in the data table.

The CellNumber and StartTime columns act as the primary key columns of the data table. CellNumber
indicates the caller, and StartTime the call start t ime.

CalledNumber, Duration, and BaseStationNumber act as the predefined columns of the data table.
CalledNumber indicates the number of a call recipient, Duration the duration of the call, and
BaseStationNumber the base stat ion number.

7.2. Scenarios

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

211 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/109333.htm#concept-nnw-b1f-zgb

CellNumber
StartT ime (UNIX
timestamp)

CalledNumber Duration
BaseStationNumb
er

123456 1532574644 654321 60 1

234567 1532574714 765432 10 1

234567 1532574734 123456 20 3

345678 1532574795 123456 5 2

345678 1532574861 123456 100 2

456789 1532584054 345678 200 3

You can create an index table based on the CalledNumber and BaseStationNumber columns to perform
various queries. For the sample code that is used to create an index table, see Appendix.

You can use the global secondary index feature to meet the following query requirements:

Query the rows where the value of CellNumber is 234567.

Tablestore sorts rows in a data table based on their primary keys and provides the getRange
operation. You can call the getRange operation to query the rows where the value of CellNumber is
234567. Set both the maximum and minimum values of CellNumber to 234567, and the minimum value
of StartTime to 0 and the maximum value to INT_MAX. Then, scan the data table to obtain the
expected data.

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 212

https://www.alibabacloud.com/help/doc-detail/91942.htm#concept-uqh-wdb-ffb

private static void getRangeFromMainTable(SyncClient client, long cellNumber){
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(TABLE_NAME);
 // Construct the start primary key.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder(
);
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.fromLo
ng(cellNumber));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.fromLo
ng(0));
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrimaryKeyBuilder.build());
 // Construct the end primary key.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.fromLong
(cellNumber));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.INF_MAX)
;
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimaryKeyBuilder.build());
 rangeRowQueryCriteria.setMaxVersions(1);
 String strNum = String.format("%d", cellNumber);
 System.out.println("The cell number " + strNum + "makes the following calls:");
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRowQ
ueryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 System.out.println(row);
 }
 // If the nextStartPrimaryKey value is not null, continue to read data.
 if (getRangeResponse.getNextStartPrimaryKey() != null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(getRangeResponse.getNextSta
rtPrimaryKey());
 } else {
 break;
 }
 }
}

Query the rows where the value of CalledNumber is 123456.

Tablestore sorts rows in a data table based on their primary keys. Queries that involve predefined
columns such as the CalledNumber column in this table are slow and inefficient. You can create an
index table named IndexOnBeCalledNumber based on the CalledNumber column. CalledNumber
becomes the primary key column of the index table. Therefore, you can call the getRange operation
to scan the index table to obtain the expected data.

The following table provides the information of IndexOnBeCalledNumber.

Not e Tablestore automatically adds the primary key columns that are not specified as
indexed columns to an index table. The primary key columns of the data table are added to the
index table and act as the primary key columns in the index table. Therefore, the index table
contains three primary key columns.

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

213 > Document Version: 20220711

PK0 PK1 PK2

CalledNumber CellNumber StartT ime

123456 234567 1532574734

123456 345678 1532574795

123456 345678 1532574861

654321 123456 1532574644

765432 234567 1532574714

345678 456789 1532584054

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 214

private static void getRangeFromIndexTable(SyncClient client, long cellNumber) {
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(INDEX0_NAME);
 // Construct the start primary key.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder(
);
 startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, PrimaryKeyValue.fromLo
ng(cellNumber));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_MI
N);
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.INF_MI
N);
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrimaryKeyBuilder.build());
 // Construct the end primary key.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
 endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, PrimaryKeyValue.fromLong
(cellNumber));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_MAX)
;
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.INF_MAX)
;
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimaryKeyBuilder.build());
 rangeRowQueryCriteria.setMaxVersions(1);
 String strNum = String.format("%d", cellNumber);
 System.out.println("The cell number" + strNum + "is called by the following numbers")
;
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRowQ
ueryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 System.out.println(row);
 }
 // If the nextStartPrimaryKey value is not null, continue to read data.
 if (getRangeResponse.getNextStartPrimaryKey() != null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(getRangeResponse.getNextSta
rtPrimaryKey());
 } else {
 break;
 }
 }
}

Query the rows where the value of BaseStationNumber is 002 and the value of StartTime is
1532574740.

This query is similar to the query in the preceding example but uses two query condit ions:
BaseStationNumber and StartTime. You can create an index table named IndexOnBaseStation1
based on BaseStationNumber and StartTime. Then, you can query IndexOnBaseStation1 to obtain
the expected data.

The following table provides the information of IndexOnBaseStation1.

PK0 PK1 PK2

BaseStationNumber StartT ime CellNumber

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

215 > Document Version: 20220711

001 1532574644 123456

001 1532574714 234567

002 1532574795 345678

002 1532574861 345678

003 1532574734 234567

003 1532584054 456789

PK0 PK1 PK2

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 216

private static void getRangeFromIndexTable(SyncClient client,
 long baseStationNumber,
 long startTime) {
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(INDEX1_NAME);
 // Construct the start primary key.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder(
);
 startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_3, PrimaryKeyValue.fromLo
ng(baseStationNumber));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.fromLo
ng(startTime));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_MI
N);
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrimaryKeyBuilder.build());
 // Construct the end primary key.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
 endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_3, PrimaryKeyValue.fromLong
(baseStationNumber));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.INF_MAX)
;
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_MAX)
;
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimaryKeyBuilder.build());
 rangeRowQueryCriteria.setMaxVersions(1);
 String strBaseStationNum = String.format("%d", baseStationNumber);
 String strStartTime = String.format("%d", startTime);
 System.out.println("All called numbers forwarded by the base station" + strBaseStatio
nNum + "that start from" + strStartTime + "are listed:");
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRowQ
ueryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 System.out.println(row);
 }
 // If the nextStartPrimaryKey value is not null, continue to read data.
 if (getRangeResponse.getNextStartPrimaryKey() != null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(getRangeResponse.getNextSta
rtPrimaryKey());
 } else {
 break;
 }
 }
}

Query the rows where the value of BaseStationNumber is 003 and the value of StartTime ranges from
1532574861 to 1532584054 and return only the values of the Duration column.

This query must meet the condit ions of BaseStationNumber and StartTime and return only the values
of the Duration column. You can query IndexOnBaseStation1 used in the preceding example. Then,
query the values of the Duration column from the data table.

private static void getRowFromIndexAndMainTable(SyncClient client,
 long baseStationNumber,
 long startTime,
 long endTime,

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

217 > Document Version: 20220711

 long endTime,
 String colName) {
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(INDEX1_NAME);
 // Construct the start primary key.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder(
);
 startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_3, PrimaryKeyValue.fromLo
ng(baseStationNumber));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.fromLo
ng(startTime));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_MI
N);
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrimaryKeyBuilder.build());
 // Construct the end primary key.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
 endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_3, PrimaryKeyValue.fromLong
(baseStationNumber));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.fromLong
(endTime));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_MAX)
;
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimaryKeyBuilder.build());
 rangeRowQueryCriteria.setMaxVersions(1);
 String strBaseStationNum = String.format("%d", baseStationNumber);
 String strStartTime = String.format("%d", startTime);
 String strEndTime = String.format("%d", endTime);
 System.out.println("The duration of calls forwarded by the base station" + strBaseSta
tionNum + "from" + strStartTime + "to" + strEndTime + "is listed:");
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRowQ
ueryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 PrimaryKey curIndexPrimaryKey = row.getPrimaryKey();
 PrimaryKeyColumn mainCalledNumber = curIndexPrimaryKey.getPrimaryKeyColumn(PR
IMARY_KEY_NAME_1);
 PrimaryKeyColumn callStartTime = curIndexPrimaryKey.getPrimaryKeyColumn(PRIMA
RY_KEY_NAME_2);
 PrimaryKeyBuilder mainTablePKBuilder = PrimaryKeyBuilder.createPrimaryKeyBuil
der();
 mainTablePKBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, mainCalledNumber.g
etValue());
 mainTablePKBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, callStartTime.getV
alue());
 PrimaryKey mainTablePK = mainTablePKBuilder.build(); // Construct the primary
key for the data table.
 // Query the data table.
 SingleRowQueryCriteria criteria = new SingleRowQueryCriteria(TABLE_NAME, main
TablePK);
 criteria.addColumnsToGet(colName); // Read the Duration column values of the
data table.
 // Set MaxVersions to 1 to read the latest version of data.
 criteria.setMaxVersions(1);
 GetRowResponse getRowResponse = client.getRow(new GetRowRequest(criteria));
 Row mainTableRow = getRowResponse.getRow();
 System.out.println(mainTableRow);

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 218

 System.out.println(mainTableRow);
 }
 // If the nextStartPrimaryKey value is not null, continue to read data.
 if (getRangeResponse.getNextStartPrimaryKey() != null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(getRangeResponse.getNextSta
rtPrimaryKey());
 } else {
 break;
 }
 }
}

To make queries more efficient, you can create an index table named IndexOnBaseStation2 based on
the BaseStationNumber and StartTime columns and specify the Duration column as an indexed
attribute column. Then, query IndexOnBaseStation2 to obtain the expected data.

The following table provides the information of IndexOnBaseStation2.

PK0 PK1 PK2 Defined0

BaseStationNumber StartT ime CellNumber Duration

001 1532574644 123456 60

001 1532574714 234567 10

002 1532574795 345678 5

002 1532574861 345678 100

003 1532574734 234567 20

003 1532584054 456789 200

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

219 > Document Version: 20220711

private static void getRangeFromIndexTable(SyncClient client,
 long baseStationNumber,
 long startTime,
 long endTime,
 String colName) {
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(INDEX2_NAME);
 // Construct the start primary key.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder(
);
 startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_3, PrimaryKeyValue.fromLo
ng(baseStationNumber));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.fromLo
ng(startTime));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_MI
N);
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrimaryKeyBuilder.build());
 // Construct the end primary key.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
 endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_3, PrimaryKeyValue.fromLong
(baseStationNumber));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.fromLong
(endTime));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_MAX)
;
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimaryKeyBuilder.build());
 // Specify the name of the column to read.
 rangeRowQueryCriteria.addColumnsToGet(colName);
 rangeRowQueryCriteria.setMaxVersions(1);
 String strBaseStationNum = String.format("%d", baseStationNumber);
 String strStartTime = String.format("%d", startTime);
 String strEndTime = String.format("%d", endTime);
 System.out.println("The duration of calls forwarded by the base station" + strBaseSta
tionNum + "from" + strStartTime + "to" + strEndTime + "is listed:");
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRowQ
ueryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 System.out.println(row);
 }
 // If the nextStartPrimaryKey value is not null, continue to read data.
 if (getRangeResponse.getNextStartPrimaryKey() != null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(getRangeResponse.getNextSta
rtPrimaryKey());
 } else {
 break;
 }
 }
}
...

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 220

If you do not specify Duration as an indexed attribute column, you must query the index table to
obtain the primary key columns of the data table and then use the obtained primary key columns to
query the data table. If you specify Duration as an indexed attribute column, Duration is stored in
both the data table and the index table, which increases storage costs.

Query the total, average, maximum, and minimum call duration of all phone calls forwarded by the
003 base stat ion. The phone call start t ime ranges from 1532574861 to 1532584054.

In this query, you want to obtain the stat ist ics for the duration of all phone calls instead of the
duration of each call queried in the preceding example. You can obtain results by using the same
method as in the preceding example. Then, you can perform calculat ions on the Duration column to
obtain the required results. You can also use Data Lake Analyt ics (DLA) to obtain the required results
by executing SQL statements without client-side calculat ions.

Not e For more information about how to use DLA, see OLAP on Tablestore: Serverless SQL
big data analysis based on Data Lake Analyt ics. DLA supports most MySQL syntax and can be
used to perform complicated calculat ions that are applicable to your business.

Local secondary index
You can use the local secondary index feature to perform various queries on a data table of phone
calls.

The following data table records the information about phone calls. When a phone call is complete,
the information about the phone call is recorded in the data table.

The CellNumber and StartTime columns act as the primary key columns of the data table. CellNumber
indicates the caller, and StartTime the call start t ime.

CalledNumber, Duration, and BaseStationNumber act as the predefined columns of the data table.
CalledNumber indicates the number of a call recipient, Duration the duration of the call, and
BaseStationNumber the base stat ion number.

CellNumber
StartT ime (UNIX
timestamp)

CalledNumber Duration
BaseStationNumb
er

123456 1532574644 654321 60 1

123456 1532574704 236789 60 1

234567 1532574714 765432 10 1

234567 1532574734 123456 20 3

345678 1532574795 123456 5 2

345678 1532574861 123456 100 2

456789 1532584054 345678 200 3

456789 1532585054 123456 200 3

456789 1532586054 234567 200 3

456789 1532587054 123456 200 3

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

221 > Document Version: 20220711

https://yq.aliyun.com/articles/618501?spm=a2c4e.11155435.0.0.701733127JMFla

You can use the local secondary index feature to create an index table named
LocalIndexOnBeCalledNumber based on CalledNumber. Then, you can query the records of phone calls
between called numbers and caller numbers.

The following table provides the information of LocalIndexOnBeCalledNumber.

Not e Tablestore automatically adds the primary key columns that are not specified as
indexed columns to an index table. The primary key columns of the data table are added to the
index table and act as the primary key columns in the index table. Therefore, the index table
contains three primary key columns.

PK0 Defined0 PK1 Defined1 Defined2

CellNumber CalledNumber
StartT ime (UNIX
timestamp)

Duration
BaseStationNumb
er

123456 236789 1532574704 60 1

123456 654321 1532574644 60 1

234567 123456 1532574734 20 3

234567 765432 1532574714 10 1

345678 123456 1532574795 5 2

345678 123456 1532574861 100 2

456789 123456 1532585054 200 3

456789 123456 1532587054 200 3

456789 234567 1532586054 200 3

456789 345678 1532584054 200 3

To query the records of phone calls between caller number 456789 and called number 123456, you
need only to specify the following values when you call the getRange operation: Set the maximum and
minimum values of CellNumber in the PK0 column to 456789. Set the maximum and minimum values of
CalledNumber in the Defined0 column to 123456. Set the minimum value of StartTime in the PK1 column
to 0 and the maximum value to INT_MAX. Then, scan the data table to obtain the expected data. The
following code provides an example on how to list the records of phone calls:

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 222

private static void getRangeFromMainTable(SyncClient client, long cellNumber, long calledNu
mber){
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(TABLE_NAME);
 // Construct the start primary key.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_0, PrimaryKeyValue.fromLong
(cellNumber));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_0, PrimaryKeyValue.fromLong
(calledNumber));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.fromLong
(0));
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrimaryKeyBuilder.build());
 // Construct the end primary key.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_0, PrimaryKeyValue.fromLong(c
ellNumber));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_0, PrimaryKeyValue.fromLong(c
alledNumber));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_MAX);
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimaryKeyBuilder.build());
 rangeRowQueryCriteria.setMaxVersions(1);
 String strNum = String.format("%d", cellNumber);
 String strCalledNum = String.format("%d", calledNumber);
 System.out.println("All records of phone calls between the caller number" + strNum + "a
nd the called number" +strCalledNum+ "are listed:");
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRowQue
ryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 System.out.println(row);
 }
 // If the nextStartPrimaryKey value is not null, continue to read data.
 if (getRangeResponse.getNextStartPrimaryKey() != null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(getRangeResponse.getNextStart
PrimaryKey());
 } else {
 break;
 }
 }
}

This topic describes the operations you can call to use secondary indexes.

The following table describes the operations you can call to use global secondary indexes.

Operation Description

7.3. Operations

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

223 > Document Version: 20220711

CreateIndex

Creates one or more index tables for a data table.

Not e

You can specify whether to include the existing data of a
data table in an index table that you create by calling the
CreateIndex operation.

You can create one or more index tables when you create
a data table by calling the CreateTable operation.

Reads a row of data from an index table.

GetRange Reads data within a specified range from an index table.

DropIndex

Deletes the specified index table from a data table.

Not e Before you call the DeleteTable operation to delete a
data table, you must first delete the index tables that are created
on the data table. Otherwise, you cannot delete the data table.

Operation Description

After you create an index table for a data table, you can read data from the index table or delete the
specified index table.

Use Tablestore SDKs
You can use the following Tablestore SDKs to implement global secondary index:

Tablestore SDK for Java: Global secondary index

Tablestore SDK for Go: Global secondary index

Tablestore SDK for Python: Global secondary index

Tablestore SDK for Node.js: Global secondary index

.Tablestore SDK for .NET: Global secondary index

Tablestore SDK for PHP: Global secondary index

Create an index table by calling the CreateIndex operation
You can call the CreateIndex operation to create an index table on an exist ing data table.

Not e You can create one or more index tables when you create a data table by calling the
CreateTable operation. For more information, see Create data tables.

Parameters

7.4. Use SDK
7.4.1. Global secondary index

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 224

https://www.alibabacloud.com/help/doc-detail/94556.htm#concept-dlw-xft-4fb
https://www.alibabacloud.com/help/doc-detail/27309.htm#reference3923
https://www.alibabacloud.com/help/doc-detail/94558.htm#concept-htv-3ht-4fb
https://www.alibabacloud.com/help/doc-detail/99106.htm#concept-gfq-nhh-1gb
https://www.alibabacloud.com/help/doc-detail/144707.htm#concept-2344161
https://www.alibabacloud.com/help/doc-detail/117829.htm#concept-261871
https://www.alibabacloud.com/help/doc-detail/144708.htm#concept-2344295
https://www.alibabacloud.com/help/doc-detail/144709.htm#concept-2345319
https://www.alibabacloud.com/help/doc-detail/121068.htm#concept-473410
https://www.alibabacloud.com/help/doc-detail/98996.htm#concept-thw-qnz-zfb

Parameter Description

mainTableName The name of the data table.

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

225 > Document Version: 20220711

indexMeta

The schema information of the index table. The schema information contains
the following items:

indexName: the name of the index table.

primaryKey: the indexed columns of the index table. The indexed columns
are a combination of primary key columns and predefined columns of the
data table.

If you use the local secondary index feature, the first primary key column of
an index table must be the same as the first primary key column of the
corresponding data table.

definedColumns: the indexed attribute columns. The attribute columns are
a combination of predefined columns of the data table.

indexType: the type of the index. Valid values: IT_GLOBAL_INDEX and
IT_LOCAL_INDEX.

If indexType is not specified or is set to IT_GLOBAL_INDEX, the global
secondary index feature is used.

If you use the global secondary index feature, Tablestore automatically
synchronizes the columns to be indexed and data in primary key columns
from a data table to an index table in asynchronous mode. The
synchronization latency is within a few milliseconds.

If indexType is set to IT_LOCAL_INDEX, the local secondary index feature is
used.

If you use the local secondary index feature, Tablestore automatically
synchronizes data from the indexed columns and the primary key
columns of a data table to the columns of an index table in synchronous
mode. After the data is written to the data table, you can query the data
from the index table.

indexUpdateMode: the update mode of the index. Valid values:
IUM_ASYNC_INDEX and IUM_SYNC_INDEX.

If indexUpdateMode is not specified or is set to IUM_ASYNC_INDEX, the
asynchronous mode is used to update the index.

If you use the global secondary index feature, you must set the index
update mode to IUM_ASYNC_INDEX.

If you set indexUpdateMode to IUM_SYNC_INDEX, the synchronous update
mode is used.

If you use the local secondary index feature, you must set the index
update mode to IUM_SYNC_INDEX, which indicates the synchronous
update mode.

Parameter Description

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 226

includeBaseData

Specifies whether to include the existing data of the data table in the index
table.

If the last parameter includeBaseData in CreateIndexRequest is set to true, the
existing data of the data table is included in the index table. If
includeBaseData is set to false, the existing data is excluded.

Parameter Description

Examples

private static void createIndex(SyncClient client) {
 IndexMeta indexMeta = new IndexMeta(INDEX2_NAME); // Specify the name of the index ta
ble.
 indexMeta.addPrimaryKeyColumn(DEFINED_COL_NAME_1); // Specify DEFINED_COL_NAME_1 as t
he first primary key column of the index table.
 indexMeta.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2); // Specify PRIMARY_KEY_NAME_2 as t
he second primary key column of the index table.
 indexMeta.addDefinedColumn(DEFINED_COL_NAME_2); // Specify DEFINED_COL_NAME_2 as an a
ttribute column of the index table.
 //CreateIndexRequest request = new CreateIndexRequest(TABLE_NAME, indexMeta, true); /
/ Create the index table on the data table. Specify that the index table includes the exi
sting data of the data table.
 CreateIndexRequest request = new CreateIndexRequest(TABLE_NAME, indexMeta, false); //
Create the index table on the data table. Specify that the index table excludes the exist
ing data from the data table.
 /**You can set the IncludeBaseData parameter to true to synchronize existing data fro
m the data table to the index table after the index table is created. Then, you can query
all data from the index table.
 The amount of time required to synchronize data to the index table is determined b
y the amount of data in the data table.
 */
 //request.setIncludeBaseData(true);
 client.createIndex(request); // Create the index table.
}

Read data from an index table
You can read a row of data or read data within a specified range from the index table. If the index
table contains the attribute columns to return, you can query the data from the index table. If the
index table does not contain the columns to return, you must query the required data from the data
table.

Read a row of data from an index table

For more information, see Single-row operations.

When you call the GetRow operation to read data from an index table, take note of the following
items:

You must set tableName to the name of the index table.

Tablestore automatically adds the primary key columns that are not specified as indexed columns
to an index table. Therefore, when you specify the primary key columns of a row, you must specify
the indexed columns based on which you create the index table and the primary key columns of
the data table.

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

227 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/43013.htm#concept-43013-zh

Read data within a specified range from the index table

For more information, see Multi-row operations.

Parameters

When you call the GetRange operation to read data from an index table, take note of the
following items:

You must set tableName to the name of the index table.

Tablestore automatically adds the primary key columns that are not specified as indexed
columns to an index table. Therefore, when you specify the start primary key and end primary
key, you must specify the indexed columns based on which you create the index table and the
primary key columns of the data table.

Examples

If an index table contains the columns to return, you can query the required data from the index
table.

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 228

https://www.alibabacloud.com/help/doc-detail/43017.htm#concept-43017-zh

private static void scanFromIndex(SyncClient client) {
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(INDEX_NAME)
; // Specify the index table name.
 // Specify the start primary key.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilde
r();
 startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, PrimaryKeyValue.INF_
MIN); // Specify the minimum value of DEFINED_COL_NAME_1.
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_
MIN); // Specify the minimum value of PRIMARY_KEY_NAME_1.
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.INF_
MIN); // Specify the minimum value of PRIMARY_KEY_NAME_2.
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrimaryKeyBuilder.build());
 // Specify the end primary key.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder(
);
 endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, PrimaryKeyValue.INF_MA
X); // Specify the maximum value of DEFINED_COL_NAME_1.
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_MA
X); // Specify the maximum value of PRIMARY_KEY_NAME_1.
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.INF_MA
X); // Specify the maximum value of PRIMARY_KEY_NAME_2.
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimaryKeyBuilder.build());
 rangeRowQueryCriteria.setMaxVersions(1);
 System.out.println("Results returned from the index table:");
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRo
wQueryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 System.out.println(row);
 }
 // If the nextStartPrimaryKey value is not null, continue to read data.
 if (getRangeResponse.getNextStartPrimaryKey() != null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(getRangeResponse.getNextS
tartPrimaryKey());
 } else {
 break;
 }
 }
}

If an index table does not contain the columns to return, you must query the required data from
the data table.

private static void scanFromIndex(SyncClient client) {
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(INDEX_NAME)
; // Specify the index table name.
 // Specify the start primary key.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilde
r();
 startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, PrimaryKeyValue.INF_
MIN); // Specify the minimum value of DEFINED_COL_NAME_1.
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_
MIN); // Specify the minimum value of PRIMARY_KEY_NAME_1.

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

229 > Document Version: 20220711

 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.INF_
MIN); // Specify the minimum value of PRIMARY_KEY_NAME_2.
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrimaryKeyBuilder.build());
 // Specify the end primary key.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder(
);
 endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, PrimaryKeyValue.INF_MA
X); // Specify the maximum value of DEFINED_COL_NAME_1.
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_MA
X); // Specify the maximum value of PRIMARY_KEY_NAME_1.
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.INF_MA
X); // Specify the maximum value of PRIMARY_KEY_NAME_2.
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimaryKeyBuilder.build());
 rangeRowQueryCriteria.setMaxVersions(1);
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRo
wQueryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 PrimaryKey curIndexPrimaryKey = row.getPrimaryKey();
 PrimaryKeyColumn pk1 = curIndexPrimaryKey.getPrimaryKeyColumn(PRIMARY_KEY_N
AME_1);
 PrimaryKeyColumn pk2 = curIndexPrimaryKey.getPrimaryKeyColumn(PRIMARY_KEY_N
AME_2);
 PrimaryKeyBuilder mainTablePKBuilder = PrimaryKeyBuilder.createPrimaryKeyBu
ilder();
 mainTablePKBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, pk1.getValue());
 mainTablePKBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, ke2.getValue());
 PrimaryKey mainTablePK = mainTablePKBuilder.build(); // Specify primary key
columns for the data table based on the primary key columns of the index table.
 // Query the data table.
 SingleRowQueryCriteria criteria = new SingleRowQueryCriteria(TABLE_NAME, ma
inTablePK);
 criteria.addColumnsToGet(DEFINED_COL_NAME3); // Specify DEFINED_COL_NAME3 t
o read the DEFINED_COL_NAME3 attribute column from the data table.
 // Set MaxVersions to 1 to read the latest version of data.
 criteria.setMaxVersions(1);
 GetRowResponse getRowResponse = client.getRow(new GetRowRequest(criteria));
 Row mainTableRow = getRowResponse.getRow();
 System.out.println(row);
 }
 // If the nextStartPrimaryKey value is not null, continue to read data.
 if (getRangeResponse.getNextStartPrimaryKey() != null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(getRangeResponse.getNextS
tartPrimaryKey());
 } else {
 break;
 }
 }
}

Delete an index table by calling the DeleteIndex operation
You can call the DeleteIndex operation to delete the specified index table from the corresponding data
table.

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 230

Parameters

Parameter Description

mainTableName The name of the data table.

indexName The name of the index table.

Examples

private static void deleteIndex(SyncClient client) {
 DeleteIndexRequest request = new DeleteIndexRequest(TABLE_NAME, INDEX_NAME); // Speci
fy the name of the index table that you want to delete and the name of the corresponding
data table.
 client.deleteIndex(request); // Delete the index table.
}

After you create an index table for a data table, you can read data from the index table or delete the
specified index table.

Use Tablestore SDKs
You can use the following Tablestore SDKs to implement the local secondary index feature:

Tablestore SDK for Java: Local secondary index

Tablestore SDK for Go: Local secondary index

Tablestore SDK for Python: Local secondary index

Tablestore SDK for Node.js: Local secondary index

Create an index table by calling the CreateIndex operation
You can call the CreateIndex operation to create an index table on an exist ing data table.

Not e You can create one or more index tables when you create a data table by calling the
CreateTable operation. For more information, see Create data tables.

Parameter

Parameter Description

mainTableName The name of the data table.

7.4.2. Local secondary index

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

231 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/211378.htm#concept-2066977
https://www.alibabacloud.com/help/doc-detail/211379.htm#concept-2067257
https://www.alibabacloud.com/help/doc-detail/211383.htm#concept-2067286
https://www.alibabacloud.com/help/doc-detail/211386.htm#concept-2067454
https://www.alibabacloud.com/help/doc-detail/98996.htm#concept-thw-qnz-zfb

indexMeta

The schema information of the index table. The schema information contains
the following items:

indexName: the name of the index table.

primaryKey: the indexed columns of the index table. The indexed columns
are a combination of primary key columns and predefined columns of the
data table.

If you use the local secondary index feature, the first primary key column of
an index table must be the same as the first primary key column of the
corresponding data table.

definedColumns: the indexed attribute columns. The attribute columns are
a combination of predefined columns of the data table.

indexType: the type of the index. Valid values: IT_GLOBAL_INDEX and
IT_LOCAL_INDEX.

If indexType is not specified or is set to IT_GLOBAL_INDEX, the global
secondary index feature is used.

If you use the global secondary index feature, Tablestore automatically
synchronizes the columns to be indexed and data in primary key columns
from a data table to an index table in asynchronous mode. The
synchronization latency is within a few milliseconds.

If indexType is set to IT_LOCAL_INDEX, the local secondary index feature is
used.

If you use the local secondary index feature, Tablestore automatically
synchronizes data from the indexed columns and the primary key
columns of a data table to the columns of an index table in synchronous
mode. After the data is written to the data table, you can query the data
from the index table.

indexUpdateMode: the update mode of the index. Valid values:
IUM_ASYNC_INDEX and IUM_SYNC_INDEX.

If indexUpdateMode is not specified or is set to IUM_ASYNC_INDEX, the
asynchronous mode is used to update the index.

If you use the global secondary index feature, you must set the index
update mode to IUM_ASYNC_INDEX.

If you set indexUpdateMode to IUM_SYNC_INDEX, the synchronous update
mode is used.

If you use the local secondary index feature, you must set the index
update mode to IUM_SYNC_INDEX, which indicates the synchronous
update mode.

Parameter Description

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 232

includeBaseData

Specifies whether to include the existing data of the data table in the index
table.

If the last parameter includeBaseData in CreateIndexRequest is set to true, the
existing data of the data table is included in the index table. If
includeBaseData is set to false, the existing data is excluded.

Parameter Description

Examples

private static void createIndex(SyncClient client) {
 IndexMeta indexMeta = new IndexMeta(INDEX_NAME); // Specify the name of the index tab
le.
 indexMeta.setIndexType(IT_LOCAL_INDEX); // Set the index type to IT_LOCAL_INDEX,
which specifies a local secondary index.
 indexMeta.setIndexUpdateMode(IUM_SYNC_INDEX); // Set the index update type to IUM_SY
NC_INDEX, which specifies the synchronous update mode. If the index update type is set to
IT_LOCAL_INDEX, the index update mode must be set to IUM_SYNC_INDEX.
 indexMeta.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1); // Add a primary key column to the
index table. The first primary key column of the index table must be the same as the firs
t primary key column of the data table.
 indexMeta.addPrimaryKeyColumn(DEFINED_COL_NAME_2); // Set DEFINED_COL_NAME_2 to the s
econd primary key column of the index table.
 indexMeta.addPrimaryKeyColumn(DEFINED_COL_NAME_1); // Set DEFINED_COL_NAME_1 to the t
hird primary key column of the index table.
 //CreateIndexRequest request = new CreateIndexRequest(TABLE_NAME, indexMeta, true); /
/ Create the index table for the data table. Specify that the index table contains the ex
isting data from the data table.
 CreateIndexRequest request = new CreateIndexRequest(TABLE_NAME, indexMeta, false); //
Create the index table for the data table. Specify that the index table does not contain
the existing data from the data table.
 /**You can set the IncludeBaseData parameter to true to synchronize existing data fro
m the data table to the index table after the index table is created. Then, you can query
all data from the index table.
 The amount of time required to synchronize data to the index table varies based on
the amount of data in the data table.
 */
 //request.setIncludeBaseData(true);
 client.createIndex(request); // Create the index table.
}

Read data from an index table
You can read a row of data or read data within a specified range from the index table. If the index
table contains the attribute columns to return, you can query the data from the index table. If the
index table does not contain the columns to return, you must query the required data from the data
table.

Read a row of data from an index table

For more information, see Single-row operations.

When you call the GetRow operation to read data from an index table, take note of the following
items:

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

233 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/43013.htm#concept-43013-zh

You must set tableName to the name of the index table.

Tablestore automatically adds the primary key columns that are not specified as indexed columns
to an index table. Therefore, when you specify the primary key columns of a row, you must specify
the indexed columns based on which you create the index table and the primary key columns of
the data table.

Read data within a specified range from the index table

For more information, see Multi-row operations.

Parameters

When you call the GetRange operation to read data from an index table, take note of the
following items:

You must set tableName to the name of the index table.

Tablestore automatically adds the primary key columns that are not specified as indexed
columns to an index table. Therefore, when you specify the start primary key and end primary
key, you must specify the indexed columns based on which you create the index table and the
primary key columns of the data table.

Examples

If an index table contains the columns to return, you can query the required data from the index
table.

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 234

https://www.alibabacloud.com/help/doc-detail/43017.htm#concept-43017-zh

private static void scanFromIndex(SyncClient client) {
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(INDEX_NAME)
; // Specify the index table name.
 // Specify the start primary key.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilde
r();
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_
MIN); // Specify the minimum value of PRIMARY_KEY_NAME_1.
 startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, PrimaryKeyValue.INF_
MIN); // Specify the minimum value of DEFINED_COL_NAME_1.
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.INF_
MIN); // Specify the minimum value of PRIMARY_KEY_NAME_2.
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrimaryKeyBuilder.build());
 // Specify the end primary key.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder(
);
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_MA
X); // Specify the maximum value of PRIMARY_KEY_NAME_1.
 endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, PrimaryKeyValue.INF_MA
X); // Specify the maximum value of DEFINED_COL_NAME_1.
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.INF_MA
X); // Specify the maximum value of PRIMARY_KEY_NAME_2.
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimaryKeyBuilder.build());
 rangeRowQueryCriteria.setMaxVersions(1);
 System.out.println("Results returned from the index table:");
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRo
wQueryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 System.out.println(row);
 }
 // If the nextStartPrimaryKey value is not null, continue to read data.
 if (getRangeResponse.getNextStartPrimaryKey() != null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(getRangeResponse.getNextS
tartPrimaryKey());
 } else {
 break;
 }
 }
}

If the index table does not contain the columns to return, you must query the required data from
the data table.

private static void scanFromIndex(SyncClient client) {
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(INDEX_NAME)
; // Specify the index table name.
 // Specify the start primary key.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilde
r();
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_
MIN); // Specify the minimum value of PRIMARY_KEY_NAME_1.
 startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, PrimaryKeyValue.INF_
MIN); // Specify the minimum value of DEFINED_COL_NAME_1.

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

235 > Document Version: 20220711

 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.INF_
MIN); // Specify the minimum value of PRIMARY_KEY_NAME_2.
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrimaryKeyBuilder.build());
 // Specify the end primary key.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder(
);
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, PrimaryKeyValue.INF_MA
X); // Specify the maximum value of PRIMARY_KEY_NAME_1.
 endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, PrimaryKeyValue.INF_MA
X); // Specify the maximum value of DEFINED_COL_NAME_1.
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, PrimaryKeyValue.INF_MA
X); // Specify the maximum value of PRIMARY_KEY_NAME_2.
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimaryKeyBuilder.build());
 rangeRowQueryCriteria.setMaxVersions(1);
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRo
wQueryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 PrimaryKey curIndexPrimaryKey = row.getPrimaryKey();
 PrimaryKeyColumn pk1 = curIndexPrimaryKey.getPrimaryKeyColumn(PRIMARY_KEY_N
AME_1);
 PrimaryKeyColumn pk2 = curIndexPrimaryKey.getPrimaryKeyColumn(PRIMARY_KEY_N
AME_2);
 PrimaryKeyBuilder mainTablePKBuilder = PrimaryKeyBuilder.createPrimaryKeyBu
ilder();
 mainTablePKBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, pk1.getValue());
 mainTablePKBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, pk2.getValue());
 PrimaryKey mainTablePK = mainTablePKBuilder.build(); // Specify primary key
columns for the data table based on the primary key columns of the index table.
 // Query the data table.
 SingleRowQueryCriteria criteria = new SingleRowQueryCriteria(TABLE_NAME, ma
inTablePK);
 criteria.addColumnsToGet(DEFINED_COL_NAME3); // Read the DEFINED_COL_NAME3
attribute column from the data table.
 // Set MaxVersions to 1 to read the latest version of data.
 criteria.setMaxVersions(1);
 GetRowResponse getRowResponse = client.getRow(new GetRowRequest(criteria));
 Row mainTableRow = getRowResponse.getRow();
 System.out.println(row);
 }
 // If the nextStartPrimaryKey value is not null, continue to read data.
 if (getRangeResponse.getNextStartPrimaryKey() != null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(getRangeResponse.getNextS
tartPrimaryKey());
 } else {
 break;
 }
 }
}

Delete an index table by calling the DeleteIndex operation
You can call the DeleteIndex operation to delete the specified index table from the corresponding data
table.

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 236

Parameters

Parameter Description

mainTableName The name of the data table.

indexName The name of the index table.

Examples

private static void deleteIndex(SyncClient client) {
 DeleteIndexRequest request = new DeleteIndexRequest(TABLE_NAME, INDEX_NAME); // Speci
fy the name of the index table that you want to delete and the name of the corresponding
data table.
 client.deleteIndex(request); // Delete the index table.
}

This topic describes the appendix of global secondary index.

The following code provides an example on how to create a base table and an index table:

7.5. Appendix

Funct ion Int roduct ion·Secondary ind
ex

Tablest ore

237 > Document Version: 20220711

private static final String TABLE_NAME = "CallRecordTable";
 private static final String INDEX0_NAME = "IndexOnBeCalledNumber";
 private static final String INDEX1_NAME = "IndexOnBaseStation1";
 private static final String INDEX2_NAME = "IndexOnBaseStation2";
 private static final String PRIMARY_KEY_NAME_1 = "CellNumber";
 private static final String PRIMARY_KEY_NAME_2 = "StartTime";
 private static final String DEFINED_COL_NAME_1 = "CalledNumber";
 private static final String DEFINED_COL_NAME_2 = "Duration";
 private static final String DEFINED_COL_NAME_3 = "BaseStationNumber";
 private static void createTable(SyncClient client) {
 TableMeta tableMeta = new TableMeta(TABLE_NAME);
 tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema(PRIMARY_KEY_NAME_1, PrimaryKeyTy
pe.INTEGER));
 tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema(PRIMARY_KEY_NAME_2, PrimaryKeyTy
pe.INTEGER));
 tableMeta.addDefinedColumn(new DefinedColumnSchema(DEFINED_COL_NAME_1, DefinedColum
nType.INTEGER));
 tableMeta.addDefinedColumn(new DefinedColumnSchema(DEFINED_COL_NAME_2, DefinedColum
nType.INTEGER));
 tableMeta.addDefinedColumn(new DefinedColumnSchema(DEFINED_COL_NAME_3, DefinedColum
nType.INTEGER));
 int timeToLive = -1; // Specify the validity period of data in seconds. A value of
-1 indicates that the data never expires. You must set the timeToLive value to -1 when the
base table has one or more index tables.
 int maxVersions = 1; // Specify the maximum number of versions. You must set the ma
xVersions value to 1 when the base table has one or more index tables.
 TableOptions tableOptions = new TableOptions(timeToLive, maxVersions);
 ArrayList<IndexMeta> indexMetas = new ArrayList<IndexMeta>();
 IndexMeta indexMeta0 = new IndexMeta(INDEX0_NAME);
 indexMeta0.addPrimaryKeyColumn(DEFINED_COL_NAME_1);
 indexMetas.add(indexMeta0);
 IndexMeta indexMeta1 = new IndexMeta(INDEX1_NAME);
 indexMeta1.addPrimaryKeyColumn(DEFINED_COL_NAME_3);
 indexMeta1.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2);
 indexMetas.add(indexMeta1);
 IndexMeta indexMeta2 = new IndexMeta(INDEX2_NAME);
 indexMeta2.addPrimaryKeyColumn(DEFINED_COL_NAME_3);
 indexMeta2.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2);
 indexMeta2.addDefinedColumn(DEFINED_COL_NAME_2);
 indexMetas.add(indexMeta2);
 CreateTableRequest request = new CreateTableRequest(tableMeta, tableOptions, indexM
etas);
 client.createTable(request);
 }

Tablest ore Funct ion Int roduct ion·Secondary ind
ex

> Document Version: 20220711 238

You can use the SQL query feature to perform complex queries and analyt ics on data in Tablestore in an
efficient manner. The SQL query feature provides a unified access interface for mult iple data engines.

Background information
Tablestore is a storage service that is developed by Alibaba Cloud. Tablestore can store large volumes
of structured data by using mult iple models, and supports fast data query and analyt ics. Empowered
by the distributed storage and index-based search engine, Tablestore can store petabytes (PBs) of
data while delivering tens of millions transactions per second (TPS) at ultra-low latency (milliseconds).
You can use Tablestore to store and query large volumes of data in a convenient manner.

Tablestore provides cloud-native SQL engine capabilit ies in addit ion to the conventional storage of
NoSQL structured data. SQL queries are compatible with MySQL query syntax and provide basic SQL
Data Definit ion Language (DDL) statements to create tables. This way, you can migrate your business to
Tablestore and access Tablestore by executing SQL statements. For exist ing data tables, you can
execute the CREATE TABLE statement to create mapping tables for the exist ing data tables. Then, you
can use SQL statements to access the data in the exist ing data tables.

The SQL query feature allows you to use search indexes to quickly query data that meets query
condit ions. When you use the SQL query feature, the system automatically selects an appropriate
method to accelerate SQL access based on the SQL statements.

The SQL query feature is suitable for scenarios in which you want to access a large amount of data
online. When you use the SQL query feature, the access latency ranges from milliseconds to minutes.
The SQL query feature supports point queries based on the primary keys of data tables (GetRow
operation), term queries based on search indexes (TermQuery), and queries based on the aggregation
capability of search indexes, such as queries on the number of rows that meet a specified condit ion and
the sum of values in a column.

Terms
The use of SQL involves many concepts in conventional databases. The following table describes some
concepts in conventional databases and the mappings between the concepts and Tablestore
concepts.

Term Description

Database
A database is a data repository that organizes, stores, and manages
data based on data structures. A database can contain one or more
tables. Databases are mapped to Tablestore instances.

Table
A table consists of rows and columns. Tables in databases are
mapped to Tablestore tables.

Index
Indexes in databases are mapped to secondary indexes or search
indexes in Tablestore.

Features

8.SQL query
8.1. Overview

Funct ion Int roduct ion·SQL query Tablest ore

239 > Document Version: 20220711

SQL features

Allows you to init iate a single request by executing a single SQL statement.

Supports basic DDL statements, including CREATE TABLE and DESCRIBE. For more information, see
Create mapping tables for tables and Query the information about a table.

Supports Data Query Language (DQL) statements, including SELECT. For more information, see
Query data.

Supports basic database administrat ion statements, including SHOW TABLES and SHOW INDEX. For
more information, see List table names and Query the index information about a table.

Character set and collat ion

Character set: UTF-8

Collat ion: binary collat ion

Operators

Supports SQL operators such as arithmetic operators, relat ional operators, and logical operators. For
more information, see SQL operators.

Mapping tables for exist ing tables

You can execute the CREATE TABLE statement to create mapping tables for exist ing tables. When
you create a mapping table, make sure that the primary keys in the mapping table are the same as
the primary keys in the exist ing table, and the attribute columns in the mapping table have the same
types as the attribute columns and predefined columns in the exist ing table. For more information
about data type mappings, see Data type mappings.

Usage notes
When you use the SQL query feature, the transaction feature is not supported.

Limits
For more information, see SQL limits.

Case conventions in SQL
The Tablestore SQL engine follows common SQL conventions and is not case-sensit ive to column
names. For example, the SELECT Aa FROM exampletable; statement is equivalent to the SELECT aa
FROM exampletable; statement.

The column names in Tablestore are case-sensit ive. When SQL is used, the column names in Tablestore
are converted into lowercase letters for matching. For example, if you want to perform operations on
the Aa column in a Tablestore table, you can use AA, aa, aA, or Aa in SQL. Therefore, the column names
in Tablestore cannot be AA, aa, aA, and Aa at the same t ime.

Reserved words and keywords
Tablestore uses keywords in SQL statements as reserved words. If you need to use keywords to name
tables or columns, add the ‘’ symbol to escape the keywords. Keywords are not case-sensit ive.

For more information about the reserved words and keywords, see Reserved words and keywords.

Comparison between SQL and search index

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 240

https://www.alibabacloud.com/help/doc-detail/295892.htm#concept-2098376
https://www.alibabacloud.com/help/doc-detail/295896.htm#concept-2098386
https://www.alibabacloud.com/help/doc-detail/295900.htm#concept-2098388
https://www.alibabacloud.com/help/doc-detail/295905.htm#concept-2098423
https://www.alibabacloud.com/help/doc-detail/295904.htm#concept-2101160
https://www.alibabacloud.com/help/doc-detail/295910.htm#concept-2098382
https://www.alibabacloud.com/help/doc-detail/295886.htm#concept-2098470
https://www.alibabacloud.com/help/doc-detail/295916.htm#concept-2098331
https://www.alibabacloud.com/help/doc-detail/295914.htm#concept-2098405

Search index SQL function/statement

Term query Equal (=)

Range query

Greater than (>), less than (<),
greater than or equal to (>=),
less than or equal to (<=), and
BETWEEN ... AND ...

Boolean query

MustQueries AND

MustNotQueries !=

ShouldQueries OR

Sorting and pagination
FieldSort ORDER BY

SetLimit LIMIT

Aggregation

Minimum value MIN()

Maximum value MAX()

Sum SUM()

Average value AVG()

Count COUNT()

Distinct count COUNT(DIST INCT)

Query the rows that are obtained
from the results of an
aggregation operation in each
group

ANY_VALUE()

Group by field value GROUP BY

Billing
For more information, see Billable items of SQL query.

This topic describes the SQL statements that are supported by the Tablestore SQL engine.

Not ice Start ing on May 26, 2022, the SQL query feature is no longer provided free of charge.
If an error occurs when you use the SQL query feature, submit a t icket.

SQL statement Description Supported

Creates a mapping table for an existing data table. Yes

8.2. SQL features

Funct ion Int roduct ion·SQL query Tablest ore

241 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/117488.htm#concept-227006
https://www.alibabacloud.com/help/doc-detail/117496.htm#concept-227247
https://www.alibabacloud.com/help/doc-detail/117498.htm#concept-227249
https://www.alibabacloud.com/help/doc-detail/117479.htm#concept-226989
https://www.alibabacloud.com/help/doc-detail/132191.htm#concept-1909524
https://www.alibabacloud.com/help/doc-detail/427765.htm#concept-2211626
https://workorder-intl.console.aliyun.com/#/ticket/createInd

CREATE TABLE

Creates a mapping table for an existing search
index.

Yes

ALTER TABLE Adds, modifies, or removes columns. Available soon

SHOW TABLES Lists the names of tables in the current database. Yes

SELECT Queries data. Yes

DROP MAPPING TABLE Deletes a mapping table. Yes

DROP TABLE Deletes a data table. Available soon

CREATE INDEX Creates an index. No

SHOW INDEX Queries information about an index. Yes

INSERT Writes data. No

SELECT JOIN Performs a data query that joins multiple tables. No

SQL statement Description Supported

This topic describes the mappings between the data types of f ields in SQL, data tables, and search
indexes. Before you use SQL, make sure that the field data types in SQL match the field data types in
data tables.

Not e

If you use VARBINARY and VARCHAR as the data types of primary key columns in SQL, we
recommend that you set the maximum length of the primary key column values to 1,024 by
using VARBINARY(1024) and VARCHAR(1024).

Both BIGINT in SQL and Integer in data tables are 64-bit integer data types.

You can use only BIGINT, VARBINARY, and VARCHAR as the types of primary key column
values in SQL.

Field data type in SQL Field data type in data tables Field data types in search indexes

BIGINT Integer Integer

VARBINARY (primary key)

MEDIUMBLOB (attribute
column)

Binary Binary

VARCHAR (primary key)

MEDIUMTEXT (attribute
column)

String

Keyword

Text

8.3. Data type mappings

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 242

DOUBLE Double Double

BOOL Boolean Boolean

Field data type in SQL Field data type in data tables Field data types in search indexes

Tablestore allows you to use the SQL query feature to quickly query data. After you create a mapping
table in the console, you can execute the SELECT statement to quickly query the required data.

Prerequisites
If you want to use a RAM user to perform operations, make sure that a RAM user is created and all
SQL operation permissions are granted to the RAM user. You can configure "Action": "ots:SQL*"
in the custom policy to grant all SQL operation permissions to the RAM user. For more information, see
Grant permissions to a RAM user.

A data table is created.

Precautions
The SQL query feature is available in the China (Hangzhou), China (Shanghai), China (Beijing), China
(Zhangjiakou), China (Shenzhen), Germany (Frankfurt), and Singapore regions.

Create a mapping table
1. Log on to the Tablestore console.

2. In the top navigation bar, select a region, for example, China (Hangzhou) or China (Shenzhen).

3. On the Overview page, click the name of the required instance or click Manage Instance in the
Act ions column of the required instance.

4. On the Query by Execut ing SQL St at ement tab, create a mapping table.

Not e You can also manually compile SQL statements to create a mapping table. For
more information, see Create mapping tables for tables.

8.4. Use the Tablestore console

Funct ion Int roduct ion·SQL query Tablest ore

243 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/188057.htm#concept-1985835/section-6hb-cr0-iv9
https://otsnext.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/295892.htm#concept-2098376

i. Click the icon.

ii. In the Creat e Mapping T able dialog box, select a table, and click Generat e SQL
St at ement .

The system automatically generates the schema of the mapping table.

Not ice Make sure that the field data types in the mapping table match the field
data types in the data table. For more information about data type mappings, see Data
type mappings.

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 244

https://www.alibabacloud.com/help/doc-detail/295886.htm#concept-2098470

iii. After you modify the schema based on your business requirements, hold down the left mouse
button to select an SQL statement and click Execut e SQL St at ement (F8) .

After the execution is successful, the execution result is displayed in the Execut ion Result
sect ion.

Not ice

Before you execute an SQL statement, you must select the SQL statement that you
want to execute. Otherwise, the system executes the first SQL statement by
default .

You cannot select mult iple SQL statements to execute at the same t ime. If you
select mult iple SQL statements, the system reports an error.

Query data
After a mapping table is created, you can execute the SELECT statement to query data on the Query
by Execut ing SQL St at ement tab. For more information, see Query data.

You can call the sqlQuery operation to access Tablestore by executing SQL statements.

Prerequisites

An AccessKey pair that consists of an AccessKey ID and an AccessKey secret is obtained. For more
information, see Obtain an AccessKey pair.

A Tablestore client is init ialized. For more information, see Init ializat ion.

Use Tablestore SDKs
You can use the following Tablestore SDKs to perform a SQL query:

Java SDK

Go SDK

8.5. Use Tablestore SDKs

Funct ion Int roduct ion·SQL query Tablest ore

245 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/295900.htm#concept-2098388
https://www.alibabacloud.com/help/doc-detail/175967.htm#task-354412
https://www.alibabacloud.com/help/doc-detail/43009.htm#concept-43009-zh
https://www.alibabacloud.com/help/doc-detail/347618.htm#concept-2137622
https://www.alibabacloud.com/help/doc-detail/426896.htm#concept-2206661

Parameters

Parameter Description

query
The SQL statement. Configure the parameter based
on the required feature.

Examples
After you execute the create table statement to create a mapping table for an exist ing table, you can
execute the select statement to query data in the exist ing table.

1. Execute the create table statement to create a mapping table for an exist ing table.

Execute the create table test_table (pk varchar(1024), long_value bigint, double_value do
uble, string_value mediumtext, bool_value bool, primary key(pk)) statement to create a
mapping table for the table named test_table.

private static void createTable(SyncClient client) {
 // Create a SQL request.
 SQLQueryRequest request = new SQLQueryRequest("create table test_table (pk varchar(
1024), long_value bigint, double_value double, string_value mediumtext, bool_value bool
, primary key(pk))");
 // Obtain the response to the SQL request.
 SQLQueryResponse response = client.sqlQuery(request);
}

2. Execute the select statement to query data in the table.

Execute the select pk, long_value, double_value, string_value, bool_value from test_table
limit 20 statement to query data in the table named test_table and set the maximum number
of rows that you want to return to 20. The system returns the request type, the schema of the
returned results, and the returned results of the query statement.

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 246

private static void queryData(SyncClient client) {
 // Create a SQL request.
 SQLQueryRequest request = new SQLQueryRequest("select pk, long_value, double_value,
string_value, bool_value from test_table limit 20");
 // Obtain the response to the SQL request.
 SQLQueryResponse response = client.sqlQuery(request);
 // Obtain the SQL request type.
 System.out.println("response type: " + response.getSQLStatementType());
 // Obtain the schema of the returned results of the SQL request.
 SQLTableMeta tableMeta = response.getSQLResultSet().getSQLTableMeta();
 System.out.println("response table meta: " + tableMeta.getSchema());
 // Obtain the returned results of the SQL request.
 SQLResultSet resultSet = response.getSQLResultSet();
 System.out.println("response resultset:");
 while (resultSet.hasNext()) {
 SQLRow row = resultSet.next();
 System.out.println(row.getString(0) + ", " + row.getString("pk") + ", " +
 row.getLong(1) + ", " + row.getLong("long_value") + ", " +
 row.getDouble(2) + ", " + row.getDouble("double_value") + ",
" +
 row.getString(3) + ", " + row.getString("string_value") + ",
" +
 row.getBoolean(4) + ", " + row.getBoolean("bool_value"));
 }
}

Sample output:

response type: SQL_SELECT
response table meta: [pk:STRING, long_value:INTEGER, double_value:DOUBLE, string_value:
STRING, bool_value:BOOLEAN]
response resultset:
binary_null, binary_null, 1, 1, 1.0, 1.0, a, a, false, false
bool_null, bool_null, 1, 1, 1.0, 1.0, a, a, null, null
double_null, double_null, 1, 1, null, null, a, a, true, true
long_null, long_null, null, null, 1.0, 1.0, a, a, true, true
string_null, string_null, 1, 1, 1.0, 1.0, null, null, false, false

This topic describes how to use JDBC to access Tablestore.

Prerequisites

An AccessKey pair that consists of an AccessKey ID and an AccessKey secret is obtained. For more
information, see Obtain an AccessKey pair.

A data table is created, and a mapping table is created for the data table. For more information, see
Create a data table and Create mapping tables for tables.

8.6. Use JDBC
8.6.1. Use JDBC to access Tablestore

Funct ion Int roduct ion·SQL query Tablest ore

247 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/175967.htm#task-354412
https://www.alibabacloud.com/help/doc-detail/342853.htm#task-2134826/section-tlv-x24-nfx
https://www.alibabacloud.com/help/doc-detail/295892.htm#concept-2098376

Step 1: Install the JDBC driver
You can install the JDBC driver by using one of the following methods:

Download the JDBC driver for Tablestore and import the JDBC driver to the project. For more
information about the download path, see JDBC driver for Tablestore.

Add dependencies to a Maven project.

To use the JDBC driver for Tablestore in Maven, you need only to add the corresponding
dependencies to the pom.xml file. In this example, JDBC driver 5.13.5 is used. Add the following
content to <dependencies>:

<dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>tablestore-jdbc</artifactId>
 <version>5.13.5</version>
</dependency>

Step 2: Access Tablestore by using JDBC
1. Load the JDBC driver for Tablestore by using Class.forName() .

The name of the JDBC driver for Tablestore is com.alicloud.openservices.tablestore.jdbc.OTSDr
iver .

Class.forName("com.alicloud.openservices.tablestore.jdbc.OTSDriver");

2. Access a Tablestore instance by using JDBC.

String url = "jdbc:ots:https://myinstance.cn-hangzhou.ots.aliyuncs.com/myinstance";
String user = "************************";
String password = "********************************";
Connection conn = DriverManager.getConnection(url, user, password);

The following table describes the parameters that you must configure to access a Tablestore
instance by using JDBC.

Parameter Example Description

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 248

https://mvnrepository.com/artifact/com.aliyun.openservices/tablestore-jdbc

url

jdbc:ots:https://myinst
ance.cn-
hangzhou.ots.aliyuncs.co
m/myinstance

The URL of the JDBC driver for Tablestore in the
format jdbc:ots:schema://[accessKeyId:acce
ssKeySecret@]endpoint/instanceName[?param1=
value1&...¶mN=valueN] . The URL contains
the following fields:

schema: This field is required and specifies the
protocol that is used by the JDBC driver for
Tablestore. In most cases, this field is set to
https.

accessKeyId:accessKeySecret: This field is
optional and specifies the AccessKey ID and
AccessKey secret of your Alibaba Cloud account
or a RAM user.

endpoint: This field is required and specifies the
endpoint of the instance. For more information,
see Endpoint.

instanceName: This field is required and
specifies the name of the instance.

For more information about other configuration
items, see Configuration items.

user ************************
The AccessKey ID of your Alibaba Cloud account or
a RAM user.

password

The AccessKey secret of your Alibaba Cloud
account or a RAM user.

Parameter Example Description

You can pass the AccessKey pair and configuration items by using a URL or the Propert ies
parameter. The following example shows how to access the myinstance instance in the China
(Hangzhou) region over the Internet.

Pass the AccessKey pair and configuration items by using a URL

DriverManager.getConnection("jdbc:ots:https://************************:**************
******************@myinstance.cn-hangzhou.ots.aliyuncs.com/myinstance?enableRequestCo
mpression=true");

Pass the AccessKey pair and configuration items by using the Propert ies parameter

Properties info = new Properties();
info.setProperty("user", "************************");
info.setProperty("password", "********************************");
info.setProperty("enableRequestCompression", "true");
DriverManager.getConnection("jdbc:ots:https://myinstance.cn-hangzhou.ots.aliyuncs.com
/myinstance", info);

3. Execute SQL statements.

You can use the createStatement or prepareStatement method to create SQL statements.

Funct ion Int roduct ion·SQL query Tablest ore

249 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/52671.htm#concept-bsx-btj-bfb

Not e For more information about the supported SQL statements, see SQL features.

Use the createStatement method to create SQL statements

// Create the SQL statement based on your business requirements. The following sample
code shows how to query the data in the id and name columns in the test_table table:
String sql = "SELECT id,name FROM test_table";
Statement stmt = conn.createStatement();
ResultSet resultSet = stmt.executeQuery(sql);
while (resultSet.next()) {
 String id = resultSet.getString("id");
 String name = resultSet.getString("name");
 System.out.println(id);
 System.out.println(name);
}
resultSet.close();
stmt.close();

Use the prepareStatement method to create SQL statements

// Create the SQL statement based on your business requirements. The following sample
code shows how to query the data with the specified primary key in the test_table tab
le:
String sql = "SELECT * FROM test_table WHERE pk = ?";
PreparedStatement stmt = connection.prepareStatement(sql);
stmt.setLong(1, 1);
ResultSet resultSet = stmt.executeQuery();
ResultSetMetaData metaData = resultSet.getMetaData();
while (resultSet.next()) {
 int columnCount = metaData.getColumnCount();
 for (int i=0; i< columnCount;i++) {
 String columnName = metaData.getColumnName(i+1);
 String columnValue = resultSet.getString(columnName);
 System.out.println(columnName);
 System.out.println(columnValue);
 }
}
resultSet.close();
stmt.close();

Complete sample code
The following sample code shows how to query all data in the test_table table of the myinstance
instance in the China (Hangzhou) region:

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 250

https://www.alibabacloud.com/help/doc-detail/300049.htm#concept-2104939

public class Demo {
 public static void main(String[] args) throws SQLException, ClassNotFoundException {
 Class.forName("com.alicloud.openservices.tablestore.jdbc.OTSDriver");
 String url = "jdbc:ots:https://myinstance.cn-hangzhou.ots.aliyuncs.com/myinstance";
 String user = "************************";
 String password = "********************************";
 Connection conn = DriverManager.getConnection(url, user, password);
 String sql = "SELECT * FROM test_table";
 Statement stmt = conn.createStatement();
 ResultSet resultSet = stmt.executeQuery(sql);
 ResultSetMetaData metaData = resultSet.getMetaData();
 while (resultSet.next()) {
 int columnCount = metaData.getColumnCount();
 for (int i=0; i< columnCount;i++) {
 String columnName = metaData.getColumnName(i+1);
 String columnValue = resultSet.getString(columnName);
 System.out.println(columnName);
 System.out.println(columnValue);
 }
 }
 resultSet.close();
 stmt.close();
 conn.close(); // Close the connection. Otherwise, the program cannot exit.
 }
}

Configuration items
The JDBC driver for Tablestore is implemented based on Tablestore SDK for Java. You can use JDBC to
modify the configuration items of Tablestore SDK for Java. The following table describes the common
configuration items.

Configuration item Example Description

enableRequestCompression false

Specifies whether to compress the request
data. Default value: false. Valid values:

true: compresses the request data.

false: does not compress the request
data.

enableResponseCompression false

Specifies whether to compress the
response data. Default value: false. Valid
values:

true: compresses the response data.

false: does not compress the response
data.

ioThreadCount 2
The number of IOReactor threads of the
HttpAsyncClient. The default value is the
same as the number of vCPUs.

Funct ion Int roduct ion·SQL query Tablest ore

251 > Document Version: 20220711

maxConnections 300
The maximum number of allowed HTTP
connections.

socketT imeoutInMillisecond 30000
The timeout period for data transmission
at the Socket layer. Unit: milliseconds. The
value of 0 indicates an indefinite wait.

connectionTimeoutInMillisecond 30000
The timeout period for connection setup.
Unit: milliseconds. The value of 0 indicates
an indefinite wait.

retryThreadCount 1
The number of threads that are used to
execute retries in the thread pool.

syncClientWaitFutureT imeoutInMillis -1
The timeout period for the asynchronous
wait. Unit: milliseconds.

connectionRequestT imeoutInMillisec
ond

60000
The timeout period for sending the
request. Unit: milliseconds.

Configuration item Example Description

Data type conversion
Tablestore supports five data types: Integer, Double, String, Binary, and Boolean. When you use
Tablestore SDK for Java and JDBC to access Tablestore, the JDBC driver can automatically convert data
types between Java and Tablestore.

Convert Java data types to Tablestore data types

If you use the PreparedStatement method to specify the values of parameters in SQL statements,
the Byte, Short, Int, Long, BigDecimal, Float, Double, String, CharacterStream, Bytes, and Boolean
data types in Java can be passed to the SQL engine of Tablestore.

PreparedStatement stmt = connection.prepareStatement("SELECT * FROM t WHERE pk = ?");
stmt.setLong(1, 1); // The data type can be converted.
stmt.setURL(1, new URL("https://aliyun.com/")); // The data type cannot be converted,
and the system throws an exception.

Convert Tablestore data types to Java data types

If you use the ResultSet method to obtain SQL query results, take note of the conversion rules in the
following table. The following table describes the rules for the automatic conversion of Tablestore
data types to Java data types.

Data type in Tablestore Conversion rule

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 252

Integer When the system converts the data type to an integer type, the
system throws an exception if the original value is out of the value
range of the integer type.

When the system converts the data type to a floating-point type,
the precision of the converted value is lower than the precision of
the original value.

When the system converts the data type to the string or binary
type, the converted value is the same as the result of processing
the original value by using toString().

When the system converts the data type to the Boolean type and
the original value is a non-zero value, the converted value is true.

Double

String When the system converts the data type to an integer type or a
floating-point type, the system throws an exception if parsing
fails.

When the system converts the data type to the Boolean type and
the original string is true, the converted value is true.

Binary

Boolean

When the system converts the data type to an integer type or a
floating-point type and the original value is true, the converted
value is 1. If the original value is false, the converted value is 0.

When the system converts the data type to the string or binary
type, the converted value is the same as the result of processing
the original value by using toString().

Data type in Tablestore Conversion rule

Statement stmt = conn.createStatement();
ResultSet resultSet = stmt.executeQuery("SELECT count(*) FROM t");
while (resultSet.next()) {
 resultSet.getLong(1); // The data type can be converted.
 resultSet.getCharacterStream(1); // The data type cannot be converted, and the sys
tem throws an exception.
}

For more information about the data type conversion between Tablestore and Java, see the
following table.

Not e In the following table, t icks (✓) indicate normal conversion, t ildes (~) indicate that an
exception may be thrown during conversion, and crosses (×) indicate that the conversion cannot
be performed.

Data type Integer Double String Binary Boolean

Byte ~ ~ ~ ~ √

Short ~ ~ ~ ~ √

Int ~ ~ ~ ~ √

Funct ion Int roduct ion·SQL query Tablest ore

253 > Document Version: 20220711

Long √ ~ ~ ~ √

BigDecimal √ √ ~ ~ √

Float √ √ ~ ~ √

Double √ √ ~ ~ √

String √ √ √ √ √

CharacterStre
am

× × √ √ ×

Bytes √ √ √ √ √

Boolean √ √ √ √ √

Data type Integer Double String Binary Boolean

This topic describes how to access Tablestore by using Hibernate to use the Java Database Connectivity
(JDBC) driver for Tablestore.

Background information
Hibernate is an Object/Relat ional Mapping (ORM) solut ion for Java environments. You can use Hibernate
to map Java classes to database tables, map Java data types to SQL data types, and query data.
Hibernate can significantly reduce the development t ime that is spent on manually handling data in SQL
and JDBC. For more information, see Hibernate documentation.

Prerequisites

An AccessKey pair that consists of an AccessKey ID and an AccessKey secret is obtained. For more
information, see Obtain an AccessKey pair.

A data table is created, and a mapping table is created for the data table. For more information, see
Create a data table and Create mapping tables for tables.

Step 1: Install the JDBC driver
You can install the JDBC driver by using one of the following methods:

Download the JDBC driver for Tablestore and import the JDBC driver to the project. For more
information about the download path, see JDBC driver for Tablestore.

Add dependencies to a Maven project.

To use the JDBC driver for Tablestore in Maven, you need only to add the corresponding
dependencies to the pom.xml file. In this example, JDBC driver 5.13.5 is used. Add the following
content to <dependencies>:

8.6.2. Use Hibernate to use the JDBC driver for
Tablestore

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 254

https://docs.jboss.org/hibernate/orm/5.6/quickstart/html_single/
https://www.alibabacloud.com/help/doc-detail/175967.htm#task-354412
https://www.alibabacloud.com/help/doc-detail/342853.htm#task-2134826/section-tlv-x24-nfx
https://www.alibabacloud.com/help/doc-detail/295892.htm#concept-2098376
https://mvnrepository.com/artifact/com.aliyun.openservices/tablestore-jdbc

<dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>tablestore-jdbc</artifactId>
 <version>5.13.5</version>
</dependency>

Step 2: Install Hibernate
You can install Hibernate by using one of the following methods:

Download the Hibernate installat ion package hibernate-core-x.x.x.jar and import the package to the
project. For more information about the download path, see Hibernate installat ion package.

In hibernate-core-x.x.x.jar, x.x.x indicates the version number of Hibernate. Select a Hibernate
installat ion package based on your business requirements.

Add dependencies to a Maven project.

To use Hibernate in Maven, you need only to add the corresponding dependencies to the pom.xml
file. The following sample code shows how to add content to <dependencies>. In this example, the
3.6.3.Final version is used.

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>3.6.3.Final</version>
</dependency>

Step 3: Map SQL fields
After you create a Java Bean that contains member variables whose names are the same as the names
of fields in the data table, create a mapping configuration file to map the member variables in the Java
Bean to the fields in the data table.

1. Create a Java Bean that contains member variables whose names are the same as the names of
fields in the data table.

package hibernate;
public class Trip {
 private long tripId;
 private long duration;
 private String startDate;
 private String endDate;
 private long startStationNumber;
 private long endStationNumber;
 private String startStation;
 private String endStation;
 private String bikeNumber;
 private String memberType;
 // ...
}

2. Create a mapping configuration file to map the member variables in the Java Bean to the fields in
the data table. The following sample code shows how to create a mapping configuration file
named Trip.hbm.xml in the hibernate directory.

Funct ion Int roduct ion·SQL query Tablest ore

255 > Document Version: 20220711

https://mvnrepository.com/artifact/org.hibernate/hibernate-core

Tablestore SQL does not support data insert and update. Therefore, you must set the insert
property and the update property to false. For more information about the mappings between the
data types of f ields in SQL and Tablestore, see Data type mappings. For more information about the
supported SQL features, see SQL features.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
 <!--Specify the actual class name. -->
 <class name="hibernate.Trip" table="trips">
 <!-- The field that is configured in the id element is the primary key column o
f the data table. -->
 <id name="tripId" column="trip_id" type="long"/>
 <!-- The fields that are configured in the property element are attribute colum
ns of the data table. You must set the insert property and the update property to false
because insert and update operations are prohibited for attribute columns. -->
 <property name="duration" column="duration" type="long" insert="false" update="
false"/>
 <property name="startDate" column="start_date" type="string" insert="false" upd
ate="false"/>
 <property name="endDate" column="end_date" type="string" insert="false" update=
"false"/>
 <property name="startStationNumber" column="start_station_number" type="long" i
nsert="false" update="false"/>
 <property name="endStationNumber" column="end_station_number" type="long" inser
t="false" update="false"/>
 <property name="startStation" column="start_station" type="string" insert="fals
e" update="false"/>
 <property name="endStation" column="end_station" type="string" insert="false" u
pdate="false"/>
 <property name="bikeNumber" column="bike_number" type="string" insert="false" u
pdate="false"/>
 <property name="memberType" column="member_type" type="string" insert="false" u
pdate="false"/>
 </class>
</hibernate-mapping>

Step 4: Build the SessionFactory
After you configure the Hibernate configuration file, load the Hibernate configuration file to build the
SessionFactory.

1. Add the following content to the Hibernate configuration file named hibernate.cfg.xml. Modify the
configuration items in the configuration file based on your business requirements.

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 256

https://www.alibabacloud.com/help/doc-detail/295886.htm#concept-2098470
https://www.alibabacloud.com/help/doc-detail/300049.htm#concept-2104939

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <property name="hibernate.connection.driver_class">com.alicloud.openservices.ta
blestore.jdbc.OTSDriver</property>
 <property name="hibernate.connection.url">jdbc:ots:https://myinstance.cn-hangzh
ou.ots.aliyuncs.com/myinstance</property>
 <property name="hibernate.connection.username">************************</proper
ty>
 <property name="hibernate.connection.password">********************************
</property>
 <property name="hibernate.connection.autocommit">true</property>
 <property name="hibernate.dialect">org.hibernate.dialect.MySQLDialect</property
>
 <!-- Specify the path of the mapping configuration file. -->
 <mapping resource="hibernate/Trip.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

The following table describes the items that you must configure in the Hibernate configuration file.

Configuration
item

Type Required Example Description

hibernate.con
nection.driver
_class

class Yes

com.alicloud.
openservices.
tablestore.jd
bc.OTSDriver

The name of the class for the
JDBC driver for Tablestore. Set
this configuration item to
com.alicloud.openservices.table
store.jdbc.OTSDriver.

hibernate.con
nection.url

string Yes

jdbc:ots:http
s://myinstan
ce.cn-
hangzhou.ots
.aliyuncs.com
/myinstance

The endpoint of the instance.
The value must be in the
following format: jdbc:ots:
endpoint/instanceName .
endpoint indicates the endpoint
of the instance. For more
information, see Endpoint.
instanceName indicates the
name of the instance. Modify
the value of instanceName
based on your business
requirements.

When you specify a value for
this configuration item, the jd
bc:ots: prefix must be
included in the value.

hibernate.con
nection.usern
ame

string Yes

The AccessKey ID of your
Alibaba Cloud account or a RAM
user.

Funct ion Int roduct ion·SQL query Tablest ore

257 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/52671.htm#concept-bsx-btj-bfb

hibernate.con
nection.pass
word

string Yes

**

The AccessKey secret of your
Alibaba Cloud account or a RAM
user.

hibernate.con
nection.autoc
ommit

boolean Yes true

Specifies whether to
automatically commit
configurations. Tablestore does
not support transactions. Set
hibernate.connection.autocom
mit to true.

hibernate.dial
ect

string Yes
org.hibernate
.dialect.MySQ
LDialect

Tablestore SQL inherits the
MySQL syntax. Set this
configuration item to
org.hibernate.dialect.MySQLDial
ect.

Configuration
item

Type Required Example Description

2. Load the Hibernate configuration file to build the SessionFactory.

SessionFactory factory = new Configuration().
 configure("hibernate/hibernate.cfg.xml").
 buildSessionFactory();

Step 5: Create a session to query data

Session session = factory.openSession();
Trip trip = (Trip) session.get(Trip.class, 99L);
System.out.println("trip id: " + trip.getTripId());
System.out.println("start date: " + trip.getStartDate());
System.out.println("end date: " + trip.getEndDate());
System.out.println("duration: " + trip.getDuration());
session.close();
factory.close();

Complete sample code
The following sample code shows how to query the row in which the value of the primary key is 99 and
return the specified columns of the row:

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 258

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;
import hibernate.Trip;
public class HibernateDemo {
 public static void main(String[] args) {
 SessionFactory factory = new Configuration().
 configure("hibernate/hibernate.cfg.xml"). // Specify the full path of the H
ibernate configuration file.
 buildSessionFactory();
 Session session = factory.openSession();
 // Set the value of the primary key to 99. If the row in which the value of the pri
mary key is 99 does not exist, null is returned.
 Trip trip = (Trip) session.get(Trip.class, 99L);
 // Display the column values that you want to obtain.
 System.out.println("trip id: " + trip.getTripId());
 System.out.println("start date: " + trip.getStartDate());
 System.out.println("end date: " + trip.getEndDate());
 System.out.println("duration: " + trip.getDuration());
 session.close();
 factory.close();
 }
}

FAQ
Problem descript ion: What do I do if the following error message appears when I query data by using
Hibernate to use the JDBC driver?

Exception in thread "main" org.hibernate.HibernateException: Unable to instantiate defaul
t tuplizer [org.hibernate.tuple.entity.PojoEntityTuplizer]
 at org.hibernate.tuple.entity.EntityTuplizerFactory.constructTuplizer(EntityTuplizerFac
tory.java:108)
 at org.hibernate.tuple.entity.EntityTuplizerFactory.constructDefaultTuplizer(EntityTupl
izerFactory.java:133)
 at org.hibernate.tuple.entity.EntityEntityModeToTuplizerMapping.<init>(EntityEntityMode
ToTuplizerMapping.java:80)
 at org.hibernate.tuple.entity.EntityMetamodel.<init>(EntityMetamodel.java:322)
 at org.hibernate.persister.entity.AbstractEntityPersister.<init>(AbstractEntityPersiste
r.java:485)
 at org.hibernate.persister.entity.SingleTableEntityPersister.<init>(SingleTableEntityPe
rsister.java:133)
 at org.hibernate.persister.PersisterFactory.createClassPersister(PersisterFactory.java:
84)
 at org.hibernate.impl.SessionFactoryImpl.<init>(SessionFactoryImpl.java:286)

Possible cause: The javassist-x.x.x.jar package is missing.

Solut ion: Install the javassist-x.x.x.jar package by using one of the following methods:

Funct ion Int roduct ion·SQL query Tablest ore

259 > Document Version: 20220711

Install the javassist installat ion package javassist-x.x.x.jar and import the package to the project.
For more information about the download path, see javassist installat ion package.

In javassist-x.x.x.jar, x.x.x indicates the version number of javassist . Select a javassist installat ion
package based on your business requirements.

Add dependencies to a Maven project.

Add the corresponding dependencies to the pom.xml file in the Maven project. The following
sample code shows how to add content to <dependencies>. In this example, the 3.15.0-GA version
is used.

<!-- https://mvnrepository.com/artifact/org.javassist/javassist -->
<dependency>
 <groupId>org.javassist</groupId>
 <artifactId>javassist</artifactId>
 <version>3.15.0-GA</version>
</dependency>

Problem descript ion: What do I do if the Message: Unknown column '{columnName}' in 'field list
' error message appears when I query data by using Hibernate to use the JDBC driver?

Possible cause: The specified column does not exist in the SQL mapping table.

Solut ion: Make sure that the specified column exists in the SQL mapping table. You can use one of
the following methods to fix the error:

Add the specified column to the pre-defined columns to automatically synchronize the specified
column to the SQL mapping table.

Specify the column when you execute the CREATE TABLE statement to create a mapping table. For
more information, see Create mapping tables for tables.

This topic describes how to access Tablestore by using MyBatis to use the Java Database Connectivity
(JDBC) driver for Tablestore.

Background information
MyBatis is a persistence framework for Java that supports custom SQL statements, stored procedures,
and advanced mappings. MyBatis eliminates the need to use JDBC code, manually configure parameters,
and retrieve result sets. For more information, see MyBatis documentation.

Prerequisites

An AccessKey pair that consists of an AccessKey ID and an AccessKey secret is obtained. For more
information, see Obtain an AccessKey pair.

A data table is created, and a mapping table is created for the data table. For more information, see
Create a data table and Create mapping tables for tables.

Step 1: Install the JDBC driver

8.6.3. Use MyBatis to use the JDBC driver for
Tablestore

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 260

https://mvnrepository.com/artifact/org.javassist/javassist
https://www.alibabacloud.com/help/doc-detail/295892.htm#concept-2098376
https://mybatis.org/mybatis-3/index.html
https://www.alibabacloud.com/help/doc-detail/175967.htm#task-354412
https://www.alibabacloud.com/help/doc-detail/342853.htm#task-2134826/section-tlv-x24-nfx
https://www.alibabacloud.com/help/doc-detail/295892.htm#concept-2098376

You can install the JDBC driver by using one of the following methods:

Download the JDBC driver for Tablestore and import the JDBC driver to the project. For more
information about the download path, see JDBC driver for Tablestore.

Add dependencies to a Maven project.

To use the JDBC driver for Tablestore in Maven, you need only to add the corresponding
dependencies to the pom.xml file. In this example, JDBC driver 5.13.5 is used. Add the following
content to <dependencies>:

<dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>tablestore-jdbc</artifactId>
 <version>5.13.5</version>
</dependency>

Step 2: Install MyBatis
You can install MyBatis by using one of the following methods:

Download the MyBatis installat ion package mybatis-x.x.x.jar and import the package to the project.
For more information about the download path, see MyBatis installat ion package.

In mybatis-x.x.x.jar, x.x.x indicates the version number of MyBatis. Select a MyBatis installat ion
package based on your business requirements.

Add dependencies to a Maven project.

To use MyBatis in Maven, you need only to add the corresponding dependencies to the pom.xml file.
The following sample code shows how to add content to <dependencies>. In this example, the
3.6.3.Final version is used.

<dependency>
 <groupId>org.mybatis</groupId>
 <artifactId>mybatis</artifactId>
 <version>3.5.9</version>
</dependency>

Step 3: Map SQL fields
1. Create a Java Bean that contains member variables whose names are the same as the names of

fields in the data table. In this example, trip_id is the only primary key column in the data table.

Not ice When you create a Java Bean, make sure that the names of the member variables
in the Java Bean are the same as the names of the fields in the data table.

Funct ion Int roduct ion·SQL query Tablest ore

261 > Document Version: 20220711

https://mvnrepository.com/artifact/com.aliyun.openservices/tablestore-jdbc
https://github.com/mybatis/mybatis-3/releases

package mybatis;
public class Trip {
 private long trip_id;
 private long duration;
 private String start_date;
 private String end_date;
 private long start_station_number;
 private long end_station_number;
 private String start_station;
 private String end_station;
 private String bike_number;
 private String member_type;
 // ...
}

2. Create a mapping configuration file in which the query condit ions are defined. The following
sample code shows how to create a mapping configuration file named TripMapper.xml in the
mybatis directory.

For more information about the supported SQL features, see SQL features.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper
 PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
 "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="mybatis.TripMapper">
 <select id="selectTrip" resultType="mybatis.Trip">
 select * from trips where trip_id = #{id}
 </select>
</mapper>

Step 4: Build the SqlSessionFactory
The SqlSessionFactory is used to create a MyBatis session. You can use a MyBatis session to connect a
client to Tablestore.

1. Add the following content to the MyBatis configuration file named mybatis-config.xml. Modify the
configuration items in the configuration file based on your business requirements.

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 262

https://www.alibabacloud.com/help/doc-detail/300049.htm#concept-2104939

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE configuration
 PUBLIC "-//mybatis.org//DTD Config 3.0//EN"
 "http://mybatis.org/dtd/mybatis-3-config.dtd">
<configuration>
 <environments default="development">
 <environment id="development">
 <transactionManager type="JDBC"/>
 <!-- Specify the type of the data source. To exit the process, you must shu
t down the JDBC driver for Tablestore. Select a type of the data source that matches yo
ur needs. -->
 <!-- If you want to keep the program running after a data query, you can se
t the data source type to POOLED to maintain a connection pool. If you want the program
to exit after a data query, you can set the data source type only to UNPOOLED. -->
 <dataSource type="UNPOOLED">
 <property name="driver" value="com.alicloud.openservices.tablestore.jdb
c.OTSDriver"/>
 <property name="url" value="jdbc:ots:https://myinstance.cn-hangzhou.ots
.aliyuncs.com/myinstance"/>
 <property name="username" value="***********************"/>
 <property name="password" value="********************************"/>
 </dataSource>
 </environment>
 </environments>
 <mappers>
 <!-- Specify the path of the mapping configuration file. -->
 <mapper resource="mybatis/TripMapper.xml"/>
 </mappers>
</configuration>

The following table describes the items that you must configure in the MyBatis configuration file.

Configuration
item

Type Required Example Description

driver class Yes

com.alicloud.
openservices.
tablestore.jd
bc.OTSDriver

The name of the class for the
JDBC driver for Tablestore. Set
this configuration item to
com.alicloud.openservices.table
store.jdbc.OTSDriver.

Funct ion Int roduct ion·SQL query Tablest ore

263 > Document Version: 20220711

url string Yes

jdbc:ots:http
s://myinstan
ce.cn-
hangzhou.ots
.aliyuncs.com
/myinstance

The endpoint of the instance.
The value must be in the
following format: jdbc:ots:
endpoint/instanceName .
endpoint indicates the endpoint
of the instance. For more
information, see Endpoint.
instanceName indicates the
name of the instance. Modify
the value of instanceName
based on your business
requirements.

When you specify a value for
this configuration item, the jd
bc:ots: prefix must be
included in the value.

username string Yes

The AccessKey ID of your
Alibaba Cloud account or a RAM
user.

password string Yes

**

The AccessKey secret of your
Alibaba Cloud account or a RAM
user.

Configuration
item

Type Required Example Description

2. Load the MyBatis configuration file to build the SqlSessionFactory.

String resource = "mybatis/mybatis-config.xml";
InputStream inputStream = Resources.getResourceAsStream(resource);
SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(inputStream)
;

Step 5: Create a SqlSession to query data

SqlSession session = sqlSessionFactory.openSession(true);
Trip trip = (Trip) session.selectOne("mybatis.TripMapper.selectTrip", 99L);
System.out.println("trip id: " + trip.getTrip_id());
System.out.println("start date: " + trip.getStart_date());
System.out.println("end date: " + trip.getEnd_date());
System.out.println("duration: " + trip.getDuration());
session.close();

Complete sample code
The following sample code shows how to query the row in which the value of the primary key is 99 and
return the specified columns of the row:

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 264

https://www.alibabacloud.com/help/doc-detail/52671.htm#concept-bsx-btj-bfb

import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibatis.session.SqlSessionFactory;
import org.apache.ibatis.session.SqlSessionFactoryBuilder;
import mybatis.Trip;
import java.io.IOException;
import java.io.InputStream;
public class MyBatisDemo {
 public static void main(String[] args) throws IOException {
 // Specify the full path of the MyBatis configuration file.
 String resource = "mybatis/mybatis-config.xml";
 InputStream inputStream = Resources.getResourceAsStream(resource);
 SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(inputStr
eam);
 // Tablestore does not support transactions. Therefore, you must set the parameter
that specifies whether configurations are automatically committed to true.
 SqlSession session = sqlSessionFactory.openSession(true);
 // Enter the identifier of the SELECT statement that you want to execute and set th
e value of the primary key to 99.
 // The identifier of the SELECT statement must be in the following format: Path of
the mapping configuration file.ID of the SELECT statement that you want to execute. In this
example, mybatis.TripMapper.selectTrip indicates that the SELECT statement whose ID is sele
ctTrip in the TripMapper.xml file on the mybatis node is executed.
 Trip trip = (Trip) session.selectOne("mybatis.TripMapper.selectTrip", 99L);
 // Display the column values that you want to obtain.
 System.out.println("trip id: " + trip.getTrip_id());
 System.out.println("start date: " + trip.getStart_date());
 System.out.println("end date: " + trip.getEnd_date());
 System.out.println("duration: " + trip.getDuration());
 session.close();
 }
}

This topic describes how to use the Tablestore driver for Go to access Tablestore.

Prerequisites

An AccessKey pair that consists of an AccessKey ID and an AccessKey secret is obtained. For more
information, see Obtain an AccessKey pair.

A data table is created, and a mapping table is created for the data table. For more information, see
Create a data table and Create mapping tables for tables.

Step 1: Install the Tablestore driver for Go
Run the following command to install the Tablestore driver for Go:

8.7. Use the Tablestore driver for Go
to access Tablestore

Funct ion Int roduct ion·SQL query Tablest ore

265 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/175967.htm#task-354412
https://www.alibabacloud.com/help/doc-detail/342853.htm#task-2134826/section-tlv-x24-nfx
https://www.alibabacloud.com/help/doc-detail/295892.htm#concept-2098376

go get github.com/aliyun/aliyun-tablestore-go-sql-driver

Step 2: Use the Tablestore driver for Go to access Tablestore
The Tablestore driver for Go is implemented based on the database/sql/driver interface. After you
import the Tablestore driver for Go package and database/sql, you can use database/sql to access
Tablestore.

Parameters

When you use the Tablestore driver for Go to access Tablestore, you must specify the name of the
driver and the name of the Tablestore data source. The following table describes the parameters.

Parameter Example Description

driverName ots
The name of the Tablestore driver for Go. The
name is ots and cannot be changed.

dataSourceName

https://*****************
*******:******************
**************@myinstan
ce.cn-
hangzhou.ots.aliyuncs.
com/myinstance

The name of the Tablestore data source in the
following format: schema://accessKeyId:acce
ssKeySecret@endpoint/instanceName[?param1=
value1&...¶mN=valueN] . The name
contains the following fields:

schema: required. This field specifies the
protocol that is used by the Tablestore driver. In
most cases, this field is set to https.

accessKeyId:accessKeySecret: required. This
field specifies the AccessKey ID and AccessKey
secret of your Alibaba Cloud account or a RAM
user.

endpoint: required. This field specifies the
endpoint of the instance. For more information,
see Endpoint.

instanceName: required. This field specifies the
name of the instance.

For more information about other configuration
items, see Configuration items.

Sample code

import (
 "database/sql"
 _ "github.com/aliyun/aliyun-tablestore-go-sql-driver"
)
// Specify the name of the Tablestore driver for Go and the name of the Tablestore data s
ource.
db, err := sql.Open("ots", "https://access_key_id:access_key_secret@endpoint/instance_nam
e")
if err != nil {
 panic(err) // Handle errors.
}

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 266

https://www.alibabacloud.com/help/doc-detail/52671.htm#concept-bsx-btj-bfb

Step 3: Query data
The Tablestore driver for Go allows you to use the Query method to execute query statements and
Prepare to create a statement to query data.

Not ice The data types of f ields in the query results must match the data types of f ields in
Tablestore. For more information about data type mappings, see Data type mappings.

Use the Query method to query data

// Create a SQL statement based on your business requirements. The following sample code
provides an example on how to query the data in the pk1, col1, and col2 columns of the te
st_table table:
rows, err := db.Query("SELECT pk1, col1, col2 FROM test_table WHERE pk1 = ?", 3)
if err != nil {
 panic(err) // Handle errors.
}
for rows.Next() {
 var pk1 int64
 var col1 float64
 var col2 string
 err := rows.Scan(&pk1, &col1, &col2)
 if err != nil {
 panic(err) // Handle errors.
 }
}

Use Prepare to create a statement to query data

// Create a SQL statement based on your business requirements. The following sample code
provides an example on how to query the data in the pk1, col1, and col2 columns of the te
st_table table:
stmt, err := db.Prepare("SELECT pk1, col1, col2 FROM test_table WHERE pk1 = ?")
if err != nil {
 panic(err) // Handle errors.
}
rows, err := stmt.Query(3)
if err != nil {
 panic(err) // Handle errors.
}
for rows.Next() {
 var pk1 int64
 var col1 float64
 var col2 string
 err := rows.Scan(&pk1, &col1, &col2)
 if err != nil {
 panic(err) // Handle errors.
 }
}

Complete sample code
The following sample code provides an example on how to query all data in the test_table table on
the myinstance instance in the China (Hangzhou) region:

Funct ion Int roduct ion·SQL query Tablest ore

267 > Document Version: 20220711

package main
import (
 "database/sql"
 "fmt"
 _ "github.com/aliyun/aliyun-tablestore-go-sql"
)
func main() {
 db, err := sql.Open("ots", "https://************************:**************************
******@myinstance.cn-hangzhou.ots.aliyuncs.com/myinstance")
 if err != nil {
 panic(err)
 }
 rows, err := db.Query("SELECT * FROM test_table")
 if err != nil {
 panic(err)
 }
 for rows.Next() {
 // Specify that all columns of the rows that meet the query conditions are returned
.
 columns, err := rows.Columns()
 if err != nil {
 panic(err)
 }
 // Create an array and a pointer to store data.
 values := make([]interface{}, len(columns))
 pointers := make([]interface{}, len(columns))
 for i := range values {
 pointers[i] = &values[i]
 }
 // Scan data rows.
 err = rows.Scan(pointers...)
 if err != nil {
 panic(err)
 }
 fmt.Println(values...)
 }
 rows.Close()
 db.Close()
}

Configuration items
You can use the Tablestore driver for Go to modify the configuration items of Tablestore SDK for Go.
The following table describes the common configuration items.

Configuration item Example Description

retryT imes 10 The allowed number of retries. Default value: 10.

connectionTimeout 15
The timeout period for connection setup. Default
value: 15. Unit: seconds. The value of 0 specifies an
indefinite period of t ime.

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 268

requestT imeout 30
The timeout period for sending the request. Default
value: 30. Unit: seconds.

maxRetryT ime 5
The maximum period of t ime during which retries
are triggered. Default value: 5. Unit: seconds.

maxIdleConnections 2000
The maximum number of idle connections. Default
value: 2000.

Configuration item Example Description

Data type mappings
The following table describes the data type mappings between the fields of Tablestore and the
Tablestore driver for Go. If the data types of f ields in Tablestore do not match the data types of f ields
in the Tablestore driver for Go, an error occurs.

Data type in Tablestore Data type in the Tablestore driver for Go

Integer int64

Binary []byte

String string

Double float64

Boolean bool

You can execute the CREATE TABLE statement to create a mapping table for an exist ing table or search
index. This topic describes how to create a mapping table for an exist ing table.

Not e For more information about how to create a mapping table for an exist ing search
index, see Create mapping tables for search indexes.

Syntax

CREATE TABLE [IF NOT EXISTS] table_name(column_name data_type [NOT NULL | NULL],...
| PRIMARY KEY(key_part[,key_part])
)
ENGINE='tablestore',
ENGINE_ATTRIBUTE='{"consistency": consistency [,"allow_inaccurate_aggregation": allow_inacc
urate_aggregation]}';

If a table has only one primary key, you can use the following syntax to create a mapping table for the
exist ing table:

8.8. DDL statements
8.8.1. Create mapping tables for tables

Funct ion Int roduct ion·SQL query Tablest ore

269 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/427033.htm#concept-2196713

CREATE TABLE [IF NOT EXISTS] table_name(
column_name data_type PRIMARY KEY,column_name data_type [NOT NULL | NULL],...
)
ENGINE='tablestore',
ENGINE_ATTRIBUTE='{"consistency": consistency [,"allow_inaccurate_aggregation": allow_inacc
urate_aggregation]}';

Parameters

Parameter Required Description

IF NOT EXISTS No

Specifies whether a success response is returned. If
you specify IF NOT EXISTS, a success response is
returned regardless of whether the table exists.
Otherwise, a success response is returned only when
the table does not exist.

table_name Yes

The name of the table, which is used to identify the
table.

The table name in SQL must be the same as the
table name in Tablestore.

column_name Yes

The name of the column.

The column name in SQL must be equivalent to the
column name in the Tablestore table. For example,
if the column name in the Tablestore table is Aa, the
column name in SQL must be Aa, AA, aA, or aa.

data_type Yes

The data type of the column, such as BIGINT,
DOUBLE, or BOOL.

The data type of the column in SQL must match the
data type of the column in the Tablestore table. For
more information about data type mappings, see
Data type mappings.

NOT NULL | NULL No

Specifies whether the value of the column can be
NULL. Valid values:

NOT NULL: The value of the column cannot be
NULL. By default, the value of a primary key
column cannot be NULL.

NULL: The value of the column can be NULL. By
default, the value of an attribute column can be
NULL.

If the value of an attribute column cannot be
NULL, you must set this parameter to NOT NULL
for the attribute column.

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 270

https://www.alibabacloud.com/help/doc-detail/295886.htm#concept-2098470

key_part Yes

The name of the primary key column. Separate
multiple primary key columns with commas (,).

The name of the primary key column must be
included in the column names.

ENGINE No

The execution engine that is used when you use the
mapping table to query data. Default value:
tablestore. Valid values:

tablestore: The SQL engine automatically selects
a suitable index to perform the query.

searchindex: The SQL engine uses the specified
search index to perform the query. If ENGINE is set
to searchindex, you must configure the
index_name and table_name parameters in
ENGINE_ATTRIBUTE.

Parameter Required Description

Funct ion Int roduct ion·SQL query Tablest ore

271 > Document Version: 20220711

ENGINE_ATTRIBUTE No

The attribute of the execution engine. The value of
this parameter is in the JSON format and includes
the following items:

index_name: the name of the search index for
which a mapping table is created. You need to
specify this item only when a mapping table is
created for the search index.

table_name: the name of the data table for
which the search index is created. You need to
specify this item only when a mapping table is
created for the search index.

consistency: the consistency mode that is
supported by the execution engine.

Valid values when you create a mapping table for
a table:

eventual: The query results are in eventual
consistency mode. This is the default value.
You can query data a few seconds after the
data is written to the table.

strong: The query results are in strong
consistency mode. You can query data
immediately after the data is written to the
table.

When you create a mapping table for a search
index, the value of consistency is eventual and
cannot be changed.

allow_inaccurate_aggregation: specifies whether
query performance can be improved by
compromising the accuracy of aggregate
operations. Type: Boolean.

When you create a mapping table for a table, the
default value of allow_inaccurate_aggregation is
true, which indicates that query performance can
be improved by compromising the accuracy of
aggregate operations. You can set
allow_inaccurate_aggregation to false based on
your business requirements.

When you create a mapping table for a search
index, the value of allow_inaccurate_aggregation
is true and cannot be changed.

Parameter Required Description

Examples
Create a table named exampletable1. The table contains the id primary key column, the colvalue
attribute column, and the content attribute column. The id primary key column and colvalue attribute
column are of the BIGINT type, and the content attribute column is of the MEDIUMTEXT type.

CREATE TABLE exampletable1 (id BIGINT PRIMARY KEY, colvalue BIGINT, content MEDIUMTEXT);

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 272

Create a table named exampletable2. The table contains the id primary key column, the colvalue
primary key column, and the content attribute column. The id primary key column is of the BIGINT
type, the colvalue primary key column is of the VARCHAR type, and the content attribute column is of
the MEDIUMTEXT type. The results of queries that are performed on the table must be in strong
consistency mode.

CREATE TABLE exampletable2 (id BIGINT, colvalue VARCHAR(1024), content MEDIUMTEXT, PRIMAR
Y KEY(colvalue, id)) ENGINE_ATTRIBUTE='{"consistency": "strong"}';

You can execute the CREATE TABLE statement to create a mapping table for an exist ing table or search
index. This topic describes how to create a mapping table for an exist ing search index.

Not e For more information about how to create a mapping table for an exist ing table, see
Create mapping tables for tables.

Background information
Indexes of different types may be created for a data table. When you execute the CREATE TABLE
statement to create a mapping table for the data table, and the mapping table is used to query data,
the SQL engine automatically selects a data table index, secondary index, or search index to meet your
business requirements. You can execute the CREATE TABLE statement in SQL to create a mapping table
for a specified search index so that you can select the specified search index to perform the query.

Syntax

CREATE TABLE [IF NOT EXISTS] user_defined_name(column_name data_type L,column_name data_typ
e])
ENGINE='searchindex',
ENGINE_ATTRIBUTE='{"index_name": index_name, "table_name": table_name}';

Parameters

Parameter Required Description

IF NOT EXISTS No

Specifies whether a success response is returned. If
you specify IF NOT EXISTS, a success response is
returned regardless of whether the table exists.
Otherwise, a success response is returned only when
the table does not exist.

user_defined_name Yes

The name of the mapping table for the search
index. The name is used to identify the mapping
table in SQL.

The name is used for SQL operations.

8.8.2. Create mapping tables for search indexes

Funct ion Int roduct ion·SQL query Tablest ore

273 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/295892.htm#concept-2098376

column_name Yes

The name of the column.

The column name in SQL must be equivalent to the
column name in the Tablestore table. For example,
if the column name in the Tablestore table is Aa, the
column name in SQL must be Aa, AA, aA, or aa.

data_type Yes

The data type of the column, such as BIGINT,
DOUBLE, or BOOL.

The data type of the column in SQL must match the
data type of the column in the Tablestore table. For
more information about data type mappings, see
Data type mappings.

ENGINE Yes

The execution engine that is used when you use the
mapping table to query data. Default value:
tablestore. Valid values:

tablestore: The SQL engine automatically selects
a suitable index to perform the query.

searchindex: The SQL engine uses the specified
search index to perform the query. If ENGINE is set
to searchindex, you must configure the
index_name and table_name parameters in
ENGINE_ATTRIBUTE.

Parameter Required Description

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 274

https://www.alibabacloud.com/help/doc-detail/295886.htm#concept-2098470

ENGINE_ATTRIBUTE Yes

The attribute of the execution engine. The value of
this parameter is in the JSON format and includes
the following items:

index_name: the name of the search index for
which a mapping table is created. You need to
specify this item only when a mapping table is
created for the search index.

table_name: the name of the data table for
which the search index is created. You need to
specify this item only when a mapping table is
created for the search index.

consistency: the consistency mode that is
supported by the execution engine.

Valid values when you create a mapping table for
a table:

eventual: The query results are in eventual
consistency mode. This is the default value.
You can query data a few seconds after the
data is written to the table.

strong: The query results are in strong
consistency mode. You can query data
immediately after the data is written to the
table.

When you create a mapping table for a search
index, the value of consistency is eventual and
cannot be changed.

allow_inaccurate_aggregation: specifies whether
query performance can be improved by
compromising the accuracy of aggregate
operations. Type: Boolean.

When you create a mapping table for a table, the
default value of allow_inaccurate_aggregation is
true, which indicates that query performance can
be improved by compromising the accuracy of
aggregate operations. You can set
allow_inaccurate_aggregation to false based on
your business requirements.

When you create a mapping table for a search
index, the value of allow_inaccurate_aggregation
is true and cannot be changed.

Parameter Required Description

Examples
Create a mapping table named search_exampletable1 for the exampletable1_index search index that is
created for the exampletable1 data table. The mapping table contains the id, colvalue, and content
columns. The id column is of the BIGINT type, and the colvalue and content columns are of the
MEDIUMTEXT type.

Funct ion Int roduct ion·SQL query Tablest ore

275 > Document Version: 20220711

CREATE TABLE search_exampletable1(id BIGINT, colvalue MEDIUMTEXT, content MEDIUMTEXT) ENGIN
E='searchindex' ENGINE_ATTRIBUTE='{"index_name": "exampletable1_index", "table_name": "exam
pletable1"}';

After the search_exampletable1 mapping table is created, you can perform the following operations:

Query information about the search_exampletable1 mapping table.

SHOW INDEX IN search_exampletable1;

For more information about how to query index information about a table, see Query the index
information about a table.

Use the search_exampletable1 mapping table to query the rows in which the value of the content
column matches at least one of the tokens that are obtained by tokenizing the "tablestore cool"
string. Specify that up to 10 rows are returned and the id and content columns are returned in each
row that meets the query condit ions.

SELECT id,content FROM search_exampletable1 WHERE TEXT_MATCH(content, "tablestore cool")
LIMIT 10;

For more information about how to query data that matches the specified string, see Query data and
Full-text search.

If the attribute column of a table is modified, you can execute the DROP MAPPING TABLE statement to
delete the mapping table of the table and recreate a mapping table for the table. You can delete the
mapping tables of mult iple tables in a single request.

Not e The DROP MAPPING TABLE statement does not delete the tables in Tablestore.

Syntax

DROP MAPPING TABLE [IF EXISTS] table_name,...;

Parameters

Parameter Required Description

table_name Yes
The name of the table. You can configure multiple table names
that are separated with commas (,) in a single request.

IF EXISTS No

Specifies whether a success response is returned. If you specify
IF EXISTS, a success response is returned regardless of whether
the mapping table exists. Otherwise, a success response is
returned only when the mapping table exists.

Example
Delete the mapping table of a table named exampletable.

8.8.3. Delete mapping tables

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 276

https://www.alibabacloud.com/help/doc-detail/295904.htm#concept-2101160
https://www.alibabacloud.com/help/doc-detail/295900.htm#concept-2098388
https://www.alibabacloud.com/help/doc-detail/415664.htm#concept-2190182

DROP MAPPING TABLE IF EXISTS exampletable;

You can execute the DESCRIBE statement to query the information about a table, such as the field
name and field type.

Syntax

DESCRIBE table_name;

Parameters

Parameter Required Description

table_name Yes The name of the table.

Examples
Query the information about a table named exampletable.

DESCRIBE exampletable;

You can execute the SELECT statement to query data in a table.

Usage notes
The execution priority of clauses in the SELECT statement is WHERE > GROUP BY > HAVING > ORDER BY >
LIMIT and OFFSET.

Syntax

SELECT
 [ALL | DISTINCT | DISTINCTROW]
 select_expr [, select_expr] ...
 [FROM table_references]
 [WHERE where_condition]
 [GROUP BY groupby_condition]
 [HAVING having_condition]
 [ORDER BY order_condition]
 [LIMIT {[offset,] row_count | row_count OFFSET offset}]

Parameters

8.8.4. Query the information about a table

8.9. DQL statements
8.9.1. Query data

Funct ion Int roduct ion·SQL query Tablest ore

277 > Document Version: 20220711

Parameter Required Description

ALL | DIST INCT |
DIST INCTROW

No

Specifies whether to remove duplicate fields.
Default value: ALL. Valid values:

ALL: returns all values of the specified fields,
including duplicate values.

DIST INCT: removes duplicate fields and returns
only the values of distinct fields.

DIST INCTROW: removes duplicate rows and
returns only the values of distinct rows.

select_expr Yes

The name or expression of the column in the
 column_name[, column_name][,
column_exp],.. format. For more information,
see Column expression (select_expr).

table_references Yes

The information about the table whose data you
want to query. The value of this parameter can be a
table name or a SELECT statement in the
 table_name | select_statement format. For

more information, see Table information
(table_references).

where_condition No

The WHERE clause that can be used together with
different conditions to implement specific features.

You can use the WHERE clause together with
relational operators to query the data that meets
specified conditions. The format is column_nam
e operator value [AND | OR] [column_name
operator value] . For more information, see
WHERE clause (where_condition).

You can use the WHERE clause together with the
conditions of match query or match phrase query
to perform full-text search. For more information,
see Full-text search.

groupby_condition No

The GROUP BY clause that can be used together
with aggregate functions. The format is
 column_name . For more information, see GROUP

BY clause (groupby_condition).

having_condition No

The HAVING clause that can be used together with
aggregate functions. The format is
 aggregate_function(column_name) operator
value . For more information, see HAVING clause
(having_condition).

order_condition No

The ORDER BY clause in the column_name [ASC |
DESC][,column_name [ASC | DESC],...]
format. For more information, see ORDER BY clause
(order_condition).

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 278

https://www.alibabacloud.com/help/doc-detail/415664.htm#concept-2190182

row_count No
The maximum number of rows to return in the
query.

offset No
The data that is skipped in the query. Default value:
0.

Parameter Required Description

Column expression (select_expr)
You can use select_expr to specify the column that you want to query. When you use select_expr, take
note of the following items:

You can use the wildcard character (*) to query all columns. You can also use the WHERE clause to
specify the query condit ion.

SELECT * FROM orders;

The following example shows how to use the WHERE clause to specify a query condit ion:

SELECT * FROM orders WHERE orderprice >= 100;

You can use the column name to specify the column that you want to query.

SELECT username FROM orders;

Table information (table_references)
You can use table_references to specify the table whose data you want to query.

SELECT orderprice FROM orders;

WHERE clause (where_condition)
You can use where_condit ion to query data that meets the specified condit ions. When you use
where_condit ion, take note of the following items:

You can use simple expressions that are constructed by using operators such as arithmetic operators
or relat ional operators.

SELECT * FROM orders WHERE username = 'lily';
SELECT * FROM orders WHERE orderprice >= 100;

You can use combined expressions that are constructed by using logical operators.

SELECT * FROM orders WHERE username = 'lily' AND orderprice >= 100;

For more information about operators, see SQL operators.

GROUP BY clause (groupby_condition)
You can use groupby_condit ion to group the row data in the result set of a SELECT statement based
on a specified condit ion. When you use groupby_condit ion, take note of the following items:

You can group row data by field.

Funct ion Int roduct ion·SQL query Tablest ore

279 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/295910.htm#concept-2098382

SELECT username FROM orders GROUP BY username;

You can use aggregate functions on grouped columns.

SELECT username,COUNT(*) FROM orders GROUP BY username;

You must add the columns that do not use aggregate functions in the SELECT statement to the
GROUP BY clause.

SELECT username,orderprice FROM orders GROUP BY username,orderprice;

For more information about aggregate functions, see Aggregate functions.

HAVING clause (having_condition)
You can use having_condit ion to filter the row data that you grouped in the result sets that are
obtained by using the WHERE and GROUP BY clauses. The row data that you grouped is f iltered based
on specified condit ions.

In most cases, the HAVING clause is used together with aggregate functions to filter data.

SELECT username,SUM(orderprice) FROM orders GROUP BY username HAVING SUM(orderprice) < 500;

ORDER BY clause (order_condition)
You can use order_condit ion to sort the row data in the result set of a query based on the specified
field and sort ing method. When you use order_condit ion, take note of the following items:

You can use the ASC or DESC keyword to specify the sort ing method. By default , the data is sorted in
ascending order (ASC).

SELECT * FROM orders ORDER BY orderprice DESC LIMIT 10;

You can specify mult iple fields based on which you want to sort data.

SELECT * FROM orders ORDER BY username ASC,orderprice DESC LIMIT 10;

You can use LIMIT to limit the number of rows to return.

SELECT * FROM orders ORDER BY orderprice LIMIT 10;

This topic describes the aggregate functions that are supported for SQL queries.

Function Description

COUNT() Returns the number of rows that match the specified condition.

COUNT(DIST INCT)
Returns the number of rows with different values in the specified
column.

SUM() Returns the sum of numeric columns.

AVG() Returns the average value of numeric columns.

8.9.2. Aggregate functions

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 280

https://www.alibabacloud.com/help/doc-detail/295901.htm#concept-2098409

MAX() Returns the maximum value in a column.

MIN() Returns the minimum value in a column.

Function Description

To perform full-text search, you can use the condit ions of match query (TEXT_MATCH) or match phrase
query (TEXT_MATCH_PHRASE) as the WHERE clause in the SELECT statement to query data that matches
the specified character string in the table.

Prerequisites
A search index is created for the table whose data you want to query, and tokenization is performed
for the column that you want to query. For more information, see Create search indexes.

Not e For more information about tokenization, see Tokenization.

Match query
This query uses approximate matches to retrieve query results. Tablestore tokenizes the values in TEXT
columns and the keywords that you use to perform match queries based on the analyzer that you
specify. This way, Tablestore can perform match queries based on the tokens. We recommend that you
use TEXT_MATCH_PHRASE to achieve high performance when you perform fuzzy query to query
columns for which fuzzy tokenization is performed.

SQL expression

TEXT_MATCH(fieldName, text, [options])

Parameters

Parameter Type Required Example Description

fieldName string Yes col1

The name of the column that
you want to query. You can
perform match queries on TEXT
columns.

8.9.3. Full-text search

Funct ion Int roduct ion·SQL query Tablest ore

281 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/117452.htm#concept-226914
https://www.alibabacloud.com/help/doc-detail/120227.htm#concept-354503

text string Yes
"tablestore is
cool"

The keyword that is used to
match the column values when
you perform a match query.

If the column to query is a TEXT
column, the keyword is
tokenized into multiple tokens
based on the analyzer that you
specify when you create the
search index. By default, single-
word tokenization is performed
if you do not specify the
analyzer when you create the
search index.

For example, if you set the
tokenization method to single-
word tokenization and use "this
is" as a search keyword, you can
obtain query results such as "...,
this is tablestore", "is this
tablestore", "tablestore is cool",
"this", and "is".

options string No "or", "2"

The options that you want to
use to perform match queries.
Valid values:

operator: the logical
operator. Valid values: OR
and AND. Default value: OR.

minimum_should_match: the
minimum number of matched
tokens that are contained in a
column value. Default value:
1.

If you set operator to OR, a
row meets the query
conditions only if the value of
the fieldName column in the
row contains at least the
minimum number of matched
tokens.

If you set operator to AND, a
row meets the query
conditions only if the column
value contains all tokens.

Parameter Type Required Example Description

Return value

The return value indicates whether the row meets the query condit ions. The return value is of the
Boolean type. If the return value is true, the row meets the query condit ions. If the return value is
false, the row does not meet the query condit ions.

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 282

Examples

The following sample code shows how to query the rows in which the value of the col1 column
matches at least two tokens of the "tablestore is cool" string in the exampletable table:

SELECT * FROM exampletable WHERE TEXT_MATCH(col1, "tablestore is cool", "or", "2")

The following sample code shows how to query the rows in which the value of the col1 column
matches all tokens of the "tablestore is cool" string in the exampletable table:

SELECT * FROM exampletable WHERE TEXT_MATCH(col1, "tablestore is cool", "and")

Match phrase query
Match phrase query is similar to match query (TEXT_MATCH), but evaluates the posit ion between
mult iple tokens. A row meets the query condit ions only when the order and posit ions of the tokens in
the row match the order and posit ions of the tokens that are contained in the tokenized keyword.

SQL expression

TEXT_MATCH_PHRASE(fieldName, text)

Parameters

Parameter Type Required Example Description

fieldName string Yes col1

The name of the column that
you want to query. You can
perform match phrase queries
on TEXT columns.

text string Yes
"tablestore is
cool"

The keyword that is used to
match the column values when
you perform a match phrase
query.

If the column to query is a TEXT
column, the keyword is
tokenized into multiple tokens
based on the analyzer that you
specify when you create the
search index. By default, single-
word tokenization is performed
if you do not set the analyzer
when you create the search
index.

For example, if you query the
phrase "this is", "..., this is
tablestore" and "this is a table"
are returned. "this table is ..."
and "is this a table" are not
returned.

Return value

Funct ion Int roduct ion·SQL query Tablest ore

283 > Document Version: 20220711

The return value indicates whether the row meets the query condit ions. The return value is of the
Boolean type. If the return value is true, the row meets the query condit ions. If the return value is
false, the row does not meet the query condit ions.

Example

The following sample code shows how to query the rows in which the value of the col1 column
matches the "tablestore is cool" string in the exampletable table:

SELECT * FROM exampletable WHERE TEXT_MATCH_PHRASE("col1", "tablestore is cool")

You can execute the SHOW INDEX statement to query the index information about a table.

Syntax

SHOW INDEX {FROM | IN} table_name;

Parameters

Parameter Required Description

table_name Yes The name of the table.

Example
Query the index information about a table named exampletable.

SHOW INDEX IN exampletable;

You can execute the SHOW TABLES statement to list the names of tables in the current database.

Syntax

SHOW TABLES;

Examples
List the names of tables in the current database.

SHOW TABLES;

8.10. Database administration
statements
8.10.1. Query the index information about a table

8.10.2. List table names

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 284

The following result is returned:

Tables_in_tpch
exampletable1
exampletable2

Tablestore can store large amounts of structured data and supports various types of index schemas
for accelerated query and analyt ics in different scenarios. When you use the SQL query feature, you can
perform index-based queries by using explicit access to a secondary index table. Tablestore provides
the following methods to query data by using a search index: automatic select ion of a search index
and explicit access to a search index.

Not e For more information about secondary indexes and search indexes, see Overview of
secondary indexes and Overview of search indexes.

Use secondary index tables

Not ice Secondary indexes cannot be automatically selected for data queries.

Tablestore supports only explicit access to secondary index tables. If you want to access a secondary
index table by using explicit access to the secondary index table, perform the following steps:

1. Execute the CREATE TABLE statement to create a mapping table for the secondary index table
that you want to access. For more information, see Create mapping tables for tables.

2. Execute the SELECT statement to query data. For more information, see Query data.

Use search indexes
When you use SQL to perform complex queries such as queries based on non-primary key columns and
Boolean queries, we recommend that you create a search index for the data table whose data you
want to query. After the search index is created, you can use one of the following methods to query
data by using the search index in SQL:

Explicit access to a search index

If you want to use the specified search index to query data, you can perform the following
operations to use this method:

i. Execute the CREATE TABLE statement to create a mapping table for the search index. For more
information, see Create mapping tables for search indexes.

ii. Execute the SELECT statement to query data. For more information, see Query data.

Automatic select ion of a search index

8.11. Query optimization
8.11.1. Index selection policy

Funct ion Int roduct ion·SQL query Tablest ore

285 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/91947.htm#concept-ogb-g2b-ffb
https://www.alibabacloud.com/help/doc-detail/91974.htm#concept-gmr-nyf-ffb
https://www.alibabacloud.com/help/doc-detail/295892.htm#concept-2098376
https://www.alibabacloud.com/help/doc-detail/295900.htm#concept-2098388
https://www.alibabacloud.com/help/doc-detail/427033.htm#concept-2196713
https://www.alibabacloud.com/help/doc-detail/295900.htm#concept-2098388

Not ice If you specify that the query results must be in strong consistency mode or query
performance cannot be improved by compromising the accuracy of aggregate operations when
you create a mapping table for the table whose data you want to query, Tablestore does not
automatically select a search index for data query.

When the search index that you want to access is not explicit ly specified, if all f iltering columns in the
WHERE clause and return columns in the SELECT statement are contained in a search index, Tablestore
automatically selects the search index for data query. For example, in the Select A,B,C from examp
letable where A=XXX and D = YY; statement, if the A, B, C, and D columns are contained in a search
index of the exampletable table, Tablestore automatically selects the search index for data query.

If SQL statements that combine GROUP BY clauses and aggregate functions match the aggregation
capability of the Search API operation of a search index, Tablestore also identifies operators and
pushes them down to the search index. For more information about operator pushdown, see Computing
pushdown.

Mapping between SQL expressions and Search queries in search
indexes

SQL expression Example Search query

without predicate N/A Match all query

=
a = 1

b = "hello world"
Term query

> a > 1

Range query
>= a >= 2

< a < 5

<= a <= 10

is null a is null
Exists query

is not null a is not null

and a = 1 and b = "hello world"

Boolean query
or a > 1 or b = 2

not not a = 1

!= a !=1

like a like "%s%" Wildcard query

in a in (1,2,3) Terms query

text_match
text_match("a", "tablestore
cool")

Match query

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 286

https://www.alibabacloud.com/help/doc-detail/295909.htm#concept-2098481
https://www.alibabacloud.com/help/doc-detail/117484.htm#concept-227002
https://www.alibabacloud.com/help/doc-detail/117488.htm#concept-227006
https://www.alibabacloud.com/help/doc-detail/117496.htm#concept-227247
https://www.alibabacloud.com/help/doc-detail/124204.htm#concept-995063
https://www.alibabacloud.com/help/doc-detail/117498.htm#concept-227249
https://www.alibabacloud.com/help/doc-detail/117497.htm#concept-227248
https://www.alibabacloud.com/help/doc-detail/117493.htm#concept-227243
https://www.alibabacloud.com/help/doc-detail/117485.htm#concept-227004

text_match_phrase
text_match_phrase("a",
"tablestore cool")

Match phrase query

SQL expression Example Search query

A search index provides features such as condit ional filtering, aggregation, and sort ing. After you
create a search index, the system can make full use of the computing power of the search index and
push some SQL computing tasks down to the search index for execution. This avoids full table scans
and improves computing efficiency.

Prerequisites
A search index is created. For more information about how to create a search index, see Create search
indexes.

Scenarios
If a search index contains the data columns involved in SQL statements, the SQL engine reads data by
using the search index and pushes down the operators that are supported by the search index. For
example, a table named exampletable has a, b, c, and d columns. A search index of the table contains
the b, c, and d columns that are indexed. The SQL engine reads data by using the search index when
only the b, c, and d columns are involved in SQL statements.

SELECT a, b, c, d FROM exampletable; /* The search index does not contain the a column. The
SQL engine reads data by scanning the entire table and does not push down operators. */
SELECT b, c, d FROM exampletable; /* The search index contains the b, c, and d columns.
The SQL engine reads data by using the search index and pushes down operators. */

Operators that can be pushed down

Type Operator Pushdown limit

Logical
operators

AND and OR The NOT operator cannot be pushed down.

8.11.2. Computing pushdown

Funct ion Int roduct ion·SQL query Tablest ore

287 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/117486.htm#concept-227005
https://www.alibabacloud.com/help/doc-detail/117452.htm#concept-226914

Relational
operators

=, !=, <, <=, >, >=, and BETWEEN ...
AND ...

Operator pushdown is supported only for
comparison between data columns and constants.
Operator pushdown is not supported for
comparison between data columns.

SELECT * FROM exampletable WHERE a > 1;
/* Operator pushdown is supported for
comparison between data columns and
constants. */
SELECT * FROM exampletable WHERE a > b;
/* Operator pushdown is not supported
for comparison between data columns. */

Aggregat
e
functions

Basic aggregation: MIN, MAX,
COUNT, AVG, SUM, and ANY_VALUE

Deduplication and aggregation:
COUNT(DIST INCT col_name)

Grouping: GROUP BY col_name

An aggregate function can aggregate all data or
data in a GROUP BY group. Operator pushdown is
supported only when the aggregate function
supports pushdown and the function parameter is a
data column.

SELECT COUNT(*) FROM exampletable;
/* Operator pushdown is supported for
the special usage of COUNT(*). */
SELECT SUM(a) FROM exampletable;
/* Operator pushdown is supported when
the function parameter is a data column.
*/
SELECT a, b FROM exampletable GROUP BY
a, b; /* Operator pushdown is supported
for grouping by data column. */
SELECT a FROM exampletable GROUP BY a+1;
/* Operator pushdown is not supported
for grouping by expression. */
SELECT SUM(a+b) FROM exampletable;
/* Operator pushdown is not supported
when the function parameter is an
expression. */

Type Operator Pushdown limit

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 288

LIMIT
LIMIT row_count

ORDER BY col_name LIMIT
row_count

Operator pushdown is supported only when the
parameter in the ORDER BY clause is a data column.

SELECT * FROM exampletable ORDER BY a
LIMIT 1; /* Operator pushdown is
supported for sorting by data column. */
SELECT * FROM exampletable ORDER BY a, b
LIMIT 1; /* Operator pushdown is
supported for sorting by data column. */
SELECT * FROM exampletable ORDER BY a+1
LIMIT 1; /* Operator pushdown is not
supported for sorting by expression. */

Type Operator Pushdown limit

This topic describes the operators that are supported in Tablestore SQL, including arithmetic operators,
relat ional operators, logical operators, and bitwise operators.

Arithmetic operators
Arithmetic operators can be used in SELECT or WHERE clauses to compute values.

Operator Relation Description

A+B Addition Returns the result by adding A and B.

A-B Subtraction Returns the result by subtracting B from A.

A*B Multiplication Returns the result by multiplying A by B.

A/B or A DIV B Division Returns the result by dividing A by B.

A%B or A MOD B Remainder
Returns the result by computing the remainder of
dividing A by B.

Relational operators
Relational operators are used to determine the row data that meets the specified condit ions in a table.

If the comparison result is true (TRUE), 1 is returned.

If the comparison result is false (FALSE), 0 is returned.

Relat ional operators can be used in WHERE clauses as specific condit ions. If the condit ion is met, 1 is
returned. If the condit ion is not met, 0 is returned.

8.12. Appendix
8.12.1. SQL operators

Funct ion Int roduct ion·SQL query Tablest ore

289 > Document Version: 20220711

Operator Relation Description

A:=B Assignment Assigns the value of B to A.

A=B Equal to
Returns 1 if A is equal to B, and returns 0 in other
cases.

A!=B or A<>B Not equal to
Returns 1 if A is not equal to B, and returns 0 in
other cases.

A>B Greater than
Returns 1 if A is greater than B, and returns 0 in
other cases.

A<B Less than
Returns 1 if A is less than B, and returns 0 in other
cases.

A>=B Greater than or equal to
Returns 1 if A is greater than or equal to B, and
returns 0 in other cases.

A<=B Less than or equal to
Returns 1 if A is less than or equal to B, and returns
0 in other cases.

BETWEEN A AND B BETWEEN
Returns 1 if the value is greater than or equal to A
and less than or equal to B, and returns 0 in other
cases.

Not BETWEEN A AND B NOT BETWEEN
Returns 1 if the value is greater than B or less than
A, and returns 0 in other cases.

A LIKE B LIKE

Returns 1 if A matches B, and returns 0 in other
cases. The LIKE operator performs the string
matching operation. A is a string, and B is a
matching pattern.

The underscore (_) wildcard in the pattern
substitutes for exactly one character in a string. The
percent sign (%) wildcard in the pattern substitutes
for zero or more characters in a string.

A NOT LIKE B NOT LIKE

Returns 1 if A does not match B, and returns 0 in
other cases. The NOT LIKE operator performs the
string mismatching operation. A is a string, and B is
a matching pattern.

The underscore (_) wildcard in the pattern
substitutes for exactly one character in a string. The
percent sign (%) wildcard in the pattern substitutes
for one or more characters in a string.

Logical operators
Logical operators are used to determine whether expressions are true or false.

If the expression is true (TRUE), 1 is returned.

If the expression is false (FALSE), 0 is returned.

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 290

Logical operators can be used in WHERE clauses to construct complex condit ions. If the condit ion is met,
1 is returned. If the condit ion is not met, 0 is returned.

Operator Relation Description

A AND B or A&&B Logical AND
Returns 1 if both A and B are TRUE, and returns 0 in
other cases.

A OR B Logical OR
Returns 1 if at least one of A and B is TRUE, and
returns 0 in other cases.

A XOR B Logical XOR
Returns 1 if A and B are not TRUE or FALSE at the
same time, and returns 0 in other cases.

NOT A or ! A Logical NOT Returns 1 if A is FALSE, and returns 0 in other cases.

Bitwise operators
Bitwise operators are used to compute binary data. The bitwise operation converts the operand into a
binary number for bitwise operation, and then converts the computing result from a binary number to a
decimal number.

Operator Relation Description

A&B Bitwise AND
Returns the result based on the bitwise AND
operation of A and B.

A|B Bitwise OR
Returns the result based on the bitwise OR
operation of A and B.

A^B Bitwise XOR
Returns the result based on the bitwise XOR
operation of A and B.

~A Bitwise NOT
Returns the result based on the bitwise inversion of
A.

This topic describes all reserved words and keywords in Tablestore SQL.

Alphabeti
cal order

Keyword and reserved word

A
ACCESSIBLE ACCOUNT ACTION ADD AFTER AGAINST AGGREGATE ALGORITHM ALL ALTER ALWAYS
ANALYSE ANALYZE ANDANY AS ASC ASCII ASENSIT IVE AT AUTOEXTEND_SIZE AUTO_INCREMENT
AVG AVG_ROW_LENGTH

B
BACKUP BEFORE BEGIN BETWEEN BIGINT BINARY BINLOG BIT BLOB BLOCK BOOL BOOLEAN BOTH
BTREE BY BYTE

8.12.2. Reserved words and keywords

Funct ion Int roduct ion·SQL query Tablest ore

291 > Document Version: 20220711

C

CACHE CALL CASCADE CASCADED CASE CATALOG_NAME CHAIN CHANGE CHANGED CHANNEL CHAR
CHARACTER CHARSET CHECK CHECKSUM CIPHER CLASS_ORIGIN CLIENT CLOSE COALESCE CODE
COLLATE COLLATION COLUMN COLUMNS COLUMN_FORMAT COLUMN_NAME COMMENT COMMIT
COMMITTED COMPACT COMPLETION COMPRESSED COMPRESSION CONCURRENT CONDIT ION
CONNECTION CONSISTENT CONSTRAINT CONSTRAINT_CATALOG CONSTRAINT_NAME
CONSTRAINT_SCHEMA CONTAINS CONTEXT CONTINUE CONVERT CPU CREATE CROSS CUBE
CURRENT CURRENT_DATE CURRENT_TIME CURRENT_TIMESTAMP CURRENT_USER CURSOR
CURSOR_NAME

D

DATA DATABASE DATABASES DATAFILE DATE DATETIME DAY DAY_HOUR DAY_MICROSECOND
DAY_MINUTE DAY_SECOND DEALLOCATE DEC DECIMAL DECLARE DEFAULT DEFAULT_AUTH DEFINER
DELAYED DELAY_KEY_WRITE DELETE DESC DESCRIBE DES_KEY_FILE DETERMINIST IC DIAGNOSTICS
DIRECTORY DISABLE DISCARD DISK DIST INCT DIST INCTROW DIV DO DOUBLE DROP DUAL DUMPFILE
DUPLICATE DYNAMIC

E
EACH ELSE ELSEIF ENABLE ENCLOSED ENCRYPTION END ENDS ENGINE ENGINES ENUM ERROR ERRORS
ESCAPE ESCAPED EVENT EVENTS EVERY EXCHANGE EXECUTE EXISTS EXIT EXPANSION EXPIRE
EXPLAIN EXPORT EXTENDED EXTENT_SIZE

F
FALSE FAST FAULTS FETCH FIELDS FILE FILE_BLOCK_SIZE FILTER FIRST FIXED FLOAT FLOAT4 FLOAT8
FLUSH FOLLOWS FOR FORCE FOREIGN FORMAT FOUND FROM FULL FULLTEXT FUNCTION

G
GENERAL GENERATED GEOMETRY GEOMETRYCOLLECTION GET GET_FORMAT GLOBAL GRANT
GRANTS GROUP GROUP_REPLICATION

H
HANDLER HASH HAVING HELP HIGH_PRIORITY HOST HOSTS HOUR HOUR_MICROSECOND
HOUR_MINUTE HOUR_SECOND

I

IDENTIFIED IF IGNORE IGNORE_SERVER_IDS IMPORT IN INDEX INDEXES INFILE INIT IAL_SIZE INNER
INOUT INSENSIT IVE INSERT INSERT_METHOD INSTALL INSTANCE INT INT1 INT2 INT3 INT4 INT8
INTEGER INTERVAL INTO INVOKER IO IO_AFTER_GTIDS IO_BEFORE_GTIDS IO_THREAD IPC IS
ISOLATION ISSUER ITERATE

J JOIN JSON

K KEY KEYS KEY_BLOCK_SIZE KILL

L
LANGUAGE LAST LEADING LEAVE LEAVES LEFT LESS LEVEL LIKE LIMIT LINEAR LINES LINESTRING LIST
LOAD LOCAL LOCALTIME LOCALTIMESTAMP LOCK LOCKS LOGFILE LOGS LONG LONGBLOB
LONGTEXT LOOP LOW_PRIORITY

M

MASTER MASTER_AUTO_POSIT ION MASTER_BIND MASTER_CONNECT_RETRY MASTER_DELAY
MASTER_HEARTBEAT_PERIOD MASTER_HOST MASTER_LOG_FILE MASTER_LOG_POS
MASTER_PASSWORD MASTER_PORT MASTER_RETRY_COUNT MASTER_SERVER_ID MASTER_SSL
MASTER_SSL_CA MASTER_SSL_CAPATH MASTER_SSL_CERT MASTER_SSL_CIPHER MASTER_SSL_CRL
MASTER_SSL_CRLPATH MASTER_SSL_KEY MASTER_SSL_VERIFY_SERVER_CERT
MASTER_TLS_VERSION MASTER_USER MATCH MAXVALUE MAX_CONNECTIONS_PER_HOUR
MAX_QUERIES_PER_HOUR MAX_ROWS MAX_SIZE
MAX_UPDATES_PER_HOURMAX_USER_CONNECTIONS MEDIUM MEDIUMBLOB MEDIUMINT
MEDIUMTEXT MEMORY MERGE MESSAGE_TEXT MICROSECOND MIDDLEINT MIGRATE MINUTE
MINUTE_MICROSECOND MINUTE_SECOND MIN_ROWS MOD MODE MODIFIES MODIFY MONTH
MULTILINESTRING MULTIPOINT MULTIPOLYGON MUTEX MYSQL_ERRNO

Alphabeti
cal order

Keyword and reserved word

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 292

N
NAME NAMES NATIONAL NATURAL NCHAR NDB NDBCLUSTER NEVER NEW NEXT NO NODEGROUP
NONBLOCKING NONE NOT NO_WAIT NO_WRITE_TO_BINLOG NULL NUMBER NUMERIC NVARCHAR

O
OFFSET OLD_PASSWORD ON ONE ONLY OPEN OPTIMIZE OPTIMIZER_COSTS OPTION OPTIONALLY
OPTIONS OR ORDER OUT OUTER OUTFILE OWNER

P

PACK_KEYS PAGE PARSER PARSE_GCOL_EXPR PARTIAL PARTIT ION PARTIT IONING PARTIT IONS
PASSWORD PHASE PLUGIN PLUGINS PLUGIN_DIR POINT POLYGON PORT PRECEDES PRECISION
PREPARE PRESERVE PREV PRIMARY PRIVILEGES PROCEDURE PROCESSLIST PROFILE PROFILES PROXY
PURGE

Q QUARTER QUERY QUICK

R

RANGE READ READS READ_ONLY READ_WRITE REAL REBUILD RECOVER REDOFILE REDO_BUFFER_SIZE
REDUNDANT REFERENCES REGEXP RELAY RELAYLOG RELAY_LOG_FILE RELAY_LOG_POS
RELAY_THREAD RELEASE RELOAD REMOVE RENAME REORGANIZE REPAIR REPEAT REPEATABLE
REPLACE REPLICATE_DO_DB REPLICATE_DO_TABLE REPLICATE_IGNORE_DB
REPLICATE_IGNORE_TABLE REPLICATE_REWRITE_DB REPLICATE_WILD_DO_TABLE
REPLICATE_WILD_IGNORE_TABLE REPLICATION REQUIRE RESET RESIGNAL RESTORE RESTRICT
RESUME RETURN RETURNED_SQLSTATE RETURNS REVERSE REVOKE RIGHT RLIKE ROLLBACK ROLLUP
ROTATE ROUTINE ROW ROWS ROW_COUNT ROW_FORMAT RTREE

S

SAVEPOINT SCHEDULE SCHEMA SCHEMAS SCHEMA_NAME SECOND SECOND_MICROSECOND
SECURITY SELECT SENSIT IVE SEPARATOR SERIAL SERIALIZABLE SERVER SESSION SET SHARE SHOW
SHUTDOWN SIGNAL SIGNED SIMPLE SLAVE SLOW SMALLINT SNAPSHOT SOCKET SOME SONAME
SOUNDSSOURCE SPATIAL SPECIFIC SQL SQLEXCEPTION SQLSTATE SQLWARNING SQL_AFTER_GTIDS
SQL_AFTER_MTS_GAPS SQL_BEFORE_GTIDS SQL_BIG_RESULT SQL_BUFFER_RESULT SQL_CACHE
SQL_CALC_FOUND_ROWS SQL_NO_CACHE SQL_SMALL_RESULT SQL_THREAD SQL_TSI_DAY
SQL_TSI_HOUR SQL_TSI_MINUTE SQL_TSI_MONTH SQL_TSI_QUARTER SQL_TSI_SECOND
SQL_TSI_WEEK SQL_TSI_YEAR SSL STACKED START STARTING STARTS STATS_AUTO_RECALC
STATS_PERSISTENT STATS_SAMPLE_PAGES STATUS STOP STORAGE STORED STRAIGHT_JOIN
STRING SUBCLASS_ORIGIN SUBJECT SUBPARTIT ION SUBPARTIT IONS SUPER SUSPEND SWAPS
SWITCHES

T
TABLE TABLES TABLESPACE TABLE_CHECKSUM TABLE_NAME TEMPORARY TEMPTABLE TERMINATED
TEXT THAN THEN T IME T IMESTAMP T IMESTAMPADD T IMESTAMPDIFF T INYBLOB T INYINT T INYTEXT
TO TRAILING TRANSACTION TRIGGER TRIGGERS TRUE TRUNCATE TYPE TYPES

U
UNCOMMITTED UNDEFINED UNDO UNDOFILE UNDO_BUFFER_SIZE UNICODE UNINSTALL UNION
UNIQUE UNKNOWN UNLOCK UNSIGNED UNTIL UPDATE UPGRADE USAGE USE USER USER_RESOURCES
USE_FRM USING UTC_DATE UTC_TIME UTC_TIMESTAMP

V
VALIDATION VALUE VALUES VARBINARY VARCHAR VARCHARACTER VARIABLES VARYING VIEW
VIRTUAL

W
WAIT WARNINGS WEEK WEIGHT_STRING WHEN WHERE WHILE WITH WITHOUT WORK WRAPPER
WRITE

X X509 XA XID XML XOR

Y YEAR YEAR_MONTH

Alphabeti
cal order

Keyword and reserved word

Funct ion Int roduct ion·SQL query Tablest ore

293 > Document Version: 20220711

Z ZEROFILL

Alphabeti
cal order

Keyword and reserved word

Tablest ore Funct ion Int roduct ion·SQL query

> Document Version: 20220711 294

Tunnel Service is a centralized service that uses the Table Store API to allow you to consume full and
incremental data. Tunnel Service provides tunnels that are used to export and consume data in the full,
incremental, and differential modes. After you create a tunnel, you can use it to consume historical and
incremental data that is exported from a specified table.

Table Store is applicable to scenarios such as metadata management, t ime series data monitoring, and
message systems. These scenarios often make use of incremental or full and incremental data streams
to trigger operations such as:

Data synchronization: synchronizes data to a cache, search engine, or data warehouse.

Event triggering: triggers Function Compute, sends a notificat ion when data is consumed, or calls an
API operation.

Stream data processing: connects to a stream-computing engine or a stream- and batch-computing
engine.

Data migration: backs up data to OSS or migrates data to a Table Store capacity instance.

Tunnel Service provides tunnels for full and incremental data consumption, orderly incremental data
consumption, consumption latency monitoring, and horizontal scaling of data consumption capabilit ies.

Not e In scenarios where a table is writ ten for 100,000 t imes per seconds, Tunnel Service
provides a latency of milliseconds from the data is updated until the update record is obtained.
The update record is returned in the sequence that the data is updated.

Tunnels for full and incremental data consumption
Tunnel Service allows you to consume incremental data, full data, and full and incremental data
simultaneously.

Orderly incremental data consumption
Tunnel Service sequentially distributes incremental data to one or more logical part it ions based on the
write t ime. Data in different part it ions can be consumed simultaneously.

Consumption latency monitoring
Tunnel Service allows you to call the DescribeTunnel operation to view the latency (t ime point) of the
consumed data on each client. Tunnel Service also allows you to monitor data consumption of tunnels
in the Tablestore console.

Horizontal scaling of data consumption capabilit ies
Tunnel Service supports automatic load balancing among logical part it ions. With this feature, you can
add more tunnel clients to accelerate data consumption.

9.Tunnel service
9.1. Overview

9.2. Features

9.3. Tunnel clients

Funct ion Int roduct ion·Tunnel service Tablest ore

295 > Document Version: 20220711

A tunnel client is an automatic data consumption framework of Tunnel Service. Before using Tunnel
Service, you must know the following features of tunnel clients: automatic data processing, automatic
load balancing, excellent horizontal scaling, automatic resource cleanup, and automatic fault
tolerance.

Context
Tunnel clients support the following features for processing full and incremental data: load balancing,
fault recovery, checkpoints, and part it ion information synchronization used to ensure the sequence of
consuming information. Tunnel clients allows you to focus on the processing logic of each record.

For the detailed sample code of Tunnel clients, visit Github.

Automatic data processing
Tunnel clients regularly check heartbeats to detect act ive channels, update status of Channel and
ChannelConnect, and init ialize, run, and terminate data processing tasks.

1. Init ialize the resources of tunnel clients.

i. Change the state of the tunnel client from Ready to Started.

ii. Set HeartbeatTimeout and ClientTag in TunnelWorkerConfig to run the ConnectTunnel task
and connect Tunnel Service to obtain the ClientId of the current tunnel client.

iii. Init ialize ChannelDialer to create a ChannelConnect task.

Each ChannelConnect task corresponds to a Channel. ChannelConnect tasks record data
consumption checkpoints.

iv. Set the Callback parameter for processing data and the CheckpointInterval parameter for
specifying the interval of outputt ing checkpoints in Tunnel Service. In this way, you can create
a data processor that automatically outputs checkpoints.

v. Init ialize TunnelStateMachine to automatically update the status of the Channel.

2. Regularly check heartbeat messages.

You can set the heartbeatIntervalInSec parameter in TunnelWorkerConfig to set the interval for
checking the heartbeat.

i. Send a heartbeat request to obtain the list of latest available channels from Tunnel Service.
The list includes the ChannelId, channel versions, and channel status.

Tablest ore Funct ion Int roduct ion·Tunnel service

> Document Version: 20220711 296

https://github.com/aliyun/aliyun-tablestore-java-sdk/tree/e36e9c616ce593a53fb849b54a071de1908c1bd3/src/main/java/com/alicloud/openservices/tablestore

ii. Merge the list of channels obtained from Tunnel Service with the local list of channels, and
then create and update ChannelConnect tasks. Follow these rules:

Merge: overwrite the earlier version in the local list with the later version for the same
ChannelId from Tunnel Service, and insert the new channels from Tunnel Service into the
local list .

Create a ChannelConnect task: create a ChannelConnect task in the WAIT state for a channel
that has no ChannelConnect task. If the ChannelConnect task corresponds to a channel in
the OPEN state, run the ReadRecords&&ProcessRecords task that cyclically processes data
for this ChannelConnect task. For more information, see the ProcessDataPipeline class in
source code.

Update an exist ing ChannelConnect task: after you merge the lists of channels, if a channel
corresponds to a ChannelConnect task, update the state of ChannelConnect based on the
state of the channel with the same ChannelId. For example, if channels are in the CLOSE
state, set the state of corresponding ChannelConnect tasks to CLOSED to terminate the
corresponding pipeline tasks. For more information, see the ChannelConnect.notifyStatus
method in source code.

3. Automatically process channel status.

Based on the number of act ive tunnel clients obtained in the heartbeat request, Tunnel Service
allocates available part it ions to different clients to balance the loads.

Tunnel Service automatically processes channel status as described in the following figure, and
drives channel consumption and load balancing.

Tunnel Service and tunnel clients change their status based on heartbeats and channel version
updates.

i. Each channel is init ially in the WAIT state.

ii. The channel for incremental data changes to the OPEN state only when the channel
consumption on the parent part it ion is terminated.

iii. Tunnel Service allocates the part it ion in the OPEN state to each tunnel client.

iv. During load balancing, Tunnel Service and tunnel clients use a scheduling protocol for
changing a channel state from OPEN, CLOSING to CLOSED. After consuming a BaseData channel
or a Stream channel, tunnel clients report the channel as terminated.

Funct ion Int roduct ion·Tunnel service Tablest ore

297 > Document Version: 20220711

Automatic load balancing and excellent horizontal scaling
Mult iple Tunnel clients can consume data by using the same Tunnel or TunnelId. When the tunnel
clients run the heartbeat task, Tunnel Service automatically redistributes channels and tries to
allocate act ive channels to each tunnel client to achieve load balancing.

You can add tunnel clients to scale out data consumption capabilit ies. Tunnel clients can run on one
or more instances.

Automatic resource cleanup and fault tolerance
Resource cleanup: if tunnel clients do not shut down normally, such as exceptional exit or manual
termination, the system recycles resources automatically. For example, the system can release the
thread pool, call the shutdown method that you have registered for the corresponding channel, and
terminate the connection to Tunnel Service.

Fault tolerance: when non-parametric errors such as heartbeat t imeout, occurs on a tunnel client, the
system automatically renews connections to continue stable data consumption.

9.4. Quick start

Tablest ore Funct ion Int roduct ion·Tunnel service

> Document Version: 20220711 298

You can use Tunnel Service in the Tablestore console.

Create a tunnel
1. Log on to the Tablestore console.

2. On the Overview page, click the name of the target instance or click Manage Inst ance in the
Actions column.

3. In the T ables sect ion of the Inst ance Det ails tab, click the name of the target table and click the

T unnels tab. You can also click in the Act ions column and select T unnels .

4. On the T unnels tab, click Creat e T unnel .

5. In the Creat e T unnel dialog box that appears, set T unnel Name and T ype .

Tunnel Service provides three types of real-t ime consumption tunnels for distributed data,
including Increment al , Full, and Dif f erent ial . Increment al is selected in this topic as an example.

After the tunnel is created, you can click Show Channels in the Act ions column to check the data
in the tunnel, monitor consumption latency, and check the number of consumed rows in each
channel.

Preview data types in a tunnel
After you create a tunnel, you can simulate data consumption to preview the data types in the tunnel.

1. For more information about how to write data to or delete data from tables in the console, see
Read and write data in the console.

2. Preview the data types in a tunnel

i. On the Overview page, click the name of the target instance or click Manage Inst ance in the
Actions column.

ii. In the T ables sect ion of the Inst ance Det ails tab, click the name of the target table and click

the T unnels tab. You can also click in the Act ions column and select T unnels .

iii. On the T unnels tab, click Show Channels in the Act ions column.

iv. Click View Simulat ed Export Records in the Act ions column.

Funct ion Int roduct ion·Tunnel service Tablest ore

299 > Document Version: 20220711

https://otsnext.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/125494.htm#concept-1180799

v. In the View Simulat ed Export Records dialog box that appears, click St art .

The information about consumed data is displayed, as shown in the following figure.

Enable data consumption for a tunnel
1. Copy a tunnel ID from the tunnel list .

2. Use Tunnel Service SDK in any programming language to enable data consumption for the tunnel.

Tablest ore Funct ion Int roduct ion·Tunnel service

> Document Version: 20220711 300

// Customize the data consumption callback or call the IChannelProcessor operation. Spe
cify the process and shutdown methods.
private static class SimpleProcessor implements IChannelProcessor {
 @Override
 public void process(ProcessRecordsInput input) {
 System.out.println("Default record processor, would print records count");
 System.out.println(
 String.format("Process %d records, NextToken: %s", input.getRecords().size(
), input.getNextToken()));
 try {
 // Simulate the processing of data consumption.
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 @Override
 public void shutdown() {
 System.out.println("Mock shutdown");
 }
}
// We recommend that you share the same TunnelWorkerConfig. TunnelWorkerConfig provides
more advanced parameters.
TunnelWorkerConfig config = new TunnelWorkerConfig(new SimpleProcessor());
// Configure TunnelWorker and start automatic data processing.
TunnelWorker worker = new TunnelWorker(tunnelId, tunnelClient, config);
try {
 worker.connectAndWorking();
} catch (Exception e) {
 e.printStackTrace();
 worker.shutdown();
 tunnelClient.shutdown();
}

View data consumption logs
After data is consumed, you can view the consumption logs of incremental data, including consumption
statist ics and the latest synchronization t ime of incremental data in channels. You can also log on to
the Tablestore console or call the DescribeTunnel operation to view the consumption latency and the
number of consumed rows in each channel.

Tablestore SDKs allow you to use Tunnel Service. Before you use Tunnel Service, you must familiarize
yourself with the usage notes and API operations of Tunnel Service.

Usage notes
By default , the system starts a thread pool to read and process data based on TunnelWorkerConfig.
If you want to start mult iple TunnelWorkers on a single server, we recommend that you configure the
TunnelWorkers to share the same TunnelWorkerConfig.

If you create a differential tunnel to consume full and incremental data, the incremental data logs of
the tunnel are retained for a maximum of seven days. The specific expirat ion t ime of incremental logs

9.5. SDK usage

Funct ion Int roduct ion·Tunnel service Tablest ore

301 > Document Version: 20220711

is consistent with that of logs in streams for a data table. If the tunnel does not consume full data
within seven days, an OTSTunnelExpired error occurs when the tunnel starts to consume incremental
data. As a result , the tunnel cannot consume incremental data. If you est imate that the tunnel
cannot consume full data within seven days, submit a t icket or join DingTalk group 23307953 to
contact technical support.

TunnelWorker requires t ime to warm up for init ializat ion. The heartbeatIntervalInSec parameter in
TunnelWorkerConfig specifies the t ime that is required for TunnelWorker to warm up. You can use the
setHeartbeatIntervalInSec method in TunnelWorkerConfig to set this parameter. The default value is
30s. The minimum value is 5s.

When the mode switches from the full channel to the incremental channel, the full channel is closed
and the incremental channel is started. This process requires a period of t ime for init ializat ion. The
heartbeatIntervalInSec parameter specifies the init ializat ion t ime.

When the TunnelWorker client is shut down due to an unexpected exit or manual termination,
TunnelWorker uses one of the following methods to automatically recycle resources: Release the
thread pool. Automatically call the shutdown method that you have registered for the Channel class,
and shut down the tunnel.

Operations

Operation Description

CreateTunnel Creates a tunnel

ListTunnel
Queries the information about the tunnels in the
specified table.

DescribeTunnel
Queries the information about the channels in the
specified tunnel.

DeleteTunnel Deletes a tunnel.

Use Tablestore SDKs
You can use Tablestore SDKs in the following programming languages to implement Tunnel Service:

Java SDK

Go SDK

Use Tunnel Service
Tablestore SDK for Java allows you to use Tunnel Service.

1. Init ialize a TunnelClient instance.

Tablest ore Funct ion Int roduct ion·Tunnel service

> Document Version: 20220711 302

https://www.alibabacloud.com/help/doc-detail/107982.htm#concept-o44-mcv-vgb
https://www.alibabacloud.com/help/doc-detail/102520.htm#concept-gck-f2j-kgb

// Set endPoint to the endpoint of the Tablestore instance. Example: https://instance.c
n-hangzhou.ots.aliyuncs.com.
// Set accessKeyId to the AccessKey ID and accessKeySecret to the AccessKey secret that
you use to access Tablestore.
// Set instanceName to the name of the instance.
final String endPoint = "";
final String accessKeyId = "";
final String accessKeySecret = "";
final String instanceName = "";
TunnelClient tunnelClient = new TunnelClient(endPoint, accessKeyId, accessKeySecret, in
stanceName);

2. Create a tunnel.

Create a table for test ing or prepare an exist ing table before you create a tunnel. To create a
table for test ing, you can use the createTable method in the SyncClient class or go to the
Tablestore console.

// You can create three types of tunnels by using TunnelType.BaseData, TunnelType.Strea
m, and TunnelType.BaseAndStream.
// The following code provides an example on how to create a differential tunnel. To cr
eate a tunnel of another type, set TunnelType in CreateTunnelRequest to the required ty
pe.
final String tableName = "testTable";
final String tunnelName = "testTunnel";
CreateTunnelRequest request = new CreateTunnelRequest(tableName, tunnelName, TunnelType
.BaseAndStream);
CreateTunnelResponse resp = tunnelClient.createTunnel(request);
// Use tunnelId to initialize TunnelWorker. You can call the ListTunnel or DescribeTunn
el operation to obtain the tunnel ID.
String tunnelId = resp.getTunnelId();
System.out.println("Create Tunnel, Id: " + tunnelId);

3. Customize the data consumption callback to start automatic data consumption.

Funct ion Int roduct ion·Tunnel service Tablest ore

303 > Document Version: 20220711

// Customize the data consumption callback to implement the IChannelProcessor operation
. Specify the process and shutdown methods.
private static class SimpleProcessor implements IChannelProcessor {
 @Override
 public void process(ProcessRecordsInput input) {
 // ProcessRecordsInput includes the data that you have obtained.
 System.out.println("Default record processor, would print records count");
 System.out.println(
 // NextToken is used to paginate the data of TunnelClient.
 String.format("Process %d records, NextToken: %s", input.getRecords().size(
), input.getNextToken()));
 try {
 // Simulate the processing of data consumption.
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 @Override
 public void shutdown() {
 System.out.println("Mock shutdown");
 }
}
// By default, the system starts a thread pool to read and process data based on Tunnel
WorkerConfig.
// If you want to start multiple TunnelWorkers on a single server, we recommend that yo
u configure the TunnelWorkers to share the same TunnelWorkerConfig. TunnelWorkerConfig
contains the larger number of advanced parameters.
TunnelWorkerConfig config = new TunnelWorkerConfig(new SimpleProcessor());
// Configure TunnelWorker and start automatic data processing.
TunnelWorker worker = new TunnelWorker(tunnelId, tunnelClient, config);
try {
 worker.connectAndWorking();
} catch (Exception e) {
 e.printStackTrace();
 worker.shutdown();
 tunnelClient.shutdown();
}

Configure TunnelWorkerConfig
TunnelWorkerConfig allows you to customize parameters for a TunnelClient instance based on your
requirements. The following table describes the parameters.

Item Parameter Description

Configure the interval to
detect heartbeats and

heartbeatT imeoutInSec

The timeout period to receive heartbeats.

Default value: 300. Unit: seconds.

When a heartbeat t imeout occurs, the tunnel server
considers that the current TunnelClient instance is
unavailable. The tunnel client must try to reconnect
to the tunnel server.

Tablest ore Funct ion Int roduct ion·Tunnel service

> Document Version: 20220711 304

detect heartbeats and
the timeout period to
receive heartbeats

heartbeatIntervalInSec

The interval to detect heartbeats.

You can detect heartbeats to detect active
channels, update the status of channels, and
automatically init ialize data processing tasks.

Default value: 30. Minimum value: 5. Unit: seconds.

Interval between
checkpoints

checkpointIntervalInMilli
s

The interval between checkpoints when data is
consumed. The interval is recorded on the tunnel
server.

Default value: 5000. Unit: ms.

Not e

Data to read is stored in different
servers. Various errors may occur when
you run processes. For example, the
server may restart due to environmental
factors. The tunnel server regularly
records checkpoints after data is
processed. A task processes data from
the previous checkpoint after the task is
restarted. In exceptional conditions,
Tunnel Service may sequentially
synchronize data once or multiple
times. If some data is reprocessed,
check the business processing logic.

To prevent data being reprocessed
when errors occur, record more
checkpoints. However, an excessive
number of checkpoints may
compromise the system throughput.
We recommend that you record the
checkpoints based on your business
requirements.

The client tag clientTag
The custom client tag that is used to generate a
tunnel client ID. You can customize this parameter
to uniquely identify TunnelWorkers.

The custom callback to
process data

channelProcessor
The callback that you register to process data,
including the process and shutdown methods.

readRecordsExecutor
The thread pool to read data. If you do not have
special requirements, use the default configuration.

Item Parameter Description

Funct ion Int roduct ion·Tunnel service Tablest ore

305 > Document Version: 20220711

The configuration of
the thread pool to read
and process data

processRecordsExecutor

The thread pool to process data. If you do not have
special requirements, use the default configuration.

Not e

When you customize the thread pool,
we recommend that you set the
number of threads to the number of
the channels in the tunnel. This way,
each channel can be quickly allocated
with computing resources such as CPU.

Tablestore performs the following
operations for the default
configurations of the pool to ensure
throughput:

Allocate 32 core threads in
advance to guarantee real-time
throughput when a small
amount of data or a small
number of channels exists.

Reduce the queue length when
a large amount of data must be
processed or when a large
number of channels exist. This
way, the policy is triggered to
create a thread in the pool and
quickly allocate more
computing resources.

We recommend that you set the
thread keep-alive t ime to 60s. If
the amount of data that must
be processed is reduced, you
can recycle thread resources.

Memory control maxChannelParallel

The concurrency level of channels to read and
process data for memory control.

The default value is -1, which indicates that the
concurrency level is unlimited.

Not e This configuration applies only to
Tablestore SDK for Java V5.10.0 and later.

Item Parameter Description

Tablest ore Funct ion Int roduct ion·Tunnel service

> Document Version: 20220711 306

Maximum backoff t ime maxRetryIntervalInMillis

The reference value to calculate the maximum
backoff t ime for the tunnel. The maximum backoff
time is set to a random value around the reference
value. The range of valid values for the maximum
backoff t ime is computed by using the formula:
0.75 × maxRetryIntervalInMillis to 1.25 ×
maxRetryIntervalInMillis.

Default value: 2000 ms. Minimum value: 200 ms.

Not e

This configuration applies only to
Tablestore SDK for Java V5.4.0 and
later.

If the amount of data that must be
processed is smaller than 900 KB or 500
pieces for each export, the tunnel client
uses exponential backoff for the tunnel
until the maximum backoff t ime is
reached.

Item Parameter Description

Appendix: complete code

import com.alicloud.openservices.tablestore.TunnelClient;
import com.alicloud.openservices.tablestore.model.tunnel.CreateTunnelRequest;
import com.alicloud.openservices.tablestore.model.tunnel.CreateTunnelResponse;
import com.alicloud.openservices.tablestore.model.tunnel.TunnelType;
import com.alicloud.openservices.tablestore.tunnel.worker.IChannelProcessor;
import com.alicloud.openservices.tablestore.tunnel.worker.ProcessRecordsInput;
import com.alicloud.openservices.tablestore.tunnel.worker.TunnelWorker;
import com.alicloud.openservices.tablestore.tunnel.worker.TunnelWorkerConfig;
public class TunnelQuickStart {
 private static class SimpleProcessor implements IChannelProcessor {
 @Override
 public void process(ProcessRecordsInput input) {
 System.out.println("Default record processor, would print records count");
 System.out.println(
 // NextToken is used to paginate the data of TunnelClient.
 String.format("Process %d records, NextToken: %s", input.getRecords().size(
), input.getNextToken()));
 try {
 // Simulate the processing of data consumption.
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 @Override
 public void shutdown() {
 System.out.println("Mock shutdown");

Funct ion Int roduct ion·Tunnel service Tablest ore

307 > Document Version: 20220711

 }
 }
 public static void main(String[] args) throws Exception {
 //1.Initialize a TunnelClient instance.
 final String endPoint = "";
 final String accessKeyId = "";
 final String accessKeySecret = "";
 final String instanceName = "";
 TunnelClient tunnelClient = new TunnelClient(endPoint, accessKeyId, accessKeySecret
, instanceName);
 //2.Create a tunnel. You must create a table before you create a tunnel. To create
a table, you must use the createTable method in SyncClient or go to the Tablestore console.

 final String tableName = "testTable";
 final String tunnelName = "testTunnel";
 CreateTunnelRequest request = new CreateTunnelRequest(tableName, tunnelName, Tunnel
Type.BaseAndStream);
 CreateTunnelResponse resp = tunnelClient.createTunnel(request);
 // Use tunnelId to initialize TunnelWorker. You can call the ListTunnel or Describe
Tunnel operation to obtain the tunnel ID.
 String tunnelId = resp.getTunnelId();
 System.out.println("Create Tunnel, Id: " + tunnelId);
 //3.Customize the data consumption callback to start automatic data consumption.
 // TunnelWorkerConfig contains the larger number of advanced parameters.
 TunnelWorkerConfig config = new TunnelWorkerConfig(new SimpleProcessor());
 TunnelWorker worker = new TunnelWorker(tunnelId, tunnelClient, config);
 try {
 worker.connectAndWorking();
 } catch (Exception e) {
 e.printStackTrace();
 worker.shutdown();
 tunnelClient.shutdown();
 }
 }
}

This topic describes the format of error messages and error codes returned by Tunnel Service.

After Tunnel Service receives an abnormal request, Tunnel Service returns an HTTP status code and an
error message in the Protobuf format.

Error message format
A error message returned by Tunnel Service is in the following Protobuf format:

message Error {
 required string code = 1;
 optional string message = 2;
 optional string tunnel_id = 3;
}

9.6. Troubleshooting

Tablest ore Funct ion Int roduct ion·Tunnel service

> Document Version: 20220711 308

Error codes
When you use Tunnel Service SDKs, you need only to handle the error codes whose processing logic is
"Return an error message". The SDKs automatically process other error codes and retry the requests. We
recommend that you handle an error based on the processing logic of the error code.

HTTP status code Error code Description Processing logic

400 OTSParameterInvalid

The error message
returned because an
parameter in the API
request is incorrect or
the requested data
table does not exist.

Return an error
message.

400 OTSTunnelExpired

The error message
returned because the
log data in an
incremental or a
differential tunnel
expires.

Return an error
message.

403 OTSPermissionDenied

The error message
returned because you
are not authorized to
access the specified
resource.

Return an error
message.

409 OTSTunnelExist

The error message
returned because the
tunnel that you want to
create already exists on
the server.

Return an error
message.

400
OTSSequenceNumberN
otMatch

The error message
returned because the
serial numbers of
checkpoints are
inconsistent between
the client and server.
This error can occur
when the serial
numbers of checkpoints
on the client are smaller
than those on the
server or channels
compete with each
other.

Use the checkpoint API
to obtain the serial
numbers of checkpoints
again.

Funct ion Int roduct ion·Tunnel service Tablest ore

309 > Document Version: 20220711

410 OTSResourceGone

The error message
returned because the
request sent to obtain
the heartbeat
information about the
Tunnel Service client
times out.

Use the tunnel ID to
reconnect to Tunnel
Service.

503
OTSTunnelServerUnavail
able

The error message
returned because an
internal server error
occurs.

Use exponential backoff
to retry the request.

HTTP status code Error code Description Processing logic

This topic describes the test on the performance of incremental synchronization of Tunnel Service,
including the test environment, tools, plan, indicators, results, and summary.

Test environment
Tablestore instance

Type: high-performance instance

Region: China (Hangzhou)

Address: a private IP address, which prevents interferences caused by unknown network issues.

Test server

Type: Alibaba Cloud ECS

Region: China (Hangzhou)

Model: the ecs.mn4.4xlarge shared balanced instance type

Configuration:

CPU: 16 cores

Memory: 64 GB

NIC: Virt IO network device of Red Hat, Inc.

Operating system: CentOS 7u2

Test tools
Stress test ing tool

The stress test ing tool of Tablestore can write data to mult iple rows simultaneously by using
Tablestore SDK for Java to call the BatchWriteRow operation.

Prepart it ioning tool

The stress test ing tool of Tablestore can automatically create and prepart it ion tables based on the
configured table names and the number of part it ions.

9.7. Incremental synchronization
performance white paper

Tablest ore Funct ion Int roduct ion·Tunnel service

> Document Version: 20220711 310

Rate stat ist ics tool

Tablestore SDK for Java can collect stat ist ics for the consumption rate of incremental data and the
total number of consumed rows in real t ime. You can add the logic demonstrated in the following
example to the callback to collect rate stat ist ics.

Examples

private static final Gson GSON = new Gson();
 private static final int CAL_INTERVAL_MILLIS = 5000;
 static class PerfProcessor implements IChannelProcessor {
 private static final AtomicLong counter = new AtomicLong(0);
 private static final AtomicLong latestTs = new AtomicLong(0);
 private static final AtomicLong allCount = new AtomicLong(0);
 @Override
 public void process(ProcessRecordsInput input) {
 counter.addAndGet(input.getRecords().size());
 allCount.addAndGet(input.getRecords().size());
 if (System.currentTimeMillis() - latestTs.get() > CAL_INTERVAL_MILLIS) {
 synchronized (PerfProcessor.class) {
 if (System.currentTimeMillis() - latestTs.get() > CAL_INTERVAL_MILLIS
) {
 long seconds = TimeUnit.MILLISECONDS.toSeconds(System.currentTime
Millis() - latestTs.get());
 PerfElement element = new PerfElement(System.currentTimeMillis(),
counter.get() / seconds, allCount.get());
 System.out.println(GSON.toJson(element));
 counter.set(0);
 latestTs.set(System.currentTimeMillis());
 }
 }
 }
 }
 @Override
 public void shutdown() {
 System.out.println("Mock shutdown");
 }
 }

Test plan
When Tunnel Service is used for data synchronization, the system sequentially synchronizes data within
a single channel to maintain the order of data, and synchronizes data within different channels in
parallel. For incremental data, the number of channels is equal to the number of part it ions in a table.
The performance test focuses on how the number of part it ions (channels) affects the incremental
synchronization rate because the overall performance of Tunnel Service strongly correlates to the
number of part it ions.

Funct ion Int roduct ion·Tunnel service Tablest ore

311 > Document Version: 20220711

Not e

The number of part it ions increases with the data volume. To create part it ions in advance,
contact Tablestore technical support.

Data processing tasks are automatically implemented in Tunnel Service. The tunnel client can
be started by using the same tunnel ID. For more information, see Tunnel clients.

Test scenarios

The test is conducted in the following scenarios:

Single-server single-part it ion synchronization

Single-server 4-part it ion synchronization

Single-server 8-part it ion synchronization

Single-server 32-part it ion synchronization

Single-server 64-part it ion synchronization

Double-server 64-part it ion synchronization

Double-server 128-part it ion synchronization

Not e The test in the preceding scenarios is not an extreme test of the service
performance, and therefore does not impose much pressure on the Tablestore instance.

Test procedure

i. Create and pre-split a table for each test scenario.

ii. Create a tunnel for incremental synchronization.

iii. Use the stress test ing tool to write incremental data.

iv. Use the rate stat ist ics tool to measure the queries per second (QPS) in real t ime, and check the
consumption of system resources such as CPU and memory.

v. Check the total bandwidth consumed during incremental synchronization.

Test data descript ion

Sample data includes four primary key columns and one or two attribute columns. The size of each
row is approximately 220 bytes. The first primary key (part it ion key) is a 4-byte hash value, which
ensures that stress test ing data is evenly writ ten to each part it ion.

Test indicators
The following indicators are used in the test:

QPS (row): the number of rows synchronized per second.

Average latency (ms per 1,000 rows): the amount of t ime in milliseconds required to synchronize
1,000 rows.

CPU (cores): the total number of single-core CPUs used to synchronize data.

Memory (GB): the total physical memory used to synchronize data.

Bandwidth (Mbit/s): the total bandwidth used to synchronize data.

Not e The performance test is based on user experience, rather than extreme test ing.

Tablest ore Funct ion Int roduct ion·Tunnel service

> Document Version: 20220711 312

https://www.alibabacloud.com/help/doc-detail/107985.htm#concept-qcz-22v-vgb

Test results
This sect ion describes the test results for each scenario. For more information, see the test details.

QPS and latency

The number of rows synchronized per second and the amount of t ime required to synchronize 1,000
rows in each scenario. The QPS increases linearly with the number of part it ions.

In the single-server 64-part it ion synchronization scenario, the gigabit NIC works at its full capacity,
which results in QPS of only 570,000. For more information, see the test details. The average QPS in
the double-server 64-part it ion synchronization scenario reaches 780,000 rows, almost twice as much
as the 420,000 QPS achieved in the single-server 32-part it ion synchronization scenario. In the double-
server 128-part it ion synchronization scenario, the QPS reaches 1,000,000 rows.

System resource consumption

The CPU usage increases linearly with the number of part it ions.

In the single-server single-part it ion synchronization scenario, 0.25 single-core CPUs are used. In the
double-server 128-part it ion synchronization scenario, only 10.2 single-core CPUs are used when the
QPS reaches 1,000,000 rows. The memory usage increases linearly with the number of part it ions when
the number of part it ions is smaller than 32. When more part it ions (32 or 64 part it ions) need to be
processed, the memory usage remains stable around 5.3 GB on each server.

Total bandwidth consumption

The consumed bandwidth increases linearly with the number of part it ions.

In the single-server 64-part it ion synchronization scenario, a total bandwidth of 125 Mbit/s is
consumed, which is the maximum rate supported by the gigabit NIC. In the double-server 64-part it ion
synchronization scenario, a bandwidth of 169 Mbit/s is consumed, which is the actual bandwidth
required for 64-part it ion synchronization. This is approximately twice the 86 Mbit/s bandwidth
required in the single-server 32-part it ion synchronization scenario. When the QPS reaches 1,000,000 in
the double-server 128-part it ion synchronization scenario, the total bandwidth consumed reaches
220 Mbit/s.

Test details
Single-server single-channel: 19,000 QPS.

Tested at: 17:40 on January 30, 2019.

QPS: steady at approximately 19,000 rows per second, with a peak rate of 21,800 rows per second.

Funct ion Int roduct ion·Tunnel service Tablest ore

313 > Document Version: 20220711

Latency: approximately 50 ms per 1,000 rows.

CPU utilizat ion: approximately 25% of a single-core CPU.

Memory usage: approximately 0.4% of the total physical memory, or 0.256 GB. (Each test server
provides 64 GB of physical memory.)

Bandwidth consumption: approximately 4,000 KB/s.

Single-server 4-part it ion synchronization: 70,000 QPS.

Tested at: 20:00 on January 30, 2019.

QPS: steady at approximately 70,000 rows per second, with a peak rate of 72,400 rows per second.

Tablest ore Funct ion Int roduct ion·Tunnel service

> Document Version: 20220711 314

Latency: approximately 14.28 ms per 1,000 rows.

CPU utilizatuin: approximately 70% of a single-core CPU.

Memory usage: approximately 1.9% of the total physical memory, or 1.1 GB. (Each test server
provides 64 GB of physical memory.)

Bandwidth consumption: approximately 13 Mbit/s.

Single-server 8-part it ion synchronization: 130,000 QPS.

Tested at: 20:20 on January 30, 2019.

QPS: steady at approximately 130,000 rows per second, with a peak rate of 141,644 rows per
second.

Funct ion Int roduct ion·Tunnel service Tablest ore

315 > Document Version: 20220711

Latency: approximately 7.69 ms per 1,000 rows.

CPU utilizat ion: approximately 120% of a single-core CPU.

Memory usage: approximately 4.1% of the total physical memory, or 2.62 GB. (Each test server
provides 64 GB of physical memory.)

Bandwidth consumption: approximately 27 Mbit/s.

Single-server 32-part it ion synchronization: 420,000 QPS.

Tested at: 15:50 on January 31, 2019.

QPS: steady at approximately 420,000 rows per second, with a peak rate of 447,600 rows per
second.

Tablest ore Funct ion Int roduct ion·Tunnel service

> Document Version: 20220711 316

Latency: 2.38 ms per 1,000 rows.

CPU utilzat ion: approximately 450% of a single-core CPU.

Memory usage: approximately 8.2% of the total physical memory, or 5.25 GB. (Each test server
provides 64 GB of physical memory.)

Bandwidth consumption: approximately 86 Mbit/s.

Single-server 64-part it ion synchronization: 570,000 QPS, with the gigabit NIC working at its full
capacity.

Tested at: 22:10 on January 31, 2019.

QPS: steady at approximately 570,000 rows per second, with a peak rate of 581,400 rows per
second.

Latency: approximately 1.75 ms per 1,000 rows.

CPU utilizat ion: approximately 640% of a single-core CPU.

Memory usage: approximately 8.4% of the total physical memory, or 5.376 GB.

Bandwidth consumption: approximately 125 Mbit/s, which is the maximum rate of the gigabit NIC.

Funct ion Int roduct ion·Tunnel service Tablest ore

317 > Document Version: 20220711

Double-server 64-part it ion synchronization: 780,000 QPS.

Tested at: 22:30 on January 31, 2019.

QPS: steady at approximately 390,000 rows per second on each server and 780,000 rows per
second on both servers.

Latency: approximately 1.28 ms per 1,000 rows.

CPU utilizat ion: approximately 420% of a single-core CPU on each server and 840% of a single-core
CPU on both servers.

Memory usage: approximately 8.2% of the total physical memory, or 10.5 GB.

Bandwidth consumption: approximately 169 Mbit/s. This indicates that bandwidth becomes a
bott leneck when the number of part it ions reaches 64 in single-server scenarios.

Double-server 128-part it ion synchronization: 1,000,000 QPS, when both gigabit NICs are working at
their full capacit ies.

Tested at: 23:20 on January 31, 2019.

QPS: steady at approximately 500,000 rows per second on each server and 1,000,000 rows per
second on both servers.

Latency: approximately 1 ms per 1,000 rows.

CPU usage: approximately 560% of a single-core CPU on each server and 1,020% of a single-core
CPU on both servers.

Memory usage: approximately 8.2% of the total physical memory for each server, or 10.5 GB.

Tablest ore Funct ion Int roduct ion·Tunnel service

> Document Version: 20220711 318

Bandwidth consumption: approximately 220 Mbit/s.

Summary
Based on the performance test for incremental synchronization, the QPS for tables with a single or a
few part it ions is affected by the latency in data reading and only few resources on the server are
consumed. As the number of part it ions increases, the overall throughput of incremental
synchronization of Tunnel Service increases linearly until a system bott leneck (such as bandwidth in the
test) is encountered. When a resource on a single server is used up, this resource becomes the
bott leneck. You can add more servers to increase the overall throughput. The test validates the
excellent horizontal scaling performance of Tunnel Service.

Funct ion Int roduct ion·Tunnel service Tablest ore

319 > Document Version: 20220711

Tablestore uses data delivery to deliver full or incremental data to Object Storage Service (OSS) that is
used as a data lake in real t ime. This feature enables Tablestore to store historical data in OSS at lower
costs while Tablestore implements offline or quasi-real-t ime analysis of larger amounts of data.

Scenarios
You can use data delivery to address needs of the following scenarios:

Tiered storage of cold and hot data

Data delivery uses the t ime to live (TTL) feature of Tablestore to store full data in OSS at low costs.
Tablestore allows you to query and analyze hot data with low latencies.

Full data backup

You can use data delivery to deliver data of a whole table to an OSS bucket for backup and
archiving.

Large-scale data analysis in real t ime

You can use data delivery to deliver incremental data from Tablestore to OSS in real t ime (every 2
minutes). Delivered data is part it ioned based on the system t ime and stored in the Parquet format.
You can use OSS high-speed bandwidth for reading and optimization of scanning for Parquet data
to implement efficient real-t ime data analysis.

Accelerated analysis by using SQL statements

When search indexes are not created for Tablestore data, and the query condit ions exclude primary
key column-based filter condit ions, you can use data delivery to synchronize data to OSS. Then, use
DLA and OSS data scanning to accelerate SQL-based analysis.

Features
Data delivery has the following features:

Data delivery obtains full and incremental data of Tablestore. When the amount of data reaches the
predetermined size or after the data is delivered for more than two minutes, the data is stored in
OSS.

Data delivery allows you to deliver data in the following modes: incremental, full, and differential. All
delivered data is stored in the Parquet format.

Data delivery supports the monitoring of the t ime when data delivery is complete. Data delivery
provides the DescribeDeliveryTask operation to return the t ime when data delivery is complete.

Benefits
Ease of use

To deliver data from Tablestore to OSS, you need only to complete simple configurations in the
console. Synchronization tasks run and the throughput capacity is scaled based on the load while
monitoring and O&M are not required. However, service-level agreements (SLAs) are guaranteed.

A complete set of data delivery modes

10.Data Delivery
10.1. Overview

Tablest ore Funct ion Int roduct ion·Dat a Delivery

> Document Version: 20220711 320

https://www.alibabacloud.com/help/doc-detail/89939.htm#concept-z5t-jmj-bfb

Data delivery modes of full, incremental, and differential are provided. When the incremental mode is
set, delivery tasks implement quasi-real-t ime delivery of data, obtain the latest data, cache the data,
and write the data to OSS after 2 minutes.

Seamless integration with the computational ecology

Data delivery is compatible with open source ecology standards and the naming conventions
followed by Hive. Delivered data is stored in the Parquet format. To analyze the data in an external
table after data is delivered to an OSS bucket, use E-MapReduce.

Tiered storage and access experience

After data is delivered to OSS, you can access different data such as data in tables and index tables
and data delivered to OSS. This way, the analysis requirements of different scenarios are met.

You can create a delivery task in the Tablestore console to deliver data from Tablestore to an OSS
bucket.

Prerequisites
OSS is act ivated. A bucket is created in the region where a Tablestore instance is located. For more
information, see Activate OSS.

Not e

Data delivery allows you to deliver data from a Tablestore instance to an OSS bucket within the
same region. To deliver data to another warehouse such as MaxCompute,submit a t icket.

Usage notes
Data delivery is available in the China (Hangzhou), China (Shanghai), China (Beijing), and China
(Zhangjiakou) regions.

The delete operation on Tablestore data is ignored when the data is delivered. Tablestore data
delivered to OSS is not deleted when you perform a delete operation on the data.

It takes at most one minute for init ializat ion when you create a delivery task.

Latencies are within 3 minutes when data is writ ten at a steady rate. P99 is within 10 minutes when
data is synchronized.

Not e

P99 indicates the average latency of the slowest 1% of requests over the last 10 seconds.

Create delivery tasks
1. Log on to the Tablestore console.

2. Select a region. Click an instance name or click Manage Inst ance in the Act ions column
corresponding to the instance.

3. On the Manage Inst ance page, click the Deliver Dat a t o OSS tab.

4. (Optional) Create the AliyunServiceRoleForOTSDataDelivery role.

10.2. Quick start

Funct ion Int roduct ion·Dat a Delivery Tablest ore

321 > Document Version: 20220711

https://www.alibabacloud.com/help/zh/product/28066.htm?spm=a2c63.m28257.a1.63.16d9ed69Q7b5Fm
https://www.alibabacloud.com/help/doc-detail/31884.htm#task-njz-hf4-tdb
https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://otsnext.console.aliyun.com/

When you configure data delivery for the first t ime, you must create the
AliyunServiceRoleForOTSDataDelivery role that is used to authorize Tablestore to write data to an
OSS bucket. For more information about specific operations, see AliyunServiceRoleForOTSDataDelivery
role.

Not e

For more information about service-linked roles, see AliyunServiceRoleForOTSDataDelivery role.

i. On the Deliver Dat a t o OSS tab, click Role f or Delivery Service .

ii. In the Role Det ails message, view related information. Click OK.

5. Create a delivery task.

i. On the Deliver Dat a t o OSS tab, click Creat e T ask .

ii. In the Creat e T ask dialog box, configure the following parameters.

Paramet er Descript ion

Task Name

The name of the task.

The name must be 3 to 16 characters in length can contain only
lowercase letters, digits, and hyphens (-). It must start and end with a
lowercase letter or digit.

Destination Region
The region where the Tablestore instance and OSS bucket are
located.

Source Table The name of the Tablestore table.

Destination Bucket

The name of the OSS bucket.

Not ice

The region where the bucket is located must be the same as that
of the Tablestore instance.

Tablest ore Funct ion Int roduct ion·Dat a Delivery

> Document Version: 20220711 322

https://www.alibabacloud.com/help/doc-detail/184728.htm#topic-2636551
https://www.alibabacloud.com/help/doc-detail/160674.htm#concept-2448621

Destination Prefix

The prefix of the folder in the bucket. Data is delivered from
Tablestore to the folder. The path of the destination folder supports
the following time variables: $yyyy, $MM, $dd, $HH, and $mm. For
more information, see Partit ion data by t ime.

When the path uses t ime variables for delivery, OSS folders are
dynamically generated based on the t ime when data is written.
This way, data is partit ioned based on the naming conventions
followed when Hive partit ions data. Objects in OSS are organized,
partit ioned, and distributed based on time.

When the path does not use t ime variables, all files are delivered
to an OSS folder whose name contains a specific prefix.

Synchronization Mode

The mode in which to deliver data. The following options are
available:

Incremental: Only incremental data is synchronized.

Full: All data in tables is scanned and synchronized.

Differential: Full data is synchronized before incremental data is
synchronized.

When you synchronize data in incremental mode, you can view the
time when data is last delivered and the status of the current delivery
task.

Destination Object
Format

The delivered data is stored in the Parquet format. By default, data
delivery uses PLAIN for encoding. PLAIN can be used to encode data
of any type.

Paramet er Descript ion

Funct ion Int roduct ion·Dat a Delivery Tablest ore

323 > Document Version: 20220711

Schema Generation Type Specify the columns for delivery. The order in which fields are sorted
in the Tablestore table can be different from the order of fields in
the schema. Parquet data stored in OSS is distributed based on the
order of fields in the schema.

Select a schema generation type.

If Schema Generat ion T ype: is set to Manual, you must
configure the source fields, destination field names, and
destination field types for delivery.

If Schema Generat ion T ype: is set to Aut o Generat e , the
system identifies and matches the fields for delivery.

Not ice

The data types must be consistent between the source and
destination fields. Otherwise, the fields are discarded as dirty
data. For more information about field type mappings, see data
format mapping.

When you configure the schema, you can perform the following
operations:

Click + Add Field to add fields for delivery.

Click the e or icon in the Act ions column corresponding to a

field to adjust the order of the field.

Click the icon in the Act ions column corresponding to a field to

delete the field.

Schema Configurations

Paramet er Descript ion

6. Click OK.

In the View St at ement t o Creat e T able message, you can view the statement that is used to
create an external table for Data Lake Analyt ics (DLA) and E-MapReduce (EMR). You can also copy
the statement to create an external table for DLA and EMR to access data in OSS.

After the delivery task is created, you can perform the following operations:

View the details of the delivery task, such as the task name, table name, dest ination bucket,
dest ination prefix, status, and the t ime when data is last synchronized.

View or copy the statement to create a table.

Click View St at ement t o Creat e T able in the Act ions column. You can view or copy the
statement to create an external table by using computing engines such as EMR. For more
information about specific operations, see Use EMR.

View the error message returned after the delivery.

Tablest ore Funct ion Int roduct ion·Dat a Delivery

> Document Version: 20220711 324

https://www.alibabacloud.com/help/doc-detail/184693.htm#topic-2637785

If the configurations for the OSS bucket and delivery permissions are incorrect, data delivery
cannot be complete. On the status page of the delivery task, you can view related error
messages. For more information about exception handling, see Exception handling.

Delete the delivery task.

Click Delet e in the Act ions column corresponding to the delivery task. You can delete the
delivery task. The system returns an error if the delivery task is in the init ializat ion process. You
can delete the task later.

View OSS data
After the delivery task is init ialized and data is delivered, you can view the data delivered to OSS by
using the OSS console, API, SDK, or computing engine EMR. For more information, see Overview.

Example of an OSS object URL:

oss://BucketName/TaskPrefix/TaskName_ConcurrentID_TaskPrefix__SequenceID

In the example, BucketName indicates the name of the bucket. The first TaskPrefix indicates the prefix
of the dest ination folder. The second TaskPrefix indicates the prefix information of the task. TaskName
indicates the name of the task. ConcurrentID indicates the number for concurrency determined by the
system. The number starts from 0 and increases when the throughput increases. SequenceID indicates
the sequence ID of the delivered file and increases from 1.

Partit ion data by t ime
Data delivery allows the system to obtain the t ime when data is writ ten to Tablestore. The t ime
consists of the following variables: $yyyy (four-digit year), $MM (two-digit month), $dd (two-digit day),
$HH (two-digit hour), and $mm (two-digit minute). The t ime can be used as the prefix of the
destination bucket after conversion.

Not e

We recommend that the size of an OSS object be at least 4 MB. When computing engines are used
to load OSS data, the larger number of part it ions results in longer t ime to load part it ions.
Therefore, in most real-t ime data writ ing scenarios, we recommend that the t ime based on which
to part it ion data is at the granularity of day or hour, rather than minute.

The delivery task by which data was written to Tablestore at 16:03 on August 31, 2020 is used in the
example. The following table describes the URLs of the first object generated in OSS based on
different dest ination prefix configurations.

OSS Bucket T askName Dest inat ion pref ix OSS object URL

myBucket testTask myPrefix
oss://myBucket/myPrefix/testTask_
0_myPrefix__1

myBucket
testTaskT imeParit
ioned

myPrefix/$yyyy/$MM/$
dd/$HH/$mm

oss://myBucket/myPrefix/2020/08/3
1/16/03/testTaskT imeParit ioned_0_
myPrefix_2020_08_31_16_03__1

Funct ion Int roduct ion·Dat a Delivery Tablest ore

325 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/31908.htm#concept-jft-vhg-vdb

myBucket
testTaskT imeParit
ionedHiveNaming
Style

myPrefix/year=$yyyy/m
onth=$MM/day=$dd

oss://myBucket/myPrefix/year=2020
/month=08/day=31/testTaskT imePa
rit ionedHiveNamingStyle_0_myPrefix_
year=2020_month=08

myBucket testTaskDs ds=$yyyy$MM$dd
oss://myBucket/ds=20200831/testT
askDs_0_ds=20200831__0

OSS Bucket T askName Dest inat ion pref ix OSS object URL

Data type mappings

Parquet Logical T ype Dat a t ype in T ablest ore

Boolean Boolean

Int64 Int64

Double Double

UTF8 String

Exception handling

Error code Cause Solut ion

UnAuthorized
Tablestore is not
authorized to deliver
data to OSS.

Confirm whether the
AliyunServiceRoleForOTSDataDelivery role exists.

If the role does not exist, you must create a delivery
task to trigger Tablestore to create the role.

InvalidOssBucket
The destination OSS
bucket does not exist.

Confirm whether the OSS bucket and Tablestore
instance are located within the same region.

Confirm whether the OSS bucket exists.

When the OSS bucket is created, all data is written
to the OSS bucket again. The delivery progress is
updated.

10.3. Use SDKs

Tablest ore Funct ion Int roduct ion·Dat a Delivery

> Document Version: 20220711 326

Before you use SDKs to deliver data, you must understand the precautions and API operations. You can
create a delivery task in the Tablestore console to deliver data from a Tablestore table to an OSS
bucket.

Usage notes
Data delivery is available in the China (Hangzhou), China (Shanghai), China (Beijing), and China
(Zhangjiakou) regions.

The delete operation on Tablestore data is ignored when the data is delivered. Tablestore data
delivered to OSS is not deleted when you perform a delete operation on the data.

It takes at most one minute for init ializat ion when you create a delivery task.

Latencies are within 3 minutes when data is writ ten at a steady rate. P99 is within 10 minutes when
data is synchronized.

Not e

P99 indicates the average latency of the slowest 1% of requests over the last 10 seconds.

Operations

Operat ion Descript ion

CreateDeliveryTask Creates a delivery task.

ListDeliveryTask Lists all delivery task information of a table.

DescribeDeliveryTask Queries the descriptive information of a delivery task.

DeleteDeliveryTask Deletes a delivery task.

Use Tablestore SDKs
You can use the following Tablestore SDKs to implement data delivery:

Java SDK

Go SDK

Parameters

Paramet er Descript ion

tableName The name of the table.

Funct ion Int roduct ion·Dat a Delivery Tablest ore

327 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/190340.htm#topic-1995204
https://www.alibabacloud.com/help/doc-detail/190344.htm#main-1995199

taskName

The name of the delivery task.

The name must be 3 to 16 characters in length and can contain only lowercase
letters, digits, and hyphens (-). It must start and end with a lowercase letter or
digit.

Paramet er Descript ion

Tablest ore Funct ion Int roduct ion·Dat a Delivery

> Document Version: 20220711 328

taskConfig

The configurations of the delivery task. Valid values:

ossPrefix: the prefix of the folder in the bucket. Data is delivered from
Tablestore to the folder. The path of the destination folder supports the
following time variables: $yyyy, $MM, $dd, $HH, and $mm.

When the path uses t ime variables for delivery, OSS folders are dynamically
generated based on the t ime when data is written. This way, data is
partit ioned based on the naming conventions that are followed when Hive
partit ions data. Objects in OSS are organized, partit ioned, and distributed
based on time.

When the path does not use t ime variables, all files are delivered to an OSS
folder whose name contains a specific prefix.

ossBucket: the name of the OSS bucket.

ossEndpoint: the endpoint of the region where an OSS bucket is located.

ossStsRole: the Alibaba Cloud Resource Name (ARN) of the Tablestore
service-linked role.

format: the format of the delivered data. The delivered data is stored in the
Parquet format. By default, data delivery uses PLAIN to encode data of any
type.

eventT imeColumn: the event t ime column. This parameter specifies that data
is partit ioned based on the t ime of data in a column. If you do not specify this
parameter, data is partit ioned based on the t ime when the data is written to
Tablestore.

parquetSchema: specifies the column you want to deliver. You must
configure the source fields, destination fields, and destination field types to
deliver.

The order in which fields are sorted in Tablestore can be different from the
order of fields in the schema. Parquet data stored in OSS is distributed based
on the order of fields in the schema.

Not ice

The data types must be consistent between the source and destination
fields. If the data types between the fields are inconsistent, the fields are
discarded as dirty data. For more information about field type mappings,
see the "Data type mappings" section of the Quick start topic.

Paramet er Descript ion

Funct ion Int roduct ion·Dat a Delivery Tablest ore

329 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/184691.htm#title-l8e-dbs-isi

taskType

The mode in which to deliver data. Default value: BASE_INC. Valid values:

INC: the incremental data delivery mode. Only incremental data is
synchronized.

BASE: the full data delivery mode. All data in tables is scanned and
synchronized.

BASE_INC: the differential data delivery mode. After the full data is
synchronized, Tablestore synchronizes the incremental data.

When you synchronize data in incremental mode, you can view the time when
data is last delivered and the status of the current delivery task.

Paramet er Descript ion

Examples

import com.alicloud.openservices.tablestore.ClientException;
import com.alicloud.openservices.tablestore.SyncClient;
import com.alicloud.openservices.tablestore.TableStoreException;
import com.alicloud.openservices.tablestore.model.delivery.*;
public class DeliveryTask {

 public static void main(String[] args) {
 final String endPoint = "https://yourinstancename.cn-hangzhou.ots.aliyuncs.com"
;

 final String accessKeyId = "LT********************g5";

 final String accessKeySecret = "Er**************************Yc";

 final String instanceName = "yourinstancename";

 SyncClient client = new SyncClient(endPoint, accessKeyId, accessKeySecret, inst
anceName);
 try {
 createDeliveryTask(client);
 System.out.println("end");
 } catch (TableStoreException e) {
 System.err.println("The operation failed. Details:" + e.getMessage() + e.ge
tErrorCode() + e.toString());
 System.err.println("Request ID:" + e.getRequestId());
 } catch (ClientException e) {
 System.err.println("The request failed. Details:" + e.getMessage());
 } finally {
 client.shutdown();
 }
 }

 private static void createDeliveryTask(SyncClient client){
 String tableName = "sampleTable";
 String taskName = "sampledeliverytask";
 OSSTaskConfig taskConfig = new OSSTaskConfig();

Tablest ore Funct ion Int roduct ion·Dat a Delivery

> Document Version: 20220711 330

 OSSTaskConfig taskConfig = new OSSTaskConfig();
 taskConfig.setOssPrefix("sampledeliverytask/year=$yyyy/month=$MM");
 taskConfig.setOssBucket("datadeliverytest");
 taskConfig.setOssEndpoint("oss-cn-hangzhou.aliyuncs.com");
 taskConfig.setOssStsRole("acs:ram::17************45:role/aliyunserviceroleforot
sdatadelivery");
 // eventColumn is optional. This parameter specifies that data is partitioned b
ased on the time of data in a column. If you do not specify this parameter, data is partiti
oned based on the time when the data is written to Tablestore.
 EventColumn eventColumn = new EventColumn("Col1", EventTimeFormat.RFC1123);
 taskConfig.setEventTimeColumn(eventColumn);
 taskConfig.addParquetSchema(new ParquetSchema("PK1", "PK1", DataType.UTF8));
 taskConfig.addParquetSchema(new ParquetSchema("PK2", "PK2", DataType.BOOL));
 taskConfig.addParquetSchema(new ParquetSchema("Col1", "Col1", DataType.UTF8));
 CreateDeliveryTaskRequest request = new CreateDeliveryTaskRequest();
 request.setTableName(tableName);
 request.setTaskName(taskName);
 request.setTaskConfig(taskConfig);
 request.setTaskType(DeliveryTaskType.BASE_INC);
 CreateDeliveryTaskResponse response = client.createDeliveryTask(request);
 System.out.println("resquestID: "+ response.getRequestId());
 System.out.println("traceID: " + response.getTraceId());
 System.out.println("create delivery task success");
 }
}

You can use E-MapReduce (EMR) JindoFS in cache mode to connect to Object Storage Service (OSS) that
is used as the data lake.

Background information
You can use EMR JindoFS in cache or block storage mode to connect to OSS.

When you use JindoFS in cache mode, files are stored as objects in OSS, and the frequently accessed
objects are cached on the local disk of an EMR cluster to improve the data access efficiency. In cache
mode, JindoFS can access objects in OSS without the need to convert the object formats. JindoFS is
fully compatible with OSS clients. For more information, see Use JindoFS in cache mode.

The block storage mode ensures efficient read and write operations and high metadata accessibility.
JindoFS uses OSS as the storage backend. In block storage mode, JindoFS stores data as blocks in OSS
and uses Namespace Service to maintain metadata. This ensures high performance when you read
and write data or query metadata. For more information, see Use JindoFS in block storage mode.

Prerequisites
An EMR cluster is created. For more information, see Create a cluster.

Before you create a cluster, take note of the following items:

10.4. Data lake-based computing and
analysis
10.4.1. Use EMR

Funct ion Int roduct ion·Dat a Delivery Tablest ore

331 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/182093.htm#task-1946324
https://www.alibabacloud.com/help/doc-detail/182092.htm#task-1946284
https://www.alibabacloud.com/help/doc-detail/35223.htm#concept-nrp-154-y2b

The EMR cluster and OSS belong to the same Alibaba Cloud account. We recommend that the EMR
cluster and OSS bucket are located in the same region.

When you create a cluster, turn on Assign Public IP Address to access the cluster over the
Internet and Remot e Logon to log on to a remote server by using Shell.

SmartData and Bigboot are dependent services to use configurations of JindoFS. If these services
are not selected by default , select these services.

A delivery task is created. For more information, see Quick start.

Procedure
1. Use EMR JindoFS in cache mode to connect to OSS and enable local cache. For more information,

see Use JindoFS in cache mode.

After you enable local cache, hot data blocks are cached on local disks. By default , this feature is
disabled, which indicates that EMR directly reads data from OSS. After you enable local cache, Jindo
automatically manages cached data. Jindo clears cached data based on the disk space usage you
configured. Configure the usage to clear cached data and adjust the space usage of local disks.

2. Start Spark SQL.

i. Use remote logon tools such as PuTTY to log on to the EMR Header server.

ii. Run the following command to run Spark SQL:

spark-sql --master yarn --num-executors 5 --executor-memory 1g --executor-cores 2

3. Use an SQL statement to create a external table that maps to an OSS folder.

Obtain an SQL statement in the Tablestore console. The following example of an SQL statement is
used only for reference:

CREATE EXTERNAL TABLE lineitem (l_orderkey bigint,l_linenumber bigint,l_receiptdate st
ring,l_returnflag string,l_tax double,l_shipmode string,l_suppkey bigint,l_shipdate str
ing,l_commitdate string,l_partkey bigint,l_quantity double,l_comment string,l_linestatu
s string,l_extendedprice double,l_discount double,l_shipinstruct string) PARTITIONED BY
(`year` int, `month` int) STORED AS PARQUET LOCATION 'jfs://test/' ;

To obtain an SQL statement in the Tablestore console, use the following method:

On the Deliver Dat a t o OSS tab, click View SQL St at ement t o Creat e T able in the Act ions
column corresponding to a delivery task. You can view and copy the SQL statement. The following
figure shows an example of an SQL statement that is used to create a external table.

Tablest ore Funct ion Int roduct ion·Dat a Delivery

> Document Version: 20220711 332

https://www.alibabacloud.com/help/doc-detail/184691.htm#topic-2636550
https://www.alibabacloud.com/help/doc-detail/182093.htm#task-1946324

4. Execute the following SQL statement to load data part it ions from an OSS source.

lineitem is the name of the external table.

msck repair table lineitem;

5. Query data.

select * from lineitem limit 1;

Funct ion Int roduct ion·Dat a Delivery Tablest ore

333 > Document Version: 20220711

This topic describes data visualization tools to which you can connect Tablestore.

Tool Description References

DataV

DataV can convert statistic data to a variety of dynamic
visualization charts. For more information, see What is
DataV?.

You can use DataV to display data in data tables or
secondary indexes of Tablestore. In most cases, DataV is
used to build enterprise application systems for complex
big data processing and analytics.

Connect Tablestore to
DataV

Grafana

Grafana is an open source visualization and analytics
platform that supports data query and visualization for
various data sources such as Prometheus, Graphite,
OpenTSDB, InfluxDB, Elasticsearch, MySQL, and PostgreSQL.
For more information, see the Grafana official
documentation.

You can use Grafana to display data in data tables or t ime
series tables of Tablestore.

Connect Tablestore to
Grafana

After Tablestore is connected to Grafana, you can use Grafana to display Tablestore data.

Prerequisites

The first t ime you use Tablestore, you must first act ivate Tablestore and create instances and data
tables. For more information, see Manage the Wide Column model in the Tablestore console or
Manage the Wide Column model in the Tablestore CLI.

A mapping table is created for a data table or a t ime series table in Tablestore. For more information
about specific operations, see Create mapping tables for tables and Create mapping tables in the
mult i-value model for t ime series tables.

Open source Grafana whose version is later than 8.0.0 is installed. For more information about how to
install Grafana, see the Grafana official documentation.

An AccessKey pair that consists of an AccessKey ID and an AccessKey secret is obtained. For more
information, see Obtain an AccessKey pair.

Background information

Grafana is an open source visualization and analyt ics platform that supports data query and
visualization for various data sources such as Prometheus, Graphite, OpenTSDB, InfluxDB, Elast icsearch,
MySQL, and PostgreSQL. For more information, see the Grafana official documentation.

After you add a Tablestore data source to Grafana, Grafana displays real-t ime data on a dashboard
based on the data of Tablestore.

11.Data visualization
11.1. Data visualization tools

11.2. Connect Tablestore to Grafana

Tablest ore Funct ion Int roduct ion·Dat a visualiza
t ion

> Document Version: 20220711 334

https://www.alibabacloud.com/help/doc-detail/30360.htm#concept-rbr-xjj-p2b
https://www.alibabacloud.com/help/doc-detail/427039.htm#task-2209119
http://docs.grafana.org/installation/
https://www.alibabacloud.com/help/doc-detail/427038.htm#task-2209122
https://www.alibabacloud.com/help/doc-detail/342853.htm#task-2134826
https://www.alibabacloud.com/help/doc-detail/342854.htm#concept-2128522
https://www.alibabacloud.com/help/doc-detail/295892.htm#concept-2098376
https://www.alibabacloud.com/help/doc-detail/348791.htm#concept-2142062/section-0hm-38a-6uh
http://docs.grafana.org/installation/
https://www.alibabacloud.com/help/doc-detail/175967.htm#task-354412
http://docs.grafana.org/installation/

Usage notes

The support for Grafana is available in the following regions: China (Hangzhou), China (Shanghai), China
(Beijing), China (Zhangjiakou), China (Shenzhen), and Singapore (Singapore).

Step 1: Install the Grafana plug-in for Tablestore

Windows
1. Click Grafana plug-in for Tablestore package to download the Grafana plug-in for Tablestore

package.

2. Extract f iles from the package to the plugins-bundled directory of the Grafana plug-in.

3. Modify the configuration file of Grafana.

i. Use a text editor to open the defaults.ini configuration file in the conf directory of the Grafana
plug-in.

ii. Find [plugins] in the configuration file and configure the allow_loading_unsigned_plugins
parameter.

allow_loading_unsigned_plugins = aliyun-tablestore-grafana-datasource

4. Restart the grafana-server.exe process in Task Manager.

Linux or macOS
1. Run the following command to download the Grafana plug-in for Tablestore package:

wget https://tablestore-doc.oss-cn-hangzhou.aliyuncs.com/aliyun-tablestore-grafana-plug
in/tablestore-grafana-plugin-1.0.0.zip

2. Extract f iles from the Grafana plug-in for Tablestore package to a directory of the Grafana plug-in.

Run the following command to extract f iles from the Grafana plug-in for Tablestore package
based on the method that is used to install the Grafana plug-in.

If you use a yum repository or an RPM package to install the Grafana plug-in in Linux, run the
unz ip t ablest ore-graf ana-plugin-1.0.0.z ip -d /var/lib/graf ana/plugins command.

If you use a .tar.gz file to install the Grafana plug-in, run the unz ip t ablest ore-graf ana-
plugin-1.0.0.z ip -d {PAT H_T O}/graf ana-{VERSION}/dat a/plugins command.

3. Modify the configuration file of Grafana.

i. Go to the directory of Grafana and open the configuration file.

If you use a yum repository or an RPM package to install Grafana in Linux, open the /etc/graf
ana/grafana.ini f ile.

If you use a .tar.gz file to install Grafana, open the {PATH_TO}/grafana-{VERSION}/conf/def
aults.ini f ile.

In the preceding file name, {PATH_TO}/grafana-{VERSION} indicates the installat ion path
of Grafana and VERSION indicates the version number of Grafana.

ii. Find [plugins] in the configuration file and configure the allow_loading_unsigned_plugins
parameter.

allow_loading_unsigned_plugins = aliyun-tablestore-grafana-datasource

Funct ion Int roduct ion·Dat a visualiza
t ion

Tablest ore

335 > Document Version: 20220711

https://tablestore-doc.oss-cn-hangzhou.aliyuncs.com/aliyun-tablestore-grafana-plugin/tablestore-grafana-plugin-1.0.0.zip

4. Restart Grafana.

i. Run the kill command to terminate the Grafana process.

ii. Run the following command to start Grafana.

If you use a yum repository or an RPM package to install Grafana, run the syst emct l rest art
graf ana-server command.

If you use a .tar.gz file to install Grafana, run the ./bin/graf ana-server web command.

Step 2: Add a data source

1. Log on to Grafana.

i. Open a browser and enter http://localhost:3000/ in the address box to go to the Grafana
logon page.

ii. Enter values for the Email or username and Password parameters, and click Log in.

The default username and password that are used to log on to Grafana are both admin. The
first t ime you log on to Grafana, change the default password as prompted.

2. Move the pointer over the icon in the left-side navigation pane and click Dat a sources .

3. On the Dat a sources tab, click Add dat a source .

4. In the Others sect ion of the Add dat a source page, click aliyun-tablestore-grafana-datasource.

5. On the Set t ings page, configure the parameters. The following table describes the parameters.

Parameter Example Description

Name
aliyun-tablestore-
grafana-datasource

The name of the data source. You can retain the
default value or enter a custom name. Default
value: aliyun-tablestore-grafana-datasource.

Endpoint

https://myinstance.cn
-
hangzhou.ots.aliyuncs.
com

The endpoint of the Tablestore instance.
Configure this parameter based on the Tablestore
instance that you want to access. For more
information, see Endpoint.

Instance myinstance The name of the Tablestore instance.

AccessId ************************
The AccessKey ID of your Alibaba Cloud account
or a RAM user that has permissions to access
Tablestore.

AccessKey

The AccessKey secret of your Alibaba Cloud
account or a RAM user that has permissions to
access Tablestore.

6. Click Save & t est .

After the data source is added to Grafana, the Dat a source is working message appears.

Tablest ore Funct ion Int roduct ion·Dat a visualiza
t ion

> Document Version: 20220711 336

https://www.alibabacloud.com/help/doc-detail/52671.htm#concept-bsx-btj-bfb

Step 3: Create a dashboard panel

1. In the Grafana console, move the pointer over the icon in the left-side navigation pane and

click Dashboard.

2. On the New dashboard page, click the icon.

3. In the Add panel sect ion, click Add a new panel.

4. In the Query sect ion of the Edit Panel page, specify the condit ions that are used to query data
from the data source.

i. Select a Tablestore data source from the Data source drop-down list .

ii. Configure the data source parameters.

Parameter Example Description

Funct ion Int roduct ion·Dat a visualiza
t ion

Tablest ore

337 > Document Version: 20220711

Query

 SELECT * FROM yo
ur_table WHERE $__
unixMicroTimeRange
Filter(_time)AND _
m_name = "your_mea
surement" AND tag_
value_at(_tags, "y
our_tag")="your_ta
g_value"LIMIT 1000

The SQL query statement. For more
information, see Query data.

Not ice

In the WHERE clause, the t ime range
condition that is used to filter data
is specified by using a predefined
macro. In this example, the
predefined macro is $__unixMic
roTimeRangeFilter . You can
click Show Help on the
configuration page to view more
time macro functions.

If you want data to be displayed as
a time series chart, you must
specify that the t ime column that
is represented by a numeric
timestamp must be returned and
specify the name of the t ime
column.

Format As T imeseries

The method that you want to use to display
the query results. Default value: T imeseries.
Valid values:

T imeseries: displays the query results as a
regular t ime series chart.

FlowGraph: displays the query results as a
multi-dimensional chart.

Table: displays the query results as a regular
table.

T ime Column _time

The name of the t ime column in the query
results that are returned. The time column is
used as the x-axis of the t ime series chart. If
you set the Format As parameter to
T imeseries or FlowGraph, you can configure
this parameter.

Parameter Example Description

Tablest ore Funct ion Int roduct ion·Dat a visualiza
t ion

> Document Version: 20220711 338

https://www.alibabacloud.com/help/doc-detail/295900.htm#concept-2098388

Aggregation Column
_field_name#:#_dou
ble_value

The name of the single column whose data in
multiple rows at a specified point in t ime you
want to convert into data in multiple columns
of a single row at the specified point in t ime.
This parameter is used if you want to convert
data in single-value model to data in multi-
value model. The data in single-value model is
the results that are obtained when you use SQL
to query a t ime series table in Tablestore. If
you set the Format As parameter to
FlowGraph, you can configure this parameter.
The value of this parameter is in the <Data p
oint name column>#:#<Data value column>
 format.

Parameter Example Description

5. Click Run SQL to execute SQL statements, view the data, and then perform debugging.

6. Configure the dashboard panel and save the configurations.

i. On the right side of the page, specify the name, type, and layout of the monitoring chart.

ii. In the upper-right corner, click Apply.

iii. Click the icon in the upper-right corner. In the Save dashboard as... dialog box, configure

the Dashboard name and Folder parameters and click Save.

Funct ion Int roduct ion·Dat a visualiza
t ion

Tablest ore

339 > Document Version: 20220711

Step 4: View monitoring data

1. In the Grafana console, move the pointer over the icon in the left-side navigation pane and

click Browse.

2. On the Browse tab, click the monitoring dashboard under the folder that you specified for the
dashboard to view all monitoring charts on the dashboard.

After you add a Tablestore data source in the DataV console, you can use DataV to display Tablestore
data.

Prerequisites
The first t ime you use Tablestore, you must first act ivate Tablestore and create instances and data
tables. For more information, see Manage the Wide Column model in the Tablestore console or
Manage the Wide Column model in the Tablestore CLI.

The first t ime you use DataV, you must first act ivate DataV. For more information, see Act ivate DataV.

An AccessKey pair that consists of an AccessKey ID and an AccessKey secret is obtained. For more
information, see Obtain an AccessKey pair.

Context
DataV can convert stat ist ic data to a variety of dynamic visualization charts. For more information, see
What is DataV?.

After you add a Tablestore data source to DataV, DataV displays real-t ime data on a dashboard based
on the data of Tablestore tables.

Usage notes
The data source can only be a data table or a secondary index in Tablestore.

Step 1: Add a Tablestore data source
1. Log on to the DataV console.

2. On the Dat a Sources tab, click Dat a Sources .

3. On the Dat a Sources page, click Add Source.

11.3. Connect Tablestore to DataV

Tablest ore Funct ion Int roduct ion·Dat a visualiza
t ion

> Document Version: 20220711 340

https://www.alibabacloud.com/help/doc-detail/342853.htm#task-2134826
https://www.alibabacloud.com/help/doc-detail/342854.htm#concept-2128522
https://www.alibabacloud.com/help/doc-detail/141609.htm#task-2323429
https://www.alibabacloud.com/help/doc-detail/175967.htm#task-354412
https://www.alibabacloud.com/help/doc-detail/30360.htm#concept-rbr-xjj-p2b
https://datav.alibabacloud.com/

4. In the Add Dat a Source dialog box, select T ableSt ore from the Type drop-down list . Then,
configure other parameters for a Tablestore data source. The following table describes the
parameters that you can configure for a Tablestore data source.

Parameter Description

Name The display name of the data source.

AK ID
The AccessKey ID of your Alibaba Cloud account or a RAM user that
has permissions to access Tablestore.

AK Secret
The AccessKey secret of your Alibaba Cloud account or a RAM user
that has permissions to access Tablestore.

Internet
The endpoint of the Tablestore instance. Configure this parameter
based on the Tablestore instance that you want to access. For
more information, see Endpoint.

5. Click OK.

The data source that you added is displayed in the data source list .

Step 2: Configure the Tablestore data source
1. Log on to the DataV console.

2. Create a visualization project or select an exist ing visualization project based on your business
scenario.

If you use an exist ing visualization project, move the pointer over the visualization project and

Funct ion Int roduct ion·Dat a visualiza
t ion

Tablest ore

341 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/52671.htm#concept-bsx-btj-bfb
https://datav.alibabacloud.com/

click Edit .

If this is the first t ime that you use DataV or exist ing visualization projects do not meet your
requirements, you can create visualization projects based on your business requirements.

Not e You can create visualization projects on a PC or mobile device, or by using image
recognit ion. The following procedure describes how to create a visualization project on a PC.

a. On the Project s tab, click PC Creat ion .

b. Move the pointer over the visualization application for which you want to create a project
and click Creat e Project .

DataV allows you to create a visualization application by using a template or a blank canvas.
You can select a method to create a visualization application based on your business
requirements.

c. In the Creat e New Project dialog box, specify the name of the project and select a group
to which the project belongs.

d. Click Creat e .

3. Configure the Tablestore data source.

i. On the canvas edit ing page, click a widget on the canvas.

Not e If no widget exists on the canvas, add a widget first . For more information, see
Add a widget.

ii. In the right-side widget configurations panel of the canvas, click the icon.

Tablest ore Funct ion Int roduct ion·Dat a visualiza
t ion

> Document Version: 20220711 342

https://www.alibabacloud.com/help/doc-detail/59278.htm#task-2375434

iii. On the Dat a tab, click Set .

iv. Set the Data Source Type parameter to T ableSt ore and select an exist ing data source.

v. Select an operation that you want to perform on the data source and enter a query
statement.

Tablestore supports getRow and getRange. getRow corresponds to the GetRow operation in
Tablestore. getRange corresponds to the GetRange operation in Tablestore.

Funct ion Int roduct ion·Dat a visualiza
t ion

Tablest ore

343 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/27305.htm#reference-oty-2q3-bfb
https://www.alibabacloud.com/help/doc-detail/27309.htm#reference3923

If you select getRow, a row whose primary key is specified is read. The following code and
table describe the format that you can use and the parameters that you can configure for a
query statement.

{
"table_name": "test",
"rows": {
"id": 2
},
"columns": [
"id",
"test"
]
}

Parameter Description

table_name The name of the table in Tablestore.

rows

The primary key of the row.

Not ice You must specify the same number and
data types of primary key columns for each row as the
number and data types of primary key columns in the
table.

columns

The columns that you want to read. You can specify the names
of primary key columns or attribute columns.

If you do not specify a column name, all data in the row is
returned.

If you select getRange, all data whose primary keys are within a specified range is read. The
following code and table describe the format that you can use and the parameters that you
can configure for a query statement.

Tablest ore Funct ion Int roduct ion·Dat a visualiza
t ion

> Document Version: 20220711 344

{
"table_name": "test",
"direction": "FORWARD",
"columns": [
"id",
"test"
],
"range": {
"limit": 4,
"start": {
"id": "InfMin"
},
"end": {
"id": 3
}
}
}

Parameter Description

table_name The name of the table in Tablestore.

direction

The direction in which data is read.

If you set this parameter to FORWARD, specify a smaller
value for the start primary key than the value of the end
primary key. The returned rows are sorted in ascending order
based on their primary key values.

If you set this parameter to BACKWARD, specify a greater
value for the start primary key than the value of the end
primary key. The returned rows are sorted in descending
order based on their primary key values.

For example, if you set the direction parameter to FORWARD
for a table that contains two primary keys A and B and the
value of A is smaller than the value of B, the rows whose
primary key values are greater than or equal to the value of A
but smaller than the value of B are returned in ascending order
from A to B. If you set the direction parameter to BACKWARD,
the rows whose primary key values are smaller than or equal to
the value of B and greater than the value of A are returned in
descending order from B to A.

Funct ion Int roduct ion·Dat a visualiza
t ion

Tablest ore

345 > Document Version: 20220711

columns

The columns that you want to read. You can specify the names
of primary key columns or attribute columns.

If you do not specify a column name, all data in the row is
returned.

If a row is within the specified range to be read based on the
primary key value but does not contain the specified columns
to return, the response excludes the row.

limit

The maximum number of rows that you want to return. The
value of this parameter must be greater than 0.

An operation stops after the maximum number of rows that
you want to return in the forward or backward direction is
reached, even if some rows within the specified range are not
returned.

start The start and end primary keys of the range to read. The start
and end primary keys must be valid primary keys or virtual
points that consist of the InfMin and InfMax type data. The
number of columns for each virtual point must be the same as
the number of columns of each primary key.

InfMin indicates an infinitely small value. All values of other
types are greater than the InfMin type value. InfMax indicates
an infinitely great value. All values of other types are smaller
than the InfMax type value.

Not ice You must specify the same number and
data types of primary key columns for each row as the
number and data types of primary key columns in the
table.

start indicates the start primary key. If the row that contains
the start primary key exists, the row of data is returned.

end indicates the end primary key. No matter whether the
row that contains the end primary key exists, the row of
data is not returned.

end

Parameter Description

vi. Click the icon next to Dat a Response Result to obtain the response.

Not e After you obtain the response, you can click Preview Dat a Response to view
the response.

4. Preview and publish a project

i. In the upper-right corner of Canvas Editor, click the icon to preview the project.

Tablest ore Funct ion Int roduct ion·Dat a visualiza
t ion

> Document Version: 20220711 346

ii. In the upper-right corner of Canvas Editor, click the icon.

iii. In the Publish dialog box, click Publish Project .

iv. In the Publish Success message, click Cancel.

Not e After the project is published, the content on the publish page is locked. After
you edit the content, you can synchronize the published content by using the snapshot
management feature. You can also click Got o Snapshot Management to view
information about snapshots that are created.

v. Click the icon on the right side of the URL in the Project URL sect ion.

vi. Copy and paste the URL to the address bar of a browser to view the published project.

Funct ion Int roduct ion·Dat a visualiza
t ion

Tablest ore

347 > Document Version: 20220711

Hybrid Backup Recovery (HBR) can be used to regularly back up data in Tablestore instances and restore
lost or damaged data. HBR supports the backup of full data and incremental data and data
redundancy. This improves the reliability of data in backup vaults.

Public preview
The data backup and restoration feature in Tablestore by using HBR is in public preview in the China
(Shanghai) and China (Beijing) regions.

If you have questions, please join the Tablestore technical support group by searching for group ID
11789671 or 23307953 in DingTalk to contact us.

Background information
HBR is a unified platform that is developed by Alibaba Cloud for backup and disaster recovery. This
platform is an easy-to-use data management service that is deployed in the public cloud to offer high
agility, efficiency, security, and reliability. You can use HBR to back up data to a cloud vault from Elast ic
Computing Service (ECS) instances, ECS databases, f ile systems, NAS clusters, Object Storage Service
(OSS) buckets, Tablestore, and self-managed data centers that store files, databases, virtual machines
(VMs), and large-scale NAS file systems. You can also perform disaster recovery and archive data based
on the archive policies that you configure for the preceding resources. For more information, see What is
Hybrid Backup Recovery?.

Prerequisites
HBR is act ivated.

A Tablestore instance is created, and the data that you want to back up is available.

Backup overview

This topic describes how to use Hybrid Backup Recovery (HBR) to regularly back up full data or
incremental data in Tablestore.

Usage notes
The first t ime that you use this feature, HBR automatically creates the service-linked role
AliyunServiceRoleForHbrOtsBackup to obtain Tablestore instances in your account. Follow the on-
screen instruct ions to create the role. For more information, see Service-linked roles for HBR.

By default , HBR reads the Tablestore instances in the region where HBR is deployed and
automatically loads the instances without installing a client.

You can back up data in Tablestore only to HBR backup vaults in the same region as the Tablestore

12.Backup and restoration
12.1. Overview

12.2. Back up Tablestore data

Tablest ore Funct ion Int roduct ion·Backup and re
st orat ion

> Document Version: 20220711 348

https://www.alibabacloud.com/help/doc-detail/62362.htm#concept-62362-zh
https://www.alibabacloud.com/help/doc-detail/179103.htm#topic-1937628

instance in which the data that you want to back up resides. Cross-region backup is not supported.

You can back up and restore only data tables in Tablestore instances. You cannot back up indexes or
t ime series tables.

If an exception occurs or an incorrect operation is performed on a Tablestore instance, you can restore
data backups in the backup vaults to the Tablestore instance or to another Tablestore instance in the
same region. This topic describes how to use Hybrid Backup Recovery (HBR) to create a Tablestore
restoration task.

Prerequisites
A Tablestore backup plan is created and data backup is complete. For more information, see Back up
Tablestore data.

12.3. Restore Tablestore data

Funct ion Int roduct ion·Backup and re
st orat ion

Tablest ore

349 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/418711.htm#task-2157002

This topic describes the limits of Tablestore. Table schemas and row sizes can be tailored to improve
performance.

Limits on instances

Resource Limit Description

Number of instances created
within an Alibaba Cloud account

10
If your business requirements are not met due to
the limit, submit a t icket.

Number of tables in an instance 64
The number of data tables and index tables. If
your business requirements are not met due to
the limit, submit a t icket.

Length of an instance name 3 to 16 bytes
The name of an instance can contain letters,
digits, and hyphens (-). The name must start with
a letter and cannot end with a hyphen (-).

Limits on tables

Resource Limit Description

Length of a table name 1 to 255 bytes
The name of a table can contain letters, digits,
and underscores (_). The name must start with a
letter or an underscore (_).

Reserved read capacity units
(CUs) and reserved write CUs of a
single table

0 to 100000 CUs
If your business requirements are not met due to
the limit, submit a t icket.

Number of predefined columns 0 to 32

Predefined columns are non-primary key columns
whose names and types are defined when a data
table is created. When you create a global
secondary index, predefined columns can be used
as the indexed columns or attribute columns of
the index table. For more information, see Global
secondary index.

Not ice Predefined columns are not
required when you use a search index.

Limits on columns

13.Limits
13.1. General limits

Tablest ore Funct ion Int roduct ion·Limit s

> Document Version: 20220711 350

https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://www.alibabacloud.com/help/doc-detail/91947.htm#concept-ogb-g2b-ffb

Resource Limit Description

Length of a column name 1 to 255 bytes
The name of a table can contain letters, digits,
and underscores (_). The name must start with a
letter or an underscore (_).

Number of columns in a primary
key

One to four
A primary key can contain one to four primary key
columns.

Size of the value in a STRING
primary key column

1 KB
The size of the value in a STRING primary key
column cannot exceed 1 KB.

Size of the value in a STRING
attribute column

2 MB
The size of the value in a STRING attribute column
cannot exceed 2 MB.

Size of the value in a BINARY
primary key column

1 KB
The size of the value in a BINARY primary key
column cannot exceed 1 KB.

Size of the value in a BINARY
attribute column

2 MB
The size of the value in a BINARY attribute column
cannot exceed 2 MB.

Limits on rows

Resource Limit Description

Number of attribute columns in a
single row

Tablestore does
not impose limits
on the number of
attribute
columns in a
single row.

None.

Size of a single row

Tablestore does
not impose limits
on the size of a
single row.

Tablestore does not impose limits on the total
size of column names or column values for a row.

Limits on operations

Operation Limit Description

Number of attribute columns
written by one request

1,024
During a PutRow, UpdateRow, or BatchWriteRow
operation, the number of attribute columns
written in a row cannot exceed 1,024.

Number of columns specified in
columns_to_get in a read request

0 to 128
The maximum number of columns obtained from
a row of data in a read request cannot exceed
128.

Queries per second (QPS) at the
table level

10 QPS

The QPS for tables in an instance cannot exceed
10. For more information about table-level
operations, see the "Table operations" section in
OperationsSummary.

Funct ion Int roduct ion·Limit s Tablest ore

351 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/27304.htm#concept-wvw-2sj-bfb

Count of UpdateTable operations
for a single table

Tablestore does
not impose limits
on the count of
UpdateTable
operations for a
single table.

The limit on the count of UpdateTable operations
for a single table follows the limit on the
frequency of adjustment for a single table.

Frequency of calling the
UpdateTable operation for a
single table

Once every 2
minutes

The reserved read or write throughput for a
single table can be adjusted once every two
minutes at most.

Number of rows read by one
BatchGetRow request

100 None.

Number of rows written by one
BatchWriteRow request

200 None.

Size of data written by one
BatchWriteRow request

4 MB None.

Size of data written by one
PutRow request

4 MB None.

Size of data written by one
UpdateRow request

4 MB None.

Size of data scanned at a t ime by
one GetRange request

5,000 rows or 4
MB

The size of data scanned at a t ime by one
GetRange request cannot exceed 5,000 rows or 4
MB. When one of the limits is exceeded, data that
exceeds the limit is truncated at the row level.
The primary key information of the next row of
data is returned.

Data size of an HTTP request
body

5 MB None.

Number of filters in one read
request

10 None.

Operation Limit Description

This topic describes the limits of secondary index.

Limits on index tables

Item Limit Description

Length of a table name 1~255 Bytes
The name of a table can contain uppercase and
lowercase letters, digits, and hyphens (-). The name
must start with a letter or an underscore (_).

13.2. Secondary index limits

Tablest ore Funct ion Int roduct ion·Limit s

> Document Version: 20220711 352

Number of secondary
indexes for a single
base table

5
A maximum of five index tables can be created for
each base table.

Number of indexed
columns

1 to 4

A maximum of four indexed columns can be added
for an index table. Indexed columns consist of the
primary key of the base table and predefined
columns.

The primary key of an index table consists of
indexed columns and autocompleted primary key
columns of the base table.

Data types supported
by indexed columns

STRING, INTEGER, and
BINARY

The data types supported by indexed columns are
STRING, INTEGER, and BINARY.

Number of attribute
columns

32

A maximum of 32 attribute columns can be added
to an index table. Attribute columns of an index
table consist of predefined columns of the base
table.

Data types supported
by attribute columns

STRING, INTEGER,
DOUBLE, BOOLEAN, and
BINARY

The data types supported by attribute columns are
STRING, INTEGER, DOUBLE, BOOLEAN, and BINARY.

Item Limit Description

Additional limits

Item Limit Description

Indexed column
Columns except auto-
increment primary key
columns

The first primary key column of an index table
cannot be an auto-increment column.

Operation on data in
index tables

Read-only
You can only read data from index tables. You
cannot write data to index tables.

Max versions Not supported
You cannot create secondary indexes for tables that
have max versions enabled.

T ime to live (TTL) Supported
Updates for base tables must be disabled. Make
sure that the TTL value set for an index table is
consistent with that for the base table.

Stream Not supported None.

Query from the base
table

Not supported Queries from the base table are required.

This topic describes the limits on search indexes.

13.3. Search index limits

Funct ion Int roduct ion·Limit s Tablest ore

353 > Document Version: 20220711

Mapping

Item Maximum value Description

Number of indexed
fields

500 The number of fields that can be indexed.

Array length 256 The maximum number of elements in an array.

Number of fields for
which
EnableSortAndAgg is
set to true

100 The number of fields that can be sorted and aggregated.

Number of nested
levels

5 Up to five levels can be nested.

Number of child
rows in a nested
field

256
The maximum number of child rows that are contained in
a nested field.

Number of nested
fields

25 The number of child fields that can be nested.

Total length of
values in all primary
key columns

1,000 bytes
The total length of all primary key columns in each row
can be a maximum of 1,000 bytes.

Length of the value
in the primary key
column of the
STRING type

1,000 bytes
To index a primary key column of the STRING type, the
column value cannot exceed 1,000 bytes in length.

Length of the value
in an attribute
column of the
STRING type if you
want to index the
column as KEYWORD

4 KB None.

Length of the value
in an attribute
column of the
STRING type if you
want to index the
column as TEXT

2 MB
The limit is the same as the length limit on an attribute
column in a data table.

Length of a query
string that contains
a wildcard

32 The query string can be up to 32 characters in length.

Length of a query
string that contains
a prefix

1,000 bytes The query string can be up to 1,000 characters in length.

Tablest ore Funct ion Int roduct ion·Limit s

> Document Version: 20220711 354

Search

Category Item
Maximum
value

Description

General limits

offset+limit 10000
To increase the number of returned rows,
configure the next_token parameter.

limit 100

When you call the Search operation to query
data of a specified column, the maximum
value of the limit parameter can be set to
1000 if the column is contained in search
indexes.

To increase the limit, submit a t icket.

t imeout 10s None.

CU 100,000
This limit does not take effect for scanning
and analysis requests.

To increase the limit, submit a t icket.

QPS 100,000

The upper limit for lightweight transaction
processing is 100,000 queries per second
(QPS).

To increase the limit, submit a t icket.

Number of query
methods that are
specified in a Search
call

1024

If complex nested queries are specified in a
Search call, query performance is
compromised. We recommend that you
simplify the queries.

Aggregation

Number of
Aggregations at the
same level

5
The number of Aggregations is recalculated
each time you add a new Aggregation to
SubGroupBy.

Number of GroupBys
at the same level

5
The number of GroupBys is recalculated each
time you add a new GroupBy to SubGroupBy.

Number of nested
GroupBys

3
The root GroupBy is calculated as a nested
level.

Number of Filters in
GroupByFilter

10 None.

Number of groups
returned by
GroupByField

2,000 None.

Number of Ranges in
GroupByRange

100 None.

Funct ion Int roduct ion·Limit s Tablest ore

355 > Document Version: 20220711

https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd

Number of Ranges in
GroupByGeodistance

10 None.

Category Item
Maximum
value

Description

ParallelScan

Category Item Description

General limits

offset+limit
When you use parallel scan, you cannot configure the
offset and limit parameters. The results that are returned
are displayed in chronological order.

limit The maximum value is 2,000.

CU None.

QPS None.

Maximum number of
parallel tasks

The value of the MaxParallel parameter. You can call the
ComputeSplits operation to obtain the value of the
parameter.

Index

Item Maximum value Description

Rate 50,000 rows/s

The first t ime when data is written to a table or when a
large volume of data is written in a short period of
time, Tablestore balances loads within a few minutes.

The maximum rate of indexing TEXT fields is 10,000
rows/s because this process consumes a large number
of CPU resources for tokenization.

To increase the limit, submit a t icket.

Synchronization
latency

3s
In most cases, the synchronization latency is within
three seconds.

It takes up to one minute to init ialize a new index.

Number of rows 50,000,000,000 To increase the limit, submit a t icket.

Total size 50 TB To increase the limit, submit a t icket.

Other limits
Search indexes are available in the following regions: China (Hangzhou), China (Shanghai), China (Beijing),
China (Zhangjiakou), China (Shenzhen), China (Hong Kong), Singapore (Singapore), Australia (Sydney),
Indonesia (Jakarta), Japan (Tokyo), Germany (Frankfurt), UK (London), US (Silicon Valley), US (Virginia), India
(Mumbai), and Philippines (Manila).

Tablest ore Funct ion Int roduct ion·Limit s

> Document Version: 20220711 356

https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd

Not e To use search indexes in a wider range of regions, submit a t icket. When you submit a
t icket, you must specify the limits and the limit values. You must also specify the scenarios in which
you want to use the new limits and the requirements based on which you want to use the new
limits. The requirements that you specify in the t icket are recorded for future development
purposes.

This topic describes the limits of SQL.

Configuration limits

Not ice The database names, table names, and column names cannot be the reserved words
or keywords in SQL. For more information about the reserved words and keywords, see Reserved
words and keywords.

Item Limit Description

Database name length 3 to 16 bytes

The database name corresponds to the instance
name.

The database name can contain letters, digits, and
hyphens (-). The name must start with a letter and
cannot end with a hyphen (-).

Table name length 1 to 255 bytes

The table name corresponds to the data table
name or index table name.

The table name can contain letters, digits, and
underscores (_). The name must start with a letter
or an underscore (_).

Column name length 1 to 255 bytes

The column name corresponds to the column name
in a data table or index table.

The column name can contain letters, digits, and
underscores (_). The name must start with a letter
or an underscore (_).

Number of columns 1 to 32
If your business requirements are not met due to
the limit, submit a t icket.

Size of the value in a
primary key column of
the STRING type

1 KB
The size of the value in a primary key column of the
STRING type cannot exceed 1 KB.

Size of the value in an
attribute column of the
STRING type

2 MB
The size of the value in an attribute column of the
STRING type cannot exceed 2 MB.

13.4. SQL limits

Funct ion Int roduct ion·Limit s Tablest ore

357 > Document Version: 20220711

https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://www.alibabacloud.com/help/doc-detail/295914.htm#concept-2098405
https://workorder-intl.console.aliyun.com/#/ticket/createInd

Size of the value in a
primary key column of
the Binary (Blob) type

1 KB
The size of the value in a primary key column of the
Binary (Blob) type cannot exceed 1 KB.

Size of the value in an
attribute column of the
Binary (Blob) type

2 MB
The size of the value in an attribute column of the
Binary (Blob) type cannot exceed 2 MB.

Item Limit Description

Operation limits

Item Limit Description

Amount of data for a
single scan

128 MB or 100,000 rows

The maximum number of rows for a single scan is
100,000 or the maximum amount of data for a
single scan is 128 MB. If the upper limit is exceeded,
the system returns an error.

Single execution time 30s

The single execution time is related to the
complexity of the SQL statement and the amount of
data in the table. The maximum duration is 30
seconds. If the maximum duration is exceeded, the
system returns an error.

Data type and posit ion
of a column

Unmodifiable
The data type and posit ion of a column cannot be
modified.

Case sensit ivity Not case-sensit ive

The table names and column names in Tablestore
are both case-sensit ive. When SQL is used, the
Tablestore table names and column names are
converted into lowercase letters for matching. In
this case, if you want to perform operations on the
Aa column in a Tablestore table, you can use AA, aa,
aA, or Aa in SQL. Therefore, the table names or
column names in Tablestore cannot be AA, aa, aA,
and Aa at the same time.

This topic describes the limits on the TimeSeries model.

Item Limit

Name of a t ime series table
The name of a t ime series table must be 1 to 128 bytes in size, and can
contain letters, digits, and underscores (_). The name cannot start with
a digit.

Name of a column in a t ime
series table

The name of a column in a t ime series table must be 1 to 128 bytes in
size, and can contain lowercase letters, digits, and underscores (_). The
name cannot contain _m_name, _data_source, _tags, _time,
_meta_update_time, or _attributes. The name cannot start with a digit.

13.5. Limits on the TimeSeries model

Tablest ore Funct ion Int roduct ion·Limit s

> Document Version: 20220711 358

Measurement name
A measurement name must be a UTF-8-encoded string that is 1 to 128
bytes in size. The name cannot contain number signs (#) or non-
printable characters such as spaces.

Data source
A data source must be a UTF-8-encoded string that is 0 to 256 bytes in
size.

Tags

The tags must be in the ["k1=v1","k2=v2"] format. Each tag consists of
a key and a value that are connected by an equal sign (=).

The tag key must contain only printable ASCII characters. The tag value
can be a UTF-8-encoded string. Both the tag key and tag value cannot
contain double quotation marks (") or equal signs (=). The tags cannot
exceed 512 bytes in size.

T ime column
The value of a t ime column must be greater than or equal to 0. Unit:
microseconds.

Maximum number of columns
that can be written at a t ime

You can write up to 1,024 attribute columns in a single row to a t ime
series table at a t ime.

Maximum number of rows that
can be written at a t ime

You can write up to 200 rows to a t ime series table at a t ime.

Maximum size of data that can
be written to a t ime series table
at a t ime

You can write up to 4 MB of data to a t ime series table at a t ime.

Size of the value in a column of
the STRING type

The size of the value in a column of the STRING type cannot exceed 2
MB.

Size of the value in a column of
the BINARY type

The size of the value in a column of the BINARY type cannot exceed 2
MB.

Item Limit

Funct ion Int roduct ion·Limit s Tablest ore

359 > Document Version: 20220711

In addit ion to SDKs and RESTful operations, you can also use Tablestore HBase Client to access
Tablestore. Java applications that support open source HBase operations can use Tablestore HBase
Client to access Tablestore.

Based on Tablestore SDKs for Java V4.2.x and later, Tablestore HBase Client supports open source
operations for HBase V1.x.x and later.

You can obtain Tablestore HBase Client by using one of the following methods:

GitHub: tablestore-hbase-client project

Compressed package

Maven

 <dependencies>
 <dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>tablestore-hbase-client</artifactId>
 <version>1.2.0</version>
 </dependency>
 </dependencies>

Tablestore is a fully managed NoSQL database service. When you use Tablestore HBase Client, you can
ignore HBase Server. Instead, you need only to perform table or data operations by using operations
provided by Client.

Compared with self-built HBase services, Tablestore has the following advantages:

Item Tablestore Self-built HBase cluster

Cost

Charges fees based on actual data
volumes. Tablestore provides high
performance and capacity instances to
meet the requirements of different
scenarios.

Allocates resources based on traffic
peaks. Resources remain idle during off-
peak periods, which results in high
operation and maintenance costs.

Security

Integrates Alibaba Cloud RAM and
supports multiple authentication and
authorization mechanisms, VPC, and
primary/RAM user management.
Authorization granularity can be defined
at both the table-level and operation-
level.

Requires extra security mechanisms.

Reliability

Supports automatic redundant data
backup and failover. Data availability is
99.9% or greater, and data reliability is
99.99999999%.

Requires extra mechanisms to ensure
cluster reliability.

14.HBase
14.1. Tablestore HBase Client

Tablest ore Funct ion Int roduct ion·HBase

> Document Version: 20220711 360

https://github.com/aliyun/aliyun-tablestore-hbase-client
https://static-aliyun-doc.oss-cn-hangzhou.aliyuncs.com/file-manage-files/zh-CN/20220527/dvue/tablestore-hbase-client-1.2.0.zip

Scalability

Server Load Balancer (SLB) of Tablestore
supports PB-level data transfer from a
single table. Manual resizing is not
needed even if millions of bytes of data
is concurrently stored.

Complex online and offline processes are
required if a cluster reaches high usage
capacity, which impacts online services.

Item Tablestore Self-built HBase cluster

This topic describes the features and operations supported by Tablestore HBase Client.

Differences between API operations supported by Tablestore and
HBase
As a NoSQL database service, Tablestore hides infrastructure details such as table split t ing, Dump,
Compact, and Region Server. You need only to pay attention to data usage. Tablestore HBase Client
and HBase are similar in terms of data model and features, but they have different operations.

Features supported by Tablestore HBase Client operations
CreateTable

Tablestore does not support ColumnFamily and all data can be considered to be in the same
ColumnFamily. This means that TTL and Max Versions of Tablestore are at the table-level. Therefore,
Tablestore supports the following features:

Features Supported or Not

family max version
Table-level Max Versions supported. Default value:
1

family min version Not supported

family tt l Table-level TTL supported

is/set ReadOnly Supported by using the sub-account of RAM

Pre-partit ioning Not supported

blockcache Not supported

blocksize Not supported

BloomFilter Not supported

column max version Not supported

cell tt l Not supported

Control parameter Not supported

14.2. Features of Tablestore HBase
Client

Funct ion Int roduct ion·HBase Tablest ore

361 > Document Version: 20220711

Put

Features Supported or Not

Writes multiple columns of data at a t ime Supported

Specifies a t imestamp Supported

Uses the system time by default if no t imestamp is
specified

Supported

Single-row ACL Not supported

ttl Not supported

Cell Visibility Not supported

tag Not supported

Get

Tablestore guarantees high data consistency. If the HTTP 200 status code (OK) is returned after you
perform a write operation, the data is permanently writ ten to all copies, and can be immediately read
by Get.

Features Supported or Not

Reads a row Supported

Reads all columns in a ColumnFamily Supported

Reads data from a specified column Supported

Reads data that has a specified timestamp Supported

Reads data of a specified number of versions Supported

TimeRange Supported

ColumnfamilyT imeRange Not supported

RowOffsetPerColumnFamily Supported

MaxResultsPerColumnFamily Not supported

checkExistenceOnly Not supported

closestRowBefore Supported

attribute Not supported

cacheblock:true Supported

cacheblock:false Not supported

Tablest ore Funct ion Int roduct ion·HBase

> Document Version: 20220711 362

IsolationLevel:READ_COMMITTED Supported

IsolationLevel:READ_UNCOMMITTED Not supported

IsolationLevel:STRONG Supported

IsolationLevel:T IMELINE Not supported

Features Supported or Not

Scan

Tablestore guarantees high data consistency. If the HTTP 200 status code (OK) is returned after you
perform a write operation, the data is permanently writ ten to all copies, which can be immediately
read by Scan.

Features Supported or Not

Determines a scanning range based on the
specified start and stop

Supported

Globally scans data if no scanning range is
specified

Supported

prefix filter Supported

Reads data using the same logic as Get Supported

Reads data in reverse order Supported

caching Supported

batch Not supported

maxResultSize, which indicates the maximum size
of the returned data volume

Not supported

small Not supported

batch Not supported

cacheblock:true Supported

cacheblock:false Not supported

IsolationLevel:READ_COMMITTED Supported

IsolationLevel:READ_UNCOMMITTED Not supported

IsolationLevel:STRONG Supported

IsolationLevel:T IMELINE Not supported

allowPartialResults Not supported

Funct ion Int roduct ion·HBase Tablest ore

363 > Document Version: 20220711

Batch

Features Supported or Not

Get Supported

Put Supported

Delete Supported

batchCallback Not supported

Delete

Features Supported or Not

Deletes a row Supported

Deletes all versions of the specified column Supported

Deletes the specified version of the specified
column

Supported

Deletes the specified ColumnFamily Not supported

Specifies a t imestamp to delete the versions that
are equal to the t imestamp

Supported

Specifies a t imestamp and use deleteFamily and
deleteColumns to delete the versions that are
earlier than or equal to the t imestamp

Not supported

Uses deleteColumn to delete the latest version
without specifying a t imestamp

Not supported

Uses deleteFamily and deleteColumns to delete
the version of the current system time without
specifying a t imestamp

Not supported

addDeleteMarker Not supported

checkAndXXX

Features Supported or Not

CheckAndPut Supported

checkAndMutate Supported

CheckAndDelete Supported

Checks whether the value of a column meets the
conditions. If yes, checkAndXXX deletes the
column.

Supported

Tablest ore Funct ion Int roduct ion·HBase

> Document Version: 20220711 364

Uses the default value if no value is specified Supported

Checks row A and executes row B. Not supported

Features Supported or Not

exist

Features Supported or Not

Checks whether one or more rows exist and does
not return any content

Supported

Filter

Features Supported or Not

ColumnPaginationFilter columnOffset and count not supported

SingleColumnValueFilter

Supported: LongComparator, BinaryComparator,
and ByteArrayComparable

Not supported: RegexStringComparator,
SubstringComparator, and BitComparator

Operations not supported by Tablestore HBase Client
Namespaces

Tablestore uses instances to manage a data table. An instance is the minimum billing unit in
Tablestore. You can manage instances in the Tablestore console. Therefore, the following features
are not supported:

createNamespace(NamespaceDescriptor descriptor)

deleteNamespace(String name)

getNamespaceDescriptor(String name)

listNamespaceDescriptors()

listTableDescriptorsByNamespace(String name)

listTableNamesByNamespace(String name)

modifyNamespace(NamespaceDescriptor descriptor)

Region management

Part it ion is the basic unit for data storage and management in Tablestore. Tablestore automatically
splits or merges the part it ions based on their data volumes and access condit ions. Therefore,
Tablestore does not support features related to Region management in HBase.

Snapshots

Tablestore does not support Snapshots, or related features of Snapshots.

Table management

Funct ion Int roduct ion·HBase Tablest ore

365 > Document Version: 20220711

https://ots.console.aliyun.com

Tablestore automatically splits, merges, and compacts part it ions in tables. Therefore, the following
features are not supported:

getTableDescriptor(TableName tableName)

compact(TableName tableName)

compact(TableName tableName, byte[] columnFamily)

flush(TableName tableName)

getCompactionState(TableName tableName)

majorCompact(TableName tableName)

majorCompact(TableName tableName, byte[] columnFamily)

modifyTable(TableName tableName, HTableDescriptor htd)

split(TableName tableName)

split(TableName tableName, byte[] splitPoint)

Coprocessors

Tablestore does not support coprocessor. Therefore, the following features are not supported:

coprocessorService()

coprocessorService(ServerName serverName)

getMasterCoprocessors()

Distributed procedures

Tablestore does not support Distributed procedures. Therefore, the following features are not
supported:

execProcedure(String signature, String instance, Map props)

execProcedureWithRet(String signature, String instance, Map props)

isProcedureFinished(String signature, String instance, Map props)

Increment and Append

Tablestore does not support atomic increase and decrease or atomic Append.

Tablestore HBase Client is used in a similar but differentiated way to HBase. This topic introduces the
features of Tablestore HBase Client.

Table
Tablestore supports only single ColumnFamilies.

Row and Cell
Tablestore does not support ACL sett ings.

Tablestore does not support Cell Visibility sett ings.

Tablestore does not support Tag sett ings.

14.3. Differences between Tablestore
and HBase

Tablest ore Funct ion Int roduct ion·HBase

> Document Version: 20220711 366

GET
Tablestore supports only single ColumnFamilies. Therefore, Tablestore does not support ColumnFamily-
related operations, including:

setColumnFamilyTimeRange(byte[] cf, long minStamp, long maxStamp)

setMaxResultsPerColumnFamily(int limit)

setRowOffsetPerColumnFamily(int offset)

SCAN
Similar to GET, Tablestore does not support ColumnFamily-related operations and cannot be used to
set part ial optimization operations, including:

setBatch(int batch)

setMaxResultSize(long maxResultSize)

setAllowPart ialResults(boolean allowPart ialResults)

setLoadColumnFamiliesOnDemand(boolean value)

setSmall(boolean small)

Batch
Tablestore does not support BatchCallback.

Mutations and Deletions
Tablestore does not support the delet ion of the specified ColumnFamily.

Tablestore does not support the delet ion of the versions that has the latest t imestamp.

Tablestore does not support the delet ion of all versions earlier than the specified t imestamp.

Increment and Append
Tablestore does not support Increment or Append.

Filter
Tablestore supports ColumnPaginationFilter.

Tablestore supports FilterList .

Tablestore part ially supports SingleColumnValueFilter, and supports only BinaryComparator.

Tablestore does not support other filters.

Optimization
Some of the HBase operations involve access and storage optimization. The following operations are
not opened in Tablestore:

blockcache: The default value is true, which cannot be modified.

blocksize: The default value is 64 KB, which cannot be modified.

Isolat ionLevel: The default value is READ_COMMITTED, which cannot be modified.

Consistency: The default value is STRONG, which cannot be modified.

Admin

Funct ion Int roduct ion·HBase Tablest ore

367 > Document Version: 20220711

The org.apache.hadoop.hbase.client.Admin operations of HBase are used for management and
control, most of which are not required in Tablestore.

Tablestore is a cloud service that automatically performs operations such as operation and
maintenance, management, and control, which you do not need to concern about. Tablestore does
not support a few of other operations.

CreateTable

Tablestore supports only single ColumnFamilies. Therefore, you can create only one ColumnFamily
when you create a table. The ColumnFamily supports the MaxVersions and TimeToLive parameters.

Maintenance task

In Tablestore, the following operations related to task maintenance are automatically processed:

abort(String why, Throwable e)

balancer()

enableCatalogJanitor(boolean enable)

getMasterInfoPort()

isCatalogJanitorEnabled()

rollWALWriter(ServerName serverName) -runCatalogScan()

setBalancerRunning(boolean on, boolean synchronous)

updateConfiguration(ServerName serverName)

updateConfiguration()

stopMaster()

shutdown()

Namespaces

In Tablestore, the instance name is similar to Namespaces in HBase. Therefore, Tablestore does not
support Namespaces-related operations, including:

createNamespace(NamespaceDescriptor descriptor)

modifyNamespace(NamespaceDescriptor descriptor)

getNamespaceDescriptor(String name)

listNamespaceDescriptors()

listTableDescriptorsByNamespace(String name)

listTableNamesByNamespace(String name)

deleteNamespace(String name)

Region

Tablestore automatically performs Region-related operations. Therefore, it does not support the
following operations:

assign(byte[] regionName)

closeRegion(byte[] regionname, String serverName)

closeRegion(ServerName sn, HRegionInfo hri)

closeRegion(String regionname, String serverName)

closeRegionWithEncodedRegionName(String encodedRegionName, String serverName)

compactRegion(byte[] regionName)

Tablest ore Funct ion Int roduct ion·HBase

> Document Version: 20220711 368

compactRegion(byte[] regionName, byte[] columnFamily)

compactRegionServer(ServerName sn, boolean major)

flushRegion(byte[] regionName)

getAlterStatus(byte[] tableName)

getAlterStatus(TableName tableName)

getCompactionStateForRegion(byte[] regionName)

getOnlineRegions(ServerName sn)

majorCompactRegion(byte[] regionName)

majorCompactRegion(byte[] regionName, byte[] columnFamily)

mergeRegions(byte[] encodedNameOfRegionA, byte[] encodedNameOfRegionB, boolean forcible)

move(byte[] encodedRegionName, byte[] destServerName)

offline(byte[] regionName)

splitRegion(byte[] regionName)

splitRegion(byte[] regionName, byte[] splitPoint)

stopRegionServer(String hostnamePort)

unassign(byte[] regionName, boolean force)

Snapshots
Tablestore does not support Snapshots-related operations.

Replication
Tablestore does not support Replicat ion-related operations.

Coprocessors
Tablestore does not support Coprocessors-related operations.

Distributed procedures
Tablestore does not support Distributed procedures-related operations.

Table management
Tablestore automatically performs Table-related operations, which does not need to be concerned.
Therefore, Tablestore does not support the following operations:

compact(TableName tableName)

compact(TableName tableName, byte[] columnFamily)

flush(TableName tableName)

getCompactionState(TableName tableName)

majorCompact(TableName tableName)

majorCompact(TableName tableName, byte[] columnFamily)

modifyTable(TableName tableName, HTableDescriptor htd)

split(TableName tableName)

split(TableName tableName, byte[] splitPoint)

Funct ion Int roduct ion·HBase Tablest ore

369 > Document Version: 20220711

Limits
Tablestore is a cloud service. To guarantee the optimal overall performance, some parameters are
limited and cannot be reconfigured. For more information about the limits, see General limits.

Tablestore HBase Client is encapsulated based on HBase Client, and is used in a similar but
differentiated way as HBase Client. This topic describes how to migrate data from HBase Client to
Tablestore HBase Client.

Dependencies
Tablestore HBase Client V1.2.0 depends on HBase Client 1.2.0 and Tablestore SDK for Java V4.2.1. The
following code provides an example on how to configure pom.xml:

 <dependencies>
 <dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>tablestore-hbase-client</artifactId>
 <version>1.2.0</version>
 </dependency>
 </dependencies>

If you want to use other version of HBase Client or Tablestore SDK for Java, you can use the exclusion
tag. In the following example, HBase Client 1.2.1 and Tablestore V4.2.0 are used.

14.4. Migrate data from HBase to
Tablestore

Tablest ore Funct ion Int roduct ion·HBase

> Document Version: 20220711 370

https://www.alibabacloud.com/help/doc-detail/91524.htm#concept-plt-cpl-2fb

 <dependencies>
 <dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>tablestore-hbase-client</artifactId>
 <version>1.2.0</version>
 <exclusions>
 <exclusion>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>tablestore</artifactId>
 </exclusion>
 <exclusion>
 <groupId>org.apache.hbase</groupId>
 <artifactId>hbase-client</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.apache.hbase</groupId>
 <artifactId>hbase-client</artifactId>
 <version>1.2.1</version>
 </dependency>
 <dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>tablestore</artifactId>
 <classifier>jar-with-dependencies</classifier>
 <version>4.2.0</version>
 </dependency>
 </dependencies>

Tablestore HBase Client V1.2.x is compatible with only HBase Client 1.2.x because HBase Client 1.2.x has
different operations from other versions.

If you want to use HBase Client 1.1.x, you must use Tablestore HBase Client V1.1.x.

If you want to use HBase Client 0.x.x, see Make Tablestore HBase Client compatible with HBase versions earlier
than 1.0.0.

Configure files
To migrate data from HBase Client to Tablestore HBase Client, you must modify the following
parameters in the configuration file:

HBase Connection type

Set Connection to TablestoreConnection.

 <property>
 <name>hbase.client.connection.impl</name>
 <value>com.alicloud.tablestore.hbase.TablestoreConnection</value>
 </property>

Configuration items of Tablestore

Funct ion Int roduct ion·HBase Tablest ore

371 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/50166.htm#concept-50166-zh

Tablestore is a cloud service that enables strict permission management. To access Tablestore, you
must configure authentication information such as AccessKey pairs.

You must configure the following items before you can access Tablestore:

 <property>
 <name>tablestore.client.endpoint</name>
 <value></value>
 </property>
 <property>
 <name>tablestore.client.instancename</name>
 <value></value>
 </property>
 <property>
 <name>tablestore.client.accesskeyid</name>
 <value></value>
 </property>
 <property>
 <name>tablestore.client.accesskeysecret</name>
 <value></value>
 </property>

The following items are optional:

 <property>
 <name>hbase.client.tablestore.family</name>
 <value>f1</value>
 </property>
 <property>
 <name>hbase.client.tablestore.family.$tablename</name>
 <value>f2</value>
 </property>
 <property>
 <name>tablestore.client.max.connections</name>
 <value>300</value>
 </property>
 <property>
 <name>tablestore.client.socket.timeout</name>
 <value>15000</value>
 </property>
 <property>
 <name>tablestore.client.connection.timeout</name>
 <value>15000</value>
 </property>
 <property>
 <name>tablestore.client.operation.timeout</name>
 <value>2147483647</value>
 </property>
 <property>
 <name>tablestore.client.retries</name>
 <value>3</value>
 </property>

Tablest ore Funct ion Int roduct ion·HBase

> Document Version: 20220711 372

hbase.client.tablestore.family and hbase.client.tablestore.family.$tablename

Tablestore supports only single ColumnFamilies. When you use HBase operations, you must set
the content of the family.

 hbase.client.tablestore.family indicates the global configuration, while hbase.client.
tablestore.family.$tablename indicates the configurations of a single table.

Rule: For a table named T, search for hbase.client.tablestore.family.T . If the family
does not exist , search for hbase.client.tablestore.family . If the family does not exist ,
use the default value f.

tablestore.client.max.connections

The maximum number of connections. Default value: 300.

tablestore.client.socket.t imeout

The t imeout period of the socket. Default value: 15. Unit: seconds.

tablestore.client.connection.t imeout

The connection t imeout period. Default value: 15. Unit: seconds.

tablestore.client.operation.t imeout

The t imeout period to access an operation. The default value is Integer.MAX_VALUE, which
indicates that the operation never t imes out.

tablestore.client.retries

The number of retry attempts when a request fails. Default value: 3.

Tablestore HBase Client supports the operations of HBase 1.0.0 and later. This topic describes how to
make Tablestore HBase Client compatible with the operations of HBase versions earlier than 1.0.

Compared with earlier versions, HBase 1.0.0 has some major changes, which are incompatible with HBase
of earlier versions.

This topic also describes the major changes to facilitate your operations.

Connections
HConnection is deprecated in HBase 1.0.0 and later. We recommend that you use
 org.apache.hadoop.hbase.client.ConnectionFactory to create a class to implement Connections,

and replace the deprecated ConnectionManager and HConnectionManager with ConnectionFactory.

Connection creation is a heavy-weight operation. Connection implementations are thread-safe. You can
create a connection, and share it with different threads.

For HBase 1.0.0 and later, you must manage the lifecycle of the connection and close the connection
after use.

The following code is the latest code used to create a connection:

14.5. Make Tablestore HBase Client
compatible with HBase versions
earlier than 1.0

Funct ion Int roduct ion·HBase Tablest ore

373 > Document Version: 20220711

Connection connection = ConnectionFactory.createConnection(config);
// ...
connection.close();

TableName class
If you use HBase versions earlier than 1.0.0, you can specify a STRING-type table name when you create
a table. For HBase 1.0.0 and later, you must use the org.apache.hadoop.hbase.TableName class.

The following code is the latest code used to specify a STRING-type table name:

String tableName = "MyTable";
// or byte[] tableName = Bytes.toBytes("MyTable");
TableName tableNameObj = TableName.valueOf(tableName);

Table, BufferedMutator, and RegionLocator operations
The HTable operation is replaced by the Table, BufferedMutator, and RegionLocator operations in
HBase 1.0.0 and later.

 org.apache.hadoop.hbase.client.Table : performs read and write operations on a single table.

 org.apache.hadoop.hbase.client.BufferedMutator : writes data asynchronously. This operation
corresponds to setAutoFlush(boolean) of the HTableInterface operation of the earlier HBase
versions.

 org.apache.hadoop.hbase.client.RegionLocator : indicates the part it ion information of the table.

The Table, BufferedMutator, and RegionLocator operations are not thread-safe. However, they are
lightweight and can be used to create an object for each thread.

Admin operations
The HBaseAdmin operation is replaced by org.apache.hadoop.hbase.client.Admin in HBase 1.0.0 and
later. Tablestore is a cloud service, and most Tablestore O&M operations are automatically processed.
Therefore, most Admin operations are not supported by Tablestore. For more information, see
Differences between Tablestore and HBase.

Use a connection instance to create an admin instance:

Admin admin = connection.getAdmin();

This topic describes how to use Tablestore HBase Client to implement a simple program.

Not e This sample program uses HBase operations to access Tablestore. The complete
sample program is stored in the Aliyun Tablestore HBase client for Java project in GitHub. The
directory of the sample program is src/test/java/samples/HelloWorld.java.

Procedure
1. Configure project dependencies

14.6. Quick start

Tablest ore Funct ion Int roduct ion·HBase

> Document Version: 20220711 374

https://www.alibabacloud.com/help/doc-detail/50220.htm#concept-50220-zh
https://github.com/aliyun/aliyun-tablestore-hbase-client

Configure the following Maven dependencies:

 <dependencies>
 <dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>tablestore-hbase-client</artifactId>
 <version>1.2.0</version>
 </dependency>
 </dependencies>

For more information about dependency configurations, see Migrate data from HBase to Tablestore.

2. Configure files

Add the following configurations to hbase-site.xml:

<configuration>
 <property>
 <name>hbase.client.connection.impl</name>
 <value>com.alicloud.tablestore.hbase.TablestoreConnection</value>
 </property>
 <property>
 <name>tablestore.client.endpoint</name>
 <value>endpoint</value>
 </property>
 <property>
 <name>tablestore.client.instancename</name>
 <value>instance_name</value>
 </property>
 <property>
 <name>tablestore.client.accesskeyid</name>
 <value>access_key_id</value>
 </property>
 <property>
 <name>tablestore.client.accesskeysecret</name>
 <value>access_key_secret</value>
 </property>
 <property>
 <name>hbase.client.tablestore.family</name>
 <value>f1</value>
 </property>
 <property>
 <name>hbase.client.tablestore.table</name>
 <value>ots_adaptor</value>
 </property>
</configuration>

For more information about configurations, see Migrate data from HBase to Tablestore.

3. Connect to Tablestore

Create a TableStoreConnection object to connect to Tablestore.

Funct ion Int roduct ion·HBase Tablest ore

375 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/50127.htm#concept-50127-zh
https://www.alibabacloud.com/help/doc-detail/50127.htm#concept-50127-zh

 Configuration config = HBaseConfiguration.create();
 // Create a Tablestore Connection
 Connection connection = ConnectionFactory.createConnection(config);
 // Admin is used for creation, management, and deletion
 Admin admin = connection.getAdmin();

4. Create a table

Create a table by using the specified table name. Use the default MaxVersion and TimeToLive
values.

 // Create an HTableDescriptor, which contains only one ColumnFamily.
 HTableDescriptor descriptor = new HTableDescriptor(TableName.valueOf(TABLE_NAME
));
 // Create a ColumnFamily. Use the default MaxVersion and TimeToLive values. The
default value of MaxVersion is 1. The default value of TimeToLive is Integer.INF_MAX.
 descriptor.addFamily(new HColumnDescriptor(COLUMN_FAMILY_NAME));
 // Use the createTable operation of the Admin to create a table.
 System.out.println("Create table " + descriptor.getNameAsString());
 admin.createTable(descriptor);

5. Write data

The following code provides an example on how to write a row of data to Tablestore.

 // Create a TablestoreTable to perform operations such as read, write, update,
and deletion on a single table.
 Table table = connection.getTable(TableName.valueOf(TABLE_NAME));
 // Create a Put object and use row_1 as the primary key.
 System.out.println("Write one row to the table");
 Put put = new Put(ROW_KEY);
 // Add a column. Tablestore supports only single ColumnFamilies. The ColumnFami
ly name is configured in hbase-site.xml. If the ColumnFamily name is not configured, th
e default name "f" is used. The value of COLUMN_FAMILY_NAME may be null when data is wr
itten.
 put.addColumn(COLUMN_FAMILY_NAME, COLUMN_NAME, COLUMN_VALUE);
 // Run put for Table, and use HBase operations to write the row of data to Tabl
estore
 table.put(put);

6. Read data

The following code provides an example on how to read data of a specified row.

Tablest ore Funct ion Int roduct ion·HBase

> Document Version: 20220711 376

 // Create a Get object to read the row whose primary key is ROW_KEY.
 Result getResult = table.get(new Get(ROW_KEY));
 Result result = table.get(get);
 // Display the results.
 String value = Bytes.toString(getResult.getValue(COLUMN_FAMILY_NAME, COLUMN_NAM
E));
 System.out.println("Get one row by row key");
 System.out.printf("\t%s = %s\n", Bytes.toString(ROW_KEY), value);

7. Scan data

The following code provides an example on how to read data within a specified range:

 Scan data of all rows in the table.
 System.out.println("Scan for all rows:");
 Scan scan = new Scan();
 ResultScanner scanner = table.getScanner(scan);
 // Print the results cyclically.
 for (Result row : scanner) {
 byte[] valueBytes = row.getValue(COLUMN_FAMILY_NAME, COLUMN_NAME);
 System.out.println('\t' + Bytes.toString(valueBytes));
 }

8. Delete a table

The following code provides an example on how to use Admin operations to delete a table.

 print("Delete the table");
 admin.disableTable(table.getName());
 admin.deleteTable(table.getName());

Complete code

package samples;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
public class HelloWorld {
 private static final byte[] TABLE_NAME = Bytes.toBytes("HelloTablestore");
 private static final byte[] ROW_KEY = Bytes.toBytes("row_1");
 private static final byte[] COLUMN_FAMILY_NAME = Bytes.toBytes("f");
 private static final byte[] COLUMN_NAME = Bytes.toBytes("col_1");
 private static final byte[] COLUMN_VALUE = Bytes.toBytes("col_value");
 public static void main(String[] args) {
 helloWorld();
 }
 private static void helloWorld() {

Funct ion Int roduct ion·HBase Tablest ore

377 > Document Version: 20220711

 try {
 Configuration config = HBaseConfiguration.create();
 Connection connection = ConnectionFactory.createConnection(config);
 Admin admin = connection.getAdmin();
 HTableDescriptor descriptor = new HTableDescriptor(TableName.valueOf(TABLE_NAME
));
 descriptor.addFamily(new HColumnDescriptor(COLUMN_FAMILY_NAME));
 System.out.println("Create table " + descriptor.getNameAsString());
 admin.createTable(descriptor);
 Table table = connection.getTable(TableName.valueOf(TABLE_NAME));
 System.out.println("Write one row to the table");
 Put put = new Put(ROW_KEY);
 put.addColumn(COLUMN_FAMILY_NAME, COLUMN_NAME, COLUMN_VALUE);
 table.put(put);
 Result getResult = table.get(new Get(ROW_KEY));
 String value = Bytes.toString(getResult.getValue(COLUMN_FAMILY_NAME, COLUMN_NAM
E));
 System.out.println("Get a one row by row key");
 System.out.printf("\t%s = %s\n", Bytes.toString(ROW_KEY), value);
 Scan scan = new Scan();
 System.out.println("Scan for all rows:");
 ResultScanner scanner = table.getScanner(scan);
 for (Result row : scanner) {
 byte[] valueBytes = row.getValue(COLUMN_FAMILY_NAME, COLUMN_NAME);
 System.out.println('\t' + Bytes.toString(valueBytes));
 }
 System.out.println("Delete the table");
 admin.disableTable(table.getName());
 admin.deleteTable(table.getName());
 table.close();
 admin.close();
 connection.close();
 } catch (IOException e) {
 System.err.println("Exception while running HelloTablestore: " + e.toString());
 System.exit(1);
 }
 }
}

Tablest ore Funct ion Int roduct ion·HBase

> Document Version: 20220711 378

The permission management mechanism of Alibaba Cloud includes Resource Access Management (RAM)
and Security Token Service (STS). RAM user accounts with different permissions can be created to
access Tablestore, and temporary access permission can also be granted to RAM users. RAM and STS
greatly improve management flexibility and security.

RAM is used to control the permissions of each account. RAM allows you to manage permissions by
granting different permissions to different RAM user accounts created under Alibaba Cloud accounts.
For more information, see RAM documentation.

STS is a security credential (token) management system that grants users temporary access permission.
For more information, see STS.

Background
RAM and STS enable you to securely grant permissions to users without exposing your Alibaba Cloud
account AccessKey pair. If the AccessKey pair of your Alibaba Cloud account is leaked, other users can
operate on the resources under the account and access important information.

RAM allows you to manage permissions granted to RAM users on different entit ies and minimizes the
adverse impact if the AccessKey pair of a RAM user is leaked. RAM user accounts are often used long
term to perform operations. To ensure account confidential, the AccessKey pairs of RAM user
accounts must be kept confidential.

In contrast to the permanent permission management function provided by RAM, STS provides
temporary access authorization through a temporary AccessKey pair and token to allow temporary
access to Tablestore. The permissions obtained from STS are restricted and are only valid for a limited
period of t ime to minimize the adverse impact on the system in case of information leakage.

Terms
The following table describes terms related to RAM and STS.

Term Description

RAM user account

RAM user accounts are created under an Alibaba
Cloud account and assigned independent
passwords and permissions. Each RAM user account
has an AccessKey pair. RAM user accounts can be
used to perform authorized operations in the same
way as the Alibaba Cloud account. In most cases, a
RAM user account can be considered as a user with
certain permissions or an operator with permissions
for specific operations.

role

A role is a set of permissions that a user can
assume. Roles do not have independent logon
passwords and AccessKey pairs. RAM user accounts
can assume roles. Permissions of a role are granted
to RAM user accounts that assume the role.

15.Authorization management
15.1. RAM and STS

Funct ion Int roduct ion·Aut horizat ion
management

Tablest ore

379 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/28627.htm
https://www.alibabacloud.com/help/doc-detail/28756.htm

policy
Policies are rules used to define permissions, such as
the permissions to read from or write to certain
resources.

resource

Resources are the cloud resources that users can
access, such as individual Tablestore instances, all
Tablestore instances, or a certain table in an
instance.

Term Description

The relat ionship between a RAM user account and its roles is similar to a relat ionship between an
individual and their social identit ies in different scenarios. For example, a person can assume the role of
employee in a company and a role of parent at home. Different roles are assigned corresponding
permissions. Roles are not actual users that can perform operations. Roles are complete only when
being assumed by RAM user accounts. Furthermore, a role can be assumed by mult iple users at the same
time. The user who assumes a role is automatically assigned all permissions of the role.

Example:

Assume that an Alibaba Cloud account named Alice has two Tablestore instances named alice_a and
alice_b. Alice has full permissions on both instances.

To maintain the security of the Alibaba Cloud account, Alice uses RAM to create two RAM user
accounts: Bob and Carol. Bob has read and write permissions on alice_a, and Carol has read and write
permissions on alice_b. Bob and Carol both have their own AccessKey pairs. If the AccessKey pair of Bob
or Carol is leaked, only the corresponding instance is affected. Alice can then revoke the permissions of
the compromised RAM user account through the console.

If Alice needs to authorize another RAM user to read the tables in alice_a, instead of disclosing Bob's
AccessKey pair to the user, Alice can create a new role such as AliceAReader and grant that role the
read permission on alice_a. However, AliceAReader cannot be used directly because it does not have a
corresponding AccessKey pair.

To obtain temporary authorization, Alice can call AssumeRole to inform STS that the RAM user account
Bob wants to assume the AliceAReader role. If AssumeRole is successfully called, STS returns a
temporary AccessKey ID, AccessKey secret, and security token as access credentials. A temporary user
assigned with these credentials is authorized to temporarily access alice_a. The expirat ion t ime of the
credentials is specified when AssumeRole is called.

Design philosophy behind RAM and STS
RAM and STS are designed with complexity to achieve flexible access control at the cost of simplicity.

RAM user accounts and roles are separated to keep the entity that performs operations separating
from the virtual entity that represents a group of permissions. Assume that a user requires mult iple
permissions such as read and write permissions, but each operation only requires one of the permissions.
In this case, you can create two roles: one with the read permission and the other one with the write
permission. Then you can create a RAM user account that does not have any permissions but can
assume these roles. When the user needs to read or write data, the RAM user account can temporarily
assume the role with the required permission. In addit ion, roles can be used to grant permissions to
other Alibaba Cloud users, which makes collaborations easier and maintains strict account security.

Flexible access control does not mean that you have to use all these functions. You may only use a
subset of functions as needed. For example, if you do not need to use temporary access credentials
that have an expirat ion t ime, you can use only the RAM user account function.

Tablest ore Funct ion Int roduct ion·Aut horizat ion
management

> Document Version: 20220711 380

The permission management mechanism of Alibaba Cloud includes Resource Access Management (RAM)
and Security Token Service (STS). RAM users that have different permissions can access Tablestore. The
permission management mechanism also authorizes STS. RAM and Security Token Service (STS) make
management more flexible and secure.

Background information
RAM and STS enable you to grant permissions without exposing the AccessKey pair of your Alibaba
Cloud account. If the AccessKey pair of the Alibaba Cloud account is leaked, other users can perform
operations on all the resources of the Alibaba Cloud account and steal important information.

RAM is a service provided by Alibaba Cloud. RAM allows you to manage user identit ies and resource
access permissions.

RAM allows you to create and manage mult iple identit ies in an Alibaba Cloud account, and grant
different permissions to a single identity or a group of identit ies. In this way, you can authorize
different identit ies to access different Alibaba Cloud resources. For more information, see What is
RAM?.

STS allows you to manage temporary access from other users to your Alibaba Cloud resources.

You can use STS to grant temporary access tokens to RAM entit ies such as RAM users and RAM roles.
You can customize the validity period and access permissions of these STS tokens. For more
information, see What is STS?.

RAM is an access control service that provides long-term permission management mechanism. The
owner of an Alibaba Cloud account can create RAM users and grant different permissions to the RAM
users. This way, if an AccessKey pair of a RAM user is disclosed, the information that is leaked is limited.
RAM users remain valid for a long period of t ime. The AccessKey pairs of RAM users must be kept
confidential.

In contrast to the long-term permission management mechanism provided by RAM, STS provides
temporary access authorization by using a temporary AccessKey pair and token to allow temporary
access to Tablestore. Permissions obtained from STS are strict ly restricted and have t ime limits.
Therefore, even if information is disclosed, your system is not severely affected.

Grant permissions to a RAM user
1. Create a RAM user. For more information, see Create a RAM user.

2. Grant permissions to the RAM user. For more information, see Grant permissions to a RAM user.

To manage Tablestore such as creating an instance, grant the AliyunOTSFullAccess permission to
the RAM user.

If the RAM user requires read-only access to Tablestore such as reading data from a table, grant
the AliyunOTSReadOnlyAccess permission to the RAM user.

If the RAM user requires write-only access to Tablestore such as creating a table, grant the
AliyunOTSWriteOnlyAccess permission to the RAM user.

Not e For more information about how to implement finer-grained permission control
and configure policies, see Create a custom policy. For more information, see Custom
permissions.

15.2. Configure user permissions

Funct ion Int roduct ion·Aut horizat ion
management

Tablest ore

381 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/28627.htm#concept-oyr-zzv-tdb
https://www.alibabacloud.com/help/doc-detail/28756.htm#concept-ong-5nv-xdb
https://www.alibabacloud.com/help/doc-detail/121941.htm#task-187540
https://www.alibabacloud.com/help/doc-detail/121945.htm#task-187800
https://www.alibabacloud.com/help/doc-detail/93733.htm#task-glf-vwf-xdb
https://www.alibabacloud.com/help/doc-detail/27362.htm#concept-27362-zh

3. Enable a mult i-factor authentication (MFA) device for a RAM user. For more information, see Enable
an MFA device for a RAM user.

Grant permissions to a temporary user
1. Create a temporary role and grant permissions.

i. Create a RAM role for a trusted Alibaba Cloud account. For more information, see Create a RAM
role for a trusted Alibaba Cloud account.

Create two roles named RamTestAppReadOnly and RamTestAppWrite. RamTestAppReadOnly
is used to read data, and RamTestAppWrite is used to upload files.

ii. Create a custom policy. For more information, see Create a custom policy.

Not e To implement finer-grained permission control, you can customize the
permissions of a policy. For more information, see Custom permissions.

Create two policies named ram-test-app-readonly and ram-test-app-write.

Ram-test-app-readonly

{
"Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ots:BatchGet*",
 "ots:Describe*",
 "ots:Get*",
 "ots:List*"
],
 "Resource": [
 "acs:ots:*:*:instance/ram-test-app",
 "acs:ots:*:*:instance/ram-test-app/table/*"
]
 }
],
"Version": "1"
}

Tablest ore Funct ion Int roduct ion·Aut horizat ion
management

> Document Version: 20220711 382

https://www.alibabacloud.com/help/doc-detail/119555.htm#task-268585
https://www.alibabacloud.com/help/doc-detail/93691.htm#task-xvr-ftf-xdb
https://www.alibabacloud.com/help/doc-detail/93733.htm#task-glf-vwf-xdb
https://www.alibabacloud.com/help/doc-detail/27362.htm#concept-27362-zh

ram-test-app-write

 {
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ots:Create*",
 "ots:Insert*",
 "ots:Put*",
 "ots:Update*",
 "ots:Delete*",
 "ots:BatchWrite*"
],
 "Resource": [
 "acs:ots:*:*:instance/ram-test-app",
 "acs:ots:*:*:instance/ram-test-app/table/*"
]
 }
],
 "Version": "1"
 }

iii. Grant permissions to a temporary role. For more information, see Grant permissions to a RAM
role.

Assign the ram-test-app-readonly policy to RamTestAppReadOnly. These are read-only
permissions on Tablestore. Assign the ram-test-app-write policy to RamTestAppWrite. These
are write-only permissions on Tablestore.

After you complete the authorization, record the ARN of the role. ARN indicates the ID of the
role that the RAM user assumes. The following figure shows the ARN.

2. Grant temporary access permissions.

Funct ion Int roduct ion·Aut horizat ion
management

Tablest ore

383 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/116147.htm#task-187801

i. Create a custom policy. For more information, see Create a custom policy.

Not e To implement finer-grained permission control, you can customize the
permissions of a policy. For more information, see Custom permissions.

Create two policies named AliyunSTSAssumeRolePolicy 2016011401 and
AliyunSTSAssumeRolePolicy 2016011402. Resource indicates the ARN of the role.

AliyunSTSAssumeRolePolicy2016011401

{
"Version": "1",
"Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "acs:ram:198***237:role/ramtestappreadonly"
 }
]
}

AliyunSTSAssumeRolePolicy2016011402

{
"Version": "1",
"Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "acs:ram:198***237:role/ramtestappwrite"
 }
]
}

ii. Grant permissions to the temporary role that the RAM user assumes. For more information, see
Grant permissions to a RAM user.

Grant the custom AliyunSTSAssumeRolePolicy2016011401 and
AliyunSTSAssumeRolePolicy2016011402 policies to the RAM user named ram_test_app.

3. Obtain temporary access credentials from STS. For more information, see AssumeRole.

4. Use temporary permissions to read and write data.

You can use the temporary permission to call the SDKs of different programming languages to
access Tablestore. You can use the following method to create an OTSClient object and add
parameters obtained from STS such as AccessKeyId, AccessKeySecret, and SecurityToken:

OTSClient client = new OTSClient(otsEndpoint, stsAccessKeyId, stsAccessKeySecret, insta
nceName, stsToken);

15.3.

Tablest ore Funct ion Int roduct ion·Aut horizat ion
management

> Document Version: 20220711 384

https://www.alibabacloud.com/help/doc-detail/93733.htm#task-glf-vwf-xdb
https://www.alibabacloud.com/help/doc-detail/27362.htm#concept-27362-zh
https://www.alibabacloud.com/help/doc-detail/121945.htm#task-187800
https://www.alibabacloud.com/help/doc-detail/28763.htm#reference-clc-3sv-xdb

Before you use the data delivery feature of Tablestore, you must have the permissions to access Object
Storage Service (OSS) resources. To grant the permissions to access OSS resources to you, the system
automatically creates the Tablestore service-linked role AliyunServiceRoleForOTSDataDelivery in the
Tablestore console.

Not e

For more information about service-linked roles, see Service linked roles.

Create the service-linked role
Before you use the data delivery feature of Tablestore, the system automatically creates the
Tablestore service-linked role AliyunServiceRoleForOTSDataDelivery in the Tablestore console.

The permission policy for AliyunServiceRoleForOTSDataDelivery is
AliyunServiceRolePolicyForOTSDataDelivery. The following operations on OSS resources are supported:
PutObject, AbortMult ipartUpload, PutObjectTagging, GetObject, and DeleteObjectTagging.

Delete the service-linked role
Before you delete the service-linked role AliyunServiceRoleForOTSDataDelivery, make sure that data
delivery is not in use for all instances in the current account.

Not ice

After you delete the Tablestore service-linked role, data in the current account cannot be delivered
to OSS.

To delete the service-linked role, perform the following steps:

1. Log on to the RAM console.

2. In the left-side navigation pane, choose Ident it ies > Roles.

3. On the Roles page, enter AliyunServiceRoleForOTSDataDelivery in the search box. The
AliyunServiceRoleForOTSDataDelivery role is displayed.

4. Click Delet e in the Act ions column.

5. In the message that appears, click OK.

If data delivery is in use for instances in the current account, you cannot delete the
AliyunServiceRoleForOTSDataDelivery role. You must delete the delivery tasks from the instances
before you can delete the role.

If no instances in the current account are using data delivery, you can delete the
AliyunServiceRoleForOTSDataDelivery role.

15.3.
AliyunServiceRoleForOTSDataDelivery
role

Funct ion Int roduct ion·Aut horizat ion
management

Tablest ore

385 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/160674.htm#concept-2448621
https://ram.console.aliyun.com/

FAQ
Why is the system unable to create the Tablestore service-linked role
AliyunServiceRoleForOTSDataDelivery for a RAM user?

The system creates the Tablestore service-linked role only for users that have the required permissions.
If the Tablestore service-linked role cannot be automatically created for a RAM user, you must attach
the following policy to the RAM user.

Replace The ID of the Alibaba Cloud account with the ID of your Alibaba Cloud account.

{
 "Statement": [
 {
 "Action": [
 "ram:CreateServiceLinkedRole"
],
 "Resource": "acs:ram:*:
The ID of the Alibaba Cloud account.
:role/*",
 "Effect": "Allow",
 "Condition": {
 "StringEquals": {
 "ram:ServiceName": [
 "arms.aliyuncs.com"
]
 }
 }
 }
],
 "Version": "1"
}

This topic describes the Act ion, Resource, and Condit ion parameters and the scenarios for which the
parameters are suitable.

Action
The Action parameter defines the specific API operation or operations to allow or deny. When you
create an authorization policy for Tablestore, add the ots: prefix to each API operation and
separate mult iple API operations with commas (,). When you configure the Act ion parameter, you can
use the wildcard character (*) for prefix matching and suffix matching.

You can use the Act ion parameter for the following operations:

Single API operation

"Action": "ots:GetRow"

Mult iple API operations

15.4. Custom permissions

Tablest ore Funct ion Int roduct ion·Aut horizat ion
management

> Document Version: 20220711 386

"Action": [
"ots:PutRow",
"ots:GetRow"
]

All read-only API operations

{
 "Version": "1",
 "Statement": [
 {
 "Action": [
 "ots:BatchGet*",
 "ots:Describe*",
 "ots:Get*",
 "ots:List*",
 "ots:Consume*",
 "ots:Search",
 "ots:ComputeSplitPointsBySize"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

All read and write API operations

"Action": "ots:*"

All API operations in SQL

"Action": "ots:SQL*"

Resource
The Resource parameter in Tablestore consists of mult iple fields including the service, region, user_id,
instance_name, and table_name. Each field supports the wildcard character (*) for prefix matching and
suffix matching. You can configure the Resource parameter based on the following format:

acs:ots:[region]:[user_id]:instance/[instance_name]/table/[table_name]

The fields that are enclosed in brackets are variables. You must set the service field to ots. The value of
the region field specifies the region ID, such as cn-hangzhou. The value of the user_id field specifies the
ID of your Alibaba Cloud account.

Not e The names of Tablestore instances are not case-sensit ive. The value of the
instance_name field in the Resource parameter must be specified in lower case.

The Resource parameter in Tunnel Service is defined by instance rather than table and includes fields
such as the service, region, user_id, and instance_name. You can configure the Resource parameter in
Tunnel Service based on the following format:

Funct ion Int roduct ion·Aut horizat ion
management

Tablest ore

387 > Document Version: 20220711

acs:ots:[region]:[user_id]:instance/[instance_name]

Resource has the following definit ions:

All resources of users in all regions

"Resource": "acs:ots:*:*:*"

All instances and their tables of User 123456 in the China (Hangzhou) region

"Resource": "acs:ots:cn-hangzhou:123456:instance/*"

Instance abc and its tables of User 123456 in the China (Hangzhou) region

"Resource": [
"acs:ots:cn-hangzhou:123456:instance/abc",
"acs:ots:cn-hangzhou:123456:instance/abc/table/*"
]

All instances whose names contain the prefix abc and their tables

"Resource": "acs:ots:*:*:instance/abc*"

All tables whose names contain the prefix xyz in the instances whose names contain the prefix abc.
Instance resources are not included. acs:ots:*:*:instance/abc* does not match this definit ion.

"Resource": "acs:ots:*:*:instance/abc*/table/xyz*"

All instances whose names contain the suffix abc and their tables whose names contain the suffix
xyz

"Resource": [
"acs:ots:*:*:instance/*abc",
"acs:ots:*:*:instance/*abc/table/*xyz"
]

Tablestore API operations
Tablestore provides the following types of API operations:

Instance management operations

Table operations and data read/write operations

Operations for Tunnel Service

The following tables describe the API operations.

Instance management operations

Instance management operations are instance-based operations and can be called only in the
console. If you configure the Act ion and Resource parameters for instance management operations,
some console features may be unavailable. The acs:ots:[region]:[user_id]: omitted from the
names of the following resources. Only the instance and table are described.

API operation/Action Resource

ListInstance instance/*

Tablest ore Funct ion Int roduct ion·Aut horizat ion
management

> Document Version: 20220711 388

InsertInstance instance/[instance_name]

GetInstance instance/[instance_name]

DeleteInstance instance/[instance_name]

API operation/Action Resource

Table operations and data read/write operations

Table operations and data read/write operations are performed on tables and rows. You can call
table operations and data read/write operations by using the Tablestore console or Tablestore
SDKs. If you configure the Act ion and Resource parameters for table operations and data read/write
operations, some console features may be unavailable. The acs:ots:[region]:[user_id]: prefix is
omitted from the names of the following resources. Only the instance and table are described.

API operation/Action Resource

ListTable instance/[instance_name]/table/*

CreateTable instance/[instance_name]/table/[table_name]

UpdateTable instance/[instance_name]/table/[table_name]

DescribeTable instance/[instance_name]/table/[table_name]

DeleteTable instance/[instance_name]/table/[table_name]

GetRow instance/[instance_name]/table/[table_name]

PutRow instance/[instance_name]/table/[table_name]

UpdateRow instance/[instance_name]/table/[table_name]

DeleteRow instance/[instance_name]/table/[table_name]

GetRange instance/[instance_name]/table/[table_name]

BatchGetRow instance/[instance_name]/table/[table_name]

BatchWriteRow instance/[instance_name]/table/[table_name]

ComputeSplitPointsBySize instance/[instance_name]/table/[table_name]

StartLocalTransaction instance/[instance_name]/table/[table_name]

CommitTransaction instance/[instance_name]/table/[table_name]

AbortTransaction instance/[instance_name]/table/[table_name]

CreateIndex instance/[instance_name]/table/[table_name]

DropIndex instance/[instance_name]/table/[table_name]

Funct ion Int roduct ion·Aut horizat ion
management

Tablest ore

389 > Document Version: 20220711

CreateSearchIndex instance/[instance_name]/table/[table_name]

DeleteSearchIndex instance/[instance_name]/table/[table_name]

ListSearchIndex instance/[instance_name]/table/[table_name]

DescribeSearchIndex instance/[instance_name]/table/[table_name]

Search instance/[instance_name]/table/[table_name]

CreateTunnel instance/[instance_name]/table/[table_name]

DeleteTunnel instance/[instance_name]/table/[table_name]

ListTunnel instance/[instance_name]/table/[table_name]

DescribeTunnel instance/[instance_name]/table/[table_name]

ConsumeTunnel instance/[instance_name]/table/[table_name]

BulkImport instance/[instance_name]/table/[table_name]

BulkExport instance/[instance_name]/table/[table_name]

SQL_Select instance/[instance_name]/table/[table_name]

SQL_Create instance/[instance_name]/table/[table_name]

SQL_DropMapping instance/[instance_name]/table/[table_name]

API operation/Action Resource

Operations for Tunnel Service

Operations for Tunnel Service are tunnel-related operations and can be called by using the console
or Tablestore SDKs. If you configure the Act ion and Resource parameters for operations for Tunnel
Service, some console features may be unavailable. The acs:ots:[region]:[user_id]: prefix is
omitted from the names of the following resources. Only the instance and table are described.

API operation/Action Resource

ListTable instance/[instance_name]

CreateTable instance/[instance_name]

UpdateTable instance/[instance_name]

DescribeTable instance/[instance_name]

DeleteTable instance/[instance_name]

GetRow instance/[instance_name]

PutRow instance/[instance_name]

Tablest ore Funct ion Int roduct ion·Aut horizat ion
management

> Document Version: 20220711 390

UpdateRow instance/[instance_name]

DeleteRow instance/[instance_name]

GetRange instance/[instance_name]

BatchGetRow instance/[instance_name]

BatchWriteRow instance/[instance_name]

ComputeSplitPointsBySize instance/[instance_name]

StartLocalTransaction instance/[instance_name]

CommitTransaction instance/[instance_name]

AbortTransaction instance/[instance_name]

CreateIndex instance/[instance_name]

DropIndex instance/[instance_name]

CreateSearchIndex instance/[instance_name]

DeleteSearchIndex instance/[instance_name]

ListSearchIndex instance/[instance_name]

DescribeSearchIndex instance/[instance_name]

Search instance/[instance_name]

CreateTunnel instance/[instance_name]

DeleteTunnel instance/[instance_name]

ListTunnel instance/[instance_name]

DescribeTunnel instance/[instance_name]

ConsumeTunnel instance/[instance_name]

API operation/Action Resource

Instruct ions

You can verify the Act ion and Resource parameters that are configured for a policy by strings.
When you configure the Act ion and Resource parameters, you can use the wildcard character (*)
for prefix matching and suffix matching. If Resource is defined as acs:ots:*:*:instance/*/,
acs:ots:*:*:instance/abc cannot match the definit ion. If Resource is defined as
acs:ots:*:*:instance/abc, acs:ots:*:*:instance/abc/table/xyz cannot match the definit ion.

To manage instance resources as a RAM user in the Tablestore console, you must grant the RAM
user the read permissions on acs:ots:[region]:[user_id]:instance/* to allow the console to obtain
the instance list .

Funct ion Int roduct ion·Aut horizat ion
management

Tablest ore

391 > Document Version: 20220711

For batch API operations, such as BatchGetRow and BatchWriteRow, the backend service
authenticates each table that you want to access. Operations can be performed only when all
tables are authenticated. Otherwise, an error message is returned.

Condition
Policies can support various authentication condit ions, including IP address-based access control,
HTTPS-based access control, Mult i-Factor Authentication (MFA)-based access control, and t ime-based
access control. All Tablestore API operations support these condit ions.

IP address-based access control

Resource Access Management (RAM) allows you to specify IP addresses or CIDR blocks that are
allowed/restricted to access Tablestore resources. IP address-based access control is suitable for the
following scenarios:

Allow access from mult iple IP addresses. The following sample code allows access from only IP
addresses 10.101.168.111 and 10.101.169.111:

{
"Statement": [
 {
 "Effect": "Allow",
 "Action": "ots:*",
 "Resource": "acs:ots:*:*:*",
 "Condition": {
 "IpAddress": {
 "acs:SourceIp": [
 "10.101.168.111",
 "10.101.169.111"
]
 }
 }
 }
],
"Version": "1"
}

Tablest ore Funct ion Int roduct ion·Aut horizat ion
management

> Document Version: 20220711 392

Allow access only from one IP address or CIDR block. The following sample code allows access from
only the IP address 10.101.168.111 or the CIDR block 10.101.169.111/24:

{
"Statement": [
 {
 "Effect": "Allow",
 "Action": "ots:*",
 "Resource": "acs:ots:*:*:*",
 "Condition": {
 "IpAddress": {
 "acs:SourceIp": [
 "10.101.168.111",
 "10.101.169.111/24"
]
 }
 }
 }
],
"Version": "1"
}

HTTPS-based access control

RAM allows you to specify whether requests that are sent over HTTPS can access Tablestore
resources.

The following sample code only allows HTTPS requests:

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ots:*",
 "Resource": "acs:ots:*:*:*",
 "Condition": {
 "Bool": {
 "acs:SecureTransport": "true"
 }
 }
 }
],
 "Version": "1"
}

MFA-based access control

RAM allows you to specify whether requests that pass MFA can access Tablestore resources.

The following sample code only allows requests that have passed MFA:

Funct ion Int roduct ion·Aut horizat ion
management

Tablest ore

393 > Document Version: 20220711

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ots:*",
 "Resource": "acs:ots:*:*:*",
 "Condition": {
 "Bool": {
 "acs:MFAPresent ": "true"
 }
 }
 }
],
 "Version": "1"
}

Time-based access control

RAM allows you to specify the access t ime of requests. Access requests earlier than the specified
time are allowed or denied. The following example shows a typical application scenario.

Example: RAM users can access resources only before 00:00:00 January 1, 2016 (UTC+8).

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ots:*",
 "Resource": "acs:ots:*:*:*",
 "Condition": {
 "DateLessThan": {
 "acs:CurrentTime": "2016-01-01T00:00:00+08:00"
 }
 }
 }
],
 "Version": "1"
}

Scenarios
This sect ion describes the specific policies and authorization methods that are supported for the
Action, Resource, and Condit ion parameters.

Mult iple authorization condit ions

In this scenario, RAM users that use the 10.101.168.111/24 CIDR block can manage the instances
named online-01 and online-02 and all tables in these instances, including reading data from and
writ ing data to the tables. Access is allowed only over HTTPS before 00:00:00 January 1, 2016.

To configure mult iple authorization condit ions, perform the following steps:

i. Log on to the RAM console. By default , RAM is act ivated.

ii. In the left-side navigation pane, choose Permissions > Policies.

iii. On the Policies page, click Creat e Policy .

Tablest ore Funct ion Int roduct ion·Aut horizat ion
management

> Document Version: 20220711 394

https://ram.console.aliyun.com/

iv. Configure the Policy Name parameter and select Script . Enter the following content in the
Policy Document field:

{
"Statement": [
 {
 "Effect": "Allow",
 "Action": "ots:*",
 "Resource": [
 "acs:ots:*:*:instance/online-01",
 "acs:ots:*:*:instance/online-01/table/*",
 "acs:ots:*:*:instance/online-02",
 "acs:ots:*:*:instance/online-02/table/*"
],
 "Condition": {
 "IpAddress": {
 "acs:SourceIp": [
 "10.101.168.111/24"
]
 },
 "DateLessThan": {
 "acs:CurrentTime": "2016-01-01T00:00:00+08:00"
 },
 "Bool": {
 "acs:SecureTransport": "true"
 }
 }
 }
],
"Version": "1"
}

v. Click OK.

vi. In the left-side navigation pane, choose Ident it ies > Users. On the Users page, find the RAM
user that you want to manage and click Add Permissions in the Act ions column.

vii. In the Add Permissions panel, search for the new policy, and add the policy to the Selected
column. Click OK. The selected policy is attached to the RAM user.

Reject requests

In this scenario, RAM users that use the IP address 10.101.169.111 cannot write data to tables that
belong to instances whose names contain the online or product prefix, and are located in the China
(Beijing) region. This policy does not take effect for operations on instances.

To reject requests, follow the preceding steps to create a custom permission policy and attach the
policy to the RAM user. You need to copy the following content to the Policy Document field when
you create the policy:

Funct ion Int roduct ion·Aut horizat ion
management

Tablest ore

395 > Document Version: 20220711

{
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "ots:Create*",
 "ots:Insert*",
 "ots:Put*",
 "ots:Update*",
 "ots:Delete*",
 "ots:BatchWrite*"
],
 "Resource": [
 "acs:ots:cn-beijing:*:instance/online*/table/*",
 "acs:ots:cn-beijing:*:instance/product*/table/*"
],
 "Condition": {
 "IpAddress": {
 "acs:SourceIp": [
 "10.101.169.111"
]
 }
 }
 }
],
 "Version": "1"
}

Tablest ore Funct ion Int roduct ion·Aut horizat ion
management

> Document Version: 20220711 396

	1.Overview
	2.Features and regions
	3.Wide Column model
	3.1. Overview
	3.2. Primary keys and attributes
	3.3. Data versions and TTL
	3.4. Naming conventions and data types
	3.5. Basic operations on data
	3.5.1. Single-row operations
	3.5.2. Multi-row operations

	3.6. Auto-increment of primary key columns
	3.7. Conditional update
	3.8. Local transactions
	3.9. Atomic counters
	3.10. Configure a filter

	4.Timeline model
	4.1. Overview
	4.2. Quick start
	4.3. Basic operations
	4.3.1. Overview
	4.3.2. Initialization
	4.3.3. Meta management
	4.3.4. Timeline management
	4.3.5. Queue management

	5.TimeSeries model
	5.1. Overview
	5.2. Create an instance for the TimeSeries model
	5.3. Quick start
	5.3.1. Use the Tablestore console
	5.3.2. Use the Tablestore CLI

	5.4. Use Tablestore SDKs
	5.5. Use SQL to query time series data

	6.Search Index
	6.1. Overview
	6.2. Features
	6.3. Data type mappings
	6.4. Quick start
	6.4.1. Use the Tablestore console
	6.4.2. Use the Tablestore CLI

	6.5. Use Tablestore SDKs
	6.6. Basic features
	6.6.1. Create search indexes
	6.6.2. TTL of search indexes
	6.6.3. Query the description of a search index
	6.6.4. ARRAY and Nested field types
	6.6.5. List search indexes
	6.6.6. Delete search indexes
	6.6.7. Sorting and pagination
	6.6.8. Tokenization
	6.6.9. Match all query
	6.6.10. Match query
	6.6.11. Match phrase query
	6.6.12. Term query
	6.6.13. Terms query
	6.6.14. Prefix query
	6.6.15. Range query
	6.6.16. Wildcard query
	6.6.17. Boolean query
	6.6.18. Nested query
	6.6.19. Geo-distance query
	6.6.20. Geo-bounding box query
	6.6.21. Geo-polygon query
	6.6.22. Exists query
	6.6.23. Collapse (distinct)
	6.6.24. Aggregation
	6.6.25. Parallel scan

	6.7. Advanced features
	6.7.1. Virtual columns
	6.7.2. Dynamically modify schemas
	6.7.3. Fuzzy query

	7.Secondary index
	7.1. Overview
	7.2. Scenarios
	7.3. Operations
	7.4. Use SDK
	7.4.1. Global secondary index
	7.4.2. Local secondary index

	7.5. Appendix

	8.SQL query
	8.1. Overview
	8.2. SQL features
	8.3. Data type mappings
	8.4. Use the Tablestore console
	8.5. Use Tablestore SDKs
	8.6. Use JDBC
	8.6.1. Use JDBC to access Tablestore
	8.6.2. Use Hibernate to use the JDBC driver for Tablestore
	8.6.3. Use MyBatis to use the JDBC driver for Tablestore

	8.7. Use the Tablestore driver for Go to access Tablestore
	8.8. DDL statements
	8.8.1. Create mapping tables for tables
	8.8.2. Create mapping tables for search indexes
	8.8.3. Delete mapping tables
	8.8.4. Query the information about a table

	8.9. DQL statements
	8.9.1. Query data
	8.9.2. Aggregate functions
	8.9.3. Full-text search

	8.10. Database administration statements
	8.10.1. Query the index information about a table
	8.10.2. List table names

	8.11. Query optimization
	8.11.1. Index selection policy
	8.11.2. Computing pushdown

	8.12. Appendix
	8.12.1. SQL operators
	8.12.2. Reserved words and keywords

	9.Tunnel service
	9.1. Overview
	9.2. Features
	9.3. Tunnel clients
	9.4. Quick start
	9.5. SDK usage
	9.6. Troubleshooting
	9.7. Incremental synchronization performance white paper

	10.Data Delivery
	10.1. Overview
	10.2. Quick start
	10.3. Use SDKs
	10.4. Data lake-based computing and analysis
	10.4.1. Use EMR

	11.Data visualization
	11.1. Data visualization tools
	11.2. Connect Tablestore to Grafana
	11.3. Connect Tablestore to DataV

	12.Backup and restoration
	12.1. Overview
	12.2. Back up Tablestore data
	12.3. Restore Tablestore data

	13.Limits
	13.1. General limits
	13.2. Secondary index limits
	13.3. Search index limits
	13.4. SQL limits
	13.5. Limits on the TimeSeries model

	14.HBase
	14.1. Tablestore HBase Client
	14.2. Features of Tablestore HBase Client
	14.3. Differences between Tablestore and HBase
	14.4. Migrate data from HBase to Tablestore
	14.5. Make Tablestore HBase Client compatible with HBase versions earlier than 1.0
	14.6. Quick start

	15.Authorization management
	15.1. RAM and STS
	15.2. Configure user permissions
	15.3. AliyunServiceRoleForOTSDataDelivery role
	15.4. Custom permissions

