
Ant
Technology

Access Android
User Guide

Document Version: 20230601

Ant
Technology

Access Android
User Guide

Document Version: 20230601

Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement

and other trademarks related to Ant Group are owned by Ant Group.
The third-party registered trademarks involved in this document are owned by
the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to modify
the content of this document without notice and the updated versions of this
document will be occasionally released through channels authorized by Ant
Group. You must pay attention to the version changes of this document as they
occur and download and obtain the latest version of this document from Ant
Group's authorized channels. Ant Group does not assume any responsibility for
direct or indirect losses caused by improper use of documents.

Access Android User Guide·Legal disclaimer

> Document Version: 20230601 I

Document conventions
St yle Descript ion Example

 Danger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:

Resetting will result in the loss of user
configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ings > Net work > Set net work
t ype .

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

Access Android User Guide·Document convent io
ns

> Document Version: 20230601 I

Table of Contents
1.Add mPaaS to your project

1.1. Prerequisites

1.2. Step 1 select appropriate integration method

1.3. Step 2 create mPaaS application in the console

1.4. Step 3 add configuration files to your project

1.5. Step 4 select appropriate baseline

1.6. Step 5 add components to your project

2.Choose integration method

2.1. Integration method introduction

2.2. Native AAR integration method

2.2.1. Manage component dependencies

2.2.2. Check configurations of the build script

2.2.3. Initialize mPaaS

2.2.4. Add obfuscation rules

2.2.5. Upgrade componentized or mPaaS Inside integration mode to Native AAR mode …

2.2.6. Remove specific mPaaS library

2.2.7. Privacy permissions

2.2.8. Use common components of mPaaS framework(optional) …

2.3. Componentized integration method (Portal&Bundle)

2.3.1. About Portal & Bundle projects

2.3.2. General steps

2.3.3. Register common components

2.3.4. Use Material Design

2.3.5. Use non Android support 3rd resource library

2.3.6. Load and customize the framework

2.3.7. Manage gradle dependencies

07

07

08

08

09

12

14

17

17

18

18

19

20

22

25

27

28

29

31

31

41

47

55

61

65

69

Access Android User Guide·Table of Cont ent s

> Document Version: 20230601 I

2.3.8. Obfuscate Android codes

2.3.9. Attention for using MultiDex in mPaaS Portal&Bundle projects …

2.3.10. Data cleansing whitelist

2.3.11. Remove privacy permissions

2.3.12. Use privacy permission pop-ups (Portal&Bundle)

3.Choose baseline

3.1. Baseline introduction

3.2. mPaaS 10.1.68 upgrade guide

3.3. mPaaS 10.1.60 upgrade guide

4.Solve dependency confilction

4.1. Solve dependency conflicts

4.2. Solve conflict with dependency on Amap location

4.3. Solve conflict with dependency on Amap

4.4. Solve conflict with dependency on security guard

4.5. Solve conflict with dependency on utdid

4.6. Solve conflict with dependency on Alipay SDK

4.7. Solve conflict with dependency on wire/okio

4.8. Solve comflict with dependency on fastjson

4.9. Solve conflict with dependency on Android support

4.10. Solve conflict with libcrashsdk.so

4.11. Solve conflict with libcrashsdk.so

5.Developer's tools

5.1. Android Studio mPaaS plugin

5.1.1. About mPaaS plugin

5.1.2. Install mPaaS plug-in

5.1.3. Use mPaaS plug-in

5.1.4. Update and uninstall mPaaS plug-in

6.Adapt to Android

70

74

74

77

78

83

83

84

87

90

90

90

91

92

93

94

95

96

97

98

99

101

101

101

102

104

114

117

Access Android User Guide·Table of Cont ent s

> Document Version: 20230601 II

6.1. Adapt to Android 12

6.2. Adapt to Android 11

6.3. Adapt to multi-CPU architecture

6.4. Adapt mPaaS to targetSdkVersion 30

6.5. Adapt to targetsdkversion 29

6.6. Adapt to targetsdkversion 28

7.Reference

7.1. Environment configuration under componentized access mode …

7.2. Switch workspace

7.3. DSA certificate encryption tools

8.FAQ

117

118

119

121

123

125

129

129

137

143

145

Access Android User Guide·Table of Cont ent s

> Document Version: 20230601 III

Before you add mPaaS to your project, you need to make the following preparations to satisfy the
access condit ion.

Install Android Studio

Install the plug-in of Android Studio mPaaS

Register an Alibaba Cloud account

Activate mPaaS

Adapt to different CPU architectures and set targetSdkVersion

Install Android Studio
For the information about downloading Android Studio, see Android Developers.

For how to install Android Studio, see Installat ion guide.

If you use the earlier version of Android Studio and install the mPaaS plug-in, you need to upgrade
Android Studio to the latest version. Then you can upgrade the mPaaS plug-in to the latest version.
For more details, see Upgrade mPaaS plug-ins.

Install the plug-in of Android Studio mPaaS
When using mPaaS, you need the plug-in of Android Studio mPaaS as the assistance to manage. See
Install mPaaS plug-ins for more information about the plug-in installat ion.

Register an Alibaba Cloud account
When using mPaaS, you need an Alibaba Cloud to manage the mPaaS console. Thus, you need to
prepare an Alibaba Cloud account. See Sign up with Alibaba Cloud for more instruct ions on the
registrat ion process.

Activate mPaaS
Log on to the Alibaba Cloud console. On mPaaS page, click Console or Free Bet a to enter Act ivat e
product s page. Check T erms of Service and click Act ive Now to act ivate mPaaS.

Adapt to different CPU architectures and set targetSdkVersion
mPaaS supports three CPU architectures, armeabi, armeabi-v7a, and arm64-v8a, and also supports
sett ing targetSdkVersion as 26 (by default), 28, and 29. While accessing mPaaS, you need to add the
following configurations in the build.gradle f ile under the main Module of the project, in order to
apply the single armeabi CPU architecture and set targetSdkVersion.

1.Add mPaaS to your project
1.1. Prerequisites

Access Android User Guide·Add mPaaS t o your pr
oject

> Document Version: 20230601 7

https://developer.android.com/studio
https://developer.android.com/studio/install?#windows
https://www.alibabacloud.com/product/mpaas?spm=a2c63.p38356.6791778070.326.4e266e4cogyMLW

android {
 ···
 defaultConfig {
 ···
 targetSdkVersion 26
 ndk{
 abiFilters 'armeabi'
 }
 ···
 }
 ···
}

If you need to set targetSdkVersion as 28 or 29, please refer to the corresponding document to finish
the configuration.

Adapt to targetsdkversion 28

Adapt to targetsdkversion 29

Not e

If you encounter problems with access, please search group number 31591197 with DingTalk to join
the DingTalk group for further communication. The DingTalk group has added the mPaaS public
cloud Q&A assistant, which can quickly answer common access questions.

mPaaS Android provides the following two integration methods. If you are new to mPaaS, you can use
the recommended nat ive AAR met hod . This method is closer to the Android technology stack than
the other, so you can get started quickly. For more information about the access method, see
Integration method introduction.

Native AAR integration method

Component-based integration method (Portal&Bundle)

This art icle describes how to create an mPaaS application in the console. The steps are as follows:

1. Log on to the mPaaS console.

2. Click Creat e Applicat ion . There is no limit to the number of applications that you can create in the
console. And you can create applications without any cost.

1.2. Step 1 select appropriate
integration method

1.3. Step 2 create mPaaS application
in the console

Access Android User Guide·Add mPaaS t o your pr
oject

> Document Version: 20230601 8

https://account.alibabacloud.com/login/login.htm?oauth_callback=https%253A%252F%252Fmpaaspub.console.aliyun.com%252F

3. Complete the application information.

i. Enter the required application name. The example of the application name: mPaaS Demo.

ii. Click + to upload the optional application icon. If you do not upload the icon, a default icon will be
used.

The size of the application icon you can set is less than 1 MB. The dimension is between 50PX to
200PX. And the picture format is JPG or PNG.

4. Click Creat e to complete creating the application. Jump to the application overview page.

Based on the nat ive AAR met hod , this document introduces the process of import ing configuration
files to the project.

Step 1: Fill in the configuration information, and upload the signed
APK

1.4. Step 3 add configuration files to
your project

Access Android User Guide·Add mPaaS t o your pr
oject

> Document Version: 20230601 9

1. On the application list page, click the application name. For example, click the application mPaaS
Demo created in the previous step. See the following image:

2. On the Applicat ion det ails page, click to open the Conf igure applicat ion page.

3. On the Conf igure applicat ion page, click to open the Code conf igurat ion page.

4. On the Code conf igurat ion page, enter Package Name, namely com.mpaas.demo, such as
com.mpaas.demo. Then upload the compilat ion, and add the signed APK install pack. For the
information about how to quickly generate the signed APK, see Generate signed APK.

Step 2: Download configurations to the local system
On the Code conf igurat ion page, fill in the information, then click Download Conf igurat ion to get
the configuration file of mPaaS.

The configuration file is a compressed package file. This compressed package includes a .config f ile
and a yw_1222.jpg encrypted picture.

Access Android User Guide·Add mPaaS t o your pr
oject

> Document Version: 20230601 10

If you are a public cloud user, you need to ensure the value of base64Code in .config f ile is not
empty. You can ignore the yw_1222.jpg f ile, because the public cloud environment has
abandoned this f ile.

If you are an Apsara Stack user, you do not need to focus on the value of base64Code . See
Generate encrypted pictures (Apsara Stack configuration files). Generate the encrypted pictures of
Apsara Stack manually, then replace the yw_1222.jpg f ile downloaded from the console.

Step 3: Add the configuration file to the project
If you are using the component -based access (Port al&Bundle) , see The introduction of
componentization access process.

Prerequisites
When you use the nat ive AAR met hod to access, you need to have a native development project.

Procedure
1. Open the exist ing project in Android Studio, click mPaaS > nat ive AAR access .

2. In the access pane, click St art import under the import ing App configuration.

Access Android User Guide·Add mPaaS t o your pr
oject

> Document Version: 20230601 11

3. Select I have downloaded t he conf igurat ion f ile (Ant -mpaas-xxxx.conf ig) f rom t he
console and am ready t o import t o t he project , then click Next .

4. In the window of Import mPaaS conf igurat ion f iles , select the App Module to be imported and
the configuration file, then click Finish.

5. After the process finishes, you will receive a prompt message that the configuration file has been
imported successfully. Till now, you have completed the process of import ing configuration files
manually.

1.5. Step 4 select appropriate
baseline

Access Android User Guide·Add mPaaS t o your pr
oject

> Document Version: 20230601 12

Baseline refers to a collect ion of stable versions for a series of features and is the basis of further
development. While mPaaS is developed on the basis of a specific version of Alipay. Thus, for mPaaS,
baseline is the collect ion of SDK based on the version. We have provided mult iple versions for the
baseline with the continuous upgrading of mPaaS. Till now, mPaaS has provided four baseline versions,
namely, 10.1.68, 10.1.60, and 10.1.32. The maintenance for 10.1.32 is no longer provided. To ensure
abundant features and lower migration cost, you are recommended to take version 10.1.68 as
preference.

For the detailed introduction to the baseline, see Introduction to the baseline.

Procedure
1. Open the exist ing project in Android Studio, click mPaaS > nat ive AAR access to open the access

pane.

2. Click St art Conf igurat ion .

3. In the baseline select ion window, select the suitable baseline through the drop-down menu, then
click OK.

Access Android User Guide·Add mPaaS t o your pr
oject

> Document Version: 20230601 13

This document uses Android Studio mPaaS plug-ins based on the nat ive AAR met hod . And the
document takes Scan feature as the example to introduce the process of adding mPaaS component to
the project. If you are using the component -based access (Port al&Bundle) , see Componentization
access process.

Procedure
1. Click St art Conf igurat ion .

1.6. Step 5 add components to your
project

Access Android User Guide·Add mPaaS t o your pr
oject

> Document Version: 20230601 14

2. In the dialogue box, select the target Module, then check Code Scanner.

Access Android User Guide·Add mPaaS t o your pr
oject

> Document Version: 20230601 15

3. Click OK. The mPaaS plug-in will start to deploy automatically. You can wait for a moment, and click
the plug-in. Then the corresponding Module will add the relevant components.

4. Add successfully.

Till now, the mPaaS component is added to the Module. You can call the operations of this
component in the Module.

mPaaS will add the following content in the build.gradle of the Module you specify:

The information of baseline dependencies

The information of component dependencies

Access Android User Guide·Add mPaaS t o your pr
oject

> Document Version: 20230601 16

The mobile development platform mPaaS supports the following three integration methods. This topic
describes these three modes and provides recommendations for select ing an appropriate integration
method.

Native AAR integration method

Componentized integration method - Portal & Bundle

Native AAR integration method
Nat ive AAR int egrat ion met hod uses the packaging scheme of native Android AAR. This scheme
allows Android developers to use the technology stack that they are already familiar with. It is not
necessary for developers to learn the packaging knowledge related to mPaaS. Developers can
integrate mPaaS into their projects by using the mPaaS Plugin in Android Studio or using Maven pom
and bom directly. The native AAR integration method allows developers to use mPaaS more easily with
reduced cost. This mode is recommended for customers who want to start the use of mPaaS quickly
and have no demand for component -based (Port al&Bundle) int egrat ion met hod .

Not e

The native AAR mode is supported by 10.1.68 or later versions.

Componentized integration method - Portal & Bundle
The component-based integration means that mPaaS divides an app into one or more Bundle projects
that run independently and one Portal project based on the Open Service Gateway Init iat ive (OSGi)
technology. mPaaS will manage the lifecycle and dependency of each Bundle project, and use the
Portal project to merge all Bundle project packages into a single executable .apk package. This
method is applicable to concurrent development projects with large-scale mult iplayers.The use of
component-based integration requires the using of an mPaaS gradle packaging tool, which has some
requirements on the gradle version and com.android.tools.build:gradle version .

How to select an integration method
If mPaaS is expected to be easily accessed and used as other SDKs, we recommend that you use native
AAR integration method.

The concept of large-scale concurrent development is important for you to reconstruct your project
using mPaaS. We recommend that you use componentized integration method.

Comparison of integration methods

Nat ive AAR int egrat ion Component iz ed int egrat ion

Source
Official Google integration
method

Alipay

2.Choose integration method
2.1. Integration method introduction

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 17

Packing speed
Slowest among the three, which
is exactly the same as the native
integrate

The packing speed is fast, and
the packing time is scattered

Project composition App module and library module
Portal (the shell of an App) and
Bundle (various business
components)

Dependent Gradle version
Can be upgraded to the latest
official version, currently Gradle
7.x

4.4/6.3. It cannot be upgraded by
yourself

Dependent AGP toolchain
Can be upgraded to the latest
official version, currently AGP
7.0.3.

AGP 3.0.1/3.5.x (cannot be
upgraded to other versions by
yourself)

Android Support Library Usable
The version (23) provided by
mPaaS must be used and cannot
be upgraded by yourself.

Android X Full support Not support

databinding Full support v1

kotlin Full support Recommended not to use

Not e

i. Android Gradle Plugin, a gradle plugin for Android packaging.

ii. With android.enableJetifier=true and android.useAndroidX=true .

This topic describes to you the operational flow of component management in native AAR integration
mode.

Prerequisites
You have updated the baseline.

Procedure

2.2. Native AAR integration method
2.2.1. Manage component dependencies

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 18

1. Click mPaaS > Nat ive AAR Access to open the integration panel. Then click St art conf igurat ion
below Configure and update components.

2. In the displayed management window, click mPaaS Component Management . Then select the
module and components to be managed and click OK. If your project contains mult iple modules, you
can select individual modules and select components for each module respectively.

3. After the components are added, click OK.

This topic describes how to check configurations of the build script after you add a component and
before you write code.

Procedure
1. Check the configuration of the build.gradle f ile in the root directory.

i. Check whether the EasyConfig plug-in is imported.

classpath 'com.android.boost.easyconfig:easyconfig:?'

ii. Check whether a baseline version is specified.

ext.mpaas_artifact = "mpaas-baseline"
ext.mpaas_baseline = "10.1.68-41"

2. View the configuration in the App directory to check whether the EasyConfig plug-in is applied.

apply plugin: 'com.alipay.apollo.baseline.config'

3. Check the version of the Android Gradle plug-in.

Search the project for com.android.tools.build:gradle to view the version of the Android Gradle
plug-in.

2.2.2. Check configurations of the build script

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 19

If the version of the Android Gradle plug-in is earlier than version 4.0, no special configuration is
required.

If the version of the Android Gradle plug-in is version 4.0 or later, open the gradle.properties
file and add android.enableResourceOptimizations=false . Then, in the App project, open the
 build.gradle f ile, f ind the signingConfigs sect ion, and explicit ly add the v1SigningEnabled
true line. The following sample code shows the overall sect ion.

android {
 ...
 signingConfigs {
 release {
 ...
 v1SigningEnabled true
 }
 debug {
 ...
 v1SigningEnabled true
 }
 }
}

If the version of the Android Gradle plug-in is version 7.0 or later, upgrade the EasyConfig plug-in
to version 2.7.5 in the build.gradle file in the root directory.

classpath 'com.android.boost.easyconfig:easyconfig:2.7.5'

Before you use the mPaaS framework, you need to init ialize the Application object based on whether
the Hotpatch feature is enabled. This topic describes the init ializat ion processes in both cases.

When Hotpatch is disabled
When the Hot pat ch feature is disabled, you need only to add the following code to the Application
object.

@Override
 protected void attachBaseContext(Context base) {
 super.attachBaseContext(base);
 QuinoxlessFramework.setup(this, new IInitCallback() {
 @Override
 public void onPostInit() {
 // Start writing the code to use features of the mPaaS framework here.
 }
 });
 }

 @Override
 public void onCreate() {
 super.onCreate();
 QuinoxlessFramework.init();
 }

2.2.3. Initialize mPaaS

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 20

When Hotpatch is enabled
When the Hot pat ch feature is enabled, perform the following steps.

Procedure
1. In the Application object, re-inherit QuinoxlessApplicationLike and exclude this class from

obfuscation. In the following code, the MyApplication object is used as an example.

 @Keep
 public class MyApplication extends QuinoxlessApplicationLike implements Application.Acti
vityLifecycleCallbacks {

 private static final String TAG = "MyApplication";

 @Override
 protected void attachBaseContext(Context base) {
 super.attachBaseContext(base);

 Log.i(TAG, "attacheBaseContext");

 }

 @Override
 public void onCreate() {
 super.onCreate();
 Log.i(TAG, "onCreate");
 registerActivityLifecycleCallbacks(this);
 }

 @Override
 public void onMPaaSFrameworkInitFinished() {
 LoggerFactory.getTraceLogger().info(TAG, getProcessName());
 }

 @Override
 public void onActivityCreated(Activity activity, Bundle savedInstanceState) {
 Log.i(TAG, "onActivityCreated");
 }

 @Override
 public void onActivityStarted(Activity activity) {

 }

 @Override
 public void onActivityResumed(Activity activity) {

 }

 @Override
 public void onActivityPaused(Activity activity) {

 }

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 21

 @Override
 public void onActivityStopped(Activity activity) {

 }

 @Override
 public void onActivitySaveInstanceState(Activity activity, Bundle outState) {

 }

 @Override
 public void onActivityDestroyed(Activity activity) {

 }}

2. In the AndroidManifest.xml f ile, ensure that the Application object inherits the Application
object provided by mPaaS. Then, add the generated MyApplication class to meta-data whose key
is mpaas.quinoxless.extern.application . The following sample code is for your reference.

 <application
 android:name="com.alipay.mobile.framework.quinoxless.QuinoxlessApplication" >
 <meta-data
 android:name="mpaas.quinoxless.extern.application"
 android:value="com.mpaas.demo.MyApplication"
 />
 </application>

3. Import the Apache HTTP client.

When you use Remote Procedure Call (RPC) or Hotpatch, you need to call the features of the Apache
HTTP client. Therefore, add the following code to the AndroidManifest.xml f ile. For more
information, see Use the Apache HTTP client.

<uses-library android:name="org.apache.http.legacy" android:required="false"/>

Apps developed on mPaaS Android clients are compiled using Java codes which may easily be
decompiled. Therefore, we need to use Android ProGuard obfuscation files to protect Java source
codes. This topic describes the process to add obfuscation rules in native AAR access mode.

Procedure
1.Customize yw_1222.jpg as the resource to keep. Create an XML file in your project that contains
the <resources> tag and specify yw_1222.jpg as the resource to keep in the tools:keep attribute.
If desired, each resource to be discarded can also be specified in the tools:discard attribute. Both
propert ies accept a comma-separated list of resource names. The asterisk (*) character can be used as
a wildcard.

<?xml version="1.0" encoding="utf-8"?>
<resources xmlns:tools="http://schemas.android.com/tools"
 tools:keep="@drawable/yw_1222"/>

2.2.4. Add obfuscation rules

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 22

https://developer.android.com/about/versions/pie/android-9.0-changes-28?hl=zh-cn#apache-p

2.Execute the task to generate an obfuscated file. Click on mPDebugProguardT ask (or
mPReleaseProguardT ask).

3.After the execution, obfuscation files will be added to the project, as shown in the following figure.

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 23

4.Append the generated obfuscation files to the obfuscation policy.

Not e : If transformClassesAndResourcesWithR8ForRelease is frozen during obfuscation, we
recommend that you disable R8 and then perform obfuscation again. To disable R8:

Add android.enableR8=false in gradle.properties .

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 24

AAR integration refers to the mode that almost uses native integration. When AAR integration is used,
to meet the need for mPaaS baseline management, you need to use the latest stable Android Gradle
Plugin and Gradle Wrapper versions. Android Gradle Plugin 3.5.3 and Gradle Wrapper 5.6 or later versions
are recommended. Currently, Android Gradle Plugin 3.6.x and Gradle Wrapper 6.3 are stable.

Preparation
1. Upgrade easyconfig plugin to 2.7.5.

2. Upgrade gradle to 5.0 and above.

Upgrade componentized integration mode to AAR integration mode

Changes in the plugins
Update Gradle Wrapper and Android Gradle Plugin to the version you need. Gradle's version should be
5.0 and above.

Remove classpath 'com.alipay.android:android-gradle-plugin' from the build.gradle f ile
under every program's root directory.

Remove all com.android.application from the bundle projects, and use com.android.library
from native projects in the bundle projects.

Remove all com.alipay.bundle from the bundle projects.

Remove all definit ions of bundle {} and public.xml from bundle projects, unless special
needs.

Remove all com.alipay.portal from the portal projects.

2.2.5. Upgrade componentized or mPaaS Inside
integration mode to Native AAR mode

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 25

Remove all definit ions of protal {} and public.xml from portal projects, unless special needs.

Update apply plugin: 'com.alipay.apollo.baseline.update' with apply plugin:
'com.alipay.apollo.baseline.config' .

Changes in the dependencies
Remove all the declarations of provided and bundle from dependencies node, and
integrate the AAR dependencies with BOM mode.

 implementation 'com.mpaas.android:push'
 implementation 'com.mpaas.android:nebula'
 implementation 'com.mpaas.android:push-hms5'
 implementation platform("com.mpaas.android:mpaas-baseline:$(latest)")

 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'androidx.test.ext:junit:1.1.1'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.2.0'

 $(latest) is the latest mPaaS baseline version. If the standard baseline is used, the value of
 mpaas-baseline doesn't need update. If the customized baseline is used, the value of mpaas-
baseline should be updated with customized baseline's artifact .

Remove the load and customization of the framework. For more information, pleae refer to the
document Load and customize the framework.

Changes in the usage of common components
If the components are defined in metainfo.xml mode, please refer to the document Use common
components of mPaaS.

Changes in the files
The files of slinks and res_slinks are not needed.

Possible issues
Because the v1 signature is disabled by default in higher versions, it may cause the wireless bodyguard
to report an error when the v1 signature does not exist . Please refer to How to fix 608 errors at runtime
or native errors with libsgmain for the solut ion.

Self-examination
For self-examination, please refer to the document Check configurations of the build script.

Upgrade inside integration mode to AAR integration mode

Changes in the plugins
Update Gradle Wrapper and Android Gradle Plugin to the version you need. Gradle's version should be
5.0 and above.

Remove classpath 'com.alipay.android:android-gradle-plugin' from the build.gradle f ile
under every program's root directory.

Remove all com.alipay.portal from the portal projects.

Remove all definit ions of protal {} and public.xml from portal projects, unless special needs.

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 26

Update apply plugin: 'com.alipay.apollo.baseline.update' with apply plugin:
'com.alipay.apollo.baseline.config'.

Changes in the dependencies
Remove all the declarations of provided and bundle from dependencies node, and integrate
the AAR dependencies with BOM mode.

 implementation 'com.mpaas.android:push'
 implementation 'com.mpaas.android:nebula'
 implementation 'com.mpaas.android:push-hms5'
 implementation platform("com.mpaas.android:mpaas-baseline:$(latest)")

 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'androidx.test.ext:junit:1.1.1'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.2.0'

 $(latest) is the latest mPaaS baseline version. If the standard baseline is used, the value of mpaas-
baseline doesn't need update. If the customized baseline is used, the value of mpaas-baseline
should be updated with customized baseline's artifact .

Changes in the usage of common components
If the components are defined in metainfo.xml mode, please refer to the document Use common
components of mPaaS.

Changes of gradle.properties
The configuration quinoxless=true is not needed. The exist ing quinoxless=true can be either
kept or deleted.

Possible issues
Because the v1 signature is disabled by default in higher versions, it may cause the wireless bodyguard
to report an error when the v1 signature does not exist . Please refer to How to fix 608 errors at runtime
or native errors with libsgmain for the solut ion.

Self-examination
For self-examination, please refer to the document Check configurations of the build script.

Integrate in AAR integration mode
1. Add mPaaS SDK to the project.

2. Add components to use in each module.

In build.gradle , the native gradle syntax - exclude is used to remove the specified mPaaS library. As
there may be cases where the same library is referenced by mult iple mPaaS components, we
recommend that you apply the removal operation globally. For example, when you remove the built-in
Amap SDK from the mPaaS SDK, refer to the following method:

2.2.6. Remove specific mPaaS library

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 27

configurations {
 all*.exclude group:'com.mpaas.group.amap', module: 'amap-build'
 all*.exclude group:'com.alipay.android.phone.thirdparty', module: 'amap3dmap-build'
}

The regulatory authority requires that apps not call related sensit ive APIs until users click the Agree
button in the privacy agreement pop-up box. For this reason, this requirement is supported by all
versions of mPaaS Android 10.1.68 baseline, 10.1.60.5 or later versions of 10.1.60 baseline, and
10.1.32.16 or later versions of 10.1.32 baseline. Please refer to this document to modify the project
according to the actual situation.

Instructions for Use
You need to enable the Privacy&Security Controls window in the app, and call the API of the framework
to send the Agree broadcast after the user clicks the Agree button. After receiving the broadcast, the
framework is init ialized and also records the agree behavior of the user in the sharedpreference . You
will be notified of the completion of the init ializat ion through callback. You will be unable to use the
capabilit ies of mPaaS components properly until you receive a callback.

Procedure

Import ant

The Activity that pops up the privacy dialog box cannot inherit the BaseActivity of mPaaS, because
BaseActivity will collect embedded data, which will cause the App to collect private data before
agreeing to the privacy policy.

1. In meta-data , set the switch for the pop-up dialog box for Privacy & Security Controls. By default ,
the switch is off.

 <meta-data
 android:name="privacy_switcher"
 android:value="true"></meta-data>

2. Use the following API to send the Agree broadcast.

Not e

The broadcast can be sent only when the user clicks the Agree button.

QuinoxlessPrivacyUtil.sendPrivacyAgreedBroadcast(Context context);

3. Whether the user has agreed the privacy agreement.

Not e

When calling this API, please init ialize the mPaaS framework first .

2.2.7. Privacy permissions

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 28

QuinoxlessPrivacyUtil.isUserAgreed(Context context);

4. Update the flag indicating the user’s consent to the privacy agreement, allowing you to pop up this
window again in a part icular scenario.

 QuinoxlessPrivacyUtil.setUserAgreedState(Context context, boolean agreed);

5. Callback after the framework is init ialized:

When QuinoxApplication is used: The capabilit ies of mPaaS must be used after
 onMPaaSFrameworkInitFinished .

Not e

You must use 'QuinoxApplication' if you need to use the hot fix function.

When QuinoxApplication is not used: The capabilit ies of mPasS must be used after
 onPostInit of IInitCallback .

QuinoxlessFramework.setup(this, new IInitCallback()
{
 @Override
 public void onPostInit()
 {

 }
});

6. If you are using baseline 10.1.68.42 and above and need to clear the privacy state, call
 QuinoxlessPrivacyUtil.clearPrivacyState(context); before all the above calls.

This topic is intended to solve the adaptation problem with the general-purpose components of the
native mPaaS framework when the component-based access mode is changed to the native AAR
access mode. This topic can be ignored if general-purpose components of the mPassS framework are
not used.

For compatibility with component-based access solut ions, the following four components can be used
in form of apt on 10.1.60 baseline or later versions:

ActivityApplication (Application)

ExternalService (Service)

BroadcastReceiver

Pipeline

2.2.8. Use common components of mPaaS
framework(optional)

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 29

Not e

These four components are used in the same way as in component-based access mode. You can
click a component name to view its details.

Use of Components
1. Add related dependencies into library and application projects.

implementation 'com.mpaas.mobile:metainfo-annotations:1.3.4'
The apt access mode of kapt 'com.mpaas.mobile:metainfo-compiler:1.3.4' // kotlin
The apt access mode of annotationProcessor 'com.mpaas.mobile:metainfo-compiler:1.3.4' //
java

2. Append specific annotations respectively when defining the preceding four components. There are
four types of annotations:

@Application

@Service

@BroadcastReceiver

@Pipeline

The parameter in annotation is the same as that defined in metainfo.xml . For example, when
using @Application , you just need to do as follows:

@Application(appId = "123123")
public class MicroApplication extends ActivityApplication {
}

When the library module is not used
If you do not use the library module, APP Module you only need to add it @MetaInfoApplication
to any class in your project. If you use the easyconfig plug-in in combination (a common pract ice), you
also need to turn on a switch. See the following examples:

@MetaInfoApplication(compatibleWithPlugin=true)

When the library module is used
If library module the preceding 4 components are defined in your project, you must perform the
following operations:

1. Declare any class, @MetaInfoLibrary and introduce the packageName of the library module for the
parameter involved. For example:

@MetaInfoLibrary(applicationId=BuildConfig.APPLICATION_ID)

2. Add @MetaInfoApplication to any class in the app module project, and introduce the
 MetaInfoConfig.java generated in library module for dependency. For example:

@MetaInfoApplication(dependencies={com.mylibrary.MetaInfoConfig.class})

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 30

If you use the easyconfig plug-in in combination (a common pract ice), you also need to turn on a
switch. The following shows the example in which an enable switch is integrated:

@MetaInfoApplication(dependencies={com.mylibrary.MetaInfoConfig.class}, compatibleWithPlu
gin = true)

Obfuscation related
Add related classes into the obfuscation allowlist , especially
 com.alipay.mobile.core.impl.MetaInfoConfig . The following command can be used:

-keep public class com.alipay.mobile.core.impl.MetaInfoConfig

The component-based framework refers to the framework in which mPaaS divides an app into one or
more Bundle projects and a Portal project based on Open Service Gateway Init iat ive (OSGi) technology.
mPaaS manages the life cycle and dependencies of each Bundle project, and uses the Portal project to
merge all Bundle project packages into a runnable .apk package.

The mPaaS framework is suitable for teams to develop apps collaboratively, and the framework
includes functions such as component init ializat ion and embedding, so that you can easily access
mPaaS components.

Bundle project
A tradit ional native project consists of a main module or a main module and several sub-modules. An
mPaaS Bundle project generally consists of a main module named app and several sub-modules.

For example, in Alipay, a Bundle generally consists of a main module named app and the following
three sub-modules:

api: pure code API, the definit ion of API interface.

biz: the implementation of API interface operation.

ui: such as act ivity, custom view.

Not e

There is at least one sub-module named api. If there is no sub-module, the API package of the
Bundle cannot be packed. And the Bundle cannot be relied on by other Bundles.

After you read this topic, you will learn about the Bundle project from the following aspects:

Difference between Bundle projects and tradit ional projects

Bundle propert ies

Bundle interface package

2.3. Componentized integration
method (Portal&Bundle)
2.3.1. About Portal & Bundle projects

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 31

Bundle project package

Difference between Bundle projects and traditional projects
Bundle is essentially a native project. Compared to a native project, a Bundle project has an addit ional
Apply plug-in of mPaaS in the build.gradle of project , main Module , and sub-module. The
specific differences are described as follows:

 build.gradle in project root directory

 build.gradle of the main module

 build.gradle of the sub-module

build.gradle in project root directory
In build.gradle in the project root directory, the dependency on the mPaaS plug-in is added:

Not e

Due to the iterat ion of functions, the plug-in version may continue to increase.

classpath 'com.alipay.android:android-gradle-plugin:3.0.0.9.13'

build.gradle of the main module
In build.gradle of the main module, a declaration of mPaaS bundle Apply plug-in is added. This
indicates that the project is a Bundle project. The Bundle configuration is as follows:

apply plugin: 'com.alipay.bundle'

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 32

The following configuration has been added to the main module build.gradle :

Where:

 version : The version of the Bundle

 group : The groupid of the Bundle

 exportPackages : Describes which package names all the classes of the current Bundle project are
under. The package names can be a collect ion. For non-stat ically linked Bundles, you must enter
 exportPackages , otherwise there will be a problem that the class cannot be loaded. For example,

if all the codes are under com.alipay.demo and com.alipay.bundle , then you can write
 com.alipay or com.alipay.demo, com.alipay.bundle in exportPackages . The package name

can neither be too long nor too short.

 initLevel : The t ime to load the Bundle when the framework starts. The t iming range is 0-100.
The smaller the number is, the earlier the loading occurs. Among them, 11110000 means loading
during use, that is, lazy loading.

 packageId : Describes the ID of the current Bundle resource, which is needed for aapt packing. Due
to the mult i-Bundle architecture, the packageId of each Bundle must be unique and cannot be the
same as the packageId of other Bundles. The packageId currently used by mPaaS is as follows:

Bundle packageId

com.alipay.android.phone.thirdparty:androidsuppor
trecyclerview-build

28

com.alipay.android.phone.mobilesdk:framework-
build

30

com.alipay.android.phone.rome:pushservice-build 35

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 33

com.alipay.android.phone.sync:syncservice-build 38

com.alipay.android.phone.wallet:nebulabiz-build 41

com.alipay.android.phone.mobilecommon:share-
build

42

com.alipay.android.phone.wallet:nebulacore-build 66

com.alipay.android.mpaas:scan-build 72

com.alipay.android.phone.wallet:nebula-build 76

com.alipay.android.phone.securitycommon:aliupgra
de-build

77

Add the following dependencies on mPaaS in dependencies :

dependencies {
 compile project(":api")
 apt 'com.alipay.android.tools:androidannotations:2.7.1@jar'
 //mPaaS dependencies
 provided 'com.alipay.android.phone.thirdparty:fastjson-api:1.1.73@jar'
 provided 'com.alipay.android.phone.thirdparty:androidsupport-api:13.23@jar'
}

build.gradle of the sub-module
In build.gradle of the sub-module, a declaration of mPaaS Apply plug-in is added. This indicates
that the project is a sub-module project of the Bundle, and the API package of this Bundle will
eventually be packed.

apply plugin: 'com.alipay.library'

Add the following dependencies on mPaaS in dependencies :

dependencies {
 apt 'com.alipay.android.tools:androidannotations:2.7.1@jar'
 //mPaaS dependencies
 provided "com.alipay.android.phone.thirdparty:utdid-api:1.0.3@jar"
 provided "com.alipay.android.phone.mobilesdk:framework-api:2.1.1@jar"
}

Bundle properties

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 34

The design concept of the Bundle property in this framework originates from the OSGi Bundle. But this
design is more concise and lighter than the OSGi Bundle.

The following table lists the Bundle propert ies and descript ions:

Property Description

Bundle-Name
The Bundle name is from the group in the
 build.gradle file and the name < />defined

in settings.gradle .

Bundle-version
Bundle version is from version in the
 build.gradle file.

Init-Level
The time to load the Bundle comes from the
properties: init.level defined in the
 build.gradle file.

Package-Id
The packageid of the Bundle resource comes from
the properties defined in the build.gradle file.

Contains-Dex
Whether to include dex. This will automatically be
determined by the compiler plug-in.

Contains-Res
Whether to include resources. This will automatically
be determined by the compiler plug-in.

Native-Library
The compiler plug-in can automatically determine
the included so files.

Component-Name

From the
 Activity , Service , BroadcastReceiver ,

and ContentProvider defined in the
 AndroidManifest.xml file.

exportPackages
For the name of the package where all the classes
of this Bundle are located, see the build.gradle
of the main module .

Bundle interface package
A Bundle may contain mult iple sub-modules, such as biz, api, UI. When you compile and pack the
Bundle, each sub-module will generate an interface package in the format of .jar . Among these
packages, only the API interface packages can be used by other Bundles.

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 35

At the same t ime, a Bundle project package is also generated during the packing. All sub-modules are
contained in this project package. The project package can be used by the Portal project. The project
package is compiled in the Portal and the .apk package is generated finally.

The interface package packed by the sub-module of Bundle, only provides customized java/kotlin
interface classes, excludes the resource under res directory. And these interface packages can only
packed from the api modules.

Each Bundle project directly depends on each other through the API package of the Bundle. You
need to configure the dependency API in the dependency in the build.gradle of the Bundle.
For example, Bundle A depends on the bapi sub-module of Bundle B. Then you need to configure
the dependency on bapi in the dependency in the build.gradle of the corresponding sub-
module of Bundle A.

 provided "com.alipay.android.phone:bundleB:1.0.1:bapi@jar"

The groupId:artifactid:version:classifier involved in the dependency corresponds to the
group, name, version, and sub-module names declared in the Bundle.

By default , the name of Bundle is the folder name of the main module. The Bundle name can be
modified in settings.gradle , as shown in the following code, where app is the project name of
the main module:

 include ':api', ':xxxx-build'
 project(':xxxx-build').projectDir = new File('app')

Bundle project package
The .jar package packed by the whole Bundle project, which is an .apk f ile but the suffix is
 .jar , for example, framework-build.jar .

To rely on Bundle in Portal, you need to declare the dependency on Bundle in dependency in
 build.gradle of the main module of Portal, which is shown as follows:

 dependencies {
 bundle "com.alipay.android.phone.mobilesdk:framework-build:version@jar"
 manifest "com.alipay.android.phone.mobilesdk:framework-build:version:AndroidManifes
t@xml"
 }

There are two types of Bundle packages: debug package and release package. When Portal depends
on the debug package of Bundle, you need to add :raw to the debug package.

When Portal depends on the debug package of the Bundle, use bundle
"com.alipay.android.phone.mobilesdk:framework-build:version:raw@jar"

When Portal depends on the release package of the Bundle, use bundle
"com.alipay.android.phone.mobilesdk:framework-build:version@jar"

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 36

Not e

When you pack the Portal package, you need to make sure the following items:

Which Bundles are to be packed in the main dex of the app. Stat ic link. Bundle with
 ContentProvider must be placed in a stat ic link.

Which are dynamically loaded. If the app is not big, it is recommended to be packed in the
main dex.

If you want to pack the Bundle code into the main dex, you need to configure the current Bundle
in the slinks f ile of Portal. The configuration content is: groupId-artifactId . If the
configuration content ends with -build , you need to remove -build. For example, if the
groupId is com.mpaas.group and the art ifact Id is testBundle-build , you need to add a line
in the slinks f ile: com.mpaas.group-testBundle .

Stat ic link: Pack the Bundle code into classes.dex in apk , or into classes1.dex or
 classes2.dex . Then you can load the classes in the Bundle when the project starts.

Dynamic loading: Store the Bundle code in lib/armeabi . When you use a Bundle class, the
framework automatically creates a BundleClassLoader for loading. In this case, you need to
configure exportPackages of the Bundle.

Portal project
The Portal project merges all the Bundle project packages into a runnable .apk package.

Difference between Portal project and traditional project
The difference between Portal and tradit ional development projects is in build.gradle :

 build.gradle in project root directory

 build.gradle of the main module

build.gradle in project root directory
As shown in the following figure, the class path has an addit ional com.alipay.android:android-
gradle-plugin:2.1.3.2.7 plug-in:

Not e

Due to the iterat ion of functions, the plug-in version may continue to increase.

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 37

This plug-in contains the Portal plug-in, which can merge the Bundles during the packing process.

Merge the .jar packages of Bundle

Merge the AndroidManifest f ile of Bundle

build.gradle of the main module
The declaration of mPaaS Apply Port al plug-in is added, which indicates that the project is a Portal
project. The Portal configuration is as follows:

apply plugin: 'com.alipay.portal'

At the same t ime, add the corresponding dependency on Bundle in dependencies . The statements
in dependencies are the declarations of Bundle and manifest, which are used to indicate which
Bundles or manifests the Portal depends on:

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 38

Import ant

Usually no code is writ ten under Portal.

The following types of resources, such as style, drawable, and string, used in the Bundle project
must be placed in the Portal project. Otherwise, the resources will not be found during
compilat ion or runtime:

Resources used in AndroidManifest.xml .

The resources passed to NotificaionManager for use.

Resources used by the getResources().getIdentifier() method.

If there are the preceding three situations in the referenced third-party AAR package, you
also need to decompress AAR and copy the corresponding resources into the Portal
project.

Project dependencies
An app based on t he mPaaS f ramework includes one or more Bundles and a Port al . An app can
have only one Portal project, but there can be mult iple Bundle projects.

Through the mPaaS plug-in, the Portal project merges all the Bundle project packages into a runnable
 .apk package. After the merge, the plug-in deploys the Bundle project to the specified library

address. The library address is defined in build.gradle in the main module of Bundle, as shown in the
following code:

uploadArchives {
 repositories {
 mavenLocal()
 }
}

The library address is uploaded to the local ~/.m2 library address. You can also add a custom library
address as follows:

mavenDeployer {
 mavenLocal()
 repository(url: "${repository_url}") {
 authentication(userName: 'userName', password: 'userName_pwd')
 }
 snapshotRepository(url: "${repository_url}") {
 authentication(userName: 'userName', password: 'userName_pwd')
 }
}

After the upload is completed, the Bundle is stored in the designated library in the form of
 groupid:artifactid:version:classifier@type . So, if you declare dependency in the
 build.gradle< />of the outermost main module of Portal, you can specify dependencies for each

Bundle, as shown in the following code:

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 39

dependencies {
 bundle 'com.alipay.android.phone.mobilesdk:quinox-build:2.2.1.161221190158:nolog@jar'
 manifest 'com.alipay.android.phone.mobilesdk:quinox-build:2.2.1.161221190158:AndroidMan
ifest@xml'
}

In addit ion, the interdependence between Bundle projects also needs to declare the library
dependency address in the outermost build.gradle of the Bundle.

Not e

The username and password in the following configuration are not the logon user name and
password of the console. Please search for group number 41708565 with DingTalk to join DingTalk
group to get these two values.

 mavenLocal() describes the dependent local library address.

 maven{} declares the address of the remote library that it depends on.

allprojects {
 repositories {
 mavenLocal()
 mavenCentral()
 maven {
 credentials {
 username "{username}"
 password "{password}"
 }
 url "http://mvn.cloud.alipay.com/nexus/content/repositories/releases/"
 }
 }
}

Bundle compilation and packing results
After you compile and pack the package with the mPaaS plug-in, a Bundle will generate a project
package, which is a .jar package. For more information, see Bundle interface package and Bundle
project package.

The project package will be published to the designated library in the form of
 groupid:artifactid:version:classifier@type . The release library address is defined in
 build.gradle in the Bundle main module as follows:

uploadArchives {
 repositories {
 mavenLocal()
 }
}

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 40

The preceding configuration specifies that the release library is a local Maven library (mavenLocal). If
you need to modify the address of the local Maven library (default ~/.m2) or add a release library,
see Configure release library.

Add Bundle dependencies
You can add Bundle dependencies to the Portal, or you can add dependencies to other Bundles. You
only need to:

1. Declare the dependent library address in build.gradle at the outermost layer of Portal or Bundle.
The dependent library needs to correspond to the preceding Bundle release library. For the
configuration method of the dependent library, see Configure dependent library.

2. Declare dependencies in build.gradle of Portal or the main module of Bundle. An example of
adding Bundle (quinox) dependency is as follows:

 dependencies {
 bundle 'com.alipay.android.phone.mobilesdk:quinox-build:2.2.1.161221190158:nolog@jar
'
 manifest 'com.alipay.android.phone.mobilesdk:quinox-build:2.2.1.161221190158:Android
Manifest@xml'
 }

Related topics
mPaaS plug-in

Configure dependent library

Configure release library

If component -based int egrat ion met hod is used, you need to complete the following general
steps to complete the integration process:

1. Configure a development environment

2. Create an app in the console

3. Create a new project on the client

4. Manage component dependency

5. Build

Create a new project on the client
This topic describes how to create a local app, compile and package the app, and then obtain an
executable .apk package in Windows-based development environments.

First , you need to:

1. Configure a development environment

2. Create an app in the console

Create a Portal project

2.3.2. General steps

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 41

The component-based integration is available where necessary, where you need to create a Portal
project f irst .

Portal typically contains no business code and is only used to combine Bundles into a single executable
 .apk package. Therefeore, when you create a Portal project, a Bundle project suffixed with
 Launcher is created by default .

The creation procedure is as follows:

1. After launching Android Studio, click St art a new mPaaS project on the welcome page.

2. In the Creat e New mPaaS Project window, select mPaaS Port al . Click Next .

3. Enter the Project name . When select ing t he Conf igurat ion f ile pat h , select the .config file
downloaded from Manage codes > Code conf igurat ion in the console. The mPaaS plug-in will
automatically parse and enter the Package Name based on the selected configuration file. Click
Next .

4. Select an mPaaS SDK version, and check your desired module dependency. Click the Next button.

Import ant

Please check module dependency as required. For more information about dependencies, refer
to the document of each component.

You can select only the required dependency for the framework. After creating an app, use
the mPaaS Plug-in > Component Management function to add you desired dependency.

5. Confirm the information about the Bundle project created by default . Click the Finish button.

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 42

Now, you have created the Portal project and obtained a Bundle project created by default .

Create a Bundle project
The mPaaS framework supports mult iple Bundle projects, allowing you to create mult iple Bundle
projects for your project.

1. Click the File > New > St art a New mPaaS Project menu.

2. In the Creat e New mPaaS Project window, select mPaaS Port al . Click Next .

3. Enter the Project name . When select ing t he Conf igurat ion f ile pat h , select the .config file
downloaded from Manage codes > Code conf igurat ion in the console. The mPaaS plug-in will
automatically parse and enter the Package Name based on the selected configuration file. Click
Next .

4. Select an mPaaS SDK version, and check your desired module dependency. Click the Next button.

5. Confirm the information about the Bundle project created by default . Click the Finish button.

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 43

Now, you have created a Bundle project. For more information about Bundle development, see Bundle
Project.

Follow-up steps
To integrate and use mPaaS Components, refer to the integration document of each component.

Related topics
Component-based integration > Introduction: Describes the code st ruct ure and compilat ion and
package result s of Port al and Bundle project s , and t heir dif f erences f rom nat ive project s .

Manage component dependency
To make it easier to upgrade the mPaaS SDK baseline and manage component dependencies, you need
to upgrade the Android Studio mPaaS plug-in to the latest version first . For more information about
how to upgrade the mPaaS plug-in, see Upgrade the mPaaS plug-in.

Manage component dependency
To use an mPaaS component, you need to add the dependency of this component in the Portal and
Bundle projects respectively first .

Adding the dependency in a Portal project will ensure that this dependency is packaged and included
into your apk.

Adding the dependency in a Bundle project will ensure that you can call the API of this component in
the Bundle project.

For a single Portal project, you only need to add the dependency in this Portal project.

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 44

If you have already selected the components you want to use when creating your mPaaS project,
you can st ill add and remove components as follows.

Procedure
1. In Android Studio, select mPaaS > Component -based Access , and in the integration panel that

appears, click St art Conf igurat ion under Conf igure/Updat e Component s .

2. In the component management window that appears, click the corresponding buttons to install your
desired components.

If a component is not installed, the corresponding button displays “Uninstalled”. Click this button
to install the component.

If a component is installed, the corresponding button displays “Installed”. In this case, click on
this button again will uninstall this component.

Follow-up steps
If you have not used the Android Studio mPaaS plug-in to manage component dependencies before,
and this is your first t ime using the Component Management feature, after adding components, you
also need to check or modify the following configurations.

1. Check the build.gradle f ile in the root directory of the Portal and Bundle projects. Make sure that
the file contains the following dependencies and the version is not earlier than the following
versions:

 buildscript {
 ...
 dependencies {
 classpath 'com.android.boost.easyconfig:easyconfig:2.7.5'
 }
 }

2. Check the build.gradle f ile in the main module of the Portal project. Make sure that the file
contains the following contents:

 apply plugin: 'com.alipay.portal'
 portal {
 allSlinks true
 mergeAssets true
 }
 apply plugin: 'com.alipay.apollo.baseline.update'
 mpaascomponents{
 excludeDependencies=[]
 }

3. Delete old dependencies:

Import ant

It is highly recommended that you make a backup of the followings before delet ing them.

For the Portal + Bundle mode, you need to delete the dependencies (except mpaas-baseresjar)
of the mPaaS components at the dependencies node in the build.gradle f ile under the main
module of the Portal project.

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 45

For a single Portal project, you need to delete the followings from the build.gradle f ile under
the main module:

apply from: rootProject.getRootDir().getAbsolutePath() + "/mpaas_bundles.gradle"
apply from: rootProject.getRootDir().getAbsolutePath() + "/mpaas_apis.gradle"

and delete the mpaas_bundles.gradle and mpaas_apis.gradle f iles in the root directory of
the project. Note that delet ing the mpaas_apis.gradle f ile may lead to the compilat ion failure.
You need to change configurations in the sub-module as described in the following sect ion.

4. To call the API of the mPaaS component from the sub-module:

For a Portal + Bundle project, you need to add the following into the build.gradle f ile under
the sub-module of a Bundle project:

apply plugin: 'com.alipay.apollo.baseline.update'

For a single Portal project, you need to delete the following from the build.gradle f ile under
the sub-module:

apply from: rootProject.getRootDir().getAbsolutePath() + "/mpaas_apis.gradle"

and add the following:

apply plugin: 'com.alipay.apollo.baseline.update'

5. If the original dependencies include your custom dependencies, you need to Add Custom
Dependencies.

6. If compilat ion failed due to library conflicts, you can Solve Dependency Conflicts.

Upgrade the baseline
1. In Android Studio, click mPaaS > Component -based Access , and in the integration panel that

appears, click St art Conf igurat ion under Access/Upgrade Baseline.

2. Click the version dropdown box, select a new version, and then click the OK button to upgrade the
baseline.

Upgrade a single component

New version
1. In Android Studio, select mPaaS > Component Upgrade to show the list of components.

2. View component status and upgrade components. If there is an update available in the upper right
corner, then click and update it .

Old version
1. In Android Studio, select mPaaS > Component Upgrade to show the list of components.

2. View component status and upgrade components:

If the lat est version is currently being used, then no upgrade is required for this component.

Otherwise, a later version is available for this component. Click the status button to upgrade this
component.

Add Custom Dependencies

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 46

If it is your first t ime to use the Component Management feature to manage components, but not
to upgrade the SDK, then you only need to write the custom dependencies into the dependencies
node in the build.gradle f ile under the main module of a Portal project. For example:

bundle 'com.alipay.android.phone.mobilesdk:logging-build:2.0.2.180322162837@jar'
manifest 'com.alipay.android.phone.mobilesdk:logging-build:2.0.2.180322162837:AndroidMani
fest@xml'

If it is your first t ime to use the Component Management feature to manage components and
upgrade the SDK, or use the Baseline Upgrade feature to upgrade the SDK, your custom
dependencies may need to be re-customized based on the new version. You need to submit a t icket
or contact your mPaaS support for confirmation. After re-customization or confirmation that re-
customization is not required, you can add custom dependencies as described above.

Build
Use the Build feature provided by the Android Studio mPaaS plug-in to compile a project.

A modular design method is one of the design principles of mPaaS framework. The low coupling and
high cohesion of business modules are conducive to the expansion and maintenance of businesses.

Business modules exist in the form of Bundles and the modules do not affect each other. But there are
some correlat ions between Bundles, such as jumping to another Bundle interface, calling APIs in another
Bundle, or performing some operations in Bundle to be completed during init ializat ion.

For this reason, mPaaS is designed with the metainfo general-purpose component registrat ion
mechanism, where each Bundle declares the components that need to be registered in
 metaInfo.xml .

The frameworks currently supports the following components:

ActivityApplication (Application)

ExternalService (Service)

BroadcastReceiver

Pipeline

The format of metainfo.xml is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<metainfo>
 <broadcastReceiver>
 <className>com.mpaas.demo.broadcastreceiver.TestBroadcastReceiver</className>
 <action>com.mpaas.demo.broadcastreceiver.ACTION_TEST</action>
 </broadcastReceiver>
 <application>
 <className>com.mpaas.demo.activityapplication.MicroAppEntry</className>
 <appId>33330007</appId>
 </application>
</metainfo>

Application component

2.3.3. Register common components

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 47

https://workorder-intl.console.aliyun.com/console.htm?spm=a2c63.p38356.9135018350.28.301e6e4cwi0Njo&lang=#/ticket/createIndex

ActivityApplication is a component designed by the mPaaS framework and acts as an act ivity container.
The Act ivityApplication component allows you to manage and organize act ivit ies, specifically for
solving the issue of jumping to another Bundle interface. Thus, the caller needs only to care about the
ActivityApplication information registered in the framework on the business side and the agreed
parameters.

About this task
A series of logic such as creation and destruct ion of Act ivityApplication is completely managed by the
mPaaS framework. The business side only needs to process the parameters it receives and manage the
activit ies under its own business, so that the business side is effect ively isolated from the caller. The
business side and the caller only need to coordinate the invoked parameters, which reduces the
dependency.

For Android native apps developed based on the mPaaS framework, act ivit ies must be inherited from
BaseActivity or BaseFragmentActivity in order to be managed by the Act ivityApplication class.

Procedure
1. Create a metainfo.xml f ile in the main module of your project, and place it in the location as

shown in the following figure:

2. Write the following configurations into the metainfo.xml f ile, wherein:

 className The configured class name is used to provide the class name to jump to and define
the behavior of each stages. For class definit ions, see codes in step three. The framework loads
the corresponding class through the name defined by className . Therefore, the class must not
be obfuscated and needs to be retained in the obfuscation file.

 appId : Unique identifier of a business. The business side only needs to know the appId of the
business to complete the jump. The mapping between appId and ActivityApplication is handled by
the framework layer.

<?xml version="1.0" encoding="UTF-8"?>
<metainfo>
 <application>
 <className>com.mpaas.demo.hotpatch.HotpatchMicroApp</className>
 <appId>33330002</appId>
 </application>
</metainfo>

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 48

3. If the class specified by metainfo via className performs only simple jumps, the following code
is used for implementation:

 /**
 * Scenario one:
 * If you can only jump to a certain activity interface, then you need to reload getEntr
yClassName and onRestart. For getEntryClassName, classname of the activity is returned, a
nd for onRestart, getMicroApplicationContext().startActivity(this, getEntryClassName()) m
ust be invoked;
 * Scenario two:
 * To jump to a different activity interface on demand, you need to reload onStart and o
nRestart, and jump to the specified interface based on the parameters in the Bundle proje
ct.
 * Created by mengfei on 2018/7/23.
 */
 public class MicroAppEntry extends ActivityApplication {

 @Override
 public String getEntryClassName() {
 //Scenario one: It is only possible to jump to a certain activity screen. In thi
s case, classname is returned
 //Scenario two: Jumps to a certain interface according to parameters. The null r
esult must be returned.
 return MainActivity.class.getName();
 }

 /**
 * Invoked during application creation; the implementation class can perform initial
ization here
 *
 * @param bundle
 */
 @Override
 protected void onCreate(Bundle bundle) {
 doStartApp(bundle);
 }

 /**
 * Invoked during application startup
 * If the application is not created yet, the create will be executed first, and the
n the onStart() callback
 */
 @Override
 protected void onStart() {
 }

 /**
 * When an application is destroyed, this callback function is invoked
 *
 * @param bundle
 */
 @Override
 protected void onDestroy(Bundle bundle) {

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 49

 }

 /**
 * During the application startup, if the application has been started, the onRestar
t() callback will be invoked instead of the onStart()
 *
 * @param bundle
 */
 @Override
 protected void onRestart(Bundle bundle) {
 //For scenario one: The getMicroApplicationContext().startActivity(this, getEntryCla
ssName()) must be invoked here;
 doStartApp(bundle);
 }

 /**
 * When a new application is started, the current application will be paused, and th
e method is called back
 */
 @Override
 protected void onStop() {

 }

 private void doStartApp(Bundle bundle) {
 String dest = bundle.getString("dest");
 if ("main".equals(dest)) {
 Context ctx = LauncherApplicationAgent.getInstance().getApplicationContext()
;
 ctx.startActivity(new Intent(ctx, MainActivity.class));
 } else if ("second".equals(dest)) {
 Context ctx = LauncherApplicationAgent.getInstance().getApplicationContext()
;
 ctx.startActivity(new Intent(ctx, SecondActivity.class));
 }
 }
 }

4. As the caller, you need to jump through the API provided in the MicroApplicationContext
encapsulated by the framework. curId or specify null for the parameter:

 // Gets the MicroApplicationContext object:
 MicroApplicationContext context = MPFramework.getMicroApplicationContext();
 String curId = "";
 ActivityApplication curApp = context.getTopApplication();
 if (null != curApp) {
 curId = curApp.getAppId();
 }
 String appId = "ID of destination ApplicationActivity";
 Bundle bundle = new Bundle(); // Additional parameter. This parameter is not mandatory f
or passing.
 context.startApp(curId, appId, bundle);

Service component

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 50

mPaaS is designed with a service component to address the issue with invoking APIs across Bundles. The
service component will be used to provide some logic as a service for being used by other modules.

About this task
The service component has the following features:

There is no constraint to UI.

The API is separated from implementation in design.

In principle, only the API classes are visible to callers. Therefore, the API classes must be defined in the
API module. The implementation must be defined in the main module. Note that by default , an API
module named api is generated when building a Bundle project.

External invocations are made through the findServiceByInterface API of
 MicroApplicationContext to get the corresponding service through interfaceName . For the use

of Bundle, only the service abstract API classes, i.e. those defined in interfaceName, are exposed.
Abstract API classes are defined in the API package.

Procedure
Register the service component in the following steps:

1. Define the location of metainfo.xml , as shown in the following figure:

2. Write the following configurations into the metainfo.xml f ile. The framework uses
 interfaceName as key , and className as value , and records the mapping relat ionship

between them. Of them, className is the implementation class of an API, and interfaceName is
the abstract API class:

<metainfo>
 <service>
 <className>com.mpaas.cq.bundleb.MyServiceImpl</className>
 <interfaceName>com.mpaas.cq.bundleb.api.MyService</interfaceName>
 <isLazy>true</isLazy>
 </service>
</metainfo>

An abstract API class is defined as follows:

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 51

public abstract class MyService extends ExternalService {
public abstract String funA();
}

An API class implementation is defined as follows:

public class MyServiceImpl extends MyService {
 @Override
 public String funA() {
 return "This is the API by service which is provided by BundleB";
 }

 @Override
 protected void onCreate(Bundle bundle) {

 }

 @Override
 protected void onDestroy(Bundle bundle) {

 }
}

An external invocation method is defined as follows:

MyService myservice = LauncherApplicationAgent.getInstance().getMicroApplicationContext
().findServiceByInterface(MyService.class.getName());
myservice.funA();

BroadcastReceiver component
BroadcastReceiver is the encapsulation of android.content.BroadcastReceiver , but the difference is
that the mPaaS framework uses android.support.v4.content.LocalBroadcastManager to register
and unregister BroadcastReciever. Therefore, these broadcasts are only used internally within the
current application, and in addit ion, the mPaaS framework is built with a series of broadcast events for
being monitored by users.

mPaaS built-in broadcast events
mPaaS defines mult iple broadcast events that are primarily used to monitor the states of the current
application. The registrat ion of a listener is no different from that in a native development
environment. But note that these states can only be monitored by the host process. The sample code is
as follows:

The built-in broadcast events are as follows:

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 52

public interface MsgCodeConstants {
 String FRAMEWORK_ACTIVITY_CREATE = "com.alipay.mobile.framework.ACTIVITY_CREATE";
 String FRAMEWORK_ACTIVITY_RESUME = "com.alipay.mobile.framework.ACTIVITY_RESUME";
 String FRAMEWORK_ACTIVITY_PAUSE = "com.alipay.mobile.framework.ACTIVITY_PAUSE";
 //Broadcast indicating that a user logs off, switch-to-backend broadcast
 String FRAMEWORK_ACTIVITY_USERLEAVEHINT = "com.alipay.mobile.framework.USERLEAVEHINT";
 //Broadcast indicating that all activities stop. This may be the switch-to-backend broa
dcast, but no the same judgment logic applies now
 String FRAMEWORK_ACTIVITY_ALL_STOPPED = "com.alipay.mobile.framework.ACTIVITY_ALL_STOPP
ED";
 String FRAMEWORK_WINDOW_FOCUS_CHANGED = "com.alipay.mobile.framework.WINDOW_FOCUS_CHANG
ED";
 String FRAMEWORK_ACTIVITY_DESTROY = "com.alipay.mobile.framework.ACTIVITY_DESTROY";
 String FRAMEWORK_ACTIVITY_START = "com.alipay.mobile.framework.ACTIVITY_START";
 String FRAMEWORK_ACTIVITY_DATA = "com.alipay.mobile.framework.ACTIVITY_DATA";
 String FRAMEWORK_APP_DATA = "com.alipay.mobile.framework.APP_DATA";
 String FRAMEWORK_IS_TINY_APP = "com.alipay.mobile.framework.IS_TINY_APP";
 String FRAMEWORK_IS_RN_APP = "com.alipay.mobile.framework.IS_RN_APP";
 //Broadcast indicating that a user returns to the front-end
 String FRAMEWORK_BROUGHT_TO_FOREGROUND = "com.alipay.mobile.framework.BROUGHT_TO_FOREGR
OUND";
}

Customize broadcast events
1. Define the location of metainfo.xml , as shown in the following figure:

2. Write the following configurations into the metainfo.xml f ile:

 <?xml version="1.0" encoding="UTF-8"?>
 <metainfo>
 <broadcastReceiver>
 <className>com.mpaas.demo.broadcastreceiver.TestBroadcastReceiver</className>
 <action>com.mpaas.demo.broadcastreceiver.ACTION_TEST</action>
 </broadcastReceiver>
 </metainfo>

Customize Receiver implementation

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 53

public class TestBroadcastReceiver extends BroadcastReceiver {
 private static final String ACTION_TEST = "com.mpaas.demo.broadcastreceiver.ACTION_T
EST";

 @Override
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();
 if (ACTION_TEST.equals(action)) {
 //TODO
 }
 }
}

Send broadcast

LocalBroadcastManager.getInstance(LauncherApplicationAgent.getInstance().getApplication
Context()).sendBroadcast(new Intent("com.mpaas.demo.broadcastreceiver.ACTION_TEST"));

Pipeline component
The mPaaS framework has an obvious startup process. The pipeline mechanism allows the business line
to encapsulate its own run logic into runnable and then place it in the pipeline. The framework starts an
appropriate pipeline at an appropriate stage.

The following defines the pipeline t iming:

 com.alipay.mobile.framework.INITED : The framework is init ialized. The framework can also be
init ialized when the process starts in the background.

 com.alipay.mobile.client.STARTED : The client starts init ializat ion. You have to wait until a page
appears, for example, the welcome page.

 com.alipay.mobile.TASK_SCHEDULE_SERVICE_IDLE_TASK : Lowest priority. This is executed only when
there are no other operations with higher priority

As the Pipeline invocation is triggered by the framework, the user only needs to specify the appropriate
t iming in metaInfo .

Procedure
1. Define the location of metainfo.xml , as shown in the following figure:

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 54

2. Write the following configurations into the metainfo.xml f ile:

 <?xml version="1.0" encoding="UTF-8"?>
 <metainfo>
 <valve>
 <className>com.mpaas.demo.pipeline.TestPipeLine</className>
 <!--pipelineName is used to specify the stage at which execution occurs-->
 <pipelineName>com.alipay.mobile.client.STARTED</pipelineName>
 <threadName>com.mpaas.demo.pipeline.TestPipeLine</threadName>
 <!--weight is used to specify the priority of an operation. The lower the value
is, the higher the execution priority is-->
 <weight>10</weight>
 </valve>
 </metainfo>

3. To implement the pipeline:

 public class TestPipeLine implements Runnable {
 @Override
 public void run() {
 //...
 }
 }

This topic introduces how to use Material Design from aspects of project configuration and resource
usage.

Configure a project

About this task
Due to the special nature of the mPaaS framework, if an AppCompat related library is directly imported
into your project, there will be an compilat ion error indicating that resources cannot be found. To solve
this problem, the mPaaS provides a custom AppCompat library. To use the customized AppCompat
library by the mPaaS, configure the Portal and Bundle projects.

The mPaaS AppCompat library is developed based on the native Android version 23 and includes the
following components:

appcompat

animated-vector-drawable

cardview

design

recyclerview

support-vector-drawable

Compiled based on the native Android version 23, this custom AppCompat library is the same as the
native library. But this solut ion can solve a number of compilat ion issues associated if you use the native
library.

2.3.4. Use Material Design

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 55

Use of resources mainly includes using resources in anot her Bundle , making resources available
f or ext ernal devices , and using cust om resources in AndroidManif est . Due to the special nature
of the mPaaS framework, you need to understand the considerations when different resources are
used. For more information, refer to Use resources.

Procedure
1. Configure a Portal project.

Before invoking the mPaaS AppCompat, perform the following operations to configure a Portal
project:

i. Run the following command to replace the Gradle package plug-in (Alipay Plugin for Gradle)
version with the following version:

classpath 'com.alipay.android:android-gradle-plugin: 3.0.0.9.13'

ii. Remove the AppCompat library that previously depends on from the Gradle script.

iii. Add the following AppCompat dependencies to the Gradle script:

bundle 'com.mpaas.android.res.base:mpaas-baseresjar:1.0.0.180626203034@jar'
manifest 'com.mpaas.android.res.base:mpaas-baseresjar:1.0.0.180626203034:AndroidManifes
t@xml'

iv. After completing the configuration, make the Bundle project invoke the AppCompat component
to synchronize the Portal project.

2. Configure a Bundle project

i. In a Bundle project that uses the AppCompat component, change the Gradle package plug-in
(Alipay Plugin for Gradle) to the following version:

classpath 'com.alipay.android:android-gradle-plugin: 3.0.0.9.13'

ii. Select the sub-component to depend on according to the component you use. The following
shows the sample statement to add recyclerview :

provided 'com.mpaas.android.res.base:mpaas-baseresjar:1.0.0.180626203034:recyclerview@j
ar'

Use resources
Common resources for material design include strings, colors and styles. Scenarios where resources are
used include:

Check whether Package ID is duplicate

Use the resource in another Bundle

Provide resources for external devices

Use custom resources in AndroidManifest

Check whether Package ID is duplicate
If the resource cannot be found while you use it as described in this topic, you need to check to check
whether the Package ID is duplicate. Package ID is defined in build.gradle and the value of this ID is
related to the ID of the result ing resource. Resources cannot be found when Package ID is duplicate.

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 56

You can check whether Package ID is duplicate by using the following two methods:

Method 1: Perform auto detection by running Gradle task

Prerequisites
 The version of android-gradle-plugin is 3.0.0.9.13 or later versions. e.g.

classpath 'com.alipay.android:android-gradle-plugin: 3.0.0.9.13'

Test procedure
1. Execute the following commands under the root directory of a Portal project:

For the Windows operating system: Executes gradlew.bat checkBundleIds .

For other operating systems: Executes gradlew checkBundleIds .

2. Test result:

If the test result indicates No duplicate bundle ids found , Package ID is not duplicate.

If the test result indicates There are duplicate bundle ids , Package ID is duplicate. You can
further determine which Package IDs are duplicate based on the test result .

Method 2: Perform test mannually
Manual test applies in any case. The test procedure is as follows:

1. In the following location of a Portal project, open the bundles.csv plain text f ile.

2. Sort the PackageId column, and check whether Package ID is duplicate. Make sure there are no
duplicate Package IDs before recompilat ion.

Use the resource in another Bundle

Typical scenario
This is the case with using the resource in mpaas-baseresjar . When using the resource in another
Bundle, you must append the namespace of the resource. The namespace is the applicationID of the
Bundle in which the resource resides. An error may occur when you build a release package, as shown in
the following figure:

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 57

Solution
In build.gradle , configure lintOptions , as shown in the following figure:

You must prefix resources with a namespace whenever references are made to resources in this Bundle
(in layouts, in custom styles). Otherwise, a compilat ion error indicating that resources cannot be found
will occur.

Sample code: references in layouts
Taking the reference to a resource in another Bundle in layouts as an example, check the following
sample code:

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout xmlns:android="http://schemas.android.com/
apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res/com.mpaas.android.res.base"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true">

 <android.support.design.widget.AppBarLayout
 android:id="@+id/app_bar_scrolling"
 android:layout_width="match_parent"

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 58

 android:layout_width="match_parent"
 android:layout_height="@dimen/app_bar_height_image_view"
 android:fitsSystemWindows="true"
 android:theme="@style/AppTheme.AppBarOverlay"
 android:background="@color/blue">

 <android.support.design.widget.CollapsingToolbarLayout
 android:id="@+id/collapsing_toolbar_layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 app:contentScrim="?com.mpaas.android.res.base:attr/colorPrimary"
 app:layout_scrollFlags="scroll|exitUntilCollapsed">

 <ImageView
 android:id="@+id/image_scrolling_top"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 android:scaleType="fitXY"
 android:src="@drawable/material_design_3"
 app:layout_collapseMode="parallax" />

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?com.mpaas.android.res.base:attr/actionBarSize"
 app:layout_collapseMode="pin"
 app:popupTheme="@style/AppTheme.PopupOverlay" />

 </android.support.design.widget.CollapsingToolbarLayout>
 </android.support.design.widget.AppBarLayout>

 <android.support.design.widget.FloatingActionButton
 android:id="@+id/fab_scrolling"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="@dimen/big_activity_fab_margin"
 android:src="@drawable/ic_share_white_24dp"
 app:layout_anchor="@id/app_bar_scrolling"
 app:layout_anchorGravity="bottom|end" />

 <include layout="@layout/content_scrolling" />

</android.support.design.widget.CoordinatorLayout>

Sample code: references in custom styles
When you use the resource in another Bundle in the custom style, the code sample is shown as follows:

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 59

<style name="AppTheme" parent="@com.mpaas.android.res.base:style/Theme.AppCompat.NoActionBa
r">
 <!-- Customize your theme here. -->
 <item name="com.mpaas.android.res.base:colorPrimary">@color/colorPrimary</item>
 <item name="com.mpaas.android.res.base:colorPrimaryDark">@color/colorPrimaryDark</i
tem>
 <item name="com.mpaas.android.res.base:colorAccent">@color/colorAccent</item>
 </style>

Provide resources for external devices
1. Configure a Portal project. Import the information about the resource Bundle into Portal :

// Import the resource Bundle
bundle "com.mpaas.demo.materialdesign:materialdesign-build:1.0-SNAPSHOT:raw@jar"
manifest "com.mpaas.demo.materialdesign:materialdesign-build:1.0-SNAPSHOT:AndroidManifest
@xml"
// To find resources when compiling, you need the JAR package of this Bundle.
provided 'com.mpaas.demo.materialdesign:materialdesign-build:1.0-SNAPSHOT:raw@jar'

2. Define resources. Complete the following steps to define a resource so that the resource can be
referenced by another Bundle or Portal:

i. Define the resource ID that need to be supplied to an external device in public.xml for the
purpose of f ixing the resource ID. This capability is provided by Android. The resource ID value can
be copied from R.java . The code sample is shown as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <public name="AppTheme" id="0x1f030000" type="style" />
 <public name="AppTheme.AppBarOverlay" id="0x1f030001" type="style" />
 <public name="AppTheme.NoActionBar" id="0x1f030002" type="style" />
 <public name="AppTheme.NoActionBar.StatusBar" id="0x1f030003" type="style" />
 <public name="AppTheme.PopupOverlay" id="0x1f030004" type="style" />
 <public name="DialogFullscreen" id="0x1f030005" type="style" />
 <public name="DialogFullscreenWithTitle" id="0x1f030006" type="style" />

 <public name="title_activity_login" id="0x1f0c0081" type="string"/>
 <public name="title_activity_recycler_view" id="0x1f0c0082" type="string"/>
 <public name="title_activity_share_view" id="0x1f0c0085" type="string"/>
 <public name="title_activity_scrolling" id="0x1f0c0083" type="string"/>
 <public name="title_activity_settings" id="0x1f0c0084" type="string"/>
 <public name="title_activity_about" id="0x1f0c007f" type="string"/>
 <public name="activity_donate" id="0x1f0c000e" type="string" />
 <public name="activity_my_apps" id="0x1f0c000f" type="string"/>

</resources>

ii. When a resource is being used by an external device, the resource must be prefixed with a package
name. For more information, see Use the resource in another Bundle.

Use custom resources in AndroidManifest

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 60

If you define a theme in AndroidManifest of your Bundle project, the code sample is shown as
follows:

<activity
 android:name=".activity.MainActivity"
 android:launchMode="singleTop"
 android:theme="@com.mpaas.demo.materialdesign:style/AppTheme.NoActionBar"
 android:windowSoftInputMode="stateHidden|stateUnchanged">
</activity>

You need to:

Add the res_slinks f ile in the main path of the Portal project, and add Bundle names to the
 res_slinks f ile line by line.

At the same t ime, remove the manifest dependency of this Bundle from build.gradle . As
shown in the following code:

manifest 'com.mpaas.demo.materialdesign:materialdesign-build:1.0.0:AndroidManifest@xml'

This topic describes how to use third-party resources other than com.android.support in the
scenario of using the component-based access mode, which is also known as Portal&Bundle access
mode. You can download and use the sample project provided in this topic, and then refer to the
following usage method.

The sample project includes three projects: SharedResNew, ZHDemo, and ZHDemoLauncher.

SharedResNew: Bundles that need to be shared, including third-party AAR

ZHDemoLauncher: Bundle that uses third-party resources

ZHDemo: Portal project

The process of using third-party resources is mainly divided into the following four steps:

1. Import third-party resources

2. Use public.xml to export resources

3. Verify whether the resource is successfully exported

4. Use the third-party resource

Import third-party resources
In SharedResNew, the package com.flyco.tablayout:FlycoTabLayout_Lib:2.1.2@aar needs to be
used externally, so you need to import the package with the compile method in the api project
of SharedResNew. Note that you cannot use the implementation method.

compile 'com.flyco.tablayout:FlycoTabLayout_Lib:2.1.2@aar'

Use public.xml to export resources

2.3.5. Use non Android support 3rd resource
library

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 61

Export the propert ies you need to use in the app project. The propert ies will be output through the
public.xml file, and the file path is f ixed as app/src/main/res/values/public.xml .

For example, if you want to export the property tl_bar_color , the content of public.xml is as
follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <public name="tl_bar_color" id="0x60010027" type="attr" />
</resources>

Where:

 name : It must be consistent with the property name required.

 id : After the first debug compilat ion (there is no public.xml f ile at this t ime), you can find the
value of id from app/build/generated/source/r/debug/\[com/zh/demo\]\(package name
folder\)/R.java :

 public static final int tl_bar_color=0x60010027;

 type : Refers to the class to which the property belongs. Take tl_bar_color as an example, the
corresponding class is as follows, and its type value is attr .

 public static final class attr {

 }

Verify whether the resource is successfully exported
Before you verify whether the resource is successfully exported, you need to make sure that you have
successfully built SharedResNew. If the build has been completed, complete the following operations
for verificat ion.

Step 1: Find the aapt path.
You can usually find the aapt in the Android SDK.

Assuming your computer user name is “username”, the paths of aapt under different operating
systems are as follows:

Mac operating system

If your Android SDK is in the directory /Users/username/Code/android-sdk , then the aapt path is
 /Users/username/Code/android-sdk/build-tools/28.0.3/aapt .

For Windows operating systems

If your Android SDK is in C:\Users\Username\AppData\Local\Android\Sdk , then the aapt path is
 C:\Users\Username\AppData\Local\Android\Sdk\build-tools\28.0.3\aapt.exe .

Not e

The build tool must be 26.0.0 or later versions.

Step 2: Find the local bundle package.

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 62

When you choose SharedResNew> app > build.gradle, you will see the following content:

version = "1.0.0-SNAPSHOT"
group = "com.zh.demo.shared.res"

Among them, group is the first f ield in maven gav; version refers to the version number.

When you open Android Studio, you can see that the name of the app project is app [sharedresnew-
build] , then the local gav of the Bundle is com.zh.demo.shared.res:sharedresnew- build:1.0.0-
SNAPSHOT .

The following URL is the directory of the corresponding local Maven library:

Mac operating system

 ~/.m2/repositories/com/zh/demo/shared/res/sharedresnew-build/1.0.0-SNAPSHOT/

For Windows operating systems

 C:\Users\username\.m2\respositories\com\zh\demo\shared\res\sharedresnew-build\1.0.0-
SNAPSHOT

This directory contains the following files:

ivy-1.0.0-SNAPSHOT.xml
ivy-1.0.0-SNAPSHOT.xml.sha1
sharedresnew-build-1.0.0-SNAPSHOT-AndroidManifest.xml
sharedresnew-build-1.0.0-SNAPSHOT-AndroidManifest.xml.sha1
sharedresnew-build-1.0.0-SNAPSHOT-api.jar
sharedresnew-build-1.0.0-SNAPSHOT-api.jar.sha1
sharedresnew-build-1.0.0-SNAPSHOT-raw.jar
sharedresnew-build-1.0.0-SNAPSHOT-raw.jar.sha1

Step 3: Run a command for verification
Based on the aapt URL that is obtained in Step 1, run the following command for verificat ion:

Mac operating system

 /Users/username/Code/android-sdk/build-tools/28.0.3/aapt d --values resources ./sharedre
snew-build-1.0.0-SNAPSHOT-api.jar > res.txt

For Windows operating systems

 C:\Users\username\AppData\Local\Android\Sdk\build-tools\28.0.3\aapt.exe d --values resou
rces ./sharedresnew-build-1.0.0-SNAPSHOT-api.jar

After you run the command, a res.txt f ile is generated. Use software, such as Notepad, to open
the file. The following code snippet shows part of the content of this f ile:

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 63

Package Groups (1)
Package Group 0 id=0x60 packageCount=1 name=com.zh.demo
 DynamicRefTable entryCount=22:
 0x3a -> com.alipay.android.liteprocess
 0x7b -> com.alipay.android.multimediaext
 0x6e -> com.alipay.android.phone.falcon.falconlooks
 0x45 -> com.alipay.android.phone.falcon.img

Search for "t l_bar_color" in the file to find the following content: If a (PUBLIC) mark appears at the
end of the first line, the third-party resource is exported. Otherwise, the export failed.

resource 0x60010027 com.zh.demo:attr/tl_bar_color: <bag> (PUBLIC)
 Parent=0x00000000(Resolved=0x60000000), Count=1
 #0 (Key=0x01000000): (color) #00000010

Use the third-party resource
Open the file where you want to use the third-party resource, for example, a layout in the
ZHDemoLauncher project. Then, add a line for an XML namespace at the top of the file. The following
code sample shows an example where the third-party resource is used in a layout whose URL is
 ZHDemoLauncher/app/src/main/res/layout/main.xml :

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:abc="http://schemas.android.com/apk/res/com.zh.demo"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <!-- xxxx -->
</LinearLayout>

Not e

In the xmlns:abc="http://schemas.android.com/apk/res/com.zh.demo" line,

 abc represents a custom name. You can set the name as you want.

 http://schemas.android.com/apk/res/ is a fixed directory and cannot be changed.

 com.zh.demo must be the same as the value of package that you set in
 AndroidManifest.xml of the SharedResNew project. You can find the value of the

package in the TXT file that is exported from aapt. For example, in resource 0x60010027
com.zh.demo:attr/tl_bar_color , the string com.zh.demo before the colon is the value
you need.

Next, add another line where you want to use the third-party resource, as shown in the following code
snippet:

<com.flyco.tablayout.SegmentTabLayout

 abc:tl_bar_color="#f00" />

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 64

Therefore, to use the third-party resource, you must add two lines, as shown in the following code
snippet:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:abc="http://schemas.android.com/apk/res/com.zh.demo"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

 android:orientation="vertical"
 tools:ignore="ResAuto">
 <com.flyco.tablayout.SegmentTabLayout
 android:id="@+id/myView"
 android:layout_width="wrap_content"
 android:layout_height="32dp"
 android:layout_gravity="center_horizontal"
 android:layout_marginTop="10dp"
 abc:tl_bar_color="#f00"
 tools:visibility="visible" />
</LinearLayout>

Now, you have completed the compilat ion.

Sample code
Click Download Sample Code.

mPaaS Android framework provides a complete set of loading logics. You can implement mult iple-
business development on the basis of this framework. This guide introduces the framework startup
process and describes how to add your codes to the framework to enable startup.

Startup process

Application
When tradit ional Android apk starts running, the Application configured in android:name of
 application node in the AndroidManifest f ile is f irst ly loaded.

Since mPaaS Android framework has overridden the loading process, what configured in
 android:name should be the com.alipay.mobile.quinox.LauncherApplication class of mPaaS

Android framework.

2.3.6. Load and customize the framework

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 65

https://gw.alipayobjects.com/os/bmw-prod/9fc780b0-2a85-49de-ac30-01f5949310bf.zip

<application
 android:name="com.alipay.mobile.quinox.LauncherApplication"
 android:allowBackup="true"
 android:debuggable="true"
 android:hardwareAccelerated="false"
 android:icon="@drawable/appicon"
 android:label="@string/name"
 android:theme="@style/AppThemeNew" >
</application>

Startup page
Since it may be t ime-consuming for the framework to load the bundle, a startup page is required to
redirect you to the application homepage when framework startup is completed. Therefore, the
 com.alipay.mobile.quinox.LauncherActivity application startup page that is provided by the

mPaaS framework is configured in the AndroidManifest f ile.

The configuration is as follows:

<activity
android:name="com.alipay.mobile.quinox.LauncherActivity"
android:configChanges="orientation | keyboardHidden | navigation"
android:screenOrientation="portrait"
android:windowSoftInputMode="stateAlwaysHidden">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

To make developers have a better understanding of the startup process and avoid that the startup
process is modified, deleted, or disturbed by mistake, the startup process of mPaaS is moderately
encapsulated. So, the above LauncherApplication and LauncherActivity are invisible to the
developers.

To enable that the client App implements its own init ializat ion logic during the startup process,
 LauncherApplicationAgent and LauncherActivityAgent agents are designed in mPaaS. You can

implement the App’s own init ializat ion logic in the corresponding callback by inherit ing the two classes.
If you have defined these two classin bundle project, anti-obfuscation sett ings need to be done for
these two classes when using ProGuard for code obfuscation, for more information, see Obfuscate
Android codes.

Startup flow chart
The procedure of loading mPaaS Android framework is as follows:

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 66

1. When the framework is started, the main thread creates a startup page LauncherActivity , and
then calls back the preInit method of LauncherActivityAgent .

2. The framework enables mult idex. In the process, the framework calls back the preInit method of
 LauncherApplicationAgent , reads the descript ion file of each bundle in the current .apk f ile,

and creates the corresponding class loaders for all bundles.

3. After init ializat ion, the framework calls the postInit methods of LauncherActivityAgent and
 LauncherApplicationAgent .

Customization
Actually, the framework has created two classes (MockLauncherApplicationAgent and
 MockLauncherActivityAgent) in Launcher project, and the two classes respectively inherit
 LauncherApplicationAgent and LauncherActivityAgent callback interfaces. Both interfaces are

respectively called in LauncherAppliction and LauncherActivity during framework initalizat ion.

Configure the AndroidManifest.xml f ile of the Portal as follows. You can also implement these two
delegate classes in the Bundle, and modify the value of the corresponding meta-data in the
above configuration.

 <application
 android:name="com.alipay.mobile.quinox.LauncherApplication" >

 <!-- Callback configuration of Application -->
 <meta-data
 android:name="agent.application"
 android:value="com.mpaas.demo.launcher.framework.MockLauncherApplicationAgent"/
>

 <!-- Callback configuration of Activity -->
 <meta-data
 android:name="agent.activity"
 android:value="com.mpaas.demo.launcher.framework.MockLauncherActivityAgent"/>
 <!-- Layout configuration of the startup page -->
 <meta-data
 android:name="agent.activity.layout"
 android:value="layout_splash"/>

 </application>

Delegate classes
What configured in agent.application is the startup process delegate ApplicationAgent , shown
as follows:

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 67

 public class MockLauncherApplicationAgent extends LauncherApplicationAgent {
 @Override
 protected void preInit() {
 super.preInit();
 //Before framework initialization
 }

 @Override
 protected void postInit() {
 super.postInit();
 //After framework initialization
 }
 }

The client App can perform application-level init ializat ion in the implementation class of
 LauncherApplicationAgent . preInit() callback occurs before the framework init ializat ion, so do

not call the relevant interfaces of the framework (MicroApplicationContext) here. However,
 postInit() callback occurs after the framework init ializat ion, you can use it .

What configured in agent.activity is the delegate of startup Activity, shown as follows:

public class MockLauncherActivityAgent extends LauncherActivityAgent {

 @Override
 public void preInit(Activity activity) {
 super.preInit(activity);
 //Before Launcher Activity startup
 }

 @Override
 public void postInit(final Activity activity) {
 super.postInit(activity);
 //After Launcher Activity startup
 //The logic of jumping to the homepage
 startActivity(activity,YOUR_ACTIVITY);
 }
}

Similar to LauncherApplicationAgent , the two callback of LauncherActivityAgent respectively
happens before and after the framework initailizat ion, and the methods used are also similar.

Modify startup page layout
The layout file of the startup page is also configured in the AndroidManifest.xml f ile of the Portal,
shown as follows.

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 68

<application
android:name="com.alipay.mobile.quinox.LauncherApplication" >
<!-- Layout configuration of the startup page -->
<meta-data
android:name="agent.activity.layout"
android:value="layout_splash"/>

</application>

Modify the value to the name of the custom layout file.

Not e

You need to put the layout file and the relevant resources that are referenced in the Portal project.

Gradle provides the function of configuring dependency repository and release repository.

Configure a dependency repository
The following shows an example of a common dependency repository of mPaaS:

allprojects {
 repositories {
 mavenLocal()
 flatDir {
 dirs 'libs'
 }
 maven {
 url "https://mvn.cloud.alipay.com/nexus/content/repositories/open/"
 }
 maven{url 'http://maven.aliyun.com/nexus/content/groups/public/'}
 maven{url 'http://maven.aliyun.com/nexus/content/repositories/google'}
 }
}

mavenLocal: Maven local repository. T he pat h of t he local reposit ory also supports
modificat ion.

f lat Dir : Dependency under the libs directory of the project.

Maven: The example contains the Maven repositories of Ant Financial (mvn.cloud.alipay.com)
and Alibaba Cloud (maven.aliyun.com).

You can add dependency reposit ories under repositories .

Configure a release repository
Gradle provides the function of configuring release repositories. This topic introduces common
examples of release repositories to help you modify the path of the local Maven repository (~/.m2
by default) and add a custom release repository.

2.3.7. Manage gradle dependencies

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 69

Release repository example
Generally, the build.gradle f ile contains the following configuration:

uploadArchives {
 repositories {
 mavenLocal()
 }
}

This means that the release repository is Local Maven reposit ory . That is, the .jar package
created by the project is automatically released to the local Maven repository.

Modify the local Maven repository path
Local Maven repository (mavenLocal). The default path is ~/.m2 . You can modify the path.

Customize a release repository
You can add a custom release repository as required. The following shows an example.

uploadArchives {
 mavenDeployer {
 mavenLocal()
 repository(url: "your_repository_url") {
 authentication(userName: '*****', password: '*****')
 }
 snapshotRepository(url: "your_repository_url") {
 authentication(userName: '*****', password: '*****')
 }
 }
}

Apps developed on mPaaS Android clients are compiled using Java codes which may easily be
decompiled. Therefore, we need to use Android ProGuard obfuscation files to protect Java source
codes.

ProGuard is a tool used to compress, optimize, and obfuscate Java bytecode files.

Compression refers to detect ion and removal of unused classes, f ields, methods, and attributes.

Opt imizat ion refers to analysis and optimization of bytecode.

Obf uscat ion refers to the use of meaningless short variables to rename classes, variables, and
methods.

The use of ProGuard makes code simpler, more efficient, and more difficult to be reversely engineered
or hacked.

Prerequisites
You have configured the mPaaS project.

About this task

2.3.8. Obfuscate Android codes

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 70

For the mPaaS project using the component-based scheme, each Bundle will be compiled to generate
an obfuscated dex f ile. Therefore, obfuscation files are configured on the Bundle project basis. A
Portal project generally has no code and thus obfuscation will not be enabled.

Sample code
Gradle conf igurat ion

android {
 compileSdkVersion 23
 buildToolsVersion "19.1.0"

 defaultConfig {
 applicationId "com.youedata.xionganmaster.launcher"
 minSdkVersion 15
 targetSdkVersion 23
 versionCode 1
 versionName "1.0"
 }
 buildTypes {
 release {
 // Obfuscation switch, On or Off
 minifyEnabled true
 // Specify the obfuscation rule file.
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.p
ro'
 }
 }
 lintOptions {
 checkReleaseBuilds false
 // Or, if you prefer, you can continue to check for errors in release builds,
 // but continue the build even when errors are found:
 abortOnError false
 }
}

Example of an obf uscat ion f ile

The following obfuscation is a basic example (To add an addit ional third party library, you need to
add another obfuscation. Usually the configuration files can be found on the third party library’s
website) :

 # Add project specific ProGuard rules here.
 # By default, the flags in this file are appended to flags specified
 # in ${sdk.dir}/tools/proguard/proguard-android.txt
 # You can edit the include path and order by changing the proguardFiles
 # directive in build.gradle.

 # For more details, see [Shrink your code and resources](http://developer.android.com/g
uide/developing/tools/proguard.html).

 # Add any project specific keep options here:

 # If your project uses WebView with JS, uncomment the following
 # and specify the fully qualified class name to the JavaScript interface
 # class:

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 71

 # class:
 # -keepclassmembers class fqcn.of.javascript.interface.for.webview {
 # public *;
 # }
 -optimizationpasses 5
 -dontusemixedcaseclassnames
 -dontskipnonpubliclibraryclasses
 -dontpreverify
 -verbose
 -ignorewarnings
 -optimizations !code/simplification/arithmetic,!field/*,!class/merging/*

 -keep public class * extends android.app.Activity
 -keep public class * extends android.app.Application
 -keep public class * extends android.app.Service
 -keep public class * extends android.content.BroadcastReceiver
 -keep public class * extends android.content.ContentProvider
 -keep public class com.android.vending.licensing.ILicensingService
 -keep public class com.alipay.mobile.phonecashier.*
 -keepnames public class *
 -keepattributes SourceFile,LineNumberTable
 -keepattributes *Annotation*

 #-keep public class * extends com.alipay.mobile.framework.LauncherApplicationAgent {
 # *;
 #}

 #-keep public class * extends com.alipay.mobile.framework.LauncherActivityAgent {
 # *;
 #}

 -keepclasseswithmembernames class * {
 native <methods>;
 }

 -keepclasseswithmembernames class * {
 public <init>(android.content.Context, android.util.AttributeSet);
 }

 -keepclasseswithmembernames class * {
 public <init>(android.content.Context, android.util.AttributeSet, int);
 }

 -keepclassmembers enum * {
 public static **[] values();
 public static ** valueOf(java.lang.String);
 }

 -keep class * extends java.lang.annotation.Annotation { *; }
 -keep interface * extends java.lang.annotation.Annotation { *; }

 -keep class * implements android.os.Parcelable {
 public static final android.os.Parcelable$Creator *;
 }

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 72

 -keep public class * extends android.view.View{
 !private <fields>;
 !private <methods>;
 }

 -keep class android.util.**{
 public <fields>;
 public <methods>;
 }

 -keep public class com.squareup.javapoet.**{
 !private <fields>;
 !private <methods>;
 }
 -keep public class javax.annotation.**{
 !private <fields>;
 !private <methods>;
 }
 -keep public class javax.inject.**{
 !private <fields>;
 !private <methods>;
 }
 -keep interface **{
 !private <fields>;
 !private <methods>;
 }
 # for dagger
 -keep class * extends dagger.internal.Binding
 -keep class * extends dagger.internal.ModuleAdapter

 -keep class **$$ModuleAdapter
 -keep class **$$InjectAdapter
 -keep class **$$StaticInjection

 -keep class dagger.** { *; }

 -keep class javax.inject.**{ *; }
 -keep class * extends dagger.internal.Binding
 -keep class * extends dagger.internal.ModuleAdapter
 -keep class * extends dagger.internal.StaticInjection

 # for butterknife
 -keep class butterknife.* { *; }
 -keep class butterknife.** { *; }
 -dontwarn butterknife.internal.**
 -keep class **$$ViewBinder { *; }

 -keepclasseswithmembernames class * {
 @butterknife.* <fields>;
 }

 -keepclasseswithmembernames class * {
 @butterknife.* <methods>;
 }

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 73

 }

Not e

If the framework classes ‘LauncherApplicationAgent’ and ‘LauncherActivityAgent’ are defined in
your Bundle project, the anti-obfuscation sett ings must be configured.

Avoid obf uscat ing general-purpose component s

If General-purpose components are registered to metainfo.xml , the compiler will check the
presence of these components. Please avoid obfuscating these components, or the compilat ion will
fail. For example, when the following components are registered:

 <metainfo>
 <service>
 <className>com.mpaas.cq.bundleb.MyServiceImpl</className>
 <interfaceName>com.mpaas.cq.bundleb.api.MyService</interfaceName>
 <isLazy>true</isLazy>
 </service>
</metainfo>

In the obfuscation configuration, you need to add:

 -keep class com.mpaas.cq.bundleb.MyServiceImpl
 -keep class com.mpaas.cq.bundleb.api.MyService

We recommend you not to access Mult iDex in Portal&Bundle access mode, unless you are using a single
portal project where the multiDexEnabled true is required.

If your bundle is too big, you can only continue by the method of split t ing the bundle. Do not
act ivat e t he mult idex support in t he bundle .

To cope with the possibility of continuous crashes upon startup, mPaaS has established a data cleanup
mechanism. When the application is stuck or important threads (such as the main thread, mult idex.init
thread, ApplicationAgent.init thread, etc.) crash before the mPaaS framework is started, the framework
may trigger data cleanup. This data cleanup mechanism is customizable, and can be configured to
clean up the SharedPreference and database in different situations, and even wipe all the data in an
application under very special circumstances to ensure the normal operation of the application. This
mechanism is currently available for 10.1.32, 10.1.60, and 10.1.68 series baselines.

To protect important data, mPaaS provides the cleanup whitelist function in the data cleanup
mechanism. You can protect a target file from being cleaned up by adding it to the cleanup whitelist .

Not e

The data cleanup mechanism is available only in Component-based access mode.

2.3.9. Attention for using MultiDex in mPaaS
Portal&Bundle projects

2.3.10. Data cleansing whitelist

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 74

https://tech.antfin.com/docs/2/85908

Cleanup whitelist scheme 1.0
The cleanup whitelist scheme 1.0 invokes an API in MPFramework to dynamically set the whitelist when
appropriate.

Supported baselines
The cleanup whitelist scheme 1.0 supports 10.1.32, 10.1.60, and 10.1.68 series baselines.

If the cleanup mechanism has been triggered due to crash before the whitelist is set, the cleanup
whitelist scheme 1.0 will not come into effect. If you use the 10.1.32 series baseline, we recommend
that you upgrade the baseline to 10.1.60 or 10.1.68 to use the upgraded cleanup whitelist scheme 2.0.
For more information, see Cleanup whitelist scheme 2.0.

Procedure
Invoke the API to set the cleanup whitelist where appropriate. The API is as follows:

/**
 * Sets the SharedPreference whitelist. If this has been set before, the previous data
will be cleared.
 */
 public static void setSPWhiteList(List<String> whiteList);

 /**
 * Adds another SharedPreference whitelist.
 *
 * @param whiteList
 */
 public static void addSPWhiteList(List<String> whiteList);

 /**
 * Gets the set database whitelist.
 *
 * @return
 */
 public static List<String> getDBWhiteList();

 /**
 * Sets the database whitelist. If this has been set before, the previous data will be
cleared.
 */
 public static void setDBWhiteList(List<String> whiteList) ;

 /**
 * Adds another database whitelist.
 *
 * @param whiteList
 */
 public static void addDBWhiteList(List<String> whiteList);

Cleanup whitelist scheme 2.0

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 75

The cleanup whitelist scheme 2.0 works in such a way that when the cleanup mechanism is triggered,
the framework loads the developer-configured whitelist by reflect ion to set classes, and first reads the
defined cleanup policy.

Supported baselines
The cleanup whitelist scheme 2.0 supports 10.1.60 and 10.1.68 series baselines. Where:

The 10.1.60 baseline needs to be 10.1.60.10 or later versions.

The 10.1.68 baseline needs to be 10.1.68.4 or later versions.

Procedure
1. Inherit com.mpaas.framework.adapter.api.ClearDataStrategy to implement related APIs.

 public abstract class ClearDataStrategy {
 public ClearDataStrategy() {
 }

 /**
 * Whether to enable the cleanup mechanism.
 * If false is returned, no file will be cleared up.
 * If it returns true, the cleanup strategy will be implemented. You can use getSPWh
iteList and getDBWhiteList to return a list of files that need to be guaranteed.
 *
 * @return
 */
 public abstract boolean enableClearDataStrategy();

 /**
 * If the cleanup mechanism is enabled, the SharedPreference file that needs to be p
rotected is returned through this API.
 *
 * @return
 */
 public List<String> getSPWhiteList() {
 return null;
 }

 /**
 * If the cleanup mechanism is enabled, the db file that needs to be protected is re
turned through this API.
 *
 * @return
 */
 public List<String> getDBWhiteList() {
 return null;
 }
 }

2. Configure the strategy information in the AndroidManifest of Portal.

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 76

Not e

Since ClearDataStrategy needs to be called reflect ively, ClearDataStrategy cannot be
confused.

 <meta-data
 android:name="ClearDataStrategy"
 android:value="com.mpaas.demo.launcher.ClearDataStrategy" />

There may be some redundant permissions in the default portal project due to historical reasons such
as Android system upgrade and mPaaS business development, as shown in the following list . These
permissions are no longer needed in the current mPaaS version. You can delete the permissions or keep
the permissions as needed.

High-risk cleanable permissions
The following five permissions are high-risk permissions and can be cleared.

<uses-permission android:name="android.permission.RECEIVE_SMS" />
<uses-permission android:name="android.permission.READ_SMS" />
<uses-permission android:name="android.permission.READ_LOGS" />
<uses-permission android:name="android.permission.BATTERY_STATS" />
<uses-permission android:name="android.permission.MANAGE_FINGERPRINT" />

Unnecessary permissions
The following permissions are not high-risk privacy permissions, but they are permissions that mPaaS
products do not need to use externally. If you have special needs, you can keep related permissions,
otherwise you can remove them.

2.3.11. Remove privacy permissions

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 77

<uses-permission android:name="com.alipay.permission.ALIPAY_UPDATE_CREDENTIALS" />
<uses-permission android:name="com.yunos.permission.TYID_SERVICE" />
<uses-permission android:name="com.taobao.permission.USE_CREDENTIALS" />
<uses-permission android:name="com.htc.launcher.permission.READ_SETTINGS" />
<uses-permission android:name="com.majeur.launcher.permission.UPDATE_BADGE" />
<uses-permission android:name="com.aliyun.permission.TYID_SERVICE" />
<uses-permission android:name="com.htc.launcher.permission.UPDATE_SHORTCUT" />
<uses-permission android:name="com.anddoes.launcher.permission.UPDATE_COUNT" />
<uses-permission android:name="com.yunos.permission.STORAGE_SERVICE" />
<uses-permission android:name="com.aliyun.permission.STORAGE_SERVICE" />
<uses-permission android:name="com.alipay.permission.ALIPAY_USE_CREDENTIALS" />
<uses-permission android:name="com.sonyericsson.home.permission.BROADCAST_BADGE" />
<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW" />
<uses-permission android:name="nxp.permission.ACCESS_WALLET_SERVICE" />
<uses-permission android:name="com.samsung.android.authservice.permission.READ_CONTENT_PROV
IDER" />
<uses-permission android:name="com.taobao.permission.UPDATE_CREDENTIALS" />
<uses-permission android:name="com.yunos.permission.TYID_MGR_SERVICE" />
<uses-permission android:name="com.aliyun.permission.TYID_MGR_SERVICE" />

<uses-permission android:name="com.android.launcher.permission.UNINSTALL_SHORTCUT" />
<uses-permission android:name="com.android.launcher.permission.INSTALL_SHORTCUT" />

<uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS" />
<uses-permission android:name="android.permission.USE_CREDENTIALS" />
<uses-permission android:name="android.permission.MANAGE_ACCOUNTS" />
<uses-permission android:name="android.permission.GET_ACCOUNTS" />
<uses-permission android:name="android.permission.WRITE_SETTINGS" />
<uses-permission android:name="android.permission.READ_PROFILE" />
<uses-permission android:name="android.permission.USE_FINGERPRINT" />

The regulatory authority requires that the app cannot call related sensit ive APIs before the user clicks
the Agree button in the privacy agreement dialog box. In response to this regulatory requirement, the
baselines of mPaaS Android 10.1.32.17 or later versions and 10.1.60.5 or later versions are supported.
Refer to this topic to modify the project according to your actual situation.

Procedure

Import ant

The Activity that pops up the privacy dialog box cannot inherit the BaseActivity of mPaaS, because
BaseActivity will collect embedded data, which will cause the App to collect private data before
agreeing to the privacy policy.

1. Create a new callback class of privacy permission dialog box. Create a new class and implement the
 PrivacyListener API operation. For the implementation of the class, see the following code:

2.3.12. Use privacy permission pop-ups
(Portal&Bundle)

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 78

Not e

If you are using a 10.1.68.42 and above baseline and need to clear the privacy state, please
implement the PrivacyListener2 interface and implement the shouldClear funct ion.

public class MyPrivacyListener implements PrivacyListener {
 // Make a privacy permission dialog box in this method
 @Override
 public void showPrivacy(final Activity activity, final PrivacyResultCallback privacyResu
ltCallback) {
 if(null==privacyResultCallback){
 return;
 }
 if(null!=activity){
 new AlertDialog.Builder(activity)
 .setTitle("Privacy permission dialog box")
 .setMessage("Main content")
 .setPositiveButton("Agree to continue to use", new DialogInterface.OnCli
ckListener() {
 @Override
 public void onClick(DialogInterface dialogInterface, int i) {
 // After you click OK, cancel the dialog box
 dialogInterface.cancel();
 // Set the dialog box result to true
 privacyResultCallback.onResult(true);
 }
 })
 .setNegativeButton("Disagree and exit", new DialogInterface.OnClickListe
ner() {
 @Override
 public void onClick(DialogInterface dialogInterface, int i) {
 // After you click Disagree, cancel the dialog box
 dialogInterface.cancel();
 // Set the dialog box result to false
 privacyResultCallback.onResult(false);
 // End the current activity, the framework will kill the process
 if(null!=activity){
 activity.finish();
 }
 }
 })
 .setCancelable(false)
 .create()
 .show();
 }else{
 // If the activity is empty, the callback result is set to false
 privacyResultCallback.onResult(false);
 }
 }
}

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 79

During the callback, a dialog box must be used to trigger windowFocusChange . The framework will
perform subsequent operations after triggering. Because the callback class will be reflect ively
init ialized by the system framework and scheduled very early, do not add a constructor with a
method name. In addit ion, do not add specific logic to the constructor. If you need to use resources
in the dialog box, you need to use different methods under different baselines.

Under the 32 baseline, you need to use the following method:

Resources resource = QuinoxAgent.getInstance().getResourcesByBundle("bundlename of the
Bundle where the resource is located");

Not e

The bundlename can be checked in /build/intermediates/bundle/META-INF/BUNDLE.MF in
the main module of the Bundle project.

Under the 60 baseline, you need to create the res_slinks f ile under the main module of the
Portal project, and write the group and artifact of the Bundle where your resources are
located in the res_slinks f ile according to the rule. The rule is group-artifact.split("-")
[0] . When the content is too long, you need to check whether the content is correct if you want
to add a new line.For example:

group = com.mpaas.demo.materialdesign`
`artifact = materialdesign-build`

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 80

The final configuration written into the res_slinks file is com.mpaas.demo.materialdesign-
materialdesign .

After completing the preceding content, you can directly use
 LayoutInflator.inflate(R.layout.xxx) to call resources.

2. Register the callback class in AndroidManifest .Register the callback class of privacy permission
dialog box in the AndroidManifest of portal , and value is the full path of the callback class
implemented just now. The code is shown as follows. Note that you need to replace the full path
and class name with your own callback class.

 <!--callback of privacy permission dialog box-->
 <meta-data
 android:name="privacy.listener"
 android:value="com.mpaas.demo.launcher.MyPrivacyListener" />

3. Start up pop-up box interception. In the preInit of MockLauncherApplicationAgent , add the
dialog box interception. The code is as follows:

 //Check if you want to display a privacy permission dialog box to the user
 if(! PrivacyUtil.isUserAgreed(getApplicationContext())){
 PermissionGate.getInstance().waitForUserConform(mContext, getMicroApplicationContext
());
 }

4. Start the first Act ivity. In the postInit of MockLauncherActivityAgent , do the first Activity
jump. The code is as follows:

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 81

 // Determine whether the user privacy permission has been obtained
 if(PrivacyUtil.isUserAgreed(activity)){
 new Handler().postDelayed(new Runnable() {
 public void run() {
 Intent intent = new Intent(activity, MainActivity.class);
 activity.startActivity(intent);
 activity.finish();
 }
 }, 200);
 }

Access Android User Guide·Choose int egrat ion m
et hod

> Document Version: 20230601 82

Baseline refers to a collect ion of stable versions for a series of features and is the basis of further
development. While mPaaS is developed on the basis of a specific version of Alipay. Thus, for mPaaS,
baseline is the collect ion of SDK based on the version. With the continuous upgrading of mPaaS,
mult iple versions for the baseline will be provided.

10.2.3 baseline
Add the following features based on the version 10.1.68:

From mPaaS 10.2.3.4, targetSdkVersion 31 is supported.

Support targetSdkVersion 30.

The CPU architecture only supports armeabi-v7a and arm64-v8a , armeabi is no longer supported.

The access method is no longer maintained as mPaaS Inside. If the original mPaaS Inside access needs
to be upgraded to 10.2.3, please change it to mPaaS AAR access.

It is adapted to Android 13 by default , and no addit ional adaptation work is required after the
upgrade.

For more details, see 10.2.3 release notes.

10.1.68 baseline
Add the following features based on the version 10.1.60:

Provide Native AAR access mode, which is closer to native experience.

Provide better support for the single component, and provide single component demo.

Optimize the size of single component SDK to reduce the general app package size effect ively.

Split the mini program at a finer granularity, so users can choose according to their needs.

Update UC kernel to version 3.0, and provide better performance and higher stability.

For more details, see 10.1.68 release notes.

10.1.60 baseline
Add the following features based on the version 10.1.32:

Add the official version of Mini Program. The official version of Mini Program has a complete set of
APIs, with greatly improved stability and compatibility. For Mini Program upgrading, see Upgrading
instruct ions for Mini Program. For details about the new features on the mini program IDE including
debug, preview and publish, see Mini Program IDE.

A significant optimization has been executed on the HT ML5 Cont ainer generally. This optimization
provides a more simplified access process, enhances the capabilit ies continuously, and improves
compatibility and stability greatly. For how to upgrade HTML5 Container and Offline Package, see
Upgrade HTML5 Container.

The Message Push Service component provides support for OPPO and vivo push.

3.Choose baseline
3.1. Baseline introduction

Access Android User Guide·Choose baseline

> Document Version: 20230601 83

Add management support ing feature to the social sharing component, and provide simplified
access process.

Add the Mobile Content Delivery Platform component. Mobile Content Delivery Platform provides the
ability to personalize advert isement within the app, supports personalized advert isement placement
for targeted customers, and helps app operators to reach users accurately and t imely. For details,
see About Mobile Content Delivery Platform.

For more details, see 10.1.60 release notes.

Select baseline
10.1.68 baseline supports Native AAR access mode officially. If you need to use the Native AAR
access mode, please select 10.1.68 baseline.

10.1.60 baseline does not support Native AAR access mode at the moment.

Based on version 10.1.60, mPaaS 10.1.68 has been updated as follows:

The new method of AAR access is closer to the native experience For more information about the
AAR access method, see The access method of native AAR.

Optimize SDK size of the single component to reduce the size of the general application packs
effect ively.

Split the mini program at the finer granularity allows users to choose according to their needs.

Update UC kernel to version 3.0, and provide better performance and higher stability.

Upgrading instructions

Upgrading instructions under the AAR access method
If you have a project using the access method of native AAR, complete upgrading with the following
steps.

1. Complete environment configuration.

gradle = 6.5 // You need to use 6.5 or later versions
 com.android.tools.build:gradle:4.0.0 //You need to use 4.0.0 or later versions
 com.android.boost.easyconfig:easyconfig:2.7.5

Import ant

If you need to set com.android.tools.build:gradle to 4.2 or above, you need to configure
the following in the gradle.properties f ile: android.enableResourceOptimizations=false .

2. See the Upgrading the mPaaS plug-in document. Upgrade the plug-in of Android Studio mPaaS to
2.20031016 or later versions.

3. In the current project of Android Studio, click mPaaS > Baseline Upgrading, select 10.1.68, then
click OK.

4. After upgrading, check the build.gradle f ile of the root directory. If the ext.mpaas_baseline
field is 10.1.68 , the upgrading is completed.

3.2. mPaaS 10.1.68 upgrade guide

Access Android User Guide·Choose baseline

> Document Version: 20230601 84

Upgrading instructions under the Inside access method
If you have a project based on the Inside access method, complete upgrading with the following steps.

1. Complete environment configuration.

 gradle = 6.2 // You need to use 4.4 or later versions
 com.android.tools.build:gradle:3.5.3
 com.alipay.android:android-gradle-plugin:3.5.14
 com.android.boost.easyconfig:easyconfig:2.7.5

2. See the Upgrading the mPaaS plug-in document. Upgrade the plug-in of Android Studio mPaaS to
2.20031016 or later versions.

3. In the current project of Android Studio, click mPaaS > Baseline Upgrading, select 10.1.68, then
click OK.

4. After upgrading, check the mpaas_packages.json f ile. If the base_line f ield is 10.1.68 , the
upgrading is completed.

Upgrading instructions under the component-based access
(Portal&Bundle), namely Portal Bundle
If you have a project with access based on the Portal&Bundle, complete upgrading with the following
steps.

1. Complete environment configuration.

gradle = 4.4
 com.android.tools.build:gradle:3.0.1
 com.alipay.android:android-gradle-plugin:3.0.0.9.13
 com.android.boost.easyconfig:easyconfig:2.7.5

2. See the Upgrading the mPaaS plug-in document. Upgrade the plug-in of Android Studio mPaaS to
2.20031016 or later versions.

3. In the current project of Android Studio, click mPaaS > Baseline Upgrading, select 10.1.68, then
click OK.

4. After upgrading, check the mpaas_packages.json f ile. If the base_line f ield is 10.1.68 , the
upgrading is completed.

Upgrade to the latest Gradle plug-in
The version of the Android Gradle Plugin provided by Google is 3.5.x at the moment. mPaaS also
provides the plug-in of 3.5.x version as the adapter, which supports the APIs of Google Android Gradle
Plugin 3.5.3 and Gradle 6.0. You can upgrade Gradle plug-ins according to your needs. See the Upgrade
to the latest Gradle plug-in document.

Change in the component management
After upgrading to 10.1.68, the following components are changed. If you chose these components
before, you need to execute operations again according to the following changes.

For more information, see Component management.

FRAMEWORK has been changed as optional.

MAP has been changed to T INYAPP-MAP T INY MAP .

Access Android User Guide·Choose baseline

> Document Version: 20230601 85

T INYPROGRAM has been changed to T INYAPP .

MINIPROGRAM-BLUET OOT H has been deleted, and by default has been combined to T INYAPP and
Mini program.

MINIPROGRAM-MEDIA has been changed to T INYAPP-MEDIA .

T INYVIDEO has been deleted. Mini program videos are not provided at the moment.

Add UCCORE UC Kernel. If you need to use UC core such as HTML5 containers or mini programs, add
this component manually.

Component usage and upgrade instructions

HTML5 containers
From 10.1.68 baseline, the usage of custom t it le bar has been changed. For more information, see
Custom t it le bar(10.1.68).

UC core
Upgrading are made on UC core in 10.1.68 baseline. Retrieve the relevant sect ions such as the front-end
page content completely to avoid the compatibility problems.

Component API changes

HTML5 containers

H5TitleView
Add some interfaces for H5Tit leView. For more information, see Custom t it le bar(10.1.68).

MPNebula
Add interfaces and MicroApplication app parameters.

/**
 * Start an online URL.
 *
 * @param app micro app
 * @param url: online URL
 */
public static void startUrl(MicroApplication app, String url)

 /**
 * Start an online URL.
 *
 * @param app micro app
 * @param url: online URL
 * @param param: sartup parameters
 */
public static void startUrl(MicroApplication app, String url, Bundle param)

Scan
In the Inside or AAR mode, if not accessing to the framework, you need to use the following MPScan
method to act ivate the standard UI of scan:

Access Android User Guide·Choose baseline

> Document Version: 20230601 86

startMPaasScanActivity(Activity activity, ScanRequest scanRequest, ScanCallback scanCallbac
k);

The parameter is in exact match with the original ScanService.

About the official version of mPaaS 10.1.60
10.1.60 baseline is adapted to Android 10.

The offcial version of the mini program component is added on 10.1.60 baseline. The official
version of the mini program has a complete set of APIs, with greatly improved stability and
compatibility. For mini program upgrading, see Upgrading instruct ions for Mini program . For details
about the new features on the mini program IDE including debug, preview and publish, see The mini
program IDE.

A significant optimization has been executed on the HT ML5 cont ainer generally for 10.1.60
baseline. This optimization provides a more simplified access process, enhance the capabilit ies
continuously, and improves compatibility and stability greatly. For the upgrading of the HTML5
container and off-line packs, see Upgrading instruct ions for the HTML5 container.

In 10.1.60 baseline, add support ing feature on the message push component for push services
through OPPO and Vivo.

Add management support ing features to the social sharing component for 10.1.60 baseline, and
provide the simplified access process. For the upgrading of social sharing, see Migrate to 10.1.60
baseline.

The general component compatibility and stability of 10.1.60 baseline are improved significantly, and
the features are also enhanced. For the specific publish instruct ions, see Publish instruct ions for
Android SDK.

Upgrading guide for the official version of mPaaS 10.1.60

Procedure
1. Upgrade the Android Studio mPaaS plug-in to v2.19123015 or later versions.

For more information about upgrading the mPaaS plug-in, see Upgrade the mPaaS plug-in.

2. In the current project of Android Studio, click mPaaS > Baseline Upgrading, select 10.1.60, then
click OK.

3. After upgrading, check if the field “base_line” is 10.1.60 in mpaas_packages.json, which means
upgrading completes.

Not e

When you upgrade 10.1.60-beta baseline to the official version, you need to follow the preceding
steps as well.

3.3. mPaaS 10.1.60 upgrade guide

Access Android User Guide·Choose baseline

> Document Version: 20230601 87

Component usage and upgrade instructions
In 10.1.60 baseline, a significant modificat ion is made on the access and usage for the HTML5 container
and mini program component. If accessing to the preceding components, you need to check the
following instruct ions:

Check Upgrading instruct ions for the HTML5 container to understand more information about the
upgrading of the HTML5 container and off-line packs.

Check Upgrading instruct ions for the mini program to understand more information about upgrading
for the mini program.

Upgrade the access method of social sharing SDK. Check Migrate to 10.1.60 baseline to understand
more information about the upgrading for social sharing components.

Not es :

From 10.1.60, sharing SDK are using the mPaaS plug-in to manage. If you need to install the sharing
component, see Migrate to 10.1.60 baseline for the specific operations.

If you do not use the plug-in to perform sharing SDK access, the updating for sharing SDK
upgrading and debugging will not be in a t imely manner.

Component API changes
The adaptation layer is added on the mPaaS component from 10.1.32 baseline. You are recommended
to use the API with the adaptation layer. For more details, see the following upgrading instruct ions for
the early versions in each component document:

Mobile analysis: Add adapters and simplify the usage. See Custom event log.

Mobile push: Add adapters and simplify the usage. See Mobile push.

Mobile sync: Add adapters and simplify the usage. See Mobile sync.

Version upgrading: Add adapters and simplify the usage. See Version upgrading.

Switch configuration: Add adapters and simplify the usage. See Switch configuration.

HTML5 containers:

Add adapters and simplify the usage. See HTML5 containers SDK 10.1.32.

Change the method of container configuration. If the version is 10.0.18 before upgrading, you
need to use the new method of container configuration. See Container configuration 10.1.32.
Otherwise, your container configuration will not take effect.

References for 10.1.60 baseline change Upgrading instruct ions.

Mini programs:

First ly, you need to upgrade the HTML5 container.

Upgrading change information Upgrading instruct ions.

Not e

We strongly suggest you to modify the code and use the common layer method, namely the
adaptation layer method, instead of using the underlying layer method directly. Because some
underlying layer methods may be changed or abandoned in later versions. You may need to take
lots of t ime adapting them in future updates if you continue to use them.

Access Android User Guide·Choose baseline

> Document Version: 20230601 88

Custom dependency configuration
Check all the dependency configurations of dependencies in build.gradle . Then confirm if the
configuration has bundle dependency of the mPaaS component. If the dependency is confirmed and
the SDK is upgraded from the earlier version such as 10.1.32 to version 10.1.60, you may need to
recustomize your library based on the new version. Otherwise, problems such as incompatibility may
occur. You can open a t icket or contact the mPaaS support to confirm.

Access Android User Guide·Choose baseline

> Document Version: 20230601 89

https://workorder-intl.console.aliyun.com/console.htm?spm=a3c0i.7911826.9135018350.28.44193870CroYX5&lang=#/ticket/createIndex

The mPaaS product relies on some third-party SDKs. Therefore, you may experience conflicts between
third-party libraries already integrated in your project and the mPaaS SDKs during the process of
accessing mPaaS.

The mPaaS product relies on some third-party SDKs. Therefore, you may experience conflicts between
third-party libraries already integrated in your project and the mPaaS SDKs during the process of
accessing mPaaS.

To address potential conflicts, mPaaS provides the ability to remove third-party SDKs from within
mPaaS, see:

Native AAR method

Portal & Bundle methods

The version selected for use by mPaaS is highly stable and secure. If you remove a third-party library
that mPaaS relies on, and you are using a different version of the SDK than the third-party SDK used by
mPaaS, perform sufficient and adequate test ing to ensure stable function.

In case of a dependency conflict , please refer to the following solut ions:

Resolve AMAP Posit ioning conflicts

Resolve AMAP Map conflicts

Resolve SecurityGuard conflicts

Resolve Alibaba utdid conflicts

Resolve wire/okio conflicts

Resolve fast json conflicts

Resolve android support conflicts

mPaaS is built with the AMAP Posit ioning SDK. If your app needs to be launched in Google Play Store
and also integrates with the official version of the SDK provided by AMAP that can be approved by
Google, there will be a conflict with AMAP Posit ioning.

Import ant

The 10.1.32 baseline does not support self-integration of the posit ioning SDK, so there is no such
conflict .

Solution
Remove the built-in AMAP Posit ioning SDK from mPaaS.

4.Solve dependency confilction
4.1. Solve dependency conflicts

4.2. Solve conflict with dependency
on Amap location

Access Android User Guide·Solve dependency co
nfilct ion

> Document Version: 20230601 90

Procedure
1. Confirm the version of the AMAP Posit ioning SDK used by mPaaS so that you can select the same or a

similarly reviewed and approved version.

'com.alipay.android.phone.mobilecommon:AMapSearch:6.1.0_20180330@jar'
'com.alipay.thirdparty.amap:amap-location:4.7.2.20190927@jar'

2. Get the group:artifact information for the AMAP Posit ioning SDK used by mPaaS.

'com.mpaas.group.amap:amap-build'

3. Remove the AMAP Posit ioning SDK from mPaaS.

AAR method

configurations {
all*.exclude group:'com.mpaas.group.amap', module: 'amap-build'
}

Portal & Bundle

mpaascomponents {
excludeDependencies = [
 "com.mpaas.group.amap:amap-build"
]
}

mPaaS is built with the AMAP Map SDK. There would be a conflict with AMAP Map, if your app needs to
be launched on Google Play Store, but it also integrates with an official AMAP SDK that can be
approved by Google.

Solution
Remove the built-in AMAP Map SDK from mPaaS.

Procedure
1. Confirm the version of the AMAP Map SDK used by mPaaS so that you can select the same or a

similarly reviewed and approved version.

'com.alipay.android.phone.mobilecommon:AMap-2DMap:5.2.1_20190114@jar'

2. Get the group:artifact information for the AMAP Map SDK used by mPaaS.

'om.alipay.android.phone.thirdparty:amap3dmap-build'

3. Remove the AMAP Map SDK from mPaaS.

AAR method:

4.3. Solve conflict with dependency
on Amap

Access Android User Guide·Solve dependency co
nfilct ion

> Document Version: 20230601 91

configurations {
all*.exclude group:'com.alipay.android.phone.thirdparty', module: 'amap3dmap-build'
}

Portal & Bundle:

mpaascomponents {
excludeDependencies = [
 "com.alipay.android.phone.thirdparty:amap3dmap-build"
]
}

Conflict description
If you are using mPaaS along with other Alibaba SDKs, there may be a conflict with the
SecurityGuardSDK.

Solution
mPaaS allows you to remove the mPaaS SecurityGuard library and use the security guard library
provided by other Alibaba SDKs.

Procedure
1. Confirm the version of the SecurityGuard SDK currently used by mPaaS in order to select other

Alibaba security guard libraries that are the same or similar.

'SecurityGuardSDK-without-resources-5.4.2009'

2. Get the group:artifact information for the SecurityGuard SDK used by mPaaS.

'com.alipay.android.phone.thirdparty:securityguard-build'

3. Remove SecurityGuard from mPaaS.

AAR method

configurations {
all*.exclude group:'com.alipay.android.phone.thirdparty', module: 'securityguard-build'
}

mPaaS Inside and Portal & Bundle

mpaascomponents {
excludeDependencies = [
 "com.alipay.android.phone.thirdparty:securityguard-build"
]
}

4. Resolve image conflicts.

4.4. Solve conflict with dependency
on security guard

Access Android User Guide·Solve dependency co
nfilct ion

> Document Version: 20230601 92

i. Add the image suffix to config and compile.

Add "authCode": "1234" to the config file, where 1234 can be any string; we recommend
you to use 4 digits.

{
"appId":"xxx",
"appKey":"xxx",
"base64Code":"xxx",
"packageName":"xxx",
"rootPath":"xxx",
"workspaceId":"xxx",
"rpcGW":"xxx",
"mpaasapi":"xxx",
"pushPort":"xxx",
"pushGW":"xxx",
"logGW":"xxx",
"syncport":"xxx",
"syncserver":"xxx",
"authCode": "1234"
}

ii. Verify that the image suffix is in effect.

Check if the generated apk has yw_1222_1234.jpg image in drawable and the following
information in AndroidManifest by decompiling.

<meta-data
android:name="security_guard_auth_code"
android:value="1234" />

Not e

Image conflict resolut ion only supports 10.1.32.7 and above, 10.1.60 (beta version requires
beta.7 and above) and 10.1.68 baseline versions.

Conflict description
If you are using mPaaS along with the Alibaba SDKs, you may experience utdid conflicts. In such a case,
please refer to the following solut ions.

Solution
Remove the mPaaS utdid library and use the utdid provided by other Alibaba SDKs.

Procedure
1. Confirm the version of the utdid SDK used by mPaaS so that you can select the same or a similarly

reviewed version.

4.5. Solve conflict with dependency
on utdid

Access Android User Guide·Solve dependency co
nfilct ion

> Document Version: 20230601 93

'com.taobao.android:utdid4all:1.5.1.3@jar'

2. Get the group:artifact information for the utdid SDK used by mPaaS.

'com.alipay.android.phone.thirdparty:utdid-build'

3. Remove mPaaS utdid SDK.

AAR method

configurations {
all*.exclude group:'com.alipay.android.phone.thirdparty', module: 'utdid-build'
}

Portal & Bundle

mpaascomponents {
excludeDependencies = [
 "com.alipay.android.phone.thirdparty:utdid-build"
]
}

4. Add the API package.

Basilines 10.1.68.8 and lower

If you are using the utdid-related API, download the JAR package utdid-build-1.1.5.3-api.jar.zip,
and import (compile/implementation) to the project for compilat ion.

Baseline 10.1.68.9 and later versions

No act ion is required.

Conflict description
If you are using mPaaS along with the Alipay payment SDK, there may be a library conflict in some cases.

Solution
If you are experiencing an Alipay payment SDK conflict .

If your baseline version is 10.2.3.6 and above, please add the following configuration.

configurations {
 all*.exclude group:"com.mpaas.android.anotations", module:"anotations-build"
}

For other baseline versions, please use the following Deconflict Payments SDK version.

4.6. Solve conflict with dependency
on Alipay SDK

Access Android User Guide·Solve dependency co
nfilct ion

> Document Version: 20230601 94

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/164983/AntCloud_zh/1589351659065/utdid-build-1.1.5.3-api.jar.zip

dependencies {
 ···
 implementation 'com.alipay.sdk.android:alipaysdk-mpaas:15.8.03.210526122749'
 ···
}

Conflict description
As mPaaS uses wire/okio for RPC network connection, and okhttp also needs to reference okio, so when
you use mPaaS with okhttp, then there may be a wire/okio conflict .

Solution

10.1.68 Baseline
Remove wire/okio dependencies of mPaaS, and regression tested the mobile gateway function to
ensure it works correctly. The operation steps are as follows:

1. Confirm the version of wire/okio used by mPaaS.

'com.squareup.okio:okio:1.7.0@jar'
'com.squareup.wire:wire-lite-runtime:1.5.3.4@jar'

2. Get the group:artifact information for the mPaaS third-party SDK.

'com.alipay.android.phone.thirdparty:wire-build'

3. Remove the mPaaS library.

AAR method

If you are using the native AAR method to access mPaaS, the dependency passing of gradle will
automatically use a later version and there is no need to act ively remove it . In general, the version
chosen for use by mPaaS is highly stable and secure, and we recommend you to use the version
provided by mPaaS. If versions are inconsistent, please test the mPaaS function before its launch
to ensure stability.

mPaaS Inside and Portal&Bundle

mpaascomponents {
excludeDependencies = ["com.alipay.android.phone.thirdparty:wire-build"]
}

4. Add back wire or okio (use wire/okio of public network. The native AAR access method is not a
concern).

As mPaaS writes dependency of both wire and okio in the
 com.alipay.android.phone.thirdparty:wire-build library, you need to add them back optionally,

as the case may be.

If there is only an okio conflict , but not a wire conflict , you need to add back the wire.

4.7. Solve conflict with dependency
on wire/okio

Access Android User Guide·Solve dependency co
nfilct ion

> Document Version: 20230601 95

implementation 'com.squareup.wire:wire-lite-runtime:1.5.3.4@jar'

If there is only a wire conflict , but not an okio conflict , you need to add back the okio.

'com.squareup.okio:okio:1.7.0@jar'

10.2.3 Baseline

Completely remove the version dependency of mPaaS and use the version required by the business
itself. To resolve the wire/okio conflict , the operation steps are as follows:

1. Remove wire in mPaaS. Currently, mPaaS does not strongly rely on wire for now.

The following operations are required in the native AAR project:

configurations {
 all*.exclude group: 'com.alipay.android.phone.thirdparty', module: 'wire-build'
}

The following operations need to be performed in the mPaaS Inside & Component (Portal &
Bundle) project:

mpaascomponents {
 excludeDependencies = [
 "com.alipay.android.phone.thirdparty:wire-build"
]
}

2. The pb class of all business party rpc inherits com.squareup.wire.Message and needs to be
changed to inherit com.mpaas.thirdparty.squareup.wire.Message .

The following component functions need to be regressed:

Mobile Gateway Service

Message Push Service

Mobile Sync Service

Manage configurations

Mobile Content Delivery Platform

Conflict description
mPaaS uses fast json for JSON parsing, if you also use fast json in your project, there will be a fast json
conflict .

Solution
Remove fast json-build from mPaaS.

Procedure
1. Confirm the current version of fast json used by mPaaS.

4.8. Solve comflict with dependency
on fastjson

Access Android User Guide·Solve dependency co
nfilct ion

> Document Version: 20230601 96

'com.alibaba:fastjson:1.x.x.android@jar'

2. Get the group:artifact information for the third-party SDK used by mPaaS.

'com.alipay.android.phone.thirdparty:fastjson-build'

3. Remove the mPaaS library.

AAR method

If you are accessing mPaaS by a native AAR, there is no need to act ively remove it , and dependency
passing of gradle will automatically use a later version. The version chosen for use by mPaaS is
highly stable and secure, and we recommend you to use the version provided by mPaaS. If versions
are inconsistent, please test the mPaaS function before its launch to ensure stability.

Portal & Bundle

mpaascomponents {
excludeDependencies = [
 "com.alipay.android.phone.thirdparty:fastjson-build"
]
}

Android support conflict between Portal & Bundle and mPaaS Inside
accessing methods

Conflict description
mPaaS has a built-in support library based on version 23.2.1, and added Fragment aspect logic for
automated buried-points for pages. If you add the official version of the android support library while
using mPaaS, there will be an android support conflict .

Solution
Remove androidsupport-build and replace it directly with the official version. If you also need to use
the Fragment automated logging feature provided by mPaaS, you need to manually add the
monitoring logic.

Not e: The native AAR method does not have a built-in support library, so you are not required to make
any act ion. If you also need to use the Fragment automated logging feature provided by mPaaS, you
need to manually add the monitoring logic.

Procedure
1. Confirm the version of android support currently used by mPaaS.

'com.android.support:support-v4'
'com.android.support:appcompat-v7'

2. Get the group:artifact information for the mPaaS third-party SDK.

4.9. Solve conflict with dependency
on Android support

Access Android User Guide·Solve dependency co
nfilct ion

> Document Version: 20230601 97

'com.alipay.android.phone.thirdparty:androidsupport-build'
'com.alipay.android.phone.thirdparty:androidsupportrecyclerview-build'

3. Remove the mPaaS library.

AAR method

If you are accessing mPaaS by using a native AAR, you do not need to act ively remove it .

mPaaS Inside and Portal & Bundle

mpaascomponents {
excludeDependencies = [
 "com.alipay.android.phone.thirdparty:androidsupport-build"
]
}

Android support conflicts in the native AAR access method

Conflict description
The native AAR access method uses the support-v4 library based on version 23.4.0. However, Google
has changed the way it organizes its code since version 24.2.0, and no longer provides all modules of
the support-v4 library in a package, and appcompat-v7 introduces all modules of the library in a
package, see the Support library packages. Therefore, an AAR dependency conflict will occur when
your project uses the appcompat-v7 package.

Solution
Manually import a later version of support-v4, along with the appcompat-v7 you need.

Procedure
1. Manually import a later version of support-v4.

 implementation 'com.android.support:support-v4: (version you used, for example, 28.0.0)'

2. Import appcompat-v7 you need.

 implementation 'com.android.support:appcompat-v7: (version you used, for example, 28.0.0
)'

Conflict description
A libcrashsdk.so conflict may occur if you use a third-party SDK such as Umeng SDK while using mPaaS.

[ERROR] :more than one file named : libcrashsdk.so in the following files
C:\Users\Administrator\.gradle\caches\modules-2\files-2.1\com.mpaas.uc.crash\uccrash-build\
1.0.0.201221171651\d347c79b8091adc68c33e1ca04b702b1c85888ca\uccrash-build-1.0.0.20122117165
1.jar
C:\Users\Administrator\.m2\repository\com\xinmei\etrust\bundleone\bundleone-build\1.0.0\bun
dleone-build-1.0.0-raw.jar

4.10. Solve conflict with
libcrashsdk.so

Access Android User Guide·Solve dependency co
nfilct ion

> Document Version: 20230601 98

https://developer.android.com/topic/libraries/support-library/packages#v4

Solution
Remove libcrashsdk.so from the UC kernel of mPaaS.

Procedure
1. Confirm the version of libcrashsdk in the UC kernel of mPaaS so that you can select the same or similar

verified version.

 'com.mpaas.uc.crash:uccrash-build:10.1.60a.00001878@jar'

2. Get the group:artifact information for the third-party SDK used by mPaaS.

'com.mpaas.uc.crash:uccrash-build'

3. Remove libcrashsdk from the UC kernel of mPaaS.

Native AAR integration method:

configurations {
 all*.exclude group:'com.mpaas.uc.crash', module: 'uccrash-build'
}

mPaaS Inside integration method method or componentized integration method:

mpaascomponents {
 excludeDependencies = [
 "com.mpaas.uc.crash:uccrash-build"
]
}

Conflict description
A libcrashsdk.so conflict may occur if you use a third-party SDK such as Umeng SDK while using mPaaS.

[ERROR] :more than one file named : libcrashsdk.so in the following files
C:\Users\Administrator\.gradle\caches\modules-2\files-2.1\com.mpaas.uc.crash\uccrash-build\
1.0.0.201221171651\d347c79b8091adc68c33e1ca04b702b1c85888ca\uccrash-build-1.0.0.20122117165
1.jar
C:\Users\Administrator\.m2\repository\com\xinmei\etrust\bundleone\bundleone-build\1.0.0\bun
dleone-build-1.0.0-raw.jar

Solution
Remove libcrashsdk.so from the UC kernel of mPaaS.

Procedure
1. Confirm the version of libcrashsdk in the UC kernel of mPaaS so that you can select the same or similar

verified version.

4.11. Solve conflict with
libcrashsdk.so

Access Android User Guide·Solve dependency co
nfilct ion

> Document Version: 20230601 99

 'com.mpaas.uc.crash:uccrash-build:10.1.60a.00001878@jar'

2. Get the group:artifact information for the third-party SDK used by mPaaS.

'com.mpaas.uc.crash:uccrash-build'

3. Remove libcrashsdk from the UC kernel of mPaaS.

Native AAR integration method:

configurations {
 all*.exclude group:'com.mpaas.uc.crash', module: 'uccrash-build'
}

mPaaS Inside integration method method or componentized integration method:

mpaascomponents {
 excludeDependencies = [
 "com.mpaas.uc.crash:uccrash-build"
]
}

Access Android User Guide·Solve dependency co
nfilct ion

> Document Version: 20230601 100

mPaaS Plugin, as a GUI-based tool, provides functions such as compiling and packaging, dependency
management, hotfix and encryption image. The mPaaS Plugin allows developers to access mPaaS
quickly and provides assistance for development. After successful installat ion of mPaaS Plugin, the
mPaaS menu is available on the top menu bar in Android Studio.

The mPaaS Plugin provides various functions to assist development, including:

Menu Function

Native AAR access
Assists the access of project to
mPaaS through the native AAR
access mode.

Component-based access
Assists the access of project to
mPaaS through the component-
based access mode.

Basic tools

Hotfix
Creates a patch for components
supporting hotfix.

Generate Encryption Image
(Apsara Stack Config File)

Generates the encryption image
that contains the key information
for encryption and decryption.

Generate Signed APK

Generates a signed APK after you
input necessary parameters for
APK signing. The signed APK is
used to obtain a configuration
file on the mPaaS console.

Generate UC Key Signing Info
Generates signing information to
apply for the Key of UC SDK.

Log Diagnostic Tool
Analyzes logs in Android Studio
for quickly locating compilation
errors.

5.Developer's tools
5.1. Android Studio mPaaS plugin
5.1.1. About mPaaS plugin

Access Android User Guide·Developer's t ools

> Document Version: 20230601 101

Help

Common issues
Go to Documentation Center to
check frequently asked questions
in the Android access process.

View Documentation Go to mPaaS Document Center.

Build Builds projects.

Related topics
Install the mPaaS Plugin: describes how to install the mPaaS Plugin in Android Studio.

Use the mPaaS Plugin: describes how to use each function of the mPaaS Plugin.

Update and Uninstall the mPaaS Plugin: describes how to update and uninstall the mPaaS Plugin.

mPaaS Plugin provides various functions to assist mobile development, such as creating an mPaaS
project, adding, delet ing and updating an mPaaS component, and building a project. This topic
describes how to install the mPaaS Plugin.

The mPaaS Plugin supports two installat ion modes: Online inst allat ion and Of f line inst allat ion .

If you are using Android Studio 4.0 or a later version, either Online inst allat ion or Of f line
inst allat ion mode can be used to install the latest mPaaS Plugin.

Find more mPaaS Plugin offline installers on mPaaS JetBrains page.

Online installation

Procedure
1. In Android Studio, select Android St udio > Pref erences to open the preferences window. If you

are using a Windows operating system, select File > Set t ings to open the sett ings dialog.

2. Click Plugins in the left pane and then click Market place on the top of the window.

5.1.2. Install mPaaS plug-in

Access Android User Guide·Developer's t ools

> Document Version: 20230601 102

https://plugins.jetbrains.com/plugin/14486-mpaas/versions

3. Enter the keyword mPaaS to search for the mPaaS Plugin. In the search result , click the Inst all
button of the mPaaS Plugin to start the installat ion.

4. After the installat ion is complete, restart Android Studio and then you will see the mPaaS menu on
the menu bar.

Offline installation

Prerequisites
You have downloaded the mPaaS Plugin offline installer.

Procedure

Not e

The installat ion package of the mPaaS plug-in is in the form of a compressed package file, which
does not need to be decompressed before installat ion.

1. In Android Studio, select Android St udio > Pref erence to open the sett ings dialog.

Access Android User Guide·Developer's t ools

> Document Version: 20230601 103

2. Click Plugins in the left pane. Then click in the upper right of the window and select Inst all Plugin

f rom Disk on the drop-down menu.

3. Select the mPaaS Plugin offline installer on your disk and click OK to start the installat ion. After the
installat ion is complete, restart Android Studio and then you can use the mPaaS Plugin.

The GUI-based mPaaS Plugin supports quick access to mPaaS and provides functions for convenient
use.

The mPaaS Plugin provides the following functions: Nat ive AAR Access , Component ized Access ,
Basic T ools , Help and Build.

An access panel is available for the Nat ive AAR Access and Component ized Access functions.
The access wizard on the access panel can guide you to add mPaaS to your project through a
specific access mode. After the access is complete, you can also update the baseline and manage
components on the access panel.

The mPaaS Plugin provides the following Basic T ools : Generat e Encrypt ion Image (Apsara
St ack Conf ig File) , Generat e Signed APK , and Generat e UC Key Signing Inf o . These tools
assist you to prepare necessary information for easy use of mPaaS functions.

The mPaaS Plugin provides the following Help functions: Log Diagnost ic T ool , Common Issues,
and View Document at ion , to support you to troubleshoot common issues.

Build allows you to build a project after you get access to mPaaS.

Add a configuration file
The main work of the access process is to add configuration files to the project. The mPaaS plug-in
supports manual import to add configuration files. For manual import, you need to download the
configuration file in the console, and then manually add it to the project through the mPaaS plug-in.

Manual import

5.1.3. Use mPaaS plug-in

Access Android User Guide·Developer's t ools

> Document Version: 20230601 104

The manual upload method supports Ant Technology users, Alibaba Cloud users, and Ant Private Cloud
users.

Prerequisites
You have an Alibaba Cloud account with the mPaaS service act ivated.

You have created an application on the mPaaS console. For more information about application
creation, see Create mPaaS application on the console.

An Android project already exists.

Procedure
1. Open the exist ing project in Android Studio and then click mPaaS > Nat ive AAR Access or

Component ized Access . On the access panel, click St art Import below Import App configuration.

2. Select I have not downloaded the configuration file and click Next.

Access Android User Guide·Developer's t ools

> Document Version: 20230601 105

3. Select the configuration file and click Finish. The configuration file is imported to the project. After
the process finishes, you will receive a prompt message that the configuration file has been imported
successfully.

AAR access

Procedure
1. Open the exist ing project in Android Studio, click mPaaS > Nat ive AAR access .

2. Import App configuration. On the access panel, click St art Import , follow manual import to add a
configuration file.

Follow-up steps
1. Add and update a baseline

2. Configure and update components

Componentized access

Procedure
1. Open the exist ing project in Android Studio and click mPaaS > Component ized Access .

2. Import App configuration.

On the access panel, click St art Import , follow Add a configuration file to add a configuration file.

3. Convert the project. If the project is a native Android project, you need to convert the project.

On the access panel, click Inst all mPaaS Port al . In the Install mPaaS Portal window, select the
location and configuration file of the original project and then click OK.

Follow-up steps
1. Add and update a baseline

Access Android User Guide·Developer's t ools

> Document Version: 20230601 106

2. Configure and update components

Add and update a baseline

Update to a common baseline

Procedure
1. Click mPaaS > Nat ive AAR Access or Component ized Access to open the access panel. Then

click St art Conf ig below Access/update the baseline.

2. Select the baseline version to be updated and click OK. After the update is complete, a success
message is displayed.

Follow-up steps
Click the updated baseline on the access panel. You will see the baseline version in the baseline
select ion window.

Update to a custom baseline
We provide baselines specific to all customers, such as 10.1.32, 10.1.60 and 10.1.68. If you need custom
mPaaS functions, you can contact our staff and make a request. We will customize baselines for you as
demanded. mPaaS staff will deliver the ID of your custom baseline. You can obtain the custom baseline
after you enter this ID in the mPaaS Plugin.

Prerequisites
mPaaS V2.19111217 or later version is required in Android Studio. See Update the mPaaS Plugin to
check the current mPaaS Plugin version and learn how to update the mPaaS Plugin.

Procedure
1. Delete the mpaas_package.json file of the project in Android Studio.

2. Click mPaaS > Nat ive AAR Access or Component -Based Access to open the access panel. Then
click St art Conf ig below Add and update baseline.

3. In the baseline update dialog, select Cust om baseline and enter the custom baseline ID.

Access Android User Guide·Developer's t ools

> Document Version: 20230601 107

4. Click OK. The custom baseline is added.

Configure and update components

mPaaS component management (AAR)

Prerequisites
You have updated the baseline.

Procedure
1. Click mPaaS > Nat ive AAR Access to open the access panel. Then click St art conf igurat ion below

Configure and update components.

2. In the displayed management window, click mPaaS Component Management . Then select the
module and components to be managed and click OK. If your project contains mult iple modules, you
can select individual modules and select components for each module respectively.

3. After the components are added, click OK.

Component Management

Access Android User Guide·Developer's t ools

> Document Version: 20230601 108

Procedure
1. Click mPaaS > Component -Based Access to open the access panel. Then click St art Conf ig

below Configure and update components.

2. In the displayed component management window, click the corresponding buttons to install the
required components.

Basic tools
Basic Tools provide the following functions: Generat e Encrypt ion Image (Apsara St ack Conf ig
File), Generat e Signed APK , and Generat e UC Key Signing Inf o .

Generate the encryption image (Apsara Stack configuration file)
When some components of the mPaaS Plug-in get access to the network, the contents must be
encrypted to ensure security.

The image named as yw_1222.jpg provides a secret key for encryption and decryption. The
components of mPaaS Plugin automatically use this image for encryption and decryption.

Since this encrypted image has been deprecated in public cloud environments, public cloud users can
ignore this sect ion.

The following describes how to generate and use the encryption image yw_1222.jpg .

Preparations
The encrypted image is bound with the APK signature file. Therefore, you need to prepare the signed
APK of your Portal project. For detailed signing instruct ions, see Android official website: Sign your app.

Not e

This APK uses the same signature file as the Release Version APK.

The generated encrypted image can only be used in this APK project.

Generation
You can use mPaaS Plugin to generate the encryption image.

Access Android User Guide·Developer's t ools

> Document Version: 20230601 109

https://developer.android.com/studio/publish/app-signing

1. In Android Studio, click mPaaS > Basic T ools > Generat e Encrypt ion Image (Apsara St ack
Conf ig File) .

2. In Release Apk, select the signed APK of the Portal project. The RSA field is automatically filled.

3. In mPaaS Conf ig File , select the .config f ile of the Portal project. The workSpaceId, appId
and packageName fields are automatically filled. If these fields are not automatically filled, enter
the corresponding configurations according to the contents in the .config f ile of the project.

4. Fill the appsecret f ield.

Not e

As the server administrator, you can query the corresponding appsecret of appid on the
console.

5. In the jpg Version field, enter the version number of the security guard image.

Not e

Check the securityguard version in the build.gradle f ile under the main module of the
Portal project. Enter 4 if the version is lower than 5.4 (such as securityguard-
build:5.1.38.180402194514 in the baseline). Otherwise, enter 5.

6. In out Pat h , select an output path for the security guard image yw_1222.jpg . The generated
encryption image will be stored under this local path.

7. Click OK to generate the encryption image.

Usage
The following describes how to use the encryption image:

1. Store the encryption image yw_1222.jpg in the res/drawable folder of the Portal project.

2. If ProGuard is used, you need to avoid confusion of the encryption image.

i. Check whether build.gradle contains the following configurations:

minifyEnabled true
shrinkResources true

Access Android User Guide·Developer's t ools

> Document Version: 20230601 110

https://developer.android.com/studio/build/shrink-code?hl=zh-cn#keep-resources

ii. If yes, you need to create a keep.xml f ile under res/raw to avoid confusion of the
encryption image. The file content is as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources xmlns:tools="http://schemas.android.com/tools"
tools:keep="@drawable/yw_1222*" /><!--tools:discard="@layout/unused2"-->

Generate signed APK
When you attempt to obtain the configuration file on the mPaaS console, you need to upload a signed
APK file, as shown in the following figure. The procedure will be suspended if you have not created a
project or compiled the signed APK. The mPaaS Plugin provides the function Generat e Signed APK to
simplify this procedure in Android Studio. This function can generate a signed APK after you input
necessary parameters for APK signing.

Generation
1. Click mPaaS > Basic t ools > Generat e Signed APK used in Console to open the Build Signed

APK page.

2. In the Build Signed APK page, enter the required configuration information.

3. Click OK The signed APK is generated.

Access Android User Guide·Developer's t ools

> Document Version: 20230601 111

4. Click Reveal in Finder You can find the generated APK file. The file name is mpaas-signed.apk .
The generation of signed APK is complete.

Open the APK file. You can find the file is small and has been signed.

Help

Log diagnostic tool
1. Click mPaaS > Help > Log Diagnost ic T ool .

Access Android User Guide·Developer's t ools

> Document Version: 20230601 112

2. Copy and paste the log to be analyzed in the text box and click Next .

3. Wait until the analysis is completed.

4. View the analysis result .

The analysis result contains Cause and Solut ion . You can modify your codes according to the cause
and solut ion if any issue is found.

5. After the modificat ion, click Finish to close the window.

FAQ
Click mPaaS > Help > Common Issues to go to Common Android access issues. You can check common
issues that you may encounter when you access Android.

View document
Click mPaaS > Help > View document s to go to mPaaS Document Center. You can view the
documents of all components.

Access Android User Guide·Developer's t ools

> Document Version: 20230601 113

Build
In Android Studio, select mPaaS > Build. Then you can build your project.

This topic describes how to update and uninstall the mPaaS Plugin.

The images in this document are specific to a Windows operating system. The operation procedures are
similar in macOS and Linux.

Update the mPaaS Plugin
1. Open Android Studio and click File > Set t ings .

2. In the Set t ings dialog, select Plugins in the left navigation pane.

3. In the left pane, click the Updat es tab, search for the mPaaS Plugin and, and then click Updat e on
the right of the mPaaS Plugin in the search result .

5.1.4. Update and uninstall mPaaS plug-in

Access Android User Guide·Developer's t ools

> Document Version: 20230601 114

4. Click Accept when the Privacy Policy of the third-party plugin is displayed.

5. Android Studio will download the mPaaS Plugin automatically.

6. After the update is complete, click Rest art IDE . In the confirmation dialog, click Rest art to restart
Android Studio.

7. After the restart of Android Studio, select File > Set t ings > Plugins. You can see the mPaaS plugin
has been updated to the latest version.

Uninstall the mPaaS Plugin
1. Open Android Studio and click File > Set t ings .

2. In the Set t ings dialog, select Plugins in the left navigation pane.

Access Android User Guide·Developer's t ools

> Document Version: 20230601 115

3. Click the Inst alled tab on the top of the right pane, and search for the mPaaS Plugin. In the search
result , click the mPaaS Plugin to open the details page.

4. On the mPaaS Plugin details page, click the Disable drop-down box in the upper right corner and
then select Uninst all .

5. In the confirmation dialog, click Yes to uninstall the mPaaS Plugin.

Access Android User Guide·Developer's t ools

> Document Version: 20230601 116

This art icle describes the adaptation work that users need to do for Android 12 when using the mPaaS
10.1.68 version baseline.

Google has released Android 12 on October 4, 2021. As a basic library, mPaaS has been adapted on the
10.1.68 baseline. 10.1.68.37 and later versions have completed the adaptation to Android 12. Prior to
the mPaaS adaptation, the mPaaS SDK was affected on Android 12 devices that the HTML5 container
could not launch the UC kernel.

Upgrade the SDK or components
Use the mPaaS plug-in to upgrade the mPaaS SDK or components.

If the baseline version used is already 10.1.68, simply upgrade to the latest version. See 10.1.68
release notes.

If you are using baseline version 10.1.60 or earlier versions, upgrade to 10.1.68 and update to the
latest version. There are no plans to adapt Android 12 to mPaaS 10.1.60 and earlier versions at this
t ime.

Start UC kernel
On the Android 12 system, you need to use a specific version of the UC kernel, and add configuration to
turn on the UC kernel. Without the following adaptations, the H5 container will enable the system
WebView by default on the Android 12 system.

Use specific version of UC kernel
Add dependencies under the dependencies node in the build.gradle of the main module (in the
Portal project under the Portal&Bundle access method).

implementation('com.alipay.android.phone.wallet:nebulaucsdk-build:3.22.2.18.210803145558@aa
r') {
 force = true
}

When using Protal&Bundle access methods, you also need to remove the original UC core in the SDK,
and add the following content to the build.gradle of the main module (Protal&Bundle access
method is in the Portal project):

mpaascomponents {
 excludeDependencies = [
 "com.alipay.android.phone.wallet:nebulaucsdk-build"
]
}

Add configuration to enable UC kernel on Android 12
Create a custom_config.json f ile under the config directory in assets and add the following
content to the file.

6.Adapt to Android
6.1. Adapt to Android 12

Access Android User Guide·Adapt t o Android

> Document Version: 20230601 117

[
 {
 "value":"{\"h5_enableExternalWebView\":\"YES\",\"h5_externalWebViewSdkVersion\":{\"min\
":11,\"max\":31}}",
 "key":"h5_webViewConfig"
 }
]

Perform regression Test
Upgrading the UC kernel may be accompanied by changes in some browser features. Please perform
regression tests on the related services using UC browsers.

Process custom library
Each component of version 10.1.68 has incorporated customized requirements. If your dependencies
include customized libraries, you need to deal with the following condit ions:

If you are upgrading from a lower version of the SDK (such as 10.1.60) to version 10.1.68, your custom
library may need to be re-customized based on the new version, please search for group number
41708565 with DingTalk to join DingTalk group to contact mPaaS support staff to confirm.

If you are already using version 10.1.68, you only need to update some components. See Adaptable
library list for Android 12 updates below to check whether your custom libraries are included in it .

If not included, you can continue to use the custom library.

If included, your custom library may need to be re-customized, please search for group number
41708565 with DingTalk to join DingTalk group to contact mPaaS support.

Adaptable library list for Android 12 updates
nebulauc

mult imediabiz

Google has officially released Android 11 on September 9, 2020, and mPaaS has been adapted on the
10.1.68 baseline.

Background
Google has officially released Android 11 on September 9, 2020, and mPaaS has been adapted on the
10.1.68 baseline.

Prior to the mPaaS adaptation, the mPaaS SDK was affected on Android 11 devices that the HT ML5
cont ainer could not launch t he UC kernel .

Import ant : As the base library, mPaas has been adapted for Android 11 for the current version
10.1.68.14 and later versions.

Upgrade the SDK or components
Use the mPaaS plug-in to upgrade the mPaaS SDK or components.

If the baseline version used is already 10.1.68, simply upgrade to the latest version. See 10.1.68
release notes.

6.2. Adapt to Android 11

Access Android User Guide·Adapt t o Android

> Document Version: 20230601 118

If you are using baseline version 10.1.60 or earlier versions, upgrade to 10.1.68 and update to the
latest version. There are no plans to adapt Android 11 to mPaaS 10.1.60 and earlier versions at this
t ime.

Handle custom libraries
The components in version 10.1.68 incorporate customization requirements. However, if your
dependencies include custom libraries, you must take the following act ions to handle them accordingly
for security reasons.

If you upgraded the SDK from an earlier version (for example, 10.1.60) to 10.1.32, you may need to
customize custom libraries again based on the new version. To do this, search for group number
41708565 with DingTalk to join DingTalk group to contact mPaaS technical support personnel for
confirmation.

If the SDK version is 10.1.68, only a part of the components need to be updated. See the following
Adaptable library list for Android 11 updates to check if your custom library is included.

If no, you can continue to use these custom libraries.

If yes, you may need to customize them again. To do this, search for group number 41708565 with
DingTalk to join DingTalk group to contact mPaaS technical support personnel.

Adaptable library list for Android 11 updates
nebulaappproxy

nebulauc

In the mPaaS standard baseline, the dynamic libraries (.so f iles) used in the SDK support the armeabi
architecture only. However, some users also need support for other CPU architectures, such as the
armeabi-v7a architecture, or the arm64-v8a architecture for apps on Google Play. Since 10.1.68.21,
mPaaS has provided support for armeabi-v7a and arm64-v8a architectures. If your application needs to
support architectures other than armeabi, please use the mPaaS plug-in to update the SDK to version
10.1.68.21 or later versions, and update the SDK described as follows and return to the relevant
function.

If your app does not need to support architectures other than armeabi, you can st ill update the SDK to
version 10.1.68.21 or later versions, and don’t have to make any modificat ion.

Update configurations

Overall compatibility
Support AAR and Portal&Bundle accessing methods.

Support armeabi, armeabi-v7a, and arm64-v8a architectures.

Support targetSdkVersion 26 - 29

Support Android 11.

Release app on Google Play
If your app needs to be released on Google Play and use the location component of mPaaS or the map
function in the mini program, you need to remove the AMAP SDK built in mPaaS and use AMAP’s official
version that can be approved by Google. Modify with reference to the following instruct ions:

6.3. Adapt to multi-CPU architecture

Access Android User Guide·Adapt t o Android

> Document Version: 20230601 119

Use official AMAP posit ioning SDK

Use official AMAP map SDK

Update Gradle configurations

Native AAR
Update Gradle version. We recommend version 6.2 and the earliest supported version is 5.0. If the latest
version fails to compile, use the recommended version 6.2.

distributionUrl=https\://services.gradle.org/distributions/gradle-6.2-all.zip

Portal&Bundle
Update Gradle version. We recommend version 6.2 and the earliest supported version is 5.0. If the latest
version fails to compile, use the recommended version 6.2.

distributionUrl=https\://services.gradle.org/distributions/gradle-6.2-all.zip

Update agp version:

For Portal&Bundle access mode, modify it in the root directory build.gradle of the Portal project
and all Bundle projects.

classpath 'com.alipay.android:android-gradle-plugin:3.5.14'
classpath 'com.android.tools.build:gradle:3.5.3' // 3.5.0 earliest

Generate APK

Set CPU architecture
For Native AAR mode, set the architecture in the build.gradle of the main project module.

For Portal&Bundle access mode, set it in the build.gradle of the main module of the portal
project if apk is generated, or in the build.gradle of the main module of the bundle project if the
bundle is generated.

Set up abiFilters natively as follows:

ndk {
 abiFilters "armeabi", "armeabi-v7a", "arm64-v8a"
}

Compile
Compile as normal, without any modificat ion.

Regression test
You need to make full regression test ing for different architectures of the APK separately. In the
regression test, you should focus on the following component functions (if used):

Component s T est it ems

Access Android User Guide·Adapt t o Android

> Document Version: 20230601 120

Mobile Gateway Service

Whether the RPC call succeeds after signature
validation is enabled.

Whether the RPC call succeeds after date
encryption is enabled.

Code Scanner

Whether the standard UI scans the code
successfully.

Whether the standard UI opens the phone album,
takes photos and previews properly

If the custom UI is successful, you need to adapt
part of the new API.

Datacenter

Whether Database encrypted storage functions
well.

Whether File encrypted storage functions well.

Social Sharing
Whether Sina Weibo and QQ sharing functions
well.

OCR
OCR identifies whether the relevant content is
normal or not.

Audio and video
Whether the audio and video call function is
normal.

The primary baseline of mPaaS supports targetSdkVersion 29 and earlier. If your application requires
targetSdkVersion 30, use mPaaS plug-in to upgrade the SDK to the custom baseline 10.2.3 and
then perform adaptation and regression as shown in the following steps.

Prerequisites
The mPaaS is adapted to targetSdkVersion 28 and 29. For more information, see Adapt mPaaS to
targetSdkVersion 28 and Adapt mPaaS to targetSdkVersion 29.

Procedure
1. Change the value of the targetSdkVersion attribute.

In the native AAR access modes

Open the build.gradle file in the main module of the project and change the value of the
targetSdkVersion attribute to 30.

6.4. Adapt mPaaS to targetSdkVersion
30

Access Android User Guide·Adapt t o Android

> Document Version: 20230601 121

In the Portal and Bundle access mode

Open the build.gradle file in the main module of the Portal project and change the value of the
targetSdkVersion attribute to 30. In the Bundle project, the value of the targetSdkVersion
attribute can retain unchanged, but the value of the targetSdkVersion attribute must be less than
or equal to that in the Portal project.

2. Specify general configurations.

Open the build.gradle file in the main module of the project and explicit ly enable v2 and v1 signing.
Note that in the Portal and Bundle access mode, the project name is Portal.

 android {
 ...
 signingConfigs {
 release {
 storeFile file("myreleasekey.keystore")
 storePassword "password"
 keyAlias "MyReleaseKey"
 keyPassword "password"
 v2SigningEnabled true // Enable v2 signing.
 v1SigningEnabled true // Enable v1 signing.
 }
 }
 }

3. (Optional) Use the video playback feature of the Mini Program.

If you need to use the video playback feature of the Mini Program you connect to and your
application needs to support the 64-bit CPU architecture, modify the AndroidManifest.xml file in the
main project and add the following attribute to the "application" node:

android:allowNativeHeapPointerTagging="false"

4. Perform a regression test.

Ensure that Android 11 or later devices are included in the full regression test.

In the regression test, focus on the components and their features, if in use, shown in the following
table.

Component Test Item

HTML5 Container
Check whether the offline package can be properly downloaded and
used for upgrades.

Mobile Analysis Service (MAS)
Check whether all types of monitoring logs can be properly written to
local devices and reported.

Access Android User Guide·Adapt t o Android

> Document Version: 20230601 122

Mini Program

Check whether Mini Program packages can be properly downloaded
and used for upgrades.

Check whether the photo API is normal.

Check whether the video playback and recording APIs are normal.

Check whether the map API is normal.

OCR Check whether the OCR feature is normal.

Location Based Service (LBS) Check whether the LBS feature is normal.

Social Sharing
Check whether the content can be shared to the supported
platforms.

Device ID Check whether the device ID feature is normal.

The former mPaaS standard baseline only supports up to 26 for targetSdkVersion. However, The
support to targetSdkVersion is added since 10.1.68.21. If your app needs to upgrade targetSdkVersion
to 29, refer to Use mPaaS plug-in to update the SDK to 10.1.68.21 or later, and add configuration
according to the following descript ion and return to the relevant function.

Update SDK
Update the SDK and related configuration with reference to mPaaS supports for mult i-CPU
architecture.

Adapt targetSdkVersion 29

Prerequisites
Adapt targetSdkVersion 28 with reference to Adaptation of targetSdkVersion 28 to mPaaS

Modify targetSdkVersion

AAR
Modify the attribute targetSdkVersion 29 in the build.gradle f ile under the main module of the
project.

Portal&Bundle
Modify the attribute targetSdkVersion 29 in the build.gradle f ile under the main module of the
Portal project.

The targetSdkVersion in the Bundle project may be left unchanged, but may not be later than that
of the Portal project.

Universal configurations

6.5. Adapt to targetsdkversion 29

Access Android User Guide·Adapt t o Android

> Document Version: 20230601 123

Modify the project AndroidManifest.xml and add the following attributes under the application
node:

<application
 android:requestLegacyExternalStorage="true"
 ... >

The backend uses location function
If your app needs to use the location function while in the backend, you need to add and request the
following permissions:

Add the following permissions to AndroidManifest.xml :

<uses-permission android:name="android.permission.ACCESS_BACKGROUND_LOCATION" />

Ensure that the permission is dynamically requested before calling the locator API:

String[] permissions;
if (android.os.Build.VERSION.SDK_INT >= android.os.Build.VERSION_CODES.Q) {
 permissions = new String[]{
 Manifest.permission.ACCESS_FINE_LOCATION,
 Manifest.permission.ACCESS_COARSE_LOCATION,
 Manifest.permission.ACCESS_BACKGROUND_LOCATION
 };
} else {
 permissions = new String[]{
 Manifest.permission.ACCESS_FINE_LOCATION,
 Manifest.permission.ACCESS_COARSE_LOCATION
 };
}
ActivityCompat.requestPermissions(this, permissions, 101);

Use the Bluetooth function of the mini program
If your app needs to use Bluetooth-related APIs in the mini program, you need to add and request the
following permissions.

Add the following permissions to AndroidManifest.xml :

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

Ensure that the permission has been requested before calling the Bluetooth API:

String[] permissions = new String[]{
 Manifest.permission.ACCESS_FINE_LOCATION,
 };
ActivityCompat.requestPermissions(this, permissions, 101);

Regression test
Android 10.0+ devices must be included in the full regression test.

For regression test, you need to focus on the following component functions, if used:

Access Android User Guide·Adapt t o Android

> Document Version: 20230601 124

Components Validation project

Unified data storage
- Whether Database encrypted storage functions
well.

Mobile Analytics Service
- Whether the lag monitoring of Mobile Analytics
Service functions well.

Mini programs

- Whether Mini program file API functions well.

- Whether Mini program Bluetooth API functions
well.

- Whether the map component of the mini program
functions well.

Locating - Whether Locatingfunctions well.

The former mPaaS standard baseline only supports up to 26 for targetSdkVersion. However, The
support to targetSdkVersion is added since 10.1.68.21. If your app needs to upgrade targetSdkVersion
to 29, refer to Use mPaaS plug-in to update the SDK to 10.1.68.21 or later, and add configuration
according to the following descript ion and return to the relevant function.

Update the SDK and related configuration with reference to mPaaS supports for mult i-CPU
architecture.

Adapt targetSdkVersion 28

Modify targetSdkVersion

AAR
Modify the attribute targetSdkVersion 28 in the build.gradle f ile under the main module of the
project.

Portal&Bundle
Modify the attribute targetSdkVersion 28 in the build.gradle f ile under the main module of the
Portal project.

The targetSdkVersion in the Bundle project may be left unchanged, but may not be later than that
of the Portal project.

Universal configurations

AAR
Modify the project AndroidManifest.xml and add the following codes under the application node:

6.6. Adapt to targetsdkversion 28

Access Android User Guide·Adapt t o Android

> Document Version: 20230601 125

<uses-library android:name="org.apache.http.legacy" android:required="false"/>

Portal&Bundle
Modify the Portal project AndroidManifest.xml :

Add the following codes under the application node:

<uses-library android:name="org.apache.http.legacy" android:required="false"/>

Note that SDK has been changed to set through code. You need to remove the following attributes
from the LauncherActivity:

android:screenOrientation="portrait"

Other configurations

Allow HTTP requests
By default , the Android 9.0 network configuration disables HTTP requests and only allows HTTPS
requests. Set targetSdkVersion 28 to enable the 9.0 network configuration on 9.0+ devices. If you st ill
need to send HTTP requests, including in mini programs, you can enable it by configuring
networkSecurityConfig.

Note that Portal & Bundle is a Portal project. Create a network_security_config.xml f ile under the
 res/xml directory of the project with the following contents:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <base-config cleartextTrafficPermitted="true">
 <trust-anchors>
 <certificates src="system" />
 </trust-anchors>
 </base-config>
</network-security-config>

Note that Portal & Bundle is a Portal project. Add the following attributes to the application node in
 AndroidManifest.xml of the project:

android:networkSecurityConfig="@xml/network_security_config"

For more information about the configuration, please refer to the Official google documentation.

Crash occurs when setting screen orientation with transparent
background Activity
This adaptation point is an Android 8.0 bug. On Android 8.0 devices, when the application
targetSdkVersion > 26, opening an Activity with a transparent background will t rigger a crash if the
screen orientation is set. The specific trigger condit ions are:

The attribute of windowIsTranslucent or windowIsFloating of the theme used by the Act ivity
is true.

The screenOrientation attribute is set in AndroidManifest.xml , or the
 setRequestedOrientation method is called.

Access Android User Guide·Adapt t o Android

> Document Version: 20230601 126

https://developer.android.com/training/articles/security-config.html#base-config

You need to check if all Act ivit ies meet the trigger condit ions, and note that in addit ion to your custom
style, some common system themes also meet the condit ions, for example:

@android:style/Theme.Translucent.NoTitleBar
@android:style/Theme.Dialog

Recommended adaptation:

1. For the Act ivity whose theme meets the condit ion, delete the screenOrientation attribute in
 AndroidManifest.xml and call the setRequestedOrientation method instead.

2. Override the setRequestedOrientation method in the corresponding Activity or parent class, with
 try catch super.setRequestedOrientation() as the ground rule:

@Override
 public void setRequestedOrientation(int requestedOrientation) {
 try {
 super.setRequestedOrientation(requestedOrientation);
 } catch (Exception ignore) {

 }
 }

3. BaseActivity , BaseFragmentActivity , and BaseAppCompatActivtiy provided by mPaaS were
overwritten, with setRequestedOrientation method as the ground rule.

4. Make sure that your Act ivity does not have any exceptions due to screen rotat ion as this may prevent
crashes but may st ill cause lock orientation to fail on Android 8.0 devices. For example, re-running the
lifecycle will result in some member variables being empty.

Source code related to Android 8.0 system:

Access Android User Guide·Adapt t o Android

> Document Version: 20230601 127

Regression test
The full regression test must include Android 9.0+ devices. For crash issue in Act ivity sett ing screen
orientation against the transparent background, make specific tests on Android 8.0 models.

For regression test, you need to focus on the following component functions, if used:

Components Validation project

Mobile gateway

- Whether the RPC call succeeds after enabling
Signature validation.

- Whether the RPC call succeeds after enabling Data
encryption.

Scan

- Whether the standard UI scans the code
successfully.

- Whether the standard UI opens the phone album,
takes photos and previews properly.

- If the custom UI is successful, you need to adapt
part of the new API.

Unified data storage

- Whether Database encrypted storage functions
well.

- Whether File encrypted storage functions well.

Share
- Whether Share on Sina Weibo and/or QQ functions
well.

Access Android User Guide·Adapt t o Android

> Document Version: 20230601 128

Before proceeding with client-side development, you will f irst need to configure your development
environment:

Configure the Windows development environment

Configure the macOS development environment

Configure the Linux development environment

Configure the Windows development environment
Configure the Windows development environment with reference to the following instruct ions.

Configure Java 8 environment
mPaaS framework only supports JDK 8 and lat er :

1. Download and install JDK 8.

2. Configure the JAVA_HOME environment variable and add the bin path under JAVA_HOME to the
 PATH environment variable.

3. Once properly configured, run the java -version command from the command line and you will
view the JDK version and other information.

Configure Gradle 4.4 environment
mPaaS framework only supports Gradle 4.4.

Use Gradle Wrapper (recommended)
If your project was originally built with Gradle Wrapper, we recommend you to change the version
number to 4.4 in the project directory /gradle/wrapper/gradle.properties .

If your project does not use Gradle Wrapper, we recommend you to use the global Gradle version 4.4
and then call gradle wrapper --gradle-version=4.4 to install a gradle wrapper. After these
steps, you only need to use ./gradlew in a way that minimizes the impact on your development
environment.

Use an independent gradle
1. Download .

2. Unzip the .zip package, then configure the unzip path to the GRADLE_HOME environment
variable, and add the bin path under GRADLE_HOME to the PATH environment variable.

7.Reference
7.1. Environment configuration under
componentized access mode

Access Android User Guide·Reference

> Document Version: 20230601 129

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

3. Once properly configured, run the gradle -v command from the command line and you will view
the Gradle version and other information.

Install and configure Android Studio

Install Android Studio
The latest mPaaS plug-in only supports Android Studio of version 4.0 and later versions.

For the information about downloading Android Studio, see Android Developers.

Installat ion guide.

If you were using an earlier version of Android Studio and already had the mPaaS plug-in installed,
then after you upgrade from an earlier version of Android Studio to 4.0 or later versions you will only
need to upgrade the mPaaS plug-in to the latest version. For more details, see Upgrade mPaaS plug-
ins.

If you need to support the mPaaS plug-in for Android Studio earlier than version 4.0, install it as an
offline installer after downloading the offline installer. For more instruct ions on offline installat ion,
please refer to the offline installat ion of mPaaS plug-in.

Install Android SDK
You need to install the Android SDK with API Level 19 and 26.

1. In Android Studio, open the Sett ings dialog through File > Set t ings .

2. Check the SDKs with API Level 19 and 26 in the Android SDK dialog box , and click the Apply button
to install, as shown in the following figure:

Access Android User Guide·Reference

> Document Version: 20230601 130

https://developer.android.com/studio
https://developer.android.com/studio/install?#windows

Install mPaaS plug-in
More information on the installat ion of mPaaS plug-in, please refer to the Installat ion of mPaaS plug-in

Configure the Gradle build tool
You need to make sure that the project is built with Gradle Wrapper:

1. In Android Studio, open the Sett ings dialog through File > Set t ings .

Access Android User Guide·Reference

> Document Version: 20230601 131

2. Check the Use def ault gradle wrapper in the Gradle dialog box, and click the Apply button, as
shown in the following figure:

Configure the macOS development environment
Configure the macOS development environment according to the following descript ion.

Configure Java 8 environment
mPaaS framework only supports JDK 8+ :

1. Download and install JDK 8.

2. Configure the JAVA_HOME environment variable and add the bin path under JAVA_HOME to the
 PATH environment variable.

3. Once properly configured, run the java -version command from the command line and you will
view the JDK version and other information.

Configure Gradle 4.4 environment
mPaaS framework only supports Gradle 4.4.

Use Gradle Wrapper (recommended)
If your project was originally built with Gradle Wrapper, we recommend you to change the version
number to 4.4 in the project directory /gradle/wrapper/gradle.properties .

Access Android User Guide·Reference

> Document Version: 20230601 132

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

If your project does not use Gradle Wrapper, we recommend you to use the global Gradle version 4.4
and then call gradle wrapper --gradle-version=4.4 to install a gradle wrapper. After these
steps, you only need to use ./gradlew in a way that minimizes the impact on your development
environment.

Use an independent gradle
1. Download .

2. Unzip the .zip package, then configure the unzip path to the GRADLE_HOME environment
variable, and add the bin path under GRADLE_HOME to the PATH environment variable.

3. Once properly configured, run the gradle -v command from the command line and you will view
the Gradle version and other information.

Install and configure Android Studio

Install Android Studio
The latest mPaaS plug-in only supports Android Studio of version 4.0 and later versions.

For the information about downloading Android Studio, see Android Developers.

Installat ion guide.

If you were using an earlier version of Android Studio and already had the mPaaS plug-in installed,
then after you upgrade from an earlier version of Android Studio to 4.0 or later versions you will only
need to upgrade the mPaaS plug-in to the latest version. For more details, see Upgrade mPaaS plug-
ins.

If you need to support the mPaaS plug-in for Android Studio earlier than version 4.0, install it as an
offline installer after downloading the offline installer. For more instruct ions on offline installat ion,
please refer to the offline installat ion of mPaaS plug-in.

Install Android SDK
You need to install the Android SDK with API Level 19 and 26.

1. Open the Sett ings dialog box through Android St udio > Pref erences in Android Studio.

2. Check the SDKs with API Level 19 and 26 in the Android SDK dialog box , and click the Apply button
to install, as shown in the following figure:

Access Android User Guide·Reference

> Document Version: 20230601 133

https://developer.android.com/studio
https://developer.android.com/studio/install?#mac

Install mPaaS plug-in
More information on the installat ion of mPaaS plug-in, please refer to the Installat ion of mPaaS plug-in

Configure the Gradle build tool
You need to make sure that the project is built with Gradle Wrapper:

1. Open a random Andriod project in Android Studio.

2. Open the Sett ing dialog box.

3. Check the Use def ault gradle wrapper in the Gradle dialog box, and click the Apply, as shown in
the following figure:

Configure the Linux development environment
Configure the Linux development environment according to the following descript ion.

Access Android User Guide·Reference

> Document Version: 20230601 134

Not e

This text is applicable to CentOS and Ubuntu versions only, as there are too many versions of Linux
OS.

Configure Java 8 environment
mPaaS framework only supports JDK 8+ :

1. Download and install JDK 8.

2. Configure the JAVA_HOME environment variable and add the bin path under JAVA_HOME to the
 PATH environment variable.

3. Once properly configured, run the java -version command from the command line and you will
view the JDK version and other information.

Configure Gradle 4.4 environment
mPaaS framework only supports Gradle 4.4.

Use Gradle Wrapper (recommended)
If your project was originally built with Gradle Wrapper, we recommend you to change the version
number to 4.4 in the project directory /gradle/wrapper/gradle.properties .

If your project does not use Gradle Wrapper, we recommend you to use the global Gradle version 4.4
and then call gradle wrapper --gradle-version=4.4 to install a gradle wrapper. After these
steps, you only need to use ./gradlew in a way that minimizes the impact on your development
environment.

Use an independent gradle
1. Download .

2. Unzip the .zip package, then configure the unzip path to the GRADLE_HOME environment
variable, and add the bin path under GRADLE_HOME to the PATH environment variable.

3. Once properly configured, run the gradle -v command from the command line and you will view
the Gradle version and other information.

Install 32-bit compatible library
By default , ia32-lib is removed for the release versions of Linux such as CentOS 6, CentOS 7, and
Ubuntu. All 64-bit Linux systems must be installed with 32-bit compatible libraries. Refer to the
installat ion method of android-sdk:

Ubuntu:
sudo apt-get install zlib1g:i386

CentOS:
yum install libstdc++.i686

Access Android User Guide·Reference

> Document Version: 20230601 135

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://code.google.com/archive/p/android-sdk/

Install and configure Android Studio

Install Android Studio
The latest mPaaS plug-in only supports Android Studio of version 4.0 and later versions.

For the information about downloading Android Studio, see Android Developers.

Installat ion guide.

If you were using an earlier version of Android Studio and already had the mPaaS plug-in installed,
then after you upgrade from an earlier version of Android Studio to 4.0 or later versions you will only
need to upgrade the mPaaS plug-in to the latest version. For more details, see Upgrade mPaaS plug-
ins.

If you need to support the mPaaS plug-in for Android Studio earlier than version 4.0, install it as an
offline installer after downloading the offline installer. For more instruct ions on offline installat ion,
please refer to the offline installat ion of mPaaS plug-in.

Install Android SDK
You need to install the Android SDK with API Level 19 and 26.

1. In Android Studio, open the Sett ings dialog through File > Set t ings .

2. Check the SDKs with API Level 19 and 26 in the Android SDK dialog box , and click the Apply button
to install, as shown in the following figure:

Install mPaaS plug-in
More information on the installat ion of mPaaS plug-in, please refer to the Installat ion of mPaaS plug-in.

Configure the Gradle build tool
You need to make sure that the project is built with Gradle Wrapper:

1. Open a random Andriod project in Android Studio.

2. Open the Set t ing dialog box.

Access Android User Guide·Reference

> Document Version: 20230601 136

https://developer.android.com/studio
https://developer.android.com/studio/install?#Linux

3. Check the Use def ault gradle wrapper in the Gradle dialog box, and click the Apply button, as
shown in the following figure:

During app development, the app environment (namely, workspace) may occasionally change, and the
app may be developed in mult iple workspaces in parallel.

mPaaS provides a tool for you to conveniently switch among workspaces during development. There
are two types of workspace switching modes:

Static workspace switching

Dynamic workspace switching

Static workspace switching

Prerequisites
You have an App developed based on t he mPaaS f ramework . For more information, see mPaaS
Based Framework > Quick Start .

When performing stat ic workspace switching, easyconfig is used. easyconfig working principle:

Modify meta propert ies related to AndroidManifest workspace .

Modify the mpaas.properties f ile under assets .

If the configuration file of the mPaaS project contains the base64 property which is not null, a
Security Guard encrypted picture yw_1222.jpg is generated.

Public cloud
In a public cloud, perform the following steps to switch the workspace:

1. Ensure that the following dependency exists in the build.gradle f ile under the root directory of
the project:

7.2. Switch workspace

Access Android User Guide·Reference

> Document Version: 20230601 137

Not e

The following dependency version number may increase constantly due to function iterat ions.

 classpath 'com.alipay.android:android-gradle-plugin:3.0.0.9.13'
 // Set a version number that is no earlier than 2.7.5.
 classpath 'com.android.boost.easyconfig:easyconfig:2.7.5'

2. Ensure that the following configuration (sequence to be observed) exists in build.gradle of the
main project (android main module).

 apply plugin: 'com.alipay.portal'
 // Append it to com.alipay.portal
 apply plugin: 'com.alipay.apollo.baseline.update'

3. Download the .config configuration file of the corresponding workspace from the console. For
more information, see Create Application in Console > Download Configuration File.

4. Add the downloaded .config configuration file to the path of the main project (android main
module). See the figure below.

Import ant

Keep only the configuration file of the corresponding workspace.

Access Android User Guide·Reference

> Document Version: 20230601 138

Apsara St ack

In a private cloud, perform the following steps to switch the workspace:

1. Ensure that the following dependency exists in the build.gradle f ile under the root directory of
the project.

Not e

The following dependency version number may increase constantly due to function iterat ions.

 classpath 'com.alipay.android:android-gradle-plugin:3.0.0.9.13'
 // Set a version number that is no earlier than 2.7.5.
 classpath 'com.android.boost.easyconfig:easyconfig:2.7.5'

2. Ensure that the following configuration (the order must be followed) exists in build.gradle of
the main project (android main module).

apply plugin: 'com.alipay.portal'
 // Append it to com.alipay.portal
 apply plugin: 'com.alipay.apollo.baseline.update'

3. Download the .config configuration file of the corresponding workspace from the console. For
more information, see Create an application in console > Download configuration files.

4. Add the downloaded .config configuration file to the path of the main project (android main
module). See the figure below.

Import ant

Keep only the configuration file of the corresponding workspace.

Access Android User Guide·Reference

> Document Version: 20230601 139

5. Use the mPaaS plug-in to generate an encrypted image yw_1222.jpg . For more information, see
Generate an encrypted image (Apsara Stack).

Dynamic workspace switching
In dynamic workspace switching, workspace options in mobile phone sett ings are modified to
dynamically modify the app workspace information without repackaging on the client.

Not e

The function of stat ic workspace switching is available in the Apsara Stack environment
only.

Dynamic workspace switching applies to a scenario where mult iple sets of workspaces exist
and are switched frequently in the development phase.

The environment profile of the new environment must be written to the application when
dynamic environment switching is applied. Therefore, you need to request file storage
permissions for the application when using this approach.

Restricted by the mPaaS security signature verificat ion mechanism, updating workspace configuration
information will modify the Security Guard signature verificat ion picture yw_1222.jpg . Therefore,
dynamic workspace switching has two restrict ions.

Access Android User Guide·Reference

> Document Version: 20230601 140

Applicable only to the development phase: Dynamic workspace switching applies only to the
development phase. Delete the corresponding configuration before gett ing online (the release
package reports a RuntimeException exception).

Signature verificat ion for network requests must be disabled in the mPaaS console. Otherwise,
requests will fail due to incorrect signature verificat ion image information.

Add a dynamic workspace switching SDK
1. Add dependencies.

AAR access methods

Under the dependencies node in the build.gradle f ile of the main module, add the
following dependencies:

dependencies {
···
implementation 'com.mpaas.mocksettings:mocksettings-build:10.1.60a.1575@aar'
···
}

Portal&Bundle method

Under the dependencies node in the build.gradle f ile of the main module of the portal
project, add the following dependencies:

dependencies {
 ···
 bundle 'com.mpaas.mocksettings:mocksettings-build:1.0.0.200421111458@jar'
 manifest 'com.mpaas.mocksettings:mocksettings-build:1.0.0.200421111458:AndroidManifest
@xml'
 ····
}

2. Use SDK.

If using AAR access methods, rewrite the getPackageManager of Application, and replace
 PackageManager with MockSettingsPackageManager .

Access Android User Guide·Reference

> Document Version: 20230601 141

private MockSettingsPackageManager mockSettingsPackageManager;

@Override
public PackageManager getPackageManager() {
 if (mockSettingsPackageManager == null) {
 mockSettingsPackageManager = new MockSettingsPackageManager(this, super.getPack
ageManager());
 }
 return mockSettingsPackageManager;
}

If using Portal&Bundle method, modify the application of AndroidManifest.xml under the
main module of Portal project.

<application
 android:name="com.alipay.mobile.quinox.MockSettingsLauncherApplication"
 ···
 >
 ···
</application>

3. Add the following permission and make sure it has been dynamically requested during runtime.

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

4. Compile the debug package or turn on debug sett ings in AndroidManifest.xml .

<application
 android:debuggable="true"
 ···
 >
 ···
</application>

Dynamic switching
1. Scan the QR code to download the mPaaS set up App.

After installat ion, the icon of the mPaaS set up App is displayed as follows:

2. Place the config f ile downloaded from the mPaaS console in the SD card of the mobile phone.

Access Android User Guide·Reference

> Document Version: 20230601 142

3. Add a workspace. Add the config f ile to the list by using the mPaaS set up App.

i. Open the mPaaS set up App.

ii. Click Add conf igurat ion f ile at the bottom of the Workspace list page.

a. Find the workspace configuration files to be added.

b. Add the two files (formal workspace and test workspace) to the workspace list .

4. Switch to another workspace.

5. Select a workspace in the preceding figure and click Swit ch to switch to the selected workspace.

6. Then start the App corresponding to the workspace. If a test request can be properly sent, switching
to the target workspace succeeds.

If you switch to another workspace and restart the App corresponding to the earlier workspace, the
system reports a 3000 exception because the new workspace does not contain the corresponding
operationType. This is normal after you successfully switch to another workspace.

Because Android apps usually encrypt with the RSA method, the mPaaS console only supports to get
signatures for the app encrypted with the RSA method at the moment. If you need to use the DSK
method to encrypt an app, you should add signatures by the following steps.

See the following steps to add signatures:

1. Go to mPaaS console > Code management > Code conf igurat ion > Android tab to download
the configuration file.

Not e

Do not upload the signed APK before downloading the configuration file.

The base64Code value, if any, must be cleared, as shown in the following figure.

7.3. DSA certificate encryption tools

Access Android User Guide·Reference

> Document Version: 20230601 143

2. Use the mPaaS plug-in to generate encrypted image. Go to mPaaS from the top navigation bar of
Android St udio > Basic t ools > Generat e encrypt ed image (Apsara St ack prof ile) page, enter
the relevant configuration information, and click OK to generate an encrypted image.

appSecret is available from the mPaaS console under Code management > Code conf igurat ion >
Android tab, as shown in the following figure.

3. Perform a regular RPCcall to see if the call works correctly. For how to perform PRC calls, see Call RPC.

Access Android User Guide·Reference

> Document Version: 20230601 144

Check the following FAQ list , then click the specific questions to view the answer.

No network connection when you compile

Program compilat ion failed

Access problem during compilat ion

When you access to Apsara Stack, after downloading configurations and accessing to mPaaS,
compilat ion is rejected and NullPointerException occurs

How to debug applications

Precautions for using Mult iDex in the mPaaS Portal and Bundle projects

How to clear the Gradle cache

Upgrade to the latest Gradle plug-in

Camera cannot be turned on through the input file label in Huawei 10 System

How to depend on and use mPaaS in library?

How to fix 608 errors at runtime or native errors with libsgmain

No network connection when you compile
When you are compiling files, if there is no network, the compilat ion may fail. Follow the steps to
confirm that the network of compilat ion environment is connected.

1. Confirm that the Internet is connected.

2. Confirm that the network proxy is not connected, including browser proxy sett ings and third-party
network proxies.

3. Confirm that the IDE proxy is not configured.

8.FAQ

Access Android User Guide·FAQ

> Document Version: 20230601 145

4. In the gradle.properties f ile, confirm that the Gradle proxy is not configured. That is, the
 systemProp.http.proxyHost and the systemProp.http.proxyPort attribute is not configured. If

configured, you can delete the relevant attribute.

Program compilation failed
If program compilat ion failed, you can make troubleshooting and solut ions by following the steps.

1. According to the preceding steps, you can confirm that the network of compilat ion environment is
connected.

Access Android User Guide·FAQ

> Document Version: 20230601 146

2. Check the Gradle execution log to confirm if the added dependency is valid.

3. Check if the dependent GAV parameters including group , artifact , and version are
configured correctly.

//Reference the debug pack group:artifact:version:raw@jar
bundle "com.app.xxxxx.xxxx:test-build:1.0-SNAPSHOT:raw@jar"
//Reference the release pack group:artifact:version@jar
bundle "com.app.xxxxx.xxxx:test-build:1.0-SNAPSHOT@jar"
manifest "com.app.xxxxx.xxxx:test-build:1.0-SNAPSHOT:AndroidManifest@xml"

4. In the command line tool built in the system, execute the following command to export the Gradle
execute logs:

// Before executing the command, confirm the undefined productflavor attribute. Otherwise
, the command will fail to run.
// The following command will export the execution log to the log.txt file.
gradle buildDebug --info --debug -Plog=true > log.txt

5. Check the log file exported from the fourth step. In the latest log, you will see the following record,
which means the added dependency does not exist .

Caused by: org.gradle.internal.resolve.ArtifactNotFoundException: Could not find nebulaco
re-build-AndroidManifest.xml (com.alipay.android.phone.wallet:nebulacore-build:1.6.0.1712
11174825).
Searched in the following locations:
http://mvn.cloud.alipay.com/nexus/content/repositories/releases/com/alipay/android/phone/
wallet/nebulacore-build/1.6.0.171211174825/nebulacore-build-1.6.0.171211174825-AndroidMan
ifest.xml
 at org.gradle.internal.resolve.result.DefaultBuildableArtifactResolveResult.notFound
(DefaultBuildableArtifactResolveResult.java:38)
 at org.gradle.api.internal.artifacts.ivyservice.ivyresolve.CachingModuleComponentRep
ository$LocateInCacheRepositoryAccess.resolveArtifactFromCache(CachingModuleComponentRepo
sitory.java:260)

6. Visit the http link in this log and log on to check the Maven library. For example, the http link can be
the third line in the log listed in the preceding step.

Not e

In the build.gradle f ile, you can check the account name and password that you need to
provide when you log on.

7. Execute the following command to refresh the gradle cache.

gradle clean --refresh-dependencies

8. If the Maven library has a relevant dependency, delete the Gradle cache under your personal
directory, then recompile.

The method of delet ing the Gradle cache is as follows:

In the system such as macOS, Linux, and Unix, run the following commands:

Access Android User Guide·FAQ

> Document Version: 20230601 147

cd ~
cd .gradle
cd caches
rm -rf modules-2

In the Windows system, by default , the path will be located to C:\Users\\
{Username}\\.gradle\caches . Delete the modules-2 folder.

Access problem during compilation
If there is an access problem during compilat ion, (you have waited for more than 20 minutes) you can
improve the compilat ion efficiency by following the steps.

1. According to the preceding steps, you can confirm that the network of compilat ion environment is
connected.

2. Confirm that the firewall is closed.

3. Confirm that the network configuration of the IntelliJ IDEA encoder is inact ivated.

4. In the code, load Maven images in advance. See the following code example of Maven images loaded
by Alibaba Cloud.

Access Android User Guide·FAQ

> Document Version: 20230601 148

apply plugin: 'maven'
buildscript {
 repositories {
 mavenLocal()

// Load Maven images at first
 maven{ url 'http://maven.aliyun.com/nexus/content/groups/public/'}

 maven {
 credentials {
 username "Use the known user"
 password "Use the known password"
 }
 url "http://mvn.cloud.alipay.com/nexus/content/repositories/releases/"
 }
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:2.1.3'
 classpath 'com.alipay.android:android-gradle-plugin:2.1.3.3.3'
 classpath 'com.neenbedankt.gradle.plugins:android-apt:1.8'
 }
}
allprojects {
 repositories {
 flatDir {
 dirs 'libs'
 }
 mavenLocal()
 maven {
 credentials {
 username "xxxxxxxxx"
 password "xxxxxxx"
 }
 url "http://mvn.cloud.alipay.com/nexus/content/repositories/releases/"
 }
 maven{ url 'http://maven.aliyun.com/nexus/content/groups/public/'}
 }
}

When you access to Apsara Stack, after downloading configurations
and accessing to mPaaS, compilation is rejected and
NullPointerException occurs

Access Android User Guide·FAQ

> Document Version: 20230601 149

In general, this is the problem of the configuration file, namely, the conf file. You need to check the
fields. Check if any of the thirteen fields are missing. Compare with the files downloaded from the
public cloud, and confirm if the field name is correct.

How to debug applications
During the development, you need to debug codes. This topic describes two debug methods.

Start the application through the debug mode

Run the application, then start debugging

Start the application through the debug mode
Use cases:

The init ial code that you want to use when the debug application launched. For example, init ialize
the code during application init .

Procedures:

Access Android User Guide·FAQ

> Document Version: 20230601 150

1. Execute the command adb shell am start -W -S -D application pack name/The type name of the
first page launched by the application . For example, the pack name of the mPaaS Demo is
 com.mpaas.demo , and the type name of the first page launched by the application is
 com.alipay.mobile.quinox.LauncherActivity . You can use the command line adb shell am
start -W -S -D com.mpaas.demo/com.alipay.mobile.quinox.LauncherActivity to launch the
application through the debug mode. See the following picture for the first type name launched.

2. After the command is executed, the following dialogue box will appear on the mobile phone.

3. Set the breakpoint to the code line you want to debug. Then attach the breakpoint to the process
where the application is. See the following picture.

Access Android User Guide·FAQ

> Document Version: 20230601 151

Run the application, then start debugging
Use cases:

Start debugging after you trigger an event. For example, only when you click a button or redirect to
a page, you need to debug.

Procedures:

Access Android User Guide·FAQ

> Document Version: 20230601 152

After running the application, click the attached

button. Or after executing the preceding command, click the attached button, then start debugging.

Precautions for using MultiDex in the mPaaS Portal and Bundle
projects
Portal and Bundle are not suggested to intervene in the Mult iDex. Unless you are in the single portal
project, and need to use the multiDexEnabled true .If your Bundle is too big, you can only continue
by the method of split t ing the bundle. Do not act ivat e t he mult idex support in t he bundle .

How to clear the Gradle cache
Open the configuration page of the Gradle plug-in, then click Clean Cache button to delete all the
cache data of the Gradle plug-in.

Upgrade to the latest Gradle plug-in

Not e

The content of this sect ion is only applicable for 10.1.68 baselines. For more information about the
baseline of this version, see Introduction to the baseline and Launch instruct ions of 10.1.68
baselines.

The version of the Android Gradle Plugin provided by Google is 3.5.x at the moment.

mPaaS also provides the plug-in of 3.5.x version as the adapter, which supports the APIs of Google
Android Gradle Plugin 3.5.3 and Gradle 6.3.

Change in the access methods
1. You only need to import our plug-ins by adding the following dependency instead of import ing the

official plug-in of Android Gradle Plugin. Because of the dependency transmission, the plug-in will be
imported automatically.

Access Android User Guide·FAQ

> Document Version: 20230601 153

dependencies {
classpath 'com.alipay.android:android-gradle-plugin:3.5.18'
}

2. The version of Gradle Wrapper needs to be upgraded to 5.6 or later versions. Version 6.3 is
recommended to use.

Change in the usages
No need to use the apply plugin:'com.android.application .

If you are in the portal project, you only need to use the apply plugin:'com.alipay.portal' .

If you are in the bundle project, you need to delete the apply
plugin:'com.android.application' and only need to use the apply
plugin:'com.alipay.bundle' .

If you are in the library project, you need to delete the apply plugin:'com.alipay.library' and
only need to use the apply plugin:'com.android.library .

If using the latest stable version of Android Studio 3.5 or later versions, you need to add
 android.buildOnlyTargetAbi=false in the gradle.propert ies.

Our wireless security components do not support V2 signatures at the moment. Thus, if you need to
use Android Studio debugging and install your APK, you need to disable V2 signatures. If you use the
command line for creation, and your minSdkVersion is greater than or equal to 24, you need to
disable V2 signatures as well. See the following method of disabling V2 signatures:

v2SigningEnabled false

Import ant

After clearing the cache, you need to check if the mini program and HTML5 work.

Camera cannot be turned on through the input file label in Huawei
10 System
There are some differences between the implementations of Huawei 10 system URI and the standard
Android. Thus, you may meet problems such as failing to turn on the camera in Huawei 10. You need to
execute the following steps to solve this problem.

Access Android User Guide·FAQ

> Document Version: 20230601 154

1. Upgrade baselines
If you are using 32 baselines, you need to upgrade the baseline to 10.1.32.18 or later.

If you are using 60 baselines, you need to upgrade the baseline to 10.1.60.9 or later.

If you are using 68 baselines, you need to upgrade the baseline to 10.1.68-beta.3 or later.

2. Configure FileProvider
You can reuse your current FileProvider or create a new FileProvider.

1. Create a new Java class to inherit the FileProvider.

import android.support.v4.content.FileProvider;
public class NebulaDemoFileProvider extends FileProvider {
}

2. Create a new nebula_fileprovider_path.xml in res/xml.

<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android="http://schemas.android.com/apk/res/android">
 <external-path name="external" path="."/>
</paths>

3. Add configurations in AndroidManifest.

<provider
 android:name="com.mpaas.demo.nebula.NebulaDemoFileProvider"
 android:authorities="com.mpaas.demo.nebula.provider"
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/nebula_fileprovider_path" />
</provider>

Not e

Here the value of android:authorit ies, namely com.mpaas.demo.nebula.provider is an mPaaS
sample code. You need to configure by yourself based on your applications. And the value cannot
be configured as com.mpaas.demo.nebula.provider , which will have conflicts with other mPaaS
applications.

3. Implement the H5NebulaFileProvider
1. Create a new Java class, then implement the H5NebulaFileProvider and the getUriForFile method. In

this method, you can call the implemented FileProvider to generate URI.

Access Android User Guide·FAQ

> Document Version: 20230601 155

public class H5NebulaFileProviderImpl implements H5NebulaFileProvider {
 private static final String TAG = "H5FileProviderImpl";

 @Override
 public Uri getUriForFile(File file) {
 try {
 return getUriForFileImpl(file);
 } catch (Exception e) {
 H5Log.e(TAG, e);
 }
 return null;
 }

 private static Uri getUriForFileImpl(File file) {
 Uri fileUri = null;
 if (Build.VERSION.SDK_INT >= 24) {
 fileUri = NebulaDemoFileProvider.getUriForFile(LauncherApplicationAgent.getInsta
nce().getApplicationContext(), "com.mpaas.demo.nebula.provider", file);
 } else {
 fileUri = Uri.fromFile(file);
 }
 return fileUri;
 }
}

2. Register the H5NebulaFileProvider .

After you complete the mPaaS init ializat ion, register the H5NebulaFileProvider before you start the
off-line pack. Register once will take effect globally.

H5Utils.setProvider(H5NebulaFileProvider.class.getName(), new H5NebulaFileProviderImpl())
;

How to depend on and use mPaaS in library?
While using mPaaS, a module needs to be reused sometimes. The reuse is implemented by adding the
module as a dependency. This sect ion illustrates this method with an example of reusing scan module.

Prerequisites
The project has been accessed to mPaaS in native AAR mode.

Procedure

Access Android User Guide·FAQ

> Document Version: 20230601 156

1. Create an Android Library type scan module in the project.

2. In the build.gradle file of the newly created scan module, add the following codes api
platform("com.mpaas.android:$mpaas_artifact:$mpaas_baseline") . The example is as follows:

 dependencies {
 ……
 //This line is necessary when using mPaaS in the module.
 api platform("com.mpaas.android:$mpaas_artifact:$mpaas_baseline")

 ……
 }

3. Install scan component for scan module by Android Studio mPaaS plug-in. The directory is : mPaaS >
Nat ive AAR mode > Conf igure/Updat e component > St art conf igurat ion . After the
installat ion, the scan component will automatically load.

Access Android User Guide·FAQ

> Document Version: 20230601 157

4. Configure App main project.

 plugins {
 id 'com.android.application'

 // baseline.config (baseline) must be added in the build.gradle file of app module.
 id 'com.alipay.apollo.baseline.config'
 }

5. Call module.

Import scan module where it is used.

 dependencies {
 api platform("com.mpaas.android:$mpaas_artifact:$mpaas_baseline")

 api project(':scan')//scan module
 }

How to fix 608 errors at runtime or native errors with libsgmain
1. If an exception occurs during runtime, search for the keyword SecExcetpion in the Android Studio

runtime log, and find that there is a 608 error code or a native error of libsgmain, you can follow the
steps below to troubleshoot.

Access Android User Guide·FAQ

> Document Version: 20230601 158

i. Drag and drop the APK directly into Android Studio and check if the targetSdkVersion in the
Androidmenifest f ile is a version between 26-28.

Access Android User Guide·FAQ

> Document Version: 20230601 159

ii. Check if the res/drawable/yw_1222.jpg f ile exists.

Check the config file for Base64.

Check if the Gradle plugin baseline.update or baseline.config is applied.

iii. Check META-INF for three files, CERT.SF, MANIFEST.MF, and CERT.RSA.

a. Turn on v1SignEnabled in app/build.gradle .

b. Whether there is a pply plugin: 'com.alipay.apollo.optimize' in build.gradle in the
project root directory.

Access Android User Guide·FAQ

> Document Version: 20230601 160

After performing the above check steps and confirming that the result is correct, it means that there
is a problem with the signed APK package uploaded on the console. If the signature is incorrect, the
APK package needs to be re-uploaded.

Access Android User Guide·FAQ

> Document Version: 20230601 161

	1.Add mPaaS to your project
	1.1. Prerequisites
	1.2. Step 1 select appropriate integration method
	1.3. Step 2 create mPaaS application in the console
	1.4. Step 3 add configuration files to your project
	1.5. Step 4 select appropriate baseline
	1.6. Step 5 add components to your project

	2.Choose integration method
	2.1. Integration method introduction
	2.2. Native AAR integration method
	2.2.1. Manage component dependencies
	2.2.2. Check configurations of the build script
	2.2.3. Initialize mPaaS
	2.2.4. Add obfuscation rules
	2.2.5. Upgrade componentized or mPaaS Inside integration mode to Native AAR mode
	2.2.6. Remove specific mPaaS library
	2.2.7. Privacy permissions
	2.2.8. Use common components of mPaaS framework(optional)

	2.3. Componentized integration method (Portal&Bundle)
	2.3.1. About Portal & Bundle projects
	2.3.2. General steps
	2.3.3. Register common components
	2.3.4. Use Material Design
	2.3.5. Use non Android support 3rd resource library
	2.3.6. Load and customize the framework
	2.3.7. Manage gradle dependencies
	2.3.8. Obfuscate Android codes
	2.3.9. Attention for using MultiDex in mPaaS Portal&Bundle projects
	2.3.10. Data cleansing whitelist
	2.3.11. Remove privacy permissions
	2.3.12. Use privacy permission pop-ups (Portal&Bundle)

	3.Choose baseline
	3.1. Baseline introduction
	3.2. mPaaS 10.1.68 upgrade guide
	3.3. mPaaS 10.1.60 upgrade guide

	4.Solve dependency confilction
	4.1. Solve dependency conflicts
	4.2. Solve conflict with dependency on Amap location
	4.3. Solve conflict with dependency on Amap
	4.4. Solve conflict with dependency on security guard
	4.5. Solve conflict with dependency on utdid
	4.6. Solve conflict with dependency on Alipay SDK
	4.7. Solve conflict with dependency on wire/okio
	4.8. Solve comflict with dependency on fastjson
	4.9. Solve conflict with dependency on Android support
	4.10. Solve conflict with libcrashsdk.so
	4.11. Solve conflict with libcrashsdk.so

	5.Developer's tools
	5.1. Android Studio mPaaS plugin
	5.1.1. About mPaaS plugin
	5.1.2. Install mPaaS plug-in
	5.1.3. Use mPaaS plug-in
	5.1.4. Update and uninstall mPaaS plug-in

	6.Adapt to Android
	6.1. Adapt to Android 12
	6.2. Adapt to Android 11
	6.3. Adapt to multi-CPU architecture
	6.4. Adapt mPaaS to targetSdkVersion 30
	6.5. Adapt to targetsdkversion 29
	6.6. Adapt to targetsdkversion 28

	7.Reference
	7.1. Environment configuration under componentized access mode
	7.2. Switch workspace
	7.3. DSA certificate encryption tools

	8.FAQ

